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Chapter 10

Firewalls and Tunnels

This chapter discusses perimeter-based defenses, starting with firewalls and then comple-
mentary enabling technologies for securing network communications of remote users and
distance-separated peers. Generic tools called encrypted tunnels and virtual private net-
works (VPNs) are illustrated by SSH and IPsec. We consider risks of network-accessible
services and how to securely provide such services, building familiarity with network de-
fense options (and their limitations). Many examples put security design principles into
practice, and give reminders of the primary goals of computer security: protecting data
and passwords in transit, protecting resources from unauthorized network access and use,
and preserving the integrity and availability of hosts in the face of network-based threats.

As a simplified view, firewalls at enterprise perimeters keep out the bulk of unautho-
rized traffic; intrusion detection systems provide awareness of, and opportunities to ame-
liorate, what gets through; user traffic is cryptographically protected by technologies such
as IPsec-based VPNs, SSH, TLS, and encrypted email; and authentication of incoming
packets or connections is used to distinguish authorized entities and data.

This view helps convey an important message: the rich flexibility and functionality
enabled by network-accessible services come with security implications. Remote access
to network-based services should be over cryptographically secured channels, comple-
mented by mechanisms that allow monitoring of traffic, and at least partial control of
where it may flow. As an upside, encrypted network communications provide legiti-
mate parties protection for transmitted data including passwords, and remote access to
trusted environments; as a downside, when intruders or malicious insiders use the same
tools, the content of their communications is inaccessible, heightening the importance of
proper access control and authentication, policy enforcement at entry and exit points, and
monitoring-based intrusion detection.

10.1 Packet-filter firewalls

A network security firewall is a gateway providing access control functionality that can
allow or deny, and optionally modify, data passing between two networks, or a net-
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10.1. Packet-filter firewalls 283

work and a device. The design intent is that traffic cannot bypass the firewall in either
direction—thus in theory, packets undergo COMPLETE-MEDIATION (P4). The terminol-
ogy reflects fire-resistant doors designed to isolate damage and contain spread in case
of fire, in line with principle P5 (ISOLATED-COMPARTMENTS). Network firewalls most
commonly serve in perimeter-based defenses, protecting a trusted private (internal) net-
work from an untrusted public (external) network, e.g., the Internet.

INBOUND AND OUTBOUND. From the private network viewpoint (Figure 10.1),
packets arriving are inbound, and those leaving are outbound. Filtering inbound packets
protects the internal network from the Internet. Filtering outbound packets allows aware-
ness and partial control of data sent out and services accessed, e.g., to enforce a secu-
rity policy restricting allowed protocols and services, and to detect unauthorized transfers
(data extrusion or exfiltration) from compromised internal machines or insiders—rogue
employees or individuals abusing resources from within. We discuss firewalls under two
broad headings: packet filters (below), and proxy-type firewalls (Section 10.2).

Ch.10.	Network	firewall	(basic	concept).	

firewall	

external	network	

internal	network	

outbound	

inbound	
to	enterprise	

Internet	

Figure 10.1: Network firewall (basic model).

PACKET-FILTER RULES AND ACTIONS. A packet-filter firewall is configured by
an administrator. It contains a list of rules of the form <condition, action>. In a “first-
matching rule” firewall, the action taken for a packet is that specified by the first rule
whose condition it satisfies. The primary actions are:

• ALLOW (permit packet to pass);
• DROP (silently discard the packet—a type-1 deny); or
• REJECT (drop but also try to inform the source—a type-2 deny). This might result in

sending a TCP RST (reset) packet, or for UDP an ICMP “destination unreachable”.
In addition to one of the above, a second action may log the packet, e.g., using the syslog
general system-logging service. For efficiency, most packet-filter matching rules are based
on five TCP/IP header fields (src addr, src port, dst addr, dst port, prot),1

and if ICMP then ICMP type and code. Other header fields (packet size, flags) are some-
times used. More complex rules, and so-called intelligent packet filtering, may involve
payload data, e.g., an allow or deny decision based on a payload URL—but examining
application payloads is generally beyond the scope of packet filters.

1Shorthand here is as follows: src (source), dst (destination), addr (address), prot (IP header protocol,
e.g., TCP, UDP or ICMP). Section 10.6 background on basic networking concepts is assumed to be known.
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STATELESS AND STATEFUL FILTERS. In a simple stateless packet filter, each packet
is processed independently of others (with no dependency on prior packets). In contrast,
a stateful packet filter keeps track of selected details as packets are processed, for use
in processing later packets. State details are kept in a firewall state table. This often
means tracking TCP connection states; packets with sources corresponding to established
or in-progress connection set-ups are treated differently than new sources. Firewalls that
track connection-related socket details (i.e., IP addresses, ports) may be called dynamic
packet filters; this term is also used more generally for a stateful packet filter whose rules
automatically change “on the fly” in specific contexts (FTP example, page 286).

Example (Packet-filtering rules). Table 10.1 gives sample filtering rules in six blocks.

1. (ingress/egress) Rules 1–2 mitigate spoofed source IP addresses. Discussion of these
rules is best deferred until Section 11.3.

2. (SMTP email) Rule 3 denies packets from a known spam server; 4 and 5 allow incom-
ing connections to a gateway mailserver and responses from it; 6 and 7 allow, from the
gateway mailserver, outgoing mail connections and associated responses.

3. (HTTP) Rules 8–A allow outbound HTTP connection requests, and inbound responses,
but reject inbound HTTP connection requests. Checking for presence of the ACK flag,
as listed, stops unsolicited inbound packets; TCP stacks themselves will reject packets
with an ACK flag but no associated existing connection.

4. (DNS): Rule B allows outgoing queries from a gateway DNS server, to resolve ad-
dresses for internal users; C and D allow incoming queries and related responses, e.g.,
for authoritative answers to external parties resolving addresses for their users.

5. (ICMP ping): Rules E–H are best discussed with denial of service (Chapter 11).

6. (default deny): Rule Z is last. A packet matching no other rules is blocked.

A (stateful-filtering) rule might ALLOW inbound SYN-ACK packets from external src addr
(s) to an internal dst addr (d) only if the state table shows d recently sent s a SYN packet.

DEFAULT-DENY RULESETS. Chapter 1’s principle P2 (SAFE-DEFAULTS) motivates
default-deny firewall rulesets, with a packet allowed only on explicitly matching an accept
rule. Such rulesets are constructed from security policies explicitly stating allowed types
of access. A default-allow alternative that allows any packet for which no rule explicitly
blocks it, has tempting usability (disrupting fewer external services desired by internal
hosts)—but is unnecessarily dangerous, as a firewall administrator cannot possibly know
of all exploits that might arise or already be in use, all requiring explicit deny rules.

FIREWALLS AND SECURITY POLICY. A packet filter executes precise rules de-
termining which packets may enter/exit an enterprise network. Thus a firewall instan-
tiates an organization’s Internet security policy.2 If server ports were guaranteed to be
bound to known services, then by creating ALLOW rules that translate authorized external
services to those ports, outbound service requests could be filtered based on destination
ports in TCP headers. In practice this fails, as the mapping between port and service is

2To put this in context with broader security policy, firewall rules specify allowed Internet services, e.g.,
in terms of remote access, whereas file permissions typically relate to local or internal files.



10.1. Packet-filter firewalls 285

Rule #, Path Source Destination Protocol Extra Comments
Action addr port addr port field
1 NO in us * * * * ingress and egress
2 NO out them * * * * filtering (Sect. 11.3)
3 NO in black * * * * blacklist bad servers
4 OK in them high GW 25 TCP inbound mail...
5 OK out GW 25 them high TCP ACK ...our responses out
6 OK out GW high them 25 TCP SMTP mail out...
7 OK in them 25 GW high TCP ACK ...inbound response
8 OK out us high them 80 TCP HTTP request out...
9 OK in them 80 us high TCP ACK ...allow responses
A NO in them * us 80 TCP no inbound requests
B OK out GW 53 them 53 UDP our DNS queries
C OK in them * GW 53 UDP DNS queries to us...
D OK out GW 53 them * UDP ...responses from us
E OK in them – us – ICMP 8 pings to us...
F OK out us – them – ICMP 0 ...our responses
G OK out us – them – ICMP 8 our pings out...
H OK in them – us – ICMP 0 ...responses to us
Z NO * * * * * * default deny

Table 10.1: Packet-filtering rule examples (illustrative, for discussion). Notation: NO

(deny packet), OK (allow packet), in/out (inbound/outbound packet direction), us/them
(internal/external addresses; products specify explicit ranges), * (any value matches), high
(port above 1023, unprivileged), black (list of blacklisted addresses, e.g., spam servers),
ACK (ACK bit set), GW (our enterprise gateway mail server/DNS server). For ICMP rules,
values (8, 0) refer to ICMP message types; recall that ICMP does not use ports.

only as trustworthy as the service’s host; connecting to an untrustworthy host is always
dangerous. Nonetheless, outbound HTTP connections (to port 80) are typically allowed
as a security-usability tradeoff (possibly with some sites blacklisted); and similarly for
HTTPS (port 443). Inbound connections from unknown hosts are commonly blocked,
as a primary function of firewalls, but firewall rules may whitelist (authorize) connec-
tion request packets from certain IP addresses. In cases where incoming connections are
not entirely blocked, one approach is use of firewall rules that allow packets to a small
number of known sockets corresponding to internal hosts running authorized services.3 If
these internal hosts are maintained as trustworthy machines, then external clients should
have access only to authorized APIs—presumably limiting internal exposure (although
exploitable vulnerabilities in such services may remain).

FIREWALLS AS CHOKEPOINTS. Firewalls use the entry point to a private network
as a central point for monitoring, control, and packet rejection. The idea is to force traffic
through a narrow passageway or chokepoint. This implicitly assumes a perimeter, with
alternate entry points no easier to get through—like a ticket-check at a sports arena, or an
agreed border crossing point between two hostile nations. As noted in Chapter 9, employ-

3This is commonly implemented using a so-called DMZ as discussed later in Figure 10.4.
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ees originally accessed the web through enterprise “world wide web” gateways or proxy
servers; these evolved into firewalls. While firewalls remain in wide use, the perime-
ter model can no longer fully control contact to an internal network, as perimeters with
single-point network access have largely disappeared—internal network hosts now com-
monly access web content (software, data, connectivity) while bypassing firewalls, e.g.,
via wireless access points not under enterprise management, USB flash drives inserted
into hosts, and users in bring-your-own-device environments connecting smartphones di-
rectly into internal networks. Firewalls nonetheless remain useful:

• to protect legacy applications within contained subnetworks;

• as an enforcement point for Internet security policy, to monitor and control incom-
ing access by remote adversaries lacking wireless or physical access to hosts; and

• to instantiate accepted defensive principles like defense-in-depth and isolation.

LIMITATIONS. While firewalls play an important contributing role and remain a primary
defense line and gateway to the Internet, they have recognized limitations:

1. topological limitations: firewall protection assumes true perimeters exist.

2. malicious insiders: users and hosts inside a firewall are treated as trusted, implying
little protection from users cooperating with outsiders, or intruders with established
positions as insiders. Traditional firewalls alone are not intruder-detection systems.

3. trusted users making bad connections: firewalls provide little protection when trusted
users originate connections resulting in malicious active content or drive-by downloads
(Chapter 7) from bad or compromised web sites.

4. firewall transit by tunneling: firewall rules relying on port number (to allow only per-
mitted services) are commonly bypassed,4 by tunneling one protocol through another
(Section 10.4). Such tunneling is used for both benign and malicious purposes.

5. encrypted content: content-based inspection at firewalls (albeit not a basic packet-
filter function) is precluded by encryption, unless means are provided to intercept and
decrypt connections via proxy-type functionality (again, Section 10.2).

‡Exercise (Pros and cons of packet filtering). Summarize the advantages and disadvan-
tages of packet-filtering firewalls (hint: [41, p.108–109]).

‡Example (Dynamic packet filtering: FTP normal mode). In FTP file transfer, one
TCP connection is used as a control channel (for commands), and another as a data chan-
nel (for data transfer). TCP ports 21 (FTP command) and 20 (FTP data) are respectively
reserved at the server end. To initiate a “normal mode” FTP session, the client assigns
two ports above 1023—one each for command and data—and using its own command
port and server port 21, opens a TCP connection on which it then sends an FTP PORT
command. This tells the server which client port to use for data transfer. The server
then opens a TCP connection to the client’s data port. This, however, violates the rule of
thumb of allowing outbound but refusing externally originated TCP connections. (Note:

4This assumes that the firewall lacks capabilities of content inspection and application verification, which
may be provided by (and motivate) proxy firewalls as discussed later in Section 10.2.
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FTP also has a “passive” mode that avoids this issue.) This issue may be avoided by track-
ing outbound FTP PORT commands and the port number that a specific internal host (IP
address) has requested be used for inbound FTP data connections, and automatically cre-
ating a dynamic (temporary) rule allowing the out-to-in connection to that port. Dynamic
packet filters may do so; this term may also imply a proxy-type filter (Section 10.2) that
is stateful.

‡Exercise (Network address translation). Explain what network address translation
(NAT) is, and its relationship to network security.

‡DEDICATED FIREWALLS AND HYBRID APPLIANCES. Firewalls are instantiated
as a collection of one or more software and/or hardware components. Commercial routers
commonly have packet-filtering capabilities, and may be called screening routers. Be-
yond packet filtering, firewalls at network perimeters are conveniently located for several
complementary services: NAT, VPN endpoints (Section 10.4), network monitoring, and
logging (of full packets or headers only) to support audit, recovery and forensic services.
Firewalls may be in a dedicated hardware unit or functionality in a multi-purpose device
(e.g., server, router, IP switch, wireless access point). A hybrid appliance may provide
multiple such functions plus intrusion detection and beyond-header inspection into pay-
loads, i.e., deep packet inspection as is common in application-level filters (Sect. 10.2)
to filter executables or malicious content. While hybrid appliances reduce the number of
security boxes, dedicated firewalls also have advantages:
1. smaller attack surface: reduced functionality avoids often-exploited features, and sim-

plifies “hardening” general-purpose devices;
2. specialist expertise: stand-alone firewalls are built, and in enterprise environments

administered by, specialized experts (rather than generic administrators);
3. architectural features: devices custom-designed as firewalls may have hardware ad-

vantages over general-purpose hosts (cf. Section 10.2 dual homing, fast interfaces);
4. absence of regular-user accounts: these often prioritize usability over security, e.g.,

allowing authentication with user-chosen passwords, whereas mandatory two-factor
authentication is more appropriate for hosts used exclusively by administrators.

5. physical isolation: dedicated inline devices provide defense-in-depth.
‡PERSONAL AND DISTRIBUTED FIREWALLS. With host-based firewalls, a built-

in software-based firewall filters packets into and out of each individual host. All major
operating systems support such personal firewall variants for end-user machines. An im-
portant use case is for hosts on untrusted networks (e.g., mobile devices in hotels, coffee
shops, airports) beyond the protection of perimeter firewalls of enterprise networks or
home-user cable modems. One default-deny approach involves user prompts (“Allow or
deny?”) on first instances of inbound and outbound access requests, with responses used to
build whitelists and blacklists to reduce further queries. Such personal firewalls allow user
control of network access, at the cost of inconvenient prompts accompanied by details of-
ten insufficient for a user to make informed choices—raising difficult tradeoff issues. Dis-
tributed firewall variants for enterprise environments and servers involve centrally-defined
policies distributed to individual hosts by an integrity-protected mechanism (e.g., digitally
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signed). Overall, such host-centric defenses complement network-centric approaches, as
hosts are not always topologically inside firewalls, nor can hosts rely on perfect protec-
tion from firewalls. Host-based protection alone leaves exposures while foregoing the
ability of network-centric devices to detect and mitigate compromised hosts after the fact.
Host-based firewalls are often combined with host-based intrusion detection systems.

‡Exercise (iptables). As part of Linux since 2001, the iptables user-space program
(with corresponding kernel component) uses the built-in Netfilter framework to spec-
ify a firewall policy and implement packet filtering. Describe the main functionality of
iptables in two pages or less. (Hint: [25, Ch.1].)

‡Exercise (Unencrypted tunnels). To allow HTTP (browsing), many firewalls allow
outbound connections to port 80. However, standard networking encapsulation of one
protocol by another—also called tunneling—can then be used as follows to bypass firewall
policy. Use HTTP to carry, as payload, a second protocol that would be disallowed by
firewall policy if used alone (as the outer protocol). Discuss why this obvious “hole” is
not closed (hint: [8, p. 234–236] or [5, p. 36]). Note: encapsulation arises again in Section
10.4, and in discussion of IPsec in which case the payload may be encrypted.

10.2 Proxy firewalls and firewall architectures

PROXY FIREWALLS (INTRODUCTION). Packet filters primarily examine network and
transport headers (e.g., IP, TCP). They are often combined with two other categories of
firewalls discussed here. Each is a security intermediary between an internal client and
an external service. Both may be viewed as proxies, in the sense of acting as beneficial
middle-person agents that mediate end-party communications. However, they have dif-
ferent primary roles. Circuit-level proxy firewalls generically relay connections through a
single proxy point; the primary mediation is to allow or deny the connection, and then re-
lay bytes. Application-level filters carry out application-specific processing through multi-
ple specialized processors for a pre-determined set of authorized applications. We discuss
circuit-level proxies first, after a brief mention of important properties.

PROXY FIREWALL REQUIREMENTS. Two properties are critical in firewall proxies:
1. transparency. Ideally, the user experience is unchanged (as opposed to expecting com-

pliance with special procedures).
2. performance. Performance degradation must be limited. Store-and-forward applica-

tions (e.g., email, file transfer) may be more tolerant than real-time applications.

Common means to achieve transparency from the client software experience are: a) proxy-
aware clients—customizing selected client application software to redirect connections to
a firewall proxy; and b) proxy-aware gateways—use of a primary firewall that redirects
tasks to appropriate specialized processors based on application protocol fields.

CIRCUIT-LEVEL PROXIES (MOTIVATION). Circuit-level proxy firewalls arose in
the context of early Internet gateways (“world wide web” proxies, Chapter 9). Enterprises
desired to protect local hosts from malicious inbound connections, but also to allow in-
ternal users convenient web access (outbound connections). Towards this end, suppose
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Ch.10.	Circuit-level	proxy	firewall.	A8er	a	policy	decision	to	allow	the	connec<on,	the	circuit	level	proxy	establishes	a	virtual	circuit	that	
fulfills	the	user	view	of	the	connec<on,	but	in	actuality	receives	packets	on	one	TCP	connec<on	(TCP-1),	complete	with	packet	
reassembly,	and	retransmits	using	a	second	TCP	connec<on	(TCP-2)	to	the	target	server	(server	1).			From	the	server	viewpoint,	
the	connec<on	is	to	the	proxy,	not	the	end-user	client.				
	
(old	aside,	Ch.9	proxy	fig)	you	can	do	SSH	(supported	by	PuLy)	through	an	HTTP	proxy	via	the	CONNECT	method	
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Figure 10.2: Circuit-level proxy firewall. If policy allows the connection, the circuit-level
proxy establishes a virtual circuit that fulfills the user view of the connection. Technically,
it receives packets on one TCP connection (TCP-1), with packet reassembly as usual, and
retransmits using a second TCP connection (TCP-2) to the target server (server 1). From
the server viewpoint, the connection is to the proxy, not the end-user client.

all within-enterprise hosts are on an isolated network without Internet connectivity, and
considered “secure” for that reason; call them internal hosts. Consider hosts with Inter-
net connectivity as “insecure”; call them external hosts. Enterprise security staff equated
“security” with the lack of network connectivity between internal and external hosts; com-
munication between the two was possible by manual transfer via portable storage media,
but inconvenient. Thus users were unhappy. This led to the following manual solution.

MANUAL GATEWAY SOLUTION. A first-generation solution involved user accounts
on a gateway machine. A host G (gateway firewall) is set up. It is connected to both the
internal network and the Internet, but does not allow direct connections between the two.5

Internal users are given accounts on G. Internet access is available by logging in as a
user on G (but not directly from an end-user machine U). To copy files (transfer content)
back to an end-user machine, now rather than using portable media, the physical transfer
is replaced by a (manual) network transfer. Users log in to their account on G, retrieve
Internet content, have it stored on G; log out; then from their regular host U , establish a
U–G connection allowing file transfer from G to U . Similarly, to transfer a file f from
internal host U to external host X , a user (logged into U) copies f from U to G, and then
(after logging into G) copies from G to X . Enterprise security staff remain happy, as there
are still no direct connections from U to X . Users are less unhappy—they can do this all
electronically from their desk, but it is time-consuming.

FIREWALL PROXY WITH PROXY-AWARE CLIENTS. An improved solution from
the early 1990s remains the dominant variant of circuit-level proxy firewall (Fig. 10.2). It
involves a client-side library, a proxy-server (daemon) sockd, and a client–daemon net-
work protocol called SOCKS. Collectively, they allow an internal user U to connect to a
firewall-resident proxy sockd that selectively provides access to Internet content on ex-
ternal hosts X , with proxied path: U-to-sockd, sockd-to-X . The proxy is transparent in
that U’s experience is the same as an application-level connection directly to X , and no
changes are required to external services (hosts X see sockd as the connection originator).
This magic is possible by making pre-selected client applications SOCKS-aware, mean-

5As noted later in this section, this is possible using a dual-homed host.
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Ch.10.	App-level	gateway/filters.	The	applica9on-level	gateway	selects	the	appropriate	applica9on-level	filter	for	
applica9on-specific	filtering	of	data	packets.			(Main	idea	of	circuit-level	proxy	was	outbound	connec9on;	these	filters	
seem	most	useful	for	filtering	incoming	traffic.)	

1	2	

host	1	
internal	
host	

host	3	
host	2	

Internet	

Applica9on-level	gateway	

Internal	network	

App-level	
filter	

3	
2	 external	hosts	

1	

Figure 10.3: Application-level gateway filters. The application-level gateway selects the
appropriate filter for application-specific filtering of data packets.

ing: the client application software is modified such that its library routines that involve
network sockets are replaced by corresponding routines from a SOCKS library, such that
client outbound connections are redirected to sockd on G. Performance costs are low—
on approving a connection and establishing a separate TCP connection with specified
external host X , the proxy’s main task is copying bytes from received packets of one com-
pleted proxy leg (TCP connection) to the other. Packets from the first TCP connection are
reassembled before relaying.6 Connection details (TCP socket details, number of bytes
sent, username if provided) may be logged using syslog but unlike application-level fil-
ters (below), no further content inspection or filtering occurs.

CIRCUIT-LEVEL PROXIES: SUMMARY. The above mechanism delivers on the en-
terprise goal of safely facilitating outbound connections. Internal users have transparent
access to Internet services consistent with an enterprise policy, without exposing internal
hosts to hostile connections from outside. The main cost is customization of pre-selected
client applications, and their distribution to internal users. As noted, circuit-level prox-
ies may be combined with packet filters to block inbound connections except, e.g., from
pre-authorized external sockets, or connections to restricted sets of internal sockets. The
circuit-level proxy itself may require proxy connections be authenticated (so as to re-
lay only policy-approved connections), beyond packet filter constraints on pre-approved
sockets and protocol details (vs. application content). The proxy gateway is mandatory for
connections—endpoints are on networks not otherwise connected. Note that circuit-level
proxies themselves (including SOCKS) do not provide inherent encryption services.7 Be-
yond proxying TCP connections, SOCKS also supports forwarding of UDP packets.

APPLICATION-LEVEL FILTERS. As noted earlier, application-level gateways filter
traffic using specialized programs for a pre-determined set of applications (Figure 10.3).
These specialized programs may be considered “proxy processors” (but execute different
tasks than circuit-level proxies). Packets corresponding to a targeted application protocol
are directed to the appropriate customized filter, each of which leverages detailed under-
standing of a specific protocol to examine application-specific data (cf. Figure 10.14).
This may result in not only blocking packets entirely, but altering payloads—e.g., con-

6This also mitigates some (beyond our scope) exploits involving intentional packet fragmentation.
7SOCKS is, however, often combined with an encrypted tunnel, e.g., provided by SSH (Section 10.3).
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tent inspection for an HTTP gateway/proxy may involve deleting malicious JavaScript
or rewriting URLs. Such “layer 7 firewalls” that alter payloads do intrusion prevention
(Chapter 11).

APPLICATIONS TARGETED. The requirement for detailed knowledge of specific
applications limits the number of protocols for which application-specific filters are built,
and raises issues for proprietary application protocols whose details are not widely known.
Targeted applications include those most widely used, and those causing the biggest se-
curity problems. Among the first were specialized filters for remote login, file transfer,
and web protocols (TELNET, FTP and HTTP). Email is in its own category as a pri-
mary application to filter, and (independent of firewall technologies in use) is commonly
processed by multiple mail-specific gateways on the path from originator to recipient, in-
cluding to filter spam and to remove malicious embedded content and attachments. Mail
filters may remove Microsoft Word macros (cf. macro viruses, Chapter 7), or executables.
Regarding performance, examining application-level content implies longer processing
times, partially mitigated by architectures with dedicated processors per application type.

BASTION HOSTS AND DUAL-HOMED HOSTS. Firewalls that serve as gateways
between internal subnetworks are called internal firewalls. These (and DMZs below)
support the principle of DEFENSE-IN-DEPTH (P13), allowing management of sensitive
subnetworks, e.g., to isolate (contain) test/laboratory networks. Borrowing terminology
from medieval castles–where a bastion is a fortified cornerpoint or angled wall projec-
tion such that defensive firepower can be positioned in multiple directions—a bastion
host, in a multi-component firewall, is a defensive host exposed to a hostile network.
While designed to protect the internal network, it is itself exposed (e.g., behind only a
screening router), and thus should be hardened (locked down) by disabling all interfaces,
access points, APIs and services not essential to protecting the internal network or fa-
cilitating controlled Internet access for internal hosts. A dual-homed host is a computer
with two distinct network interfaces, and correspondingly two network addresses; multi-
homed hosts have one IP address per interface. If routing functionality between the two
interfaces is disabled, a dual-homed host is suitable for a circuit-level proxy—physically
ensuring the absence of direct connections between an external and internal network. A
dual-homed host may serve as a single-host (one-component) firewall to an external net-
work, but more commonly is part of a multi-component firewall architecture.

ENTERPRISE FIREWALL ARCHITECTURES. As a minimally functional enterprise
firewall, a single screening router (router with packet filtering) offers basic protection but
limited configurability. A slightly more functional firewall has a screening router and
a bastion host. The screening router is on the Internet-facing side of the bastion host,
which protects the internal network and receives incoming connections (e.g., email and
DNS queries about enterprise addresses). A more comprehensive architecture, providing
an outer layer in a DEFENSE-IN-DEPTH (P13) strategy, uses a perimeter network called a
network DMZ (demilitarized zone)—a subnetwork between an external network (hostile)
and the internal network to be protected. To follow the principle of LEAST-PRIVILEGE

(P6), the types of traffic (protocols) allowed within the DMZ should also be minimized.
One such architectural design (Figure 10.4) consists of a bastion host between a first
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Ch.10.	Firewall	architecture	including	DMZ	(perimeter	network).	Two	screening	routers	are	
used,	one	internet-facing	and	one	internal.		The	GW	firewall	proxy/host	could	be	the	GW	in	
the	filter	rules	Table	1,	most	exposed	so	should	be	basIon	host.		A	host	(5)	may	connect	to	
Internet	services	by	proxy	through	GW,	and	possibly	directly	through	the	exterior	router	(1)	
for	outgoing	connecIons	only	on	a	reduced	set	of	packet-filtered	protocols.		

internal	firewall	
internal	net	

GW	

router	Internet	

web	server	 DNS	server	

router	

finance	group	

1	 2	

composite		
firewall	

DMZ	3	

4	
5	host	

Figure 10.4: Firewall architecture including DMZ. The gateway firewall (3) is a bastion
host. An internal host (5) connects to Internet services by proxying through GW, and
might be allowed to make outgoing connections (only) through the exterior router (1),
bypassing GW, for a reduced set of packet-filtered protocols, depending on policy.

screening router (exterior router) facing the external network, and a second screening
router (interior router) fronting the internal network. The bastion host in the DMZ is the
contact point for inbound connections, and the gateway proxy for outbound connections.

‡Exercise (Firewall architecture details). Give four relatively simple firewall archi-
tectures, from a single screening router to that of Figure 10.4, and the advantages of each
over the earlier (hint: [41, Ch. 6]).

10.3 SSH: Secure shell

The Internet Protocol (IP), the Internet’s foundational datagram networking protocol,
lacks built-in security services. Yet higher-level protocols sometimes implicitly (at times,
falsely) assume that protection comes from lower-level protocols. One possible, but ineffi-
cient, solution would be for each application to independently implement its own security
services. A more efficient one—albeit requiring coordination and advance planning—is
to build generic security services into lower levels of the communications protocol stack
(Fig. 10.10 on page 300), for higher levels (especially applications) to rely on. This is the
approach followed by SSH, introduced in 1995, and now widely used worldwide. Though
SSH stands for Secure Shell, SSH does not itself provide a shell, but rather provides an
encrypted tunnel to get to a shell (and other programs).

SSH OVERVIEW. Prior to SSH, means for remote login (rlogin, telnet), related
Unix remote-access commands (rsh, rcp, rexec), and file transfer (ftp) sent cleartext
data over the network, and also passwords (when required). In some cases, password au-
thentication for remote access was not required (page 297, “trusted” login hosts). SSH,
and utilities built using it, were specifically designed as secure alternatives (with confi-
dentiality, integrity, authentication), as summarized in Table 10.2. Using TCP for reliable
packet transport, SSH provides a security tunnel in a transport layer protocol, protect-
ing both passwords sent to login to remote services, and ongoing TCP connections post-
authentication. The general model of SSH is that any program available on a remote host
can be run through the security tunnel. SSH is now widely used to secure both custom-
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TARGET FULL NAME FUNCTIONALITY

rsh
(ssh)

remote shell Send shell command for execution on remote host by a
daemon (rshd).

rlogin
(ssh)

remote login Log in to remote Unix server over TCP network, then
communicate as if physically local.

telnet
(ssh)

teletype network Acquire interactive virtual terminal connection over TCP,
e.g., to a command line interface (Unix, Windows).

ftp
(sftp)

file transfer prot
(secure ftp)

Transfer files, using separate connections for control and
data. Can also be replaced by ftps (FTP over TLS).

rcp
(scp)

remote copy
(secure copy)

Copy files, directories between local, remote systems,
with command line syntax similar to Unix command cp

Table 10.2: Widely used remote access command programs for network protocols prior
to SSH. Secure replacements (parenthesis, column 1) are available in the OpenSSH open-
source suite and other packages. The SSH precursors are also called Berkeley r-utilities.

built utilities (e.g., scp, sftp), and for general access by a local host to remote services.
REMOTE SHELL VIA SSH. Figure 10.5 depicts use of SSH for a remote shell. The

user (local host) ends up with a terminal interface and command prompt for an interac-
tive shell running on the remote machine. The shell may be thought of as using standard
input/output streams (stdin, stdout, stderr) to communicate with the SSH daemon
(sshd), which relays traffic to SSH client software (ssh). Thus ssh and sshd work as
partners at client and server sides (local and remote ends). By this design, remote appli-
cations need not be customized to work with SSH (i.e., need not be “SSH-aware”).

Ch.10.	SSH	model.	

local		
host		

SSH	tunnel	

SSH	
client	

SSH	
server	

shell	(cmd	
interpreter)	

remote	
host	

Figure 10.5: Remote shell through an SSH tunnel, providing authenticated encryption.

THREE PROTOCOLS COMPOSING SSH. SSH is implemented in three parts:

1. Its transport layer protocol provides SSH server authentication, encryption and in-
tegrity protection. It includes negotiation of cryptographic parameters and keys.

2. Its user authentication protocol handles SSH client-to-server authentication and runs
over the transport layer protocol, relying on it for confidentiality and integrity.

3. Its connection protocol enables using a single SSH connection (encrypted tunnel) for
multiple purposes. Each use instance is assigned a number denoting a “logical chan-
nel”; data for all channels is sent over the single SSH connection and the channels are
said to be multiplexed. The connection protocol, running over the transport layer pro-
tocol and after the authentication protocol, employs the encrypted tunnel. Channels
may support interactive sessions for remote execution of programs (shells, applica-
tions, remote execution of system commands) and connection forwarding (of ports
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and X11 sessions, below). After a channel is defined (set up), a single remote program
can be started and associated with it.
SSH CLIENT AUTHENTICATION. During session negotiation, the SSH server de-

clares which client authentication methods its SSH clients may use. While additional
options may be supported, common options include the following:

• client password (static, or one-time passwords);
• Kerberos ticket obtained from a Kerberos server (Chapter 4); and
• client public key (described next).8

A typical SSH client authentication process for the case of client public keys is as follows:

i) The server receives from the client the client public key, as well as the client’s signature
(using the matching private key) over pre-specified data including a session ID from
the transport layer.

ii) The server checks that two conditions hold—the client public key is on a list of server-
recognized (pre-registered) keys; and the received signature is valid relative to this
public key and the data including session ID.

SSH SERVER AUTHENTICATION: ESTABLISHING TRUST IN HOST KEY. Server
authentication involves a server public key (SSH host key), and standard protocols for
using a recognized public key for authenticated key establishment.9 This requires that
the client recognize (trust) the host key. In non-business uses generally lacking support-
ing infrastructure, a relatively weak common approach is trust on first use (blind TOFU,
Chapter 8); this provides protection against passive attackers. To also preclude active
middle-person attacks (where an attacker substitutes a fraudulent host key), the end-user
can cross-check the fingerprint (Section 8.2) of the host key, e.g., manually check that a
locally computed hash of the offered host key matches a hash thereof obtained over an in-
dependent channel. (Enforcement of such a check is problematic in practice; many users
skip this step even if asked to do it.) In business uses, where a requirement for higher
security justifies added costs, an enterprise may make such cross-checks corporate pol-
icy and take steps aiming to increase user compliance, but the preferred alternative is an
infrastructure-supported (automated) method to trust SSH server keys (Model 2 below).

TRUST MODELS FOR SSH HOST KEYS. The above motivates two models:

• Model 1 (client database of SSH server keys). On first connection to an SSH server, a
client is offered a server host key. If the client manually accepts it as trusted (with or
without a cross-check), the key, paired with a server ID (e.g., URL or domain) is stored
in a local client database for future use as a “trusted” SSH server key.

• Model 2 (CA-certified SSH server keys). Here one or more CA verification public keys
are configured into the SSH client (perhaps via a local file), and used to verify offered
SSH host keys. This resembles TLS use of the CA/browser trust model (Chapter 8),
but there, client (browser) trust is pre-configured by browser vendors, and generally

8Conformant software must support the client public-key option, but all clients need not have public keys.
9TLS set-up (Chapter 9) similarly uses a recognized server public key to establish a fresh session key.
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Ch.10.	SSH	port	forwarding	(local	forwarding).		Useful	for	a	legacy	applica=on	
that	does	not	secure	its	own	traffic.		L	and	R	refer	to	the	hosts	of	ssh,	sshd	
soBware	resp.	Note	that	the	origina=ng	applica=on,	and	the	target	server,	may	
be	on	machines	A,	B	dis=nct	from	L,	R	in	the	general	case.	In	the	common	case	
(shown)	where	A=L	and	B=R,	there	is	no	concern	about	the	ini=al	and	final	legs	
being	unencrypted.	Nota=on:	port	``c”	for	listening	port	on	ssh	client,	``d”	for	
listening	port	on	final	des=na=on	(target	server	host).		The	case	A	!=	L	requires	
a	special	flag	in	ssh	(Snader,	p.224),	for	safety,	so	default	is	A=L.	Without	SSH,	
the	host	A	app	simply	sends	data	to	hostB:portD	(if	e.g.,	over	HTTP,	then	would	
be	unencrypted	for	a	typical	legacy	app);	instead,	now	sends	to	hostL:portC.			

local		
host:	L		

SSH	tunnel	
ssh	 sshd	

remote	
host:	R	

	host	A	app	 host	B	server		host	A	app	

(case	A	≠	L)	

	host	B	server	
(case	B	≠	R)	

C	
D	

listen	

fwd	

port	
port	 D	port	

decrypt	then	
deliver	

Figure 10.6: SSH local port forwarding. An application on host A historically connects
over the Internet to port D on a distinct host B. To secure this, an SSH tunnel is set up
between ssh on host L and sshd on host R, with ssh configured to listen on a local port
C, which the app is then directed to send data to; such data ends up being received by
sshd and forwarded as desired. A mnemonic mapping of the command-line syntax to
this diagram is: ssh -L portC:hostB:portD hostR. By default, ssh assumes that the
application using the SSH tunnel is on the same host as the ssh client, i.e., A = L.

designed to facilitate access to a maximum number of sites by a maximum number of
users. In contrast for SSH, an enterprise or other host of an SSH server may intend
access for only a restricted set of authorized users (e.g., employees and partners), and
thus any CA infrastructure used may be far less global (and easier to manage).

‡SSH USER AUTHENTICATION (METHOD CONFUSION). When the client public-key
method is used, the matching private key is often stored in software at the client, protected
under a passphrase or password-derived key. The user would then typically be prompted
to enter a password to allow private-key access. Depending on the user interface, this may
cause confusion on whether user authentication employs password or public key.

SSH PORT FORWARDING. SSH uses port forwarding of TCP ports to redirect
data from unsecured (e.g., legacy) applications through a pre-established SSH connection
(SSH tunnel). The application would otherwise send cleartext over a TCP/IP connection.
To understand port forwarding (Fig. 10.6), consider the command syntax:

ssh -L listen port:host:hostport sshd host
This invokes the local client (ssh) to set up an SSH connection to a daemon (sshd) on
sshd host, establishing the SSH tunnel. The “-L” option and its argument results in ssh
listening for data sent to listen port on the local host, and sending it through the SSH
tunnel and then on to its final application destination, host:hostport. The application
wishing to use the tunnel must then be configured to send data (connect) to listen port.
That data, now redirected through the ssh-sshd tunnel from the local host to sshd host,
is decrypted by sshd, and relayed to host:hostport (which in the simplest case is also
on sshd host; otherwise, now-plaintext data is no longer SSH-protected over its final leg,
e.g., on the local network), where the application data is consumed. This is (L) local port
forwarding, or tunneling a port. The analogous process to request forwarding of ports on
a remote SSH host is called (R) remote port forwarding.

‡Exercise (Remote port forwarding). Draw a diagram like Fig. 10.6 for remote port
forwarding, and explain the corresponding command-line command (hint: [27, p. 224]).
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Ch.10.	SCP	(secure	copy).	sshd	is	the	ssh	daemon	on	the	remote	host.		

local		
host:	L		

SSH	tunnel	
ssh	 sshd	

remote	
host:	R	

SSH	client	created	by	scp	

	scp	(L)	 scp	(R)	 scp		
program		
started	by		
sshd	

Figure 10.7: SCP (secure copy). ssh is client software; sshd is the server daemon.
Both programs are supported on most operating systems, and are what users commonly
associate with “SSH” (although SSH is actually a set of network protocols). SCP was
custom-designed to replace rcp; other applications use SSH by explicit port forwarding.

HOW SCP WORKS. Figure 10.7 illustrates the design of SCP. For a user on host L
to transfer file1.txt to host R using SCP, the syntax is:

scp file1.txt R
This results in the SCP software client scp (L) forking an SSH child process on L; issuing
to it an SSH command starting a remote copy of SCP on R; and with that command,
sending R also the embedded command: scp -t file1.txt.10 On R, a daemon sshd is
listening and a copy of scp (dormant) is available. The coordinating pair ssh-sshd set up
an SSH tunnel, and the local and remote SCP agents use the tunnel to transfer the file.

‡SSH X11 FORWARDING. SSH likewise supports forwarding of X11 connections.
This refers to a windowing system for bitmap displays, the X Window System (version
11), specifically designed for use over network connections to facilitate remote graphical
user interfaces (GUIs). An X server, running on a user’s local machine with graphical
display resources (and keyboard and mouse), is used for local display and input-output
for an X (client) program running on a remote (network) computer. X allows a program
to run on a remote machine with GUI forwarded to a machine physically in front of a user.

‡Exercise (SSH host-based client authentication). A further SSH client authentication
method specified in RFC 4252 is host-based (client) authentication. It involves a client-
side signature, in this case using a private key for the client host machine as a whole (rather
than corresponding to a specific user thereon); the server must, in advance, have informa-
tion allowing it to recognize the client public key as authorized. This method is sometimes
combined with requiring that the client is also allowed to log in to the server according
to a .rhosts file on the server (per “trusted” login hosts, below). Discuss advantages and
disadvantages of this method. (Hint: [37]; for more insight, [41, p.502].)

‡Exercise (SSH and secure file transfer). In a table, briefly summarize and compare
the security-related properties and functionality of the following:

10The -t flag is typically omitted from user documentation, as it is not meant for use by end-users. The
flag tells the receiving scp program that it is a remote scp instance that will be receiving a file to be stored
using the specified filename.
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a) historical Simple File Transfer Protocol (first SFTP, per RFC 913)
b) rcp of old Unix systems
c) scp (SSH replacement of rcp)
d) ftp and its TLS-based extension ftps (RFC 4217)
e) sftp (i.e., SSH FTP, the second SFTP, beyond that of part a)

‡Example (PuTTY: SSH client tools). PuTTY is a popular open-source package avail-
able for most operating systems. The core functionality is secure remote sessions, via
SSH replacements of the standard network protocols (rsh, telnet, rlogin), typically
also including scp and sftp—thus all the secure replacements listed in Table 10.2.

‡“TRUSTED” LOGIN HOSTS: MECHANISM. Historical tools (with Unix origins)
sent cleartext passwords for remote login (rlogin) and remote execution of commands
(rsh). For convenience, passwords could be omitted for connection requests from hosts
(generally in the same local network) designated as “trusted” in a root-owned or per-user
special file on the machine being connected to. Given a list of hosts in /etc/hosts.equiv,
requests asserted to be from one of these were given access with the authority of the local
userid (if it exists) matching the userid asserted. For <remote host, remote user> pairs
included in the home directory file .rhosts of an individual user, requests from such a pair
were granted access under the local userid of that individual. (Host-userid pairs could also
be specified in /etc/hosts.equiv, but this was uncommon.)

‡“TRUSTED” LOGIN HOSTS: DANGERS. The above trusted-hosts mechanism is
now strongly discouraged and often disabled, but remains useful to know both as an ex-
ample of a risky practice, and to understand the context in which SSH was created. The
mechanism gives, to an attacker with access to one account, password-free access to other
machines that, by this mechanism, trust the first account (or its host). Such other machines
themselves may be trusted by a further set of machines, and so on. Such (pre-granted,
unauthenticated) transitive trust breaks principle P5 (ISOLATED-COMPARTMENTS), and
compounds the failure to follow principle P6 (LEAST-PRIVILEGE). As a concrete exam-
ple, this trust mechanism was exploited by the Morris worm (Chapter 7).

‡PORT 22 FOR SSH. SSH inventor Tatu Ylönen requested port 22 be dedicated for
SSH, and the request was granted. He relates:11 I wrote the initial version of SSH (Secure
Shell) in Spring 1995. It was a time when telnet and FTP were widely used. Anyway, I
designed SSH to replace both telnet (port 23) and ftp (port 21). Port 22 was free. It was
conveniently between the ports for telnet and ftp.

10.4 VPNs and encrypted tunnels (general concepts)

MOTIVATION: PLAINTEXT PACKETS. Normal TCP/IP packets are plaintext. The full
packet content (header plus payload) is visible to every party with access to the packet
stream (open wireless links make eavesdropping trivial), and alterable by any inline party
(all intervening routers, switches, gateways, and service provider equipment). For protec-
tion, one idea is to encrypt entire packets at origin devices before network transmission.

11Source: https://www.ssh.com/ssh/port

https://www.ssh.com/ssh/port


298 Chapter 10. Firewalls and Tunnels

However, that breaks existing networking protocols, which rely on plaintext header fields
to allow packet processing, forwarding and delivery. Thus if packet header fields are en-
crypted, the encrypted data must be repackaged as a payload, preceded by a new header
that can in turn be removed by networking software at the destination. Alternatively, pay-
load data alone can be protected (e.g., by authenticated encryption), in which case existing
networking protocols are not disturbed. This leads to strategies including tunneling.

TUNNELING. In the networking context, tunneling refers to one data stream’s journey
(the inner) being facilitated by another; the imagery is of a tunnel. Contrary to standard
network stack protocol design, where protocols lower in the stack (Fig. 10.10, p.300)
carry payloads of higher-level protocols (Fig. 10.14), tunneling may also involve one
application-level protocol carrying another. The technical means is (as in standard proto-
col design) encapsulation of one protocol by another—a first protocol (header plus pay-
load) is the payload of a second, the second prefixing a new (outer) header. Viewing the
first protocol as having two parts, a letter body surrounded by an envelope (which serves to
provide a final address), encapsulation puts a second envelope (with interim destination)
around the first. Not all tunnels provide security, but security tunnels allow secure transit
via public/untrusted channels (Fig. 10.8). Two widely used technologies often viewed as
security tunnels are the relatively lightweight SSH (Sect. 10.3), and heavier-weight IPsec
(Sect. 10.5). The idea is that once a tunnel is set up, applications (and their users) trans-
parently enjoy its security benefits without requiring or experiencing changes to those
existing applications; security-related details disappear by the time the application data
is consumed. Encrypted tunnels set up this way are used to secure data (including from
legacy protocols) that transits untrusted networks, and for VPNs as discussed next.

VIRTUAL PRIVATE NETWORKS. A (physical) private network is a network intended
for access only by trusted users, with security (e.g., confidentiality, integrity) arising from
its network architecture: physical isolation, authentication-based access control, and fire-
walls or gateways. Examples are local area networks internal to an enterprise, and home
networks meant for private use. A virtual private network (VPN) is a private network, typ-
ically uniting physically distant users or subnetworks, created or enlarged not by physical
isolation, but through use of encrypted tunnels and special-purpose protocols, software,
and/or hardware support. Enterprise organizations often use VPNs. The “virtual” refers
in part to use of Internet links (secured by cryptography), whereas historically private net-
works required costly exclusive-access leasing, from telecommunications companies, of

Ch.10.	Tunnel	(generic).	

SP			...
	

client	 server	encrypted	tunnel	through	
untrusted	Internet	

plaintext	plaintext	

endpoints	encrypt/decrypt	
data	sent	over	TCP/IP	

Figure 10.8: Encrypted tunnel (concept). To avoid breaking pre-existing protocols, the
tunneling protocol must preserve packet header data used for routing and middlebox (i.e.,
non-endpoint) processing.
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VPN design VPN architecture Notes and use cases
transport mode host-to-host VPN provides end-to-end security

(VPN endpoints are final destination)
network-to-network network gateways add/remove VPN security

tunnel mode (no VPN protection internal to gateway)
host-to-network for remote host access to enterprise

(in-host gateway adds/removes VPN security)

Table 10.3: VPN designs and architectures. See Fig. 10.9 for illustrations.

dedicated network links (communications cables) physically connecting remote networks.
VPN USE CASES. Two primary use cases are met by the designs in Table 10.3:

1. site-to-site VPNs. The idea is to bridge private networks across a public channel.
2. remote access VPNs. The idea is to allow authorized clients remote access (e.g., from

home) to a private network, with access experience as if physically local.

LIMITATIONS OF ENCRYPTED TUNNELS. Encrypted payloads prevent effective
network-based monitoring, and content-based filtering at gateways and firewalls. With
plaintext, detection (and altering or dropping) of packets containing malicious data pat-
terns is possible; encrypted such patterns cannot be detected. In the case of an insider
attack (a disaffected employee, or an earlier compromise giving an attacker access to an
internal-network machine), data exfiltrated through an encrypted tunnel is no longer eas-
ily detected by standard network monitoring as in the case of plaintext. Also, if a firewall
allows transit of, e.g., SSH packets, a protocol that a firewall policy blocks directly may
still be sent as data through an SSH-provided tunnel (evading firewall policy). Use of
encrypted tunnels, including IPsec, thus increases the importance of host-based defenses.

host	A	 host	B	

Internet		
(untrusted)	

protected	by	VPN	

a)	Transport	mode	

b)	Tunnel	mode	

host	
host	

intranet	A	

network	
gateway	A	

network	
gateway	B	

intranet	B	

not	protected	by	VPN	

Ch.10.	IPsec	use	cases.	Case	(a)	is	not	a	VPN	(not	intranet	access,	just	one	host	to	one	
host),	but	the	IP	payload	goes	over	an	encrypted	tunnel	in	the	sense	of	Figure	10.4.		
Official	“tunnel	mode”	cases	are	VPN	uses.	An	intranet	is	an	internal	(within-enterprise)	
network.	The	in-host	gateway	does	an	internal	delivery	to	its	host.	

host	with	
in-host	gateway	

Figure 10.9: VPN designs. (a) Transport mode is host to host (single hosts), still deliver-
ing a payload via an encrypted tunnel in the sense of Fig. 10.8. (b) Tunnel mode involves
network gateways. In the in-host gateway case, one end has a within-host final hop. In-
tranet A, on the enterprise side of a gateway, is an internal enterprise network. Intranet B
may be a second enterprise network, or a remote employee’s home network.
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Ch.10.	Network	stack	illustra4ng	Internet	protocols.	In	the	pure	OSI	model,	a	more	
narrowly-defined	Applica4on	layer	is	followed	by	extra	layers	(Presenta4on,	Session)	
above	the	Transport	layer.	Data	Link	layer	protocols	include	Ethernet,	IEEE	802.11	
(WiFi),	MAC	(Media	Access	Control).	ARP	(Address	Resolu4on	Protocol)	may	be	
viewed	as	Data	Link	layer,	or	connec4ng	Data	Link	to	Network	layer.			

IPsec	

Applica4on	Protocol		
(HTTP,	FTP,	DNS)	

Transport	(TCP,	UDP)	

Network	(IP,	ICMP)	

Link	(Ethernet,	Wi-Fi)	

TLS	
SSH	

IP	datagram	(network	layer)	

Ethernet	
header	

IP	
header	

TCP	
header	

Applica4on	Data	
(Message)	

TCP	segment	(transport	layer)	

Ethernet	frame	(link	layer)	

or:	UDP	datagram	(with	UDP	header)	

Figure 10.10: Network protocol stack (TCP/IP model) and encapsulation. In the seven-
layer OSI model, between Application (7) and Transport are Presentation and Session
layers, and Link is Data Link, above Physical (1). Wi-Fi denotes IEEE 802.11 wireless.

NETWORKING CONTEXT. An understanding of how network protocols are secured
is aided by reviewing the basic framework of network protocols. Figure 10.10 reviews the
conventional network communications stack, complementing Section 10.6. For perspec-
tive, the figure shows where SSH, IPsec, and earlier-discussed TLS protocols fit in.

10.5 ‡IPsec: IP security suite (details)

The Internet Protocol (IP) provides no security services—no encryption, no authentication
even of IP header addresses. TLS provides security services to application-layer protocols
when the latter are invoked such that they use TLS; likewise SSH client software can be
used to set up SSH tunnels to secure other application protocols. In contrast, the moti-
vation behind the IPsec (IP Security suite) protocols is to provide network-layer security
services (Fig. 10.10) that are automatically inherited by all transport and application layer
protocols. IPsec enables VPNs through a broad and flexible suite of security services de-
livered by three protocols: IKE for key management, AH for authentication only, and ESP
(which includes encryption as well as authentication options). We now describe each.

IKE: INTERNET KEY EXCHANGE. While IPsec supports manual key manage-
ment by system administrators, its IKE component automates key establishment using
Diffie-Hellman. In IPsec, like many protocols, data transfer is preceded by a parameter
negotiation stage setting up protocol details between endpoints. The resulting shared state
(agreed algorithms, sequence numbers, cryptographic keys) defines a security association
(SA). A separate SA is used for each communication direction. Each SA is indexed by an
SPI (security parameters index); IPsec headers include an SPI field, as discussed next.

AH: AUTHENTICATION HEADER. Figure 10.11 lays out the AH fields in an IP
packet. The AH component provides a MAC for data origin authentication (attribution)
of the entire IPsec payload plus those IP header fields unchanged by routers en route
(immutable); fields designated as mutable (e.g., TTL) are zeroed for the purpose of MAC
computation. AH also optionally provides replay protection, using the AH sequence num-
ber field plus other details from stored security association data identified by the SPI field.

ESP: ENCAPSULATING SECURITY PAYLOAD. The ESP component allows en-
cryption of the IPsec payload, plus services similar to AH (i.e., a MAC for attribution,
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Ch.	10.	AH	format	of	IPsec	(field	view,	mode	1	and	mode	2).	AH	is	the	Authen@ca@on	Header.	

Next_header	iden@fies	the	protocol	of	the	AH	payload	(e.g.,	TCP=6).	Payload_len	is	used	to	

calculate	the	length	of	the	AH	header.	SPI	iden@fies	the	Security	Associa@on.	

Sequence_number	allows	replay	protec@on	(if	enabled).	

AH			

..
.	

IP	header	

Next_header			

SPI	(security	parameters	index)	

Sequence_number	

MAC	for	authen@ca@on	(integrity	check)	

IPsec	payload	

MAC	covers	
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but	omits	
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that	change			

in	transit	

(e.g.,	TTL)	

					bits	0	-7															8-15																			16-23																	24-31								

					Payload_len										 	Reserved			

Figure 10.11: IPsec Authentication Header (AH) field view, for both transport and
tunnel modes. Next header identifies the protocol of the AH payload (e.g., TCP=6).
Payload len is used to calculate the length of the AH header. SPI identifies the Security
Association. Sequence number allows replay protection (if enabled).

Ch.	10.	ESP	format	of	IPsec	(field	view,	mode	1	and	mode	2).	ESP	is	the	EncapsulaAng	Security	
Payload.	SPI	idenAfies	the	Security	AssociaAon.	Sequence_number	allows	replay	protecAon	(if	
enabled).	Next_header	indicates	the	type	of	data	in	the	ENCRYPTED	field	(ENCRYPTED	may	
include	a	crypto	IV	or	IniAalizaAon	Vector).	A	payload	length	field	is	not	needed	since	the	ESP	
header	is	fixed	at	two	32-	bit	words,	and	the	length	of	the	IPsec	payload	(which	is	the	same	as	
that	of	the	original	payload)	is	specified	in	the	IP	header.	

ESP	
header			

IP	header	
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					bits	0	-7															8-15																			16-23																	24-31								

Padding_len	

Padding	(related	to	cipher	blocklength)	

ESP	
trailer			

Figure 10.12: IPsec Encapsulating Security Payload (ESP) field view, for both transport
and tunnel modes. SPI identifies the Security Association. Sequence number allows
replay protection (if enabled). Next header (which may include a crypto IV or Initializa-
tion Vector) indicates the type of data in the ENCRYPTED field. A payload length field
is not needed, as the ESP header is fixed at two 32-bit words, and the length of the IPsec
payload (which is the same as that of the original payload) is specified in the IP header.

and optional replay protection). However in the ESP case, the MAC does not cover any
IP header fields. Figure 10.12 shows how ESP fields are laid out within an IP packet.

IPSEC: TRANSPORT MODE. AH and ESP can each operate in two modes (Table
10.3, page 299). IPsec transport mode is used to provide an end-to-end VPN from one
host to another host. As shown in Fig. 10.13b), for transport mode the IPsec header is
inserted between the original IP header and the original IP payload. Here the original
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IP header is transported (but not tunneled), e.g., when used with ESP, the original IP
payload (but not the original IP header) is encrypted as the “IPsec payload”. Note that
transport mode cannot be used if one endpoint is a network, as the resulting IPsec packet
has only one IP header per Fig. 10.13b); thus there would be no IP address available for
a second-stage delivery (after using the one destination IP address to reach the network
gateway).

IP	header		
(new	outer)	

Ch.10.	IPsec	transport	mode	vs.	tunnel	mode	(structural	view).		

IP	payload		
(original)	

SP			...
	

IPsec	trailer		
(if	ESP)	

IPsec	header		
AH	or	ESP	

IP	header		
(original)	

IPsec	payload	=	original	payload			b)	IPsec	transport	mode			

IP	payload		
(original)	

IPsec	trailer		
(if	ESP)	

IPsec	header		
AH	or	ESP	

IP	header		
(original)	

IPsec	payload	=	full	original	datagram	c)	IPsec	tunnel	mode			

IP	payload		IP	header		a)	IP	packet	(original)	

Figure 10.13: IPsec transport mode vs. tunnel mode (structural views).

IPSEC: TUNNEL MODE. IPsec tunnel mode has two VPN use cases (cf. Table 10.3,
page 299): network-to-network VPNs, and host-to-network VPNs.12 In the first case, the
VPN terminates at security gateways to an enterprise network at each side. The gate-
ways are the endpoints with respect to AH or ESP protection; packets are unprotected for
the remainder of their journey within the enterprise network. Thus end-to-end security
is not provided. The delivering gateway forwards the inner packet to its end destination
(host), using the remaining IP header (inner packet) after the outer IP header and IPsec
header/trailer are consumed (removed) by the gateway. In the second case, VPN function-
ality built into the remote host software functions as an “in-host network gateway”. Figure
10.13c) shows the IPsec packet structure for tunnel mode: the entire original IP datagram
(including the IP header) becomes the IPsec payload, preceded by an IPsec header, pre-
ceded by a new (outer) IP header. Thus there is encapsulation of the (entire) original IP
datagram, i.e., tunneling. In particular, this is an IP-in-IP tunnel.

‡Exercise (IPsec anti-replay). a) Explain how sequence numbers in AH and ESP
headers are used in a sliding receive window method for IPsec’s anti-replay service (hint:
[17], or [27, pages 328–330]). b) Explain why this network-layer anti-replay mecha-
nism is more complicated than use of (implicit) sequence numbers for anti-replay in SSH,
where datagrams are carried with TCP delivery guarantees (hint: [27] again).

‡IPSEC CHALLENGES AND DEPLOYMENT. IPsec’s configuration options offer
great flexibility. In turn, IPsec is described as “heavyweight” with corresponding disad-
vantages: (a) Its large code base, options and complexity imply that running an IPsec VPN

12AH and ESP can each operate in tunnel mode or transport; a packet-level view is shown in Fig. 10.13.
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typically requires a dedicated expert. (b) Deployment requires substitution of network-
level stack functionality. Deployment approaches for achieving the latter are:
1. OS kernel build-in—incorporating IPsec into the host’s core TCP/IP network stack.
2. bump in the stack—inserting a shim layer between existing network and link layers.
3. bump in the wire—deploying IPsec through introduction of inline hardware.
This is more complicated than creating a security tunnel by an end-user calling a software
application (e.g., as in SSH or TLS); this explains why IPsec is called heavyweight.

‡IPSEC POLICIES. Once an IPsec VPN is in place, not every datagram addressed to a
configured VPN peer is necessarily sent through the relevant VPN. A datagram must first
meet a policy rule of the relevant IPsec policy. This allows policy-based packet filtering.
Rules may depend on fields in IP and transport-layer headers (e.g., destination address
and port, source address and port, protocol), or other conditions as specified within IKE
(e.g., user identity). A host maintains such policies in an IPsec security policy database.

‡ESP CONFIGURATIONS. Among ESP configurations are an authenticate-only ESP
mode (using null encryption), an encrypt-only mode (discouraged as insecure), and ESP
protection of a datagram followed by AH. As ESP provides all AH functionality except
authentication of some outer IP header fields, many VPNs run ESP without AH.

‡Exercise (NAT incompatibilities; utility of AH). Recall that NAT (Section 10.1)
modifies IP addresses in IP packet headers. a) Summarize incompatibilities this raises
with AH integrity protection of headers, and issues NAT raises with ESP (hint: [22, 2]).
b) Summarize arguments for and against the view that AH is unnecessary, as ESP can
more efficiently protect against essentially all relevant threats (hint: [27, 17, 18]).

‡Exercise (WireGuard). WireGuard is a VPN alternative to IPsec and OpenVPN,
with focus on simplicity, usability and speed. Summarize its major architectural design
choices, and discuss pros and cons of its “crypto versioning” strategy (hint: [9], [10]).

10.6 ‡Background: networking and TCP/IP

IP AND ADDRESSES. The Internet Protocol (IP) is the main protocol in the TCP/IP pro-
tocol suite for packet-switched networks. Figure 10.10 (page 300) illustrates the network
stack framework used for network communications software. An IP address is a logical
address identifying an (addressable) interface for data delivery to an IP host device, used
in network routing; it identifies a host’s current network location, rather than a physi-
cal host. IPv4 addresses are 32-bit numbers written as dot-separated 8-bit groups. IPv6
addresses are 128 bits. At the link layer, e.g., on a local area network (LAN), physical
addresses identify hosts and are used for delivery of data frames. IP addresses are mapped
to physical MAC addresses (media access control here, not message authentication code)
using the Address Resolution Protocol (ARP), which broadcasts messages on the link
layer. ARP messages are local to a LAN (they do not cross routers).

DATAGRAMS AND PACKETS. Packet-switched networks transfer data between hosts
through “hops” between intermediate network devices (e.g., routers). Delivery involves a
datagram composed of a header (to facilitate delivery), and a payload (the data intended
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for the recipient). A 16-bit length field allows an IP datagram up to 65,535 bytes. Physical
networks composing each hop deliver data in units called packets with size limit denoted
by a maximum transmission unit (MTU), e.g., the maximum Ethernet payload is 1500
bytes. A datagram exceeding an MTU will be broken into fragments that fit within data
frames; for reassembly, a fragment offset header field indicates the offset into the original
datagram. Thus not all datagrams can be sent as single packets, but each packet is a
datagram that can be independently delivered, and a packet may be a fragment of a larger
datagram.

TCP AND UDP. IP datagrams are the network-layer means for transmitting TCP,
UDP, and (below) ICMP data. TCP (Transmission Control Protocol) and UDP (User
Datagram Protocol) are distinct transport-layer protocols for transferring data between
hosts. UDP is termed connectionless (as is IP): it provides unidirectional delivery of
datagrams as distinct events, with no state maintained, no guarantee of delivery, and no
removal of duplicated packets. In contrast, TCP is connection-oriented: it provides re-
liable bi-directional flows of bytes, with data delivered in order to the upper layers, and
if delivery guarantees cannot be met, a connection is terminated with error messages. A
TCP segment is the payload of an IP datagram, i.e., the content beyond the IP header (Fig.
10.14; compare to Fig. 10.10 on page 300). The TCP payload data in turn is application
protocol data, e.g., for HTTP, FTP, SMTP (Simple Mail Transfer Protocol).

PORTS AND SOCKETS. Ports allow servers to host more than one service; the trans-
port layer delivers data units to the appropriate application (service). A port number is
16 bits. A server offers a service by setting up a program (network daemon) to “listen”
on a given port and process requests received. On some systems, binding services to
ports 0–1023 requires special privileges; these are used by convention by well-known net-
work protocols including HTTP (port 80), HTTPS (443), SMTP email relay (25), DNS
(53), and email retrieval (110 POP3, 143 IMAP). Ports 1024–65,535 are typically unpriv-
ileged. Clients allocate short-lived ports, often in the range 1024-5000, for their end of
TCP connections (leaving ports above 5000 for lesser-known services). An <IP address,
port number> pair identifies an IP socket. A TCP connection connects source and desti-
nation sockets. Software accesses sockets via file descriptors. UDP has a distinct set of
analogous ports, but being connectionless, only destination sockets are used.

TCP HEADER, TCP CONNECTION SET-UP. Figure 10.15 shows a TCP header,
including flag bits. Prior to data transfer, TCP connection set-up requires three messages
with headers but no data. The client originates with a SYN message, i.e., SYN flag set
(SYN=1, ACK=0); the server responds with SYN=1, ACK=1 (i.e., both flags set); the client
responds with SYN=0, ACK=1. (So ACK=0 only in the initial connection request. In on-
going messages after set-up, the ACK flag is set (ACK=1 in this notation). Thus a firewall
may use the criteria ACK=0 to distinguish, and deny, inbound TCP connection requests.)
This sequence SYN, SYN-ACK, ACK is the three-way handshake; details are given in Sec-
tion 11.6. Connection termination begins by one end sending a packet with FIN (finish) bit
set (FIN=1); the other acknowledges, likewise sends a FIN, and awaits acknowledgement.
This is called an orderly release. Termination alternatively results from use of the reset
flag, RST (abortive release).
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Ch.	10.	IP	packet	carrying	a	TCP	payload	as	data.	The	iden9fica9on	field	is	used	
in	datagram	fragmenta9on	and	reassembly.		TTL	(9me	to	live)	upper-bounds	the	
number	of	routers	the	packet	can	transit;	each	router	decrements	it	by	one.	The	
protocol	field	values	of	main	interest	are	TCP,	UDP	and	ICMP.			

version	

source	address	
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Figure 10.14: IP header and IP datagram carrying TCP or UDP datagram payload. The
identification field is used in datagram fragmentation and reassembly. TTL (time to
live) upper-bounds the number of routers a packet can transit; each router decrements it
by one. The IP header checksum is verified (and recalculated, e.g., after TTL updates)
at each hop. Protocol values of interest are TCP, UDP, ICMP, IP, ESP, AH. hdrlen
(internal header length, in 32-bit words) is 5 unless an IP options field (not shown) is
present. The TCP/UDP data part is where Application data is carried, including user data.

Ch.	10.	TCP	header.	The	data	offset	(d-offset)	is	a	4-bit	field	specifying	the	number	of	
32-bit	header	words	preceding	the	data.	Flag	bits	with	value	1	are	on	(set)	;	0	is	off.	
Other	flag	bits	(o)	beyond	our	scope	are		
NS	(ECN-nonce),	CWR	(congesOon	window	reduced),	and	ECE	(ECN-echo).	
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(If	d-offset	>	5,	the	data	is	preceded	by	an	op#ons	field)		
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Figure 10.15: TCP header. The 4-bit data offset (d-offset) specifies the number of
32-bit words preceding the data. A flag bit of 1 is set (on); 0 is off. Other flag bits beyond
our scope are NS (ECN-nonce), CWR (congestion window reduced), and ECE (ECN-echo).
The window size advertises how many bytes the receiver will accept, relative to the byte
specified in acknowledgement number; values larger than 216 − 1 bytes are possible by
pre-negotiating a window scale option.

ICMP. The Internet Control Message Protocol (ICMP) is an “auxiliary” network-
layer protocol at the same level as IP, used to send error, diagnostic, and other con-
trol messages from one host (often a router) to another. ICMP messages consist of a
body (payload) of an IP datagram (cf. Fig. 10.14) after an IP header, the body a sin-
gle 32-bit word (8-bit type, 8-bit code, 16-bit checksum; no source or destination ports)
plus further content depending on type and code. Example ICMP message types are
3/destination unreachable (a packet cannot be delivered), 5/redirect (advising a
far-end router to choose a different route), 8/echo request (used by the ping utility, to
test whether a host can be reached; the receiving host is requested to respond with an
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ICMP 0/echo reply), and 11/time exceeded (TTL reached 0). As a basic connectivity
test between TCP/IP hosts, ping is a standard way to test whether an IP address is popu-
lated by an active host; sending ICMP echo requests to a set of addresses is called a ping
sweep. Firewalls often filter ICMP messages based on their ICMP message type and code
fields.

10.7 ‡End notes and further reading

See Zwicky [41] for firewalls, including our dynamic packet filter (FTP) example, full
sample firewall rulesets, and architectures; see also Cheswick [8] for technical insights.
Chapman [7] gives a 1992 view of challenges with IP packet filters. For augmenting
Linux firewall management (iptables) with intrusion detection functionality, see Rash
[25]. For distributed firewalls, see Ioannidis [15]. For firewall configuration errors, see
Wool [33]. Yuan [40] describes a toolkit to analyze firewall configurations. Bejtlich [5,
pp. 43–45] relays Ranum’s perspective on proxy firewall history and advantages. Web
application firewalls are application-level firewalls specific to HTTP and HTTPS [32, Ch.
7]. Koblas [20] introduced SOCKS; for version 5, and details on authentication options
within it, see RFC 1928 [21].

SSH is due to Ylönen [35]; Snader [27, Ch. 7] provides a highly readable treatment
(see also for tunnels, VPNs, and IPsec). SSH2, specified in RFCs 4251-4254 [36, 37,
38, 39], addresses flaws in the original and uses session keys from DH key agreement,
replacing RSA. The TOFU model for trust in SSH host keys, positioned in 2006 [36]
as a convenient, temporary measure during a “transition period” until a widely deployed
trust infrastructure arises, remains widely used. RFC 4255 [26] specifies out-of-band
distribution (using DNS) of SSH server key fingerprints. On SSH passwords, for brute-
force guessing attacks on servers see Abdou [1]; for timing attacks, see Song [28].

IPsec RFCs respectively cover security architecture [19], IKEv2 [16], AH [17], ESP
[18], and mandatory cryptographic algorithms for AH and ESP [34]. For deployment ex-
periences with IPsec, see Aura [4]. For a discussion of deficiencies in IKE key agreement,
and proposed replacement JFK, see Aiello [3]. For IKE-related policy management, see
Blaze [6]. For a NIST view of VPNs, see SP 800-77 [11]. Foundational Internet specifi-
cations include: IP [13], ICMP [24], TCP [14], and UDP [23]. Numerous RFCs discuss
aspects of NAT [30, 29]. RFC 5424 [12] standardized syslog. Overall, for TCP/IP pro-
tocols and packet fragmentation, see Stevens [31].
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