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Chapter 11

Intrusion Detection and
Network-Based Attacks

This second of two chapters on network security complements Chapter 10’s treatment
of firewalls and tunnels. Here we discuss intrusion detection and various tools for net-
work monitoring (packet sniffing) and vulnerability assessment, followed by denial of
service and other network-based attacks that exploit standard TCP/IP network or Ethernet
protocols. We consider TCP session hijacking, and two categories of address resolution
attacks—DNS-based attacks, which facilitate pharming, and attacks involving Address
Resolution Protocol (ARP) spoofing. Such network-based attacks are carried out regu-
larly in practice. The best defense to stop many of them is encryption of communication
sessions; building a true appreciation for this is alone strong motivation for learning at
least the high-level technical details of these attacks. In addition, understanding the un-
derlying principles that enable attacks is important to avoid repeating design errors in
future networks and emerging Internet of Things (IoT) protocols, as experience tells us
that variations of these same attacks are almost certain to reappear.

11.1 Intrusion detection: introduction

Firewalls provide coarse perimeter shields designed to block the bulk of malicious traffic.
Intrusion detection systems and related defenses—both host-based and network-based—
provide eyes to identify what gets through. Dedicated human resources are required to
manage and monitor these systems, and to explore alarms raised. Early research was
driven by the desire to automate human analysis of audit trails, to detect unauthorized use
of government systems, and to detect behavior non-conformant with IT security policies.

BASIC TERMS. An intrusion or incident is an event on a host or network that violates
security policy, or is an imminent threat to put a system in an unauthorized state. Intrusion
detection is the process of monitoring and analyzing system events, to identify and report
such intrusions. An intrusion detection system (IDS) automates the process, and includes
monitoring events, logging related data, analysis, and means to report events requiring
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human attention. An intrusion may involve an unauthorized or rogue user (intruder), pro-
cess, program, command, action, data at rest (in storage) or in flight (as a network packet).
Not all intrusions are deliberate attacks; consider a connection error by an external party.

DETECTION VS. PREVENTION. An IDS detects intrusions and other adverse events,
either in progress, or after the fact. The basis for an IDS is a monitoring system that col-
lects evidence facilitating detection and supporting forensic analysis.1 In practice, sorting
out what has actually happened often requires ad hoc analysis by human experts, and ex-
ploration may be open-ended for new attacks; such systems are not pragmatic for typical
users. An intrusion prevention system (IPS), beyond passive monitoring, includes active
responses, e.g., stopping in-progress violations or altering network configurations. An
IPS augmenting a firewall2 may alter packets, strip out malware, or send TCP resets to
terminate connections; an in-host IPS may terminate processes. An IPS may be config-
ured to operate passively as an IDS. The two acronyms are often interchanged, but a true
IPS requires automated real-time responses, and can mitigate a subset of known attacks.

ARCHITECTURAL TYPES. An IDS involves a means to collect events from an event
source, and components for event analysis, reporting (e.g., logging to a console or by
email/text messages), and response (in an IPS). Two complementary IDS categories, based
on where sensors collect event streams, are network-based IDSs (NIDSs) and host-based
IDSs (HIDSs). NIDS events are derived from packets obtained at a strategic vantage point,
e.g., a network gateway, or a LAN (local area network) switch; Section 11.3 discusses
packet sniffing. HIDS events may be derived from kernel-generated operations and audit
records, application logs (noting userid), filesystem changes (file integrity checks, file
permissions, file accesses), and system call monitoring (exercise, page 315); plus specific
to the host, network accesses, incoming/outgoing packet contents, and status changes in
network interfaces (ports open, services running). Resource use patterns (CPU time, disk
space) may reveal suspicious processes. Independent HIDS tools protect only a single
host, and detect intruders only thereon. HIDS data must be pooled (e.g., centrally) to
provide views beyond a single host. A NIDS provides network-wide views.

EVENT OUTCOMES. On processing an event, an IDS analysis engine may or may
not raise an alarm, and the event may or may not be an intrusion. This gives us four
cases (Fig. 11.1). Low error rates (the two falses) are desired. High false positive rates,
a common problem with anomaly-based systems (Section 11.2), severely limit usability
of an IDS; false positives distract human analysts. High false negative rates are a security
failure, and thus dangerous (missed intrusions may lead to unknown damage). From a
classification view, the intrusion detection problem is to determine whether an event is
from a distribution of events of intruder behavior, or from a legitimate user distribution.
Some IDS approaches offer a tradeoff between false positives and negatives similar to
that for biometric authentication, where the task is to classify as intruder (impersonator)
or legitimate user. (Recall Chapter 3’s two-hump graph of overlapping distributions; the
related tradeoff here is shown in Fig. 11.2b on page 314, with a rough analogy that FPR

1This follows principle P14 (EVIDENCE-PRODUCTION).
2While IPS and firewall functionality are commonly combined, we keep them separate pedagogically.
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Ch.10.	Possible	alarm	outcomes.	False	alarms	are	unnecessary	distrac8ons	(noise).	
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intrusion	detected	 false	alarm	
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True	Nega8ve	(TN)	False	Nega8ve	(FN)	
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False negative rate FNR = 1−T PR
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Alarm precision AP = T P
(T P+FP)

Figure 11.1: IDS event outcomes (left) and metrics (right). FP and FN (yellow) are the
classification errors. TPR is also called the detection rate.

and FNR here map to, respectively, False Reject Rate and False Accept Rate in biometric
authentication.)

Example (Error rates and base rates). Consider the following situation.3 There is a
disease X, and a test that screens for it. Given 100 non-diseased people, the test on average
flags one subject as diseased—so one false positive, and FPR = 1/(1+99) = 0.01 = 1%.
Thus TNR = 1−FPR = 99%. And also, given 100 diseased people, the test on average
finds 98 subjects diseased—so two false negatives, and FNR = 2/(98+2) = 0.02 = 2%
or equivalently, TPR = 98/(98+ 2) = 0.98 = 98%. (Such a test might be marketed as
“98% accurate” or “99% accurate”, but doing so without explaining the metric used will
confuse experts and non-experts alike; we will return to this point.) Now suppose also
the incidence of our disease X across the population is 1 in 100,000; in a random set of
100,000 people, we then expect 1 to be diseased. If the screening test is applied to this
set, we can expect (from the 1% FPR) to find 1% of 99,999, or 1000 false positives. In all
likelihood, the one actually diseased person will also test positive (due to the 98% TPR).

Of course, what the doctors see as an outcome is 1001 people flagged as “may have
disease X”, so 1000 out of 1001 are false alarms. We might now feel misled by the earlier
metrics alone, and by any suggestion the test was 98% or 99% “accurate” (alas, math con-
fuses some, language confuses others). This motivates a further metric, alarm precision
(AP), the ratio of correctly raised alarms to total alarms (true positives to total positives):

AP = TP/(TP+FP) = 1/(1+1000) = 1/1001≈ 0.1%.
Positioning this in reverse as alarm imprecision, AIP=FP/(TP+FP)= 1000/(1+1000)≈
0.999. We now see that 99.9% (!) of alarms raised are false alarms.4 A high ratio (high
AIP) and a high absolute number of false alarms are both problems for an IDS (below).

EXPLANATION OF ABOVE EXAMPLE. What fools us in this example is overlooking
the low base rate of incidence of the disease across the population. For an IDS, this
corresponds to the ratio of intrusion events to total events. We move to an IDS setting for
our explanation: “diseased” becomes an intrusion event, and “positive test result” is now
an IDS alarm raised. Let’s revisit the above example algebraically, using approximations
that apply to that example—where the number of false positives vastly exceeds the number

3To use the Fig. 11.1 ratios, alarms are positive disease tests, and intrusions are incidents of disease.
4FPR measures false positives over all events involving no illness (intrusions), while AIP = 1000/1001

measures false alarms over all events that involve positive tests (alarms). To avoid confusing these, it may
help to note that in Fig. 11.1, AP is a sum across row 1, while FPR and FNR are each sums within a column.
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of true positives, i.e., TP� FP (a difficult situation for an IDS). Assume a set of n events.
It consists of nI intrusion and nN non-intrusion events (n is known, but not nI , nN). Now:

n = nI +nN , TP = TPR ·nI , FP = FPR ·nN

The last two equations are just the definitions. We expect a (useful) IDS to detect a high
proportion of intrusions, and so to a crude approximation, TPR≈ 1 implying TP≈ nI . A
tiny base rate of intrusions (as also expected in a fielded IDS) means nI� nN and n≈ nN .
From TP� FP we get TP+FP≈ FP. Now substituting in these approximations,

AP = TP/(TP+FP) ≈ TP/FP ≈ nI/(FPR ·nN) ≈ (nI/n)/FPR
This approximation for AP now captures the parameters that dominated the computed
value of AP in our example: the base rate nI/n of incidence, and FPR. As a summary:
alarm precision is governed by both the base rate of incidence and the false positive rate.

IDS IMPLICATION OF BASE RATE OF INTRUSIONS. Our example illustrates what
psychologists call the base rate fallacy: people tend to ignore the base rate of incidence
of events when intuitively solving problems involving conditional probabilities. Most
computer systems have a very low base rate of intrusions.5 Given a huge number nN

of non-intrusion events, even a very low (non-zero) false positive rate can yield a large
number of false positives since FP = FPR · nN . It is challenging to keep both FPR and
FNR acceptably low—decreasing one of these error rates increases the other in some IDS
approaches. For an enterprise IDS, exploring false positives not only steals experts’ time
better spent on sorting out true positives, but any significant level of alarm imprecision,
even 1 in 2 alarms being a false positive, risks complacency and training staff to ignore
alarms altogether. And if there are 100 alarms per day, whether true or false positives, the
problem may become lack of investigative resources. The tolerance for false positives is
also extremely low in end-user systems—consider anti-virus software, a type of IPS.

Exercise (Classification semantics). (a) From Fig. 11.1, describe in words semanti-
cally what is captured by the false positive (FPR) and false negative rate (FNR) metrics.
(b) Consider the notation: I (intrusion), ¬I (no intrusion), A (alarm), ¬A (no alarm).
Using this, define FPR, FNR, TPR and TNR each as expressions of the form: prob(X |Y ),
meaning “the probability of X given (i.e., in the case of) Y ”, where Y is I or ¬I .
(c) When running an IDS, the main observable is an alarm being raised. The probabilities
of interest then are (with higher values more desirable): prob(I |A) (the Bayesian detec-
tion rate), and prob(¬I |¬A). Describe in words what these expressions mean.
(d) By Venn diagram, show the four sets of events (I and A), (I and ¬A), (¬I and A),
(¬I and ¬A), in the case of far more false positives than true positives (hint: [10, p. 10]).

11.2 Intrusion detection: methodological approaches

In practice, IDSs use a combination of methods spanning different approaches, and in-
dividual methods may overlap in approach categories themselves. We distinguish three
philosophical approaches to intrusion detection: signature-based, specification-based and

5Note there is a crucial difference from disease rates: for computer intrusions we lack historical statistics
for the base rates, and widespread instrumentation for reliable measurement is beyond present capabilities.
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IDS approach Alarm when... Pros, cons, notes
signature-based events match signatures built from known attacks;
(expert defines known-bad patterns fast, accurate (fewer false positives);

malicious patterns) detects only already-known attacks
specification-based events deviate manually developed spec of allowed;

(expert defines from per-application can detect new attacks;
allowed actions) specifications of no alarm on newly seen allowed event;

legitimate actions specs are protocol or program-specific
anomaly-based events deviate need training period to build profiles;
(learning-based from profiles can detect new attacks;

profile of normal) of normal false alarms (abnormal may be benign);
accuracy depends on features profiled

Table 11.1: IDS methodologies. Signature-based approaches use expert-built patterns
(manual blacklists). Specification approaches use expert-built specs (manual whitelists).
Anomaly approaches define “normal” behavior from training data (empirical whitelists).

anomaly-based approaches (Table 11.1). Figure 11.2 depicts relationships between these.
1) SIGNATURE-BASED. These approaches examine events for predefined attack sig-

natures—pattern descriptors of known-bad behavior. Matches trigger alarms. Simple
patterns such as raw byte sequences, and condition lists (e.g., fields to match in packets),
may be combined in rules, and are similar to simple anti-virus and packet-filter techniques.
Advantages are speed and accuracy. More advanced patterns involve regular expressions.
Signature generation and update is a continuous task, relies on known intrusions (attacks),
and reflects only these. (Many IPSs are configured to receive automated vendor signature
updates.) Variants called behavior-based attack signature approaches generalize pattern
descriptors beyond attack-instance implementation details by looking for attack side ef-
fects or outcomes that provide indirect evidence of attacks.

specified	as	allowed	

Ch.10		IDS	approaches,	visual	model.		a)	Specifica;on-based;	behaviour	outside	
of	the	shaded	region	will	raise	an	alarm.	b)	Anomaly-based	and	signature-based.	

Anomaly-based	methods	alert	on	detec;ng	behaviour	outside	N1;	this	is	a	true	posi;ve	
if	in	v	or	w,	but	a	false	posi;ve	if	in	FP.		If	using	N1	raises	too	many	false	posi;ves,		

parameters	or	thresholds	may	be	modified	to	recognize	a	larger	area	(N2)	as	normal,		
decreasing	false	posi;ves	but	increasing	false	nega;ves,	as	ac;vity	observed	in	v	that		

originated	from	an	intruder	will	no	longer	raise	an	alarm.		For	signature-based	approaches,		

an	aKack	signature	is	created	from	known	aKacks;	it	will	be	from	a	subset	of	area	w.			

S	
N1	

N2	 R	

w	

profile	
learned		

as	normal	

u	 v	

Oval	R	denotes	intruder	behaviour	Outer	box	is	all	possible	behaviour		

b)	a)	

FP	

Figure 11.2: Visual model of IDS approaches. a) Specification-based; activity outside
the shaded region raises an alarm. b) Anomaly-based and signature-based. Anomaly-
based methods alert on detecting activity outside N1; this may be a true positive if in v
or w, but a false positive if in FP. To reduce false positives, parameters or thresholds
may be tuned to recognize a larger area (N2) as normal, but this increases false negatives,
as intruder activity in v will no longer trigger an alarm. For signature-based approaches,
attack signatures, from a subset of w, are created from known attacks.
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2) SPECIFICATION-BASED. For each individual protocol or application selected, an
expert creates a specification defining allowed protocol or application behaviors (modeled
as benign), and a tool to verify conformance; non-conforming events raise alarms. The
approach can detect previously unseen attacks, without false alarms on unusual but legit-
imate behaviors—thus offering a main advantage of anomaly-based approaches, without
the main disadvantage. The specifications and related tools are protocol-specific and time-
consuming to build, but universal (apply for all users). If a specification’s characterization
of allowed behavior is too lenient, the false negative rate grows (missing attacks).

3) ANOMALY-BASED. Profiles of normal (expected) activity are built over a training
period, on a per-network or per-user basis, based on observed usage or from audit trails or
logs. In operation, analysis of the event stream (current system behavior) aims to identify
deviations from profiles. Profiles are based on selected features (characteristics). Simple
features may be single discrete operation counts over fixed time periods, e.g., numbers of
failed login attempts, accesses to a given file, or total files deleted. Exceeding a threshold
for a single feature, or a collection of features, may be deemed anomalous. Other feature
examples are sets of files accessed, file accesses within a time window, sets of commands
used, CPU resources consumed, and session duration. For profiles composed of extensive
feature sets, statistical tests can determine whether deviations are statistically significant at
specified confidence levels (vs. being due to chance variation); thresholds and confidence
levels are tunable parameters. Machine learning is commonly used.

‡ANOMALY-BASED APPROACHES: PROS, CONS. As a strength, previously unseen
attacks may be detected. As a limitation, authorized users may behave abnormally, leading
to high false positive rates. We note three other challenges:

• Feature selection. Selecting features is difficult; efficacy depends highly on the fea-
tures of system behavior chosen for profiles (features implicitly define models).

• Intruder-free training. It is important, but difficult, to ensure that malicious activity is
absent during training (lest it be “baselined” into profiles).

• Session creep. If profiles are designed to self-adjust over time to accommodate evolu-
tion in legitimate behavior, intruders might be able to exploit this by slowly embedding
their own malicious behavior into the baseline.

‡Exercise (Sequences of system calls). One host-based IDS technique involves using
sequences of Unix system calls to define normal (they approximate program control flow);
anomalous sequences raise alerts. Summarize the technical details (hint: [34, 41]).

Exercise (Snort: signatured-based NIDS). Snort is a widely used open-source NIDS
tool. Simple Snort rules identify header fields (e.g., port, address, flags) and byte-patterns
(attack signatures) to match packet content. a) Summarize the main goals, architecture
and features of Snort (hint: [72]). b) Explain a Snort rule, using a non-trivial example.

Exercise (Bro: NIDS/monitor). Bro (now Zeek) is open-source, and has separate
protocol analysis and policy script components, leaving the IDS approach open. It sup-
ports signature-based detection. (A tool, snort2bro, built in 2003, automatically converts
Snort rules to Bro signatures. Maintenance of this conversion script was discontinued in
2008, as it no longer supported rules leveraging newer Snort tools.) Data stored by Bro can
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support anomaly detection. Protocol-specific analyzers facilitate application-level analy-
sis that incorporates state or context. Summarize the main goals, architecture and features
of Bro, including how its design goal of separating mechanism from policy supports all
IDS approaches (hint: [64, 78]).

11.3 Sniffers, reconnaissance scanners, vulnerability scanners

We now consider a collection of tools that have both white-hat and black-hat uses.
PACKET SNIFFING. For NIDS, various tools allow packet capture and file stor-

age/retrieval. Tools must process packets at line-speed. For an IPS, real-time analysis
is also necessary; for an IDS, rapid processing remains important, but it need not be in-
line. Independent of intrusion detection per se, such packet collection and processing
tools are of interest for (passive) network monitoring to allow insight into activities on a
network, traffic patterns and usage. Logging traffic-related details may support network
management, and in the case of incidents, later forensic investigations, loss evaluation,
and recovery.6 Sniffing tools and collection methods are also used by attackers, and this is
a primary motivation for traffic encryption (e.g., via SSH, TLS, and IPsec-based VPNs).

HUBS AND SWITCHES. Ethernet is the dominant communication protocol for a wired
LAN (local area network). LAN hosts are connected and exchange information through
a hub or a switch. A hub broadcasts (Fig. 11.3): it relays all packets (Ethernet frames)
received from one LAN host, over the physical interfaces to each other LAN host. On a
hubbed LAN, by putting its network interface card (NIC) in promiscuous mode, a LAN
host can passively collect all frames passing the interface of its NIC—those addressed to
its own MAC address, and all others. In contrast, for a switch, information received from
one host will be sent only over the physical interface connecting to the host corresponding
to the destination MAC address in the Ethernet frame.7 Switched LANs are more com-
mon, and putting a NIC card in promiscuous mode does not give visibility to all LAN
traffic, but this security advantage can be compromised by ARP spoofing (Section 11.5).

Ch.11.	Hubs	and	switches.	A	hub	broadcasts.		A	switch	isolates.	

MAC1	

hub	 switch	router	

MAC2	 MAC3	

router	
dst=MAC3	

MAC4	 MAC4	

MAC1	 MAC2	

dst=MAC3	

MAC3	a)			b)	

Figure 11.3: LAN hub vs. LAN switch. A hub broadcasts. A switch isolates.

‡MONITORING SUPPORT: NETWORK TAPS AND SPANS. Passive monitoring of
network data is supported by hardware enabling access to packets. We note two common
means. A SPAN port (switched port analyzer) on a switch, also called a port mirror, is a
designated port configured to duplicate traffic from other ports; enterprise-class switches

6Thus independent of an IDS, network monitoring supports principle P14 (EVIDENCE-PRODUCTION).
7A switch learns the mapping of MAC address to physical interface by passively monitoring frames;

mappings can also be manually configured.
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commonly support configuration of SPAN ports. A tap (test access port) is a dedicated
device to facilitate passive monitoring; e.g., a four-port Ethernet tap might use two ports
to connect between a router and firewall, and the other two to access traffic for monitoring.
SPANs and taps are inline in the sense of being in the path packets follow, but do not have
general processors as needed for intrusion prevention functionality. For that, dedicated
inline devices (filtering bridges) are used. These run packet collection tools and store,
analyze and potentially alter traffic. Note that in order to prevent intrusions, an IPS device
must be inline; for detection only, an IDS device may monitor a passive tap or SPAN.

VULNERABILITY ASSESSMENT TOOLS. Vulnerability assessment tools may be
viewed as a subset of intrusion detection tools—but rather than defending, you now seek
weaknesses in your own hosts, largely in three categories: known-vulnerable services,
typical configuration errors, and weak default configurations still in use. Results may call
for software updates, configuration changes, and changing default passwords.8 Both host-
based tools and network-based tools are used, the latter falling into three categories:
1. reconnaissance tools (below);
2. vulnerability assessment tools (vulnerability scanners); and
3. penetration testing tools9 (pre-authorized) or exploitation toolkits (used by black-hats).
Authorized parties use these tools for self-evaluation, to provide awareness of network-
accessible vulnerabilities, and of services offered to check compliance with security pol-
icy. Vulnerability scanners produce comprehensive reports about the systems assessed. In
contrast, penetration/exploitation frameworks aim to tangibly exploit live systems, includ-
ing installation of a payload; they can test potential vulnerabilities flagged by vulnerability
assessment tools. In self-assessment, benign payloads are used, albeit sufficient to prove
that a flagged vulnerability is not a false positive—false positives need no repair, while
true positives do, and distinguishing the two is a major legitimate use of penetration tests.
On the other hand, an attacker using an exploitation toolkit seeks actual compromise, e.g.,
through a single exploit providing a desired level of access (e.g., root).

LIMITATIONS, CAUTIONS. Vulnerability assessments give status at a fixed point in
time, and with respect (only) to exploits known to the tools. The dual white/black-hat use
of penetration/exploitation frameworks creates some uneasiness. Such tools improve the
speed and accuracy of live-testing for both authorized and unauthorized parties. Scans
executed as credentialed (via an authorized user or administrative account) allow sig-
nificantly greater detail. Exploit modules are commonly available via Metasploit (page
320). Is it ethical to release exploit modules? The consensus is that attackers already
have and use these, so legitimate parties should as well, so as not to fall even farther be-
hind. A responsible disclosure approach recommends first providing details to product
vendors, to allow patches to be made available; however, this process is complicated by
the requirement of vendor cooperation and timely response, as well as ethical questions
including whether vulnerable users should be notified even before patches are available.

8Proactive password crackers, which use a system’s password hash file to guess its own users’ passwords
(asking users to change those so guessed), were early instances of vulnerability assessment tools.

9General context on penetration testing is also given in Chapter 1.
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In all cases, use of vulnerability assessment and exploitation tools on hosts or networks
other than your own, without prior written permission, risks legal and potential criminal
liability.

PORT SCANNING AND OS FINGERPRINTING. Network-based reconnaissance is a
common precursor to attack. Sending probes (e.g., TCP connection requests) to various
addresses identifies hosts and ports running services. A port can be open (daemon wait-
ing), closed (no service offered), or blocked (denied by a perimeter access control device).
Port scanning is any means to identify open ports on a target host or network. An IPS that
detects port scanning may coordinate with perimeter defenses to block (blacklist) source
addresses identified as scanners. Scanning one’s own machines allows an inventory of
hosts, and a cross-check that services offered are known and authorized by policy. A
common feature in network scanners is remote OS fingerprinting: identifying a remote
machine’s OS, and its version, with high confidence. Uses include, e.g., for defenders,
informing about needed software updates; for penetration testers and attackers, it allows
selection of OS-dependent exploits of identified services at known IP addresses.

Exercise (Scan detection). Describe two specific methods to detect simple port scan-
ning (hint: [44, Sect. 2]).

Example (OS fingerprinting). OS fingerprinting tools can be passive (e.g., p0f) or ac-
tive (e.g., Xprobe2, Nmap). Methods are called stack querying when they rely on network
stack implementation details. Active methods may, e.g., send TCP connection requests
with non-standard header flag combinations; responses distinguish specific OS releases
due to idiosyncrasies in vendor software. p0f, which originates no new traffic itself, in-
spects both TCP headers and application-level HTTP messages; it is useful on systems
that block Nmap probes. Xprobe2 makes use of ICMP datagram responses.

Example (Reconnaissance: Nmap). Dual-use tools are those used by both white-hats
and black-hats. For example, Nmap (Network mapper) is an open-source network scanner
with a point-and-click graphical interface, Zenmap. Among other features, it supports:
• finding IP addresses of live hosts within a target network;
• OS classification of each live host (OS fingerprinting, above);
• identifying open ports on each live host (port scanning);
• version detection (for open ports, identifying the service listening, and version); and
• network mapping (building a network topology—hosts and how they are connected).

Version detection may be as simple as completing a TCP handshake and looking at a
service banner if presented (indicating service type/version); if no banner is offered, this
information may be possible to deduce by sending suitable probes. For self-assessment,
the above features allow an inventory of enterprise services (implying related exposures),
useful in carrying out security audits. While this may provide awareness about vulnerabil-
ities, actually testing for (or actively exploiting) vulnerabilities is commonly done using
dedicated penetration testing or exploitation tools designed to do so more efficiently.

Example (Vulnerability scanner: Nessus). Nessus is a widely used remote vulner-
ability scanner—again dual use, and in this case proprietary (free for non-commercial
use). It has discovery capabilities, but the focus is vulnerability assessment. Its modular
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architecture supports programs (plugins) that can test for individual vulnerabilities; a vast
library of such plugins exists for CVEs (Common Vulnerability Exposures). Configuring
Nessus to run a scan includes specifying targets (IP addresses or network ranges), port
ranges and types of port scans (similar to Nmap), and which plugins to run. A summary
report is provided. Some plugins, e.g., denial of service tests, may crash a target (in safe
mode, such tests are bypassed). While this may be the goal of an attacker, such modules
also allow testing a system prior to launching a service or releasing a software product.
Tools like Nessus have capabilities similar to an auto-rooter (Section 7.3).

‡Exercise (Password guessing: Nessus). Some Nessus plugin modules test services
for weak passwords via password-guessing attacks. If these services are on a live system,
and the system locks out accounts after n incorrect guesses (e.g., n = 5 or 10) within a
short period of time, how will running these modules affect users of those accounts?

‡Example (Packet capture utilities). Two popular general-purpose tools for packet
capture and processing are the tcpdump utility,10 and somewhat similar but with a graph-
ical front-end and deeper protocol analysis, the open-source Wireshark.11 Both rely on
a standard packet capture library, e.g., libpcap on Unix, implementing the pcap inter-
face. libpcap in turn relies on a BSD packet filter (BPF) implementation supporting
user-specified filtering criteria (e.g., ports of interest or ICMP message types), allow-
ing unwanted packets to be efficiently dropped in the kernel process itself. Functionally,
tcpdump reads packets from a network interface card in promiscuous mode (page 316).
Packets can be written to file, for later processing by tcpdump or third-party tools sup-
porting pcap file formats. Security-focused network traffic analyzers that use libpcap
directly (rather than through tcpdump), like Snort and Bro, augment packet capture and
processing with their own specialized monitoring and intrusion detection functionality.

‡ATTACKING THE SNIFFER. On some systems, configuring packet capture tools
requires running as root; some require maintaining root privileges. In any case, packet
sniffers themselves present attractive new attack surface: even if all listening ports are
closed, the tool receives packets and is thus itself subject to exploitation (e.g., by buffer
overflow flaws). Software security is thus especially critical for packet capture tools.

Exercise (network statistics). The netstat command line utility, available in major
OSs, provides information on current TCP and UDP listening ports, in-use connections,
and other statistics. a) Read the manual page on your local OS (from a Unix command
line: man netstat), experiment to confirm, and list the command syntax to get the PID
(process ID) associated with a given connection. b) Use netstat with suitable options to
get information on all open UDP and TCP ports on your current host; provide a summary.

‡Exercise (COPS and SATAN). Summarize the architecture and functionality of each
of the following vulnerability scanners. a) COPS (Computerized Oracle and Password
System), a scanner released in 1990 for Unix systems (hint: [30]). b) SATAN (Security
Analysis Tool for Auditing Networks), a scanner released in 1993 for networked comput-
ers (hint: [31]). Discuss also why the release of SATAN was controversial.

10tcpdump as ported to Windows is WinDump.
11Wireshark was formerly Ethereal, with command-line version TEthereal.
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‡Exercise (Metasploit: vulnerability exploitation framework). The well-known open-
source Metasploit framework, a toolkit and application providing command line, console,
and browser point-and-click interfaces, is used by systems administrators for penetration
testing, and by black-hats for (unauthorized) exploitation of network services. a) Explain
how its modular structure accommodates different attack vectors (exploits) independent
of attack payloads. b) Summarize procedural use (the steps required by a user). c) Outline
the main types of payloads it offers, including an explanation of Meterpreter and its unique
advantages as a particularly stealthy payload. (Hint: [46], [76].)

‡Exercise (Netcat: network utility and attack tool). Netcat (nc) is a white-hat/black-
hat tool that supports vulnerability scanning, port scanning, file transfer, and installing
backdoors among other things. Its power is eye-opening to non-experts. In less than two
pages, summarize its defensive and offensive functionality (hint: [76, Ch. 8]).

‡Exercise (Complementary technologies). Summarize how the following technolo-
gies are complementary to IDSs: a) firewalls and screening routers (hint: [75, p. 8-6]);
and b) anti-virus/anti-malware defenses (hint: [75, p. 8-5]).

‡Exercise (Beyond NIDS, HIDS). Two further IDS categories are wireless-based IDS,
and network behavior and analysis systems (NBAs). Summarize how these differ from
NIDS and HIDS, and the main threats each addresses (hint: [75]).

11.4 Denial of service attacks

Many security defenses and designs in use are motivated by attacks that exploit specific
details of network communications protocols. For this reason and general awareness,
Sections 11.4–11.6 provide a basic overview of selected network-based attacks.

DOS. Denial of service (DoS) attacks are those that deny legitimate users the avail-
ability of resources and services, by intentional acts that severely degrade performance or
cause outright failure. We highlight two classes of DoS attacks:
I. One class exploits latent implementation flaws (software vulnerabilities).

II. A second exhausts resources (bandwidth, CPU, main memory, disk), by flooding to
overwhelm by traffic volume, or by consuming fixed resources (SYN floods below),
or requesting resource-intensive operations (e.g., generation of asymmetric key pairs).

A flooding attack may be possible even by a single attack machine, limited only by its
CPU speed and link capacity, continually sending packets to a target. Such high packet-
rate attacks may exploit link speed asymmetries, i.e., use hosts with high-bandwidth con-
nections to attack targets with lower-bandwidth connections.

DOS MOTIVES. DoS motives vary (cf. adversary model, Section 1.4), including:
1) direct financial gain via extortion, as per ransomware;
2) commercial competitive gain, by disrupting competitor sales or reputation;
3) ideological or social activism;
4) information warfare, typically by nation states;
5) hacker experimentation, e.g., to boost ego or for peer recognition; and
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6) vengeance, towards those associated with the resources under attack.

DDOS. A distributed denial of service (DDoS) flooding attack is one that uses large
numbers of devices across a wide array of addresses (e.g., using a botnet). See Fig. 11.4.

Ch.11.	DDoS.	a)	The	individual	hosts	(zombies)	flooding	the	server	are	controlled	by	
a	botnet	master	directly,	or	by	a	large	number	of	``handler”	devices	which	
themselves	take	direcDons	from	the	master.	b)	The	shaded	hosts	(zombies)	send	
packets	with	the	spoofed	source	address	of	a	common	(end)	vicDm,	so	that	the	
responses	flood	that	vicDm.			%	cf.	Paxon’s	reflector	aJack	in	Endnotes;	inline	notes	
call	them	innocent	accomplices	in	the	Smurf-type	aJack.	

a)			b)	

server		

Figure 11.4: DDoS. a) The individual hosts (zombies) flooding the server are controlled
by a botnet master directly, or by a large number of “handler” devices, which themselves
take directions from the master. b) The shaded hosts (zombies) send packets spoofing the
source address of a common (end) victim, such that the responses flood that victim.

LOCAL VS. REMOTE DOS. A DoS attack on a local host might involve simply trig-
gering a buffer overflow in a kernel function, or replicating malware that consumes mem-
ory and CPU (cf. rabbits, Chapter 7). Our discussion here focuses instead on (remote)
network-related DoS, requiring no a priori access to, or account on, a local host.

Example (DoS by poison packets). A variety of attacks have used malformed packets
to trigger implementation errors that terminate a process or crash the operating system
itself. For example, the Ping of Death is a ping (ICMP echo request) sent as packet
fragments whose total length exceeds the 65,535-byte maximum IP packet size. Packet
reassembly crashed numerous circa-1996 TCP/IP stack implementations by overflowing
allocated storage. A second example, Teardrop, sent a packet in fragments with fragment
offset fields set such that reassembly resulted in overlapping pieces—crashing TCP/IP re-
assembly code in some implementations, exhausting resources in others. A third example,
LAND, sends a SYN packet with source address and port duplicating the destination val-
ues, crashing some implementations that send responses to themselves repeatedly. Note
that any Internet host can send any of these packets. Such attacks, while high-impact,
have clear fixes—simply repairing errors underlying the vulnerabilities (e.g., with stan-
dard length and logic checks). Filtering based on source address also helps (Fig.11.6 on
page 324).

FALSE SOURCE IP ADDRESSES. A common tactic in DoS attacks is to send packets
with false (often random) source IP addresses. The IP protocol does nothing to stop this.
Such IP address spoofing can give a superficial appearance that packets are arriving from
many places, prevents trivial traceback of the packets, and defeats simple blocking based
on source address. A false address means that the true source will not get an IP response,
but the attacker does not care. Responses go to the spoofed addresses as backscatter.

Example (SYN flooding: resource exhaustion). One of the earliest and best known
DoS attacks, SYN flooding, provides insightful lessons on the ease of abusing open proto-
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Ch.10.	SYN	flooding	with	spoofed	IP	address.	
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at	IP	addr	y2	

SYN-ACK	

SYN-ACK	

...	

unresponsive	host		
at	IP	addr	y3	

...	

Figure 11.5: SYN flooding with spoofed IP address.

cols, here basic TCP/IP connection set-up.12 By protocol, on receipt of a TCP SYN packet,
the destination sends a SYN-ACK, considers the connection “half-open” (SYN RECEIVED),
and maintains state (e.g., socket and sequence number details) while awaiting the third
handshake message. The memory used to maintain this state is typically statically pre-
allocated (to avoid dynamic allocation within kernel interrupts), which limits the number
of half-open connections. On reaching the limit, new connections are refused until state is
freed by, e.g., time-out expiry of a pending connection, or an RST (reset) sent by a host in
response to an unexpected SYN-ACK. A SYN flooding attack continually sends SYN pack-
ets (first messages), consuming the resource pool for half-open connections—degrading
service to legitimate users, whose connection requests compete.

‡COMMENTS: SYN FLOODING. SYN flooding as just described neither brute-force
floods a network link (to exhaust bandwidth), nor floods an end-host CPU by pure volume
of packets. Instead, it exhausts pre-allocated resources with a relatively modest number
of connection requests. The original attacks used false IP source addresses but rather than
random, they were known unresponsive (e.g., unallocated) addresses; see Figure 11.5. In
this case, the victim host periodically resends SYN-ACKs until a time-out period expires,
consuming additional CPU and bandwidth; in contrast, on receiving unexpected SYN-
ACKs, a responsive host will send an RST (reset), resulting in closing the half-open con-
nection, freeing state earlier. A responsive host’s RST is not a total loss for the attacker—
sending one SYN packet results in a minor amplification, with three resource-consuming
packets in total, including the SYN-ACK and RST. This results in a different (less ele-
gant) attack, not so much on the resources allocated to handle half-open connections, but
overwhelming network bandwidth and victim CPU by volume of packets.

In SYN flooding by large numbers of compromised machines (bots), access to net-
working stack software or to raw sockets may be used to arrange false source addresses.
If true source addresses of bots are used, without altering native network stack imple-
mentation, native responses to SYN-ACKs complete TCP connections, resulting in DoS

12This section assumes familiarity with basic concepts from networking, per Section 10.6.
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by volume flooding (vs. half-open starvation). Aside: while true source addresses allow
bot identification, removing malware from bots itself raises pragmatic difficulties—due to
scale, and inability of individual defenders to contact thousands of device administrators.
Flooding via a botnet also complicates blocking-based defenses.

‡Exercise (In-host SYN flood mitigation). Explain how these mechanisms mitigate
SYN flooding, and any problems: a) SYN cookies; b) SYN cache. (Hint: [29, 51, 38].)

‡Exercise (Reluctant allocation). SYN flooding attacks exploit end-host TCP protocol
implementations that do not follow principle P20 (RELUCTANT-ALLOCATION), instead
willingly allocating resources before sanity-checking the legitimacy of the connection
request. Cryptographic protocols such as Diffie-Hellman (DH) key agreement are also
subject to DoS attacks. a) Summarize three categories of DoS issues for IPsec-related DH
implementations. b) Discuss how one DH variant, the Photuris protocol, follows P20 to
address at least one of these concerns. (Hint: [2, 45].)

UDP AND ICMP FLOODS. Brute-force packet transmission simply overwhelms
hosts’ bandwidth and CPU. Sending a large number of ping (ICMP echo request) packets
to a target, each triggering an ICMP echo reply, is one type of ICMP flood. A similar UDP
flood may bombard UDP packets at random ports on a target—most ports, closed, will re-
sult in ICMP “destination unreachable” responses (consuming further bandwidth). Such
attacks use protocols often allowed by firewalls in the past, or that are essential for net-
work operations; if an administrator blocks ICMP “echo request” packets outright (fore-
going useful functionality), or beyond a set threshold, attackers may instead use ICMP
“destination unreachable” packets.

Example (Smurf flood). A second type of ICMP flood using ping (echo request)
packets and false IP addresses employs broadcast addresses to gain an amplification factor.
As background, consider a 32-bit IPv4 address as an n-bit prefix defining a network ID,
and m-bit suffix identifying a host within it (n+m = 32); all-zeros and all-ones suffixes
are special, all-ones denoting a broadcast address. A packet sent to a broadcast address by
a local-network host goes to all hosts on that network; and likewise if from a host outside
the local network, if routers are suitably configured. Smurf attacks from outside target
networks send ICMP pings to the broadcast address of target networks (accomplices). On
reaching an accomplice network, the ping solicits from each host therein an ICMP echo
reply, consuming both that network’s bandwidth and the path back to a spoofed source
address, the true victim; the unwitting accomplices are secondary victims. Similar attacks
can be launched from a compromised host within a local network, on the IP broadcast
address of that network. Note that this attack may use any packet (service) evoking general
responses, and allowed through firewalls/gateways; ICMP ping is but one choice.

SMURF MITIGATION. One mitigation for externally originated Smurf attacks is for
(all) routers to drop packets with broadcast address destinations (like Martian packets,
below). Another mitigation is ingress/egress filtering (below). Attacks from within a
local network itself may be mitigated by configuring host OSs to ignore ICMP packets
arriving for IP broadcast addresses; local hosts will no longer be accomplices.

AMPLIFICATION. In SYN flooding, ICMP flooding (Smurf ping), and UDP and TCP
exploits noted below, DoS attacks are aided by amplification—this occurs in any protocol
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	Enterprise1	
	

Ch.10.	Ingress	and	egress	filtering,	to	counter	spoofed	source	IP	addresses.	
An	a=acker	may	use	a	spoofed	source	IP	address	in	traffic	sent	to	a	vicCm.	
ISP1	does	ingress	filtering	at	R2	for	traffic	entering	from	Enterprise	1.	
Enterprise	1	does	egress	filtering	at	R1	for	traffic	leaving	to	ISP1.	
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Figure 11.6: Ingress and egress filtering. An attacker may use a spoofed source IP ad-
dress in traffic sent to a victim. ISP1 does ingress filtering at R2 for traffic entering from
Enterprise1. Enterprise1 does egress filtering at R1 for traffic leaving to ISP1. For firewall
rules to implement ingress and egress filtering, see Table 10.1 in Section 10.1.

where originating one message results in more than one response (from one or multiple
hosts), or in a response larger than the original packet, or both. In open network protocols,
sending a packet requires no authentication, but consumes bandwidth (a shared resource)
and host resources of all recipients. This violates in part principles P4 (COMPLETE-
MEDIATION), P6 (LEAST-PRIVILEGE), and P20 (RELUCTANT-ALLOCATION).

Exercise (UDP amplification). CERT Advisory CA-1996-01 recommended that aside
from using firewall or gateway filtering of related ports, hosts disable unused UDP ser-
vices,13 especially two testing/debugging services—the Echo (UDP port 7) and Character
Generator (UDP port 19) protocols. (a) Explain what these services do, and the concern,
especially with packets whose source and destination sockets connect the services to each
other. (b) What is the general risk, if a service generates more output than it receives?

‡Exercise (ICMP-based attacks). Outline several ways ICMP can be abused to attack
TCP connections; mitigations that comply with ICMP specifications; and challenges in
validating the authenticity of ICMP messages. (Hint: [36, 38]; Linux and some Unix OSs
include validation checks on sequence numbers found within ICMP payloads.)

INGRESS FILTERING. Ingress filters process packets entering, and egress filters pro-
cess packets leaving, a network (Fig. 11.6). They mitigate IP source address spoofing, and
thus DoS attacks that employ it (TCP SYN, UDP, and ICMP flooding). Service providers
use ingress filtering on a router interface receiving input packets from a customer network;
the filter allows only packets with source addresses within ranges expected or known to
be legitimate from that customer network, based on knowledge of legitimate address as-
signment. Packets with Martian addresses (e.g., an invalid source address due to being
reserved or a host loopback) are also dropped. An enterprise may likewise do egress fil-
tering on packets leaving its network, based on knowledge of legitimate addresses of its
internal hosts, to avoid assisting hosts serving as attack agents.14

‡Exercise (TCP amplification). a) Explain how TCP-based protocols can be abused
for amplification attacks despite TCP’s three-way handshake. b) Give three reasons why
NTP is most vulnerable among these. c) Summarize technical mitigations to NTP ampli-
fication attacks per advisories of MITRE (2013) and US-CERT (2014). (Hint: [49].)

13Disabling unused services follows principle P1 (SIMPLICITY-AND-NECESSITY).
14Ingress/egress filtering supports principle P5 (ISOLATED-COMPARTMENTS).
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Example (DDoS toolkits). DDoS toolkits emerged in the late 1990s. The Tribal
Flood Network (TFN), and successor TFN2K, allow a selection of UDP flood, ICMP
flood, ICMP broadcast (Smurf type), and SYN flood attacks. Target addresses are inputs.
Attack client binaries are installed on compromised hosts (bots). TFN-based Stacheldraht
added encrypted communications between control components, and update functionality.

‡Exercise (DDoS: trinoo). DDoS incidents in 1999 used trinoo tools. a) Detail how
trinoo compromised hosts to become slaves called daemons. b) Summarize its master-
daemon command and control structure, pre-dating those in later botnets. c) Summarize
the technical details of the DoS vectors used by the daemons (hint: [27]).

Exercise (Mirai botnet 2016). The Mirai (DDoS) botnet exploited embedded proces-
sors and Internet of Things (IoT) devices, e.g., home routers and IP cameras. (a) Summa-
rize its technical details. (b) Discuss the implications for IoT security. (Hint: [48, 5].)

SUMMARY COMMENTS: ATTACKS. DoS attacks are, by definition, easy to notice,
but full solutions appear unlikely. Flooding-type attacks are as much a social as a technical
problem, and cannot be prevented outright—public services are open to the entire public,
including attackers. Defenses are complicated by IP address spoofing, the existence of
services (protocols) that can be exploited for amplification, and the availability of botnets
for DDoS. DoS artifacts include poison packets and resource exhaustion (slow or fast) on
end-hosts, network bandwidth exhaustion, and related attacks on networking devices.

SUMMARY COMMENTS: DEFENSES. Default on-host DoS defenses should include
disabling unused services, OS rate-limiting of ICMP responses, and updating software
to address poison packets. Good security hygiene decreases the chances that end-hosts
become part of a (DoS) botnet, but flooding defenses are largely in the hands of network
operators, e.g., blocking non-essential services at gateways, and dropping packets from
blacklisted sources and by ingress/egress filtering. Coarse filtering at firewalls is an in-
terim survival tactic when new attacks arise and better alternatives are not yet in place.
Proxy firewalls may have the capacity to filter out or alter malformed packets, albeit re-
quiring protocol-level knowledge. Beyond this, flooding attacks are addressed by shared
hardware redundancy of ISPs and infrastructure providers—e.g., sites hosted by CDNs
(content delivery networks) benefit from spare capacity in resources, and major enter-
prises invest (with cost) in links with excess capacity, server farms, and load balancing.
Sharing of defensive resources is driven by the reality that attackers (leveraging botnets)
can harness greater resources than individual defenders. A challenge for future networks
is the design of communications protocols and services immune to amplification attacks.

11.5 Address resolution attacks (DNS, ARP)

Here we discuss traffic-hijacking attacks involving DNS (pharming) and ARP (ARP spoof-
ing). Both exploit failures to provide REQUEST-RESPONSE-INTEGRITY (principle P19).

DNS. The Domain Name System (DNS) maps hostnames (Section 9.1) to IP ad-
dresses. The full mapping is a distributed database, held entirely by no individual host.
Each organization is the authoritative information source for IP addresses of their own



326 Chapter 11. Intrusion Detection and Network-Based Attacks

hosts, and in response to DNS protocol queries on UDP port 53, provides this informa-
tion through server programs. Client applications resolve hostnames using a local (OS-
provided) DNS resolver, which returns corresponding IP addresses. To get the answer,
the resolver in turn contacts one or more DNS servers, which contact further sources in a
hierarchical query structure, finally asking the authoritative source if required. At various
points (Fig. 11.7), query answers may be cached for quicker future responses; by protocol,
a cached entry is deleted after a time-to-live (TTL) value specified in its DNS response.

Example (DNS resolution). The hostname www.tgtserver.com is resolved to an IP
address as follows. In Fig. 11.7, assume that all caches are empty, and that the client is
configured to use DNS services of its ISP (Internet Service Provider). The application
calls (1) the local DNS resolver, which in turn makes a query (2) to the ISP’s local DNS
server. That server queries (3) the ISP’s regional DNS server, S2. So far, these have all
been recursive queries, meaning the service queried is expected to return a (final) answer,
itself making any further queries as necessary. At this point, S2 begins a sequence of
interactive queries, descending down the DNS global hierarchy of Fig. 11.7c) until at
some level a server fully resolves the query. The first query (4) is to one of 13 global
DNS root servers.15 The root server R1 responds with the address of a server (say, T1)
that can handle .com queries. S2 sends a request (5) to T1, which responds with the
address of a server (say, A1) than can handle .tgtserver.com queries. S2 finally sends
a query (6) to A1. A1 can return the desired (complete) answer, i.e., the IP address of
www.tgtserver.com, because A1’s DNS server is administered by the organization that
registered the domain tgtserver.com, and controls its subdomains (and the IP addresses
mapped to the corresponding hostnames) including www. The response from A1 to S2 is
relayed by S2 to S1, which returns it to the local DNS resolver L. Each of L, S1 and S2 now
caches this <hostname, IP address> pair, to expedite repeat queries in the near future.

Ch.11.	DNS	resolu/on	and	DNS	hierarchy.		
A	typical	deployment	model	indica/ng	DNS	resolu/on	process	and	poten/al	a;ack	
surface.	DNS	client	cache	is	aka	DNS	resolver	cache;	entries	/me	out,	aAer	per-
entry	specified	TTLs.		
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Figure 11.7: DNS name resolution and query hierarchy (simplified).

PHARMING AND DNS RESOLUTION. A pharming attack is any means that falsifies
the mapping between domain name and IP address. Recall phishing (Section 9.8) involves
tricking a user to end up on a malicious (often a look-alike of an authentic) site, via some
means (lure), e.g., a link in an email or web search result. Pharming achieves this with

15Root servers are load-balanced clusters; one or more root IP addresses is known to the querying server.
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no lure, by forging address resolution. In this case, e.g., a user manually typing a correct
domain name into a browser URL bar can still end up at an incorrect IP address, thus re-
trieving data from a false site. Among other issues facilitating attacks, basic DNS queries
and replies are currently void of cryptographic protection (i.e., are unauthenticated).

Example (DNS resolution attacks). Figure 11.7 hints at a wide attack surface exposed
by the basic DNS resolution process. A few well-known attack vectors are as follows:
1. Local files. On both Unix and Windows systems, a local “hosts” file often statically

defines IP addresses for specified hostnames (configuration determines when or if this
file is used before external DNS services). This hosts file, and the DNS client cache
(DNS resolver cache), are subject to tampering by malware.

2. Tampering at intermediate DNS servers. DNS caches at any other servers (e.g., S1,
S2) are likewise subject to tampering by malware, and by inside attackers (perhaps in-
volving collusion or bribery). Even authoritative name servers are subject to malicious
tampering by insiders, albeit more widely visible.

3. Network-based response alteration. Middle-person attacks on any untrusted network
en route can alter (valid) DNS responses before reaching the original requestor.

4. Malicious DNS server settings. Clients are configured to use a specific external DNS
server (Fig. 11.7b). Its IP address, visible by a DNS settings dialogue, is subject to
being changed to a malicious DNS server. The risk is especially high when using
untrusted networks (e.g., in Internet cafés, airports, hotels), as guest IP addresses are
commonly allocated using DHCP (Dynamic Host Configuration Protocol); this often
results in client devices using DNS servers assigned by the DHCP server provided by
the access point, whether wireless or wired.

A further major network-based attack vector involves DNS spoofing (next).
‡Exercise (DNS poisoning). DNS spoofing is unauthorized origination of (false) DNS

responses. a) Explain how a sub-type of this, DNS cache poisoning attacks, work in
general, including the role of 16-bit ID fields in DNS protocol messages. b) Explain
how the Kaminsky technique dramatically increased attack effectiveness. c) Explain how
randomized 16-bit UDP source ports are of defensive use. d) Explain how mixing upper
and lower case spelling of queried hostnames increases attack difficulty. (Hint: [23].)

‡Exercise (DNS attacks). Grouping DNS attacks by architectural domain exploited,
describe at least one attack for each of five domains: local services; ISP or enterprise ser-
vices; global DNS services; authoritative DNS services; domain registrars. (Hint: [63].)

PHARMING DEFENSES. As DNS is a core infrastructure, many security issues re-
lated to DNS resolution are beyond the control of regular users. Avoiding use of untrusted
networks (e.g., guest Wi-Fi service) is easy advice to give, but not generally pragmatic.
A long-term solution, Domain Name System Security Extensions (DNSSEC), offers dig-
itally signed responses to DNS queries, but its deployment has been slow, due to the
complexity of universal deployment of a supporting public-key infrastructure.

ARP. On a local area network (LAN), Ethernet frames are delivered by MAC address.
The Address Resolution Protocol (ARP) is used to map IP addresses to MAC addresses.
A host aiming to learn a MAC address corresponding to a target IP address sends out a
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Ch.11.	ARP	spoofing.				Intended	flow	(1),	actual	flows	(2),	(3).	

V’s	ARP	cache	is	poisoned	by	T’s	ARP	spoofing.	As	a	result,	traffic	sent	over	the	LAN	

intended	(1)	for	a	desJnaJon	beyond	gateway	G	is	instead	sent	by	V	(2)	to	the	

physical	interface	of	T.		T	can	monitor,	alter,	and	forward	this	frame.		By	similarly	

poisoning	G’s	ARP	cache,	T	can	arrange	that	incoming	traffic	to	V	via	G	is	likewise	

sent	by	G	to	T.		This	amounts	to	a	middle-person	aPack	between	G	and	V.	Note	that	

the	switch	itself	is	not	poisoned.				
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Figure 11.8: ARP spoofing. Intended flow (1), actual flows (2), (3). T poisons V ’s ARP
cache. As a result, traffic sent via G over the LAN, intended (1) for a destination beyond
G, is instead sent (2) by V to the physical interface of T . By also poisoning G’s ARP
cache, T can arrange that incoming traffic to V via G is sent by G to T . Thus T has a LAN
middle-person attack between V and G. Note: the switch itself is not poisoned.

LAN broadcast message indicating the IP address; the protocol specifies that any host
having a network interface assigned that IP address reply with the pair <IP address, MAC
address>. Each LAN host then keeps a local table (ARP cache) of such responses (map-
ping OSI layer 3 to layer 2 addresses), as an efficiency to reduce future ARP requests.

ARP SPOOFING. An attacking host can send false ARP replies, asserting its own
MAC address as that of the device located at a same-LAN target (victim) IP address. This
is ARP spoofing, and results in false entries in ARP caches, i.e., poisoned ARP caches.
It is possible because: 1) ARP replies are not authenticated (any LAN host can reply),
and 2) hosts commonly accept replies even in the absence of requests—existing entries
are overwritten. In this way, the physical interface to the attack host (T in Fig. 11.8) can
receive Ethernet frames intended for other LAN hosts. This allows T to monitor traffic
(before possibly altering and forwarding it), even on a switched LAN.

ARP SPOOFING DEFENSES. ARP spoofing is stopped by static, read-only per-
device ARP tables mapping IP address to MAC address; setting and updating these man-
ually requires extra effort. Various tools (beyond our scope) may detect and prevent ARP
spoofing, for example, by cross-checking ARP responses. A preferred long-term solution
is a reliable form of authentication in an upgraded Address Resolution Protocol.

‡Exercise (Port stealing, MAC flooding). Two further attacks that exploit failures to
provide REQUEST-RESPONSE-INTEGRITY (P19) involve data link (layer 2) manipulations
of network switch MAC tables. These tables, unlike ARP tables, map MAC addresses to
the physical interfaces (switch ports) to which individual LAN devices are wired. Explain
each attack: a) port stealing; and b) MAC flooding. (Hint: [76]. These attacks can be
stopped by manually configuring switch ports with specific MAC addresses, again with
extra management effort, and beyond the capability of end-users.)

Exercise (Comparing attacks). Explain how DNS resolution attacks and ARP spoof-
ing are analogous, by using technical details of how each (a) maps identifiers from one
network layer to another; and (b) can turn an off-path attacker into an on-path attacker.

‡Exercise (Beyond passive sniffers: dsniff, Ettercap). Beyond passive packet capture,
broader tools provide active packet manipulation capabilities, e.g., supporting middle-
person attacks, ARP spoofing, and denial of service attacks. dsniff is an Ethernet sniffing
toolset whose authorized uses include penetration testing and security auditing. Ettercap is
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positioned as the premier network-attack middle-person tool. Summarize the functionality
of: a) dsniff (including its arpspoof component), and b) Ettercap. (Hint: [76], [19].)

11.6 ‡TCP session hijacking

We now discuss TCP session hijacking, and end with a few final network-based attacks.
TCP SESSION HIJACKING: INTRODUCTION. An on-path attacker can easily ma-

nipulate unencrypted TCP sessions, and TCP session hijacking (below) is conceptually
straightforward. The main barrier to overcome is a sequence number mechanism designed
for synchronization of TCP/IP packets; trickier implementation details are disposed of by
widely available, point-and-click toolkits. This is a rather serious affair, as it requires no
host access or privileges; e.g., for a plaintext telnet session, this allows injecting com-
mands that will be executed under the authority of the process for which the victim session
is running. In one variation, one legitimate end-host loses its ability to participate in the
session, its TCP sequence numbering out of synch with the other end. In a second, the
attacker plays middle-person, relaying possibly altered packets between legitimate hosts,
repairing header sequence numbers to valid values on the fly. These attacks are possible
when packets are sent plaintext, and are not stopped by start-of-session authentication
(even if based on one-time passwords or cryptography). This strongly motivates use of
encryption (e.g., via SSH, TLS, IPsec); not only are sniffed packets then unintelligible,
but injected packets will decrypt to meaningless bytes at legitimate end-hosts.

HIJACKING AND MIDDLE-PERSONS. TCP session hijacking is distinct from:
1) HTTP session hijacking via cookie theft (Chapter 9);
2) middle-person attacks on Diffie-Hellman key agreement (Chapter 4), which may use

a DNS-based means to redirect packets to an intruder-controlled host; and
3) ARP spoofing, which may itself be used as a tool within TCP session hijacking.
Middle-person attacks involving TLS may rely on DNS-based misdirection or resolution
exploits, combined with use of a fraudulent or misleading web site certificate.

TCP SEQUENCE NUMBERS (BACKGROUND). TCP header fields (Section 10.6) se-
quence number and acknowledgement number help manage the stream of bytes delivered;
every data byte transferred is numbered, in separate sequences for each direction. During
the three-way handshake, each end chooses a new initial sequence number (ISN), asso-
ciating ISN + 1 with its first data byte transmitted. Each end populates the ack number
field with the next sequence number they expect to receive. The SYN flag in the first mes-
sage seq(ISNa) requests the other end to synchronize to the new ISN value sent by the
client. The SYN-ACK segment returned by the server includes its ISN as seq(ISNb) and
ack(ISNa + 1) to acknowledge the client’s sequence number. All TCP segments in the
connection now set the ACK flag (Fig. 11.9), indicating a valid field value in ack num-
ber. The client’s handshake completion is ack(ISNb + 1). In the now-established TCP
connection, each sender populates every segment’s seq number field with the sequence
number that the segment’s first data byte corresponds to; and populates ack number with
the byte number of the next byte missing in its own receive buffer (confirming that every
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Ch.10.	TCP	three-way	handshake	and	sequence	numbering.	As	shown	here,	the	
ACK	as	part	of	the	third	handshake	message	may	be	delayed,	in	which	case	it	
may	be	accompanied	by	data	transfer	rather	than	being	an	empty	segment.	The	
SYN	flag	is	treated	specially,	and	charged	as	one	byte	of	data.	

flags:	SYN	
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B	
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A	
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11)	
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flags:	ACK	seq(1011),	ack(2021)	

ISNa	=	1000	 ISNb	=	2000	

Figure 11.9: TCP three-way handshake and sequence numbering. As shown, the third
handshake message’s ACK may be delayed and piggy-backed onto a data transfer rather
than in an empty segment. The SYN flag counts for one position in the number sequence.

byte preceding this was successfully received). If a gap results due to a segment being
corrupted or received out of order, the same ACK value may be resent several times (the
missing segment is eventually received, or triggers retransmission). Sequence numbers
are particularly relevant due to their role in TCP session hijacking, and RST attacks.

TCP SESSION HIJACKING: CONTEXT. As noted, sequence-numbering fields in
TCP headers synchronize byte streams. If SND.NXTa numbers the next byte A will send
(next sequence number to be used), and RCV.NXTb numbers B’s last acknowledgement,
then in quiet periods: SND.NXTa =RCV.NXTb and SND.NXTb =RCV.NXTa. Designed for
accounting (not security), this byte numbering allows proper handling and placement in
receive buffers (and any retransmission) of TCP segments lost or received out of order,
and filling of any temporary buffer data holes. If sequence numbers are not within a
valid range,16 a TCP segment (packet) may be dropped; precise conditions depend on the
TCP specification and details such as the receive window size (RCV.WND), and how many
received segments remain unacknowledged. The attacker aims to craft a packet with valid
sequencing numbers, relative to the receiver’s TCP state machine.

TCP HIJACKING: OUTLINE. Consider a TCP connection between hosts A and B,
with attacker T somewhere on-path (on the path the packets travel). Using any sniffer,
T can read packet contents including A’s IP address. Using any packet creation tool, T
will send packets to B, falsely asserting A’s source address—this is not prevented by TCP
(Fig. 11.10, label 1). Responses will not be addressed to T , but this doesn’t matter; they
are visible by on-path sniffing. For the A–B connection, T sniffs socket details and the
session’s current sequencing numbers, using these to craft and inject packets whose TCP

16As standard checks, an incoming value SEG.SEQ should be in [RCV.NXT, RCV.NXT+RCV.WND], and an
incoming SEG.ACK should never be for bytes not yet sent, so SEG.ACK≤SND.NXT is required.
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segments have sequencing numbers valid from B’s view of the A–B protocol state. B
now receives TCP segments from T , processing them as if from A (e.g., data, commands,
programs). To complete the attack, T removes A from being a nuisance (described next).

Ch.11.	TCP	session	hijacking.	T	need	not	be	on	the	LAN	of	either	A	or	B.	
%	as	noted	by	Skoudis	

1	3	A	
T	(on-path	aCacker)	

B	

2	

Figure 11.10: TCP session hijacking. T need not be on the LAN of either A or B.

HIJACKING SIDE EFFECT 1: DESYNCHRONIZATION. This attack has side effects
and races. Ongoing packets sent by A to B (Fig. 11.10, label 2), while T is also sending
packets to B, may render T ’s byte numbering invalid. For this reason, T may try to
improve his odds, e.g., flooding A with packets to slow A’s ability to send to B, or sending
poison packets to A (Fig. 11.10, label 3). Another option is to actively desynchronize
A–B byte numbering. T does so by tampering with the connection set-up: when T sees
the SYN–ACK from B to A (second message in the three-way handshake), T sends B an
RST segment immediately followed by a SYN with the same socket details but new ISNT .
This causes B to end the first connection to A, then open a new one with new ISNB∗ in the
SYN–ACK. Observing this, T responds (spoofing A’s address) with an ACK. Meanwhile, A
believes it has established a TCP connection with B, but is now using sequence numbering
different than B. This desynchronized state prevents data exchange between A and B. If
desired, T can sniff these packets, modify any contents, and adjust the byte-number fields
to render relayed packets acceptable—acting as a middle-person.

‡HIJACKING SIDE EFFECT 2: ACK STORMS. As T injects packets acceptable to B,
the byte numbers (and corresponding receive windows) between T (as A) and B advance.
As A is out of synch, any packets exchanged between A and B are dropped. In this case,
TCP mandates an ACK segment (without data); it will trigger a response, as follows. Each
host will repeatedly (and hopelessly) inform the other of byte numbers they expect to next
send, and receive. Thus B sends an ACK segment to A asserting: SND.NXTb, RCV.NXTb. A
reciprocates, asserting: SND.NXTa, RCV.NXTa. And so on, in an ACK loop until a packet
is lost, or the TCP connection is reset. Aside from this assertion ACK storm, any packets
from A to B containing data bytes that go unacknowledged will be resent, raising another
ACK storm; T can preempt such follow-up storms by crafting false ACKs.

‡TAMING ACK STORMS. To reduce ACK storms, T may send to A denial of service
packets (as noted earlier), or an RST segment. This turns a potential middle-person attack
into a straight takeover. (After all, T may feel that A is now disturbing T ’s otherwise pleas-
ant session with B.) An alternate, cleaner method to avoid ACK storms is ARP spoofing to
redirect packets intended for A and B to T ;17 this prevents A and B from receiving pack-
ets that trigger ACK responses due to, in the receiver’s view, invalid sequencing numbers.
Such storms may also be tamed by (legitimate) TCP implementations that automatically

17Ettercap and other widely available tools use this method.
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rate-limit duplicate or repeated ACKs, e.g., to a few per second.
BLIND TCP RESET ATTACKS. Methods related to those for hijacking (above)

have been used for off-path (“blind”) TCP DoS attacks; here sequence numbers must
be guessed rather than observed (sniffed). A first attack aims for connection teardown
by sending an RST with valid sequence number. In older TCP implementations, any
in-window sequence number is valid (new implementations require exactly matching
SND.NXT). A second attack, sending an unexpected SYN segment (e.g., for an established
connection), aims to trigger an RST. In older TCP implementations, any in-window se-
quence number triggers an RST (in later implementations, such a segment calls for an
assertion ACK and dropped segment, with an RST only if the response is a valid RST; if
the SYN was spoofed, the peer discards the ACK as a duplicate ACK). Such resets are of
special concern to, e.g., long-lived router connections where connection teardown results
in long disruptions due to recomputations needed to rebuild routing tables.

MITIGATING TCP-BASED ATTACKS. To mitigate off-path attacks (immediately
above), RFC 5961 provides an update to the TCP specification as noted in Section 11.7.
More generally, the main defense against TCP hijacking attacks is, as noted at the begin-
ning of this section, to encrypt network communications using, e.g., SSH, TLS or IPsec.

11.7 ‡End notes and further reading

For background on basic concepts in networking, see Section 10.6, and Chapter 10 end
notes for foundational Internet specifications (IP, ICMP, TCP, UDP).

Anderson’s 1980 report [3] proposed the detection of abnormal computer usage by
analyzing audit data. Distinct from legitimate users misusing authorized access (misfea-
sance), he distinguished three types of intruder: masquerador (user of stolen credentials),
clandestine user (evading audits, e.g., as root user modifying audit trail records), and
external penetrator. The report laid the groundwork for (host-based) anomaly-based in-
trusion detection; suggested use of sum-of-squares and standard deviation to measure
variation of parameters from recorded averages; and recommended creating security au-
dit trails independent of accounting and finance needs. Denning’s anomaly-based generic
IDS model [26] appeared after publication of work on IDES with Neumann [25] that de-
tailed statistical (profile-based) anomaly detection. IDES used both this and rule-based
anomaly detection methods—see Lunt [52]. Bejtlich [13, App. B] summarizes early net-
work monitoring and NIDS papers. As NIDSs became fashionable, focus shifted from
Anderson’s goal of finding intruders already inside, to trying to stop attacks in progress.

For IDS background and historical context, see Bace [11] and Debar [24]. Snort [72]
is used not only for IDS, but also for packet sniffing and logging. Bro, “an Orwellian
reminder that monitoring comes hand in hand with the potential for privacy violations”
[64], has a network monitor origin, as does Ranum’s Network Flight Recorder (NFR) [71],
which predates Snort by two years. The signature-based Suricata NIDS [83] was released
in 2010 as a multi-threaded competitor to Snort’s single-threaded engine. Signature-based
IDS is sometimes categorized under misuse detection. For a type of stateful protocol anal-
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ysis (cf. NIST [75]), Bro signatures can use context (including state) to reduce false posi-
tives, as noted by Sommer [77, Sect. 3.5], [78]; the latter also discusses converting Snort
rules to Bro signatures and compares the systems. Such contextualized signatures differ
from using Bro in pure specification-based approaches, which have a stronger whitelist
basis—see Ko [47] and Uppuluri [80]. Ptacek [68] explains how IDS evasion is possi-
ble by maliciously fragmenting packets and related means causing ambiguities in packet
reassembly. Handley [39] outlines traffic normalization to address this (related literature
refers to protocol scrubbers), in a broad-sense example of principle P15 (DATA-TYPE-
VERIFICATION).

Rather than industry-driven IDSs, Bejtlich argues for network security based on strong
monitoring tools in books focused on inbound [13] and outbound traffic [14], calling the
latter extrusion detection. For IDS in practice, see also Northcutt [61, 60]. For the BSD
Packet Filter (BPF) widely used in packet capture tools, see McCanne [53]. Safford [74]
introduces Drawbridge, a filtering bridge, and describes the TAMU security package, an
early monitoring and intruder defense system. Decoy targets called honeypots (hosts with
no legitimate users) allow extraction of knowledge from attackers and malware capture for
signature generation; see Provos [67] for this and Honeyd, and Cheswick [21] including
for use of a chroot jail. Bellovin’s early Internet-monitoring papers [15, 16] were illumi-
nating. The Unix finger command (RFC 1288), heavily used in early Internet days to
obtain information about users on remote hosts, is deprecated (commonly unsupported),
for security reasons. On the base rate fallacy, see Axelsson [10] for IDS implications (and
IDS base rates), and Beauchemin [12] as it relates to generating probable prime numbers.

Software flaws including buffer overflows (for which Chapter 6 noted static analysis)
can be found by fuzzing (fuzz testing), which may offer information on offending inputs as
a bonus. Miller’s seminal fuzzing studies [56, 55] explored software responses to random
input, respectively for Unix commands and MacOS applications. For software fault injec-
tion (a sub-class of fuzzing), see Voas [81] and also Anley [4, Ch. 16-17]. For fuzzing
and broader penetration testing (cf. McGraw [54, Ch. 6]) see Harper [40], as well as for
Metasploit and responsible disclosure. Regarding curious Metasploit usage patterns over
the first two days after release of new exploit modules, see Ramirez-Silva [70]. For vul-
nerability assessment, scanning and exploitation tools, and defenses, see Skoudis [76].
SATAN [31] popularized the now well-accepted practice “hack yourself before the bad
guy does”; Bace [11] explains how earlier self-assessments were credentialed, i.e., used
on-host tools such as COPS [30] run on authorized user accounts. In a later book [32],
the SATAN authors explore computer forensics. OS detection via TCP/IP stackprinting
in Nmap is from Fyodor [35]. p0f is documented by Zalewski [85]. Xprobe2 originates
from Ofir [62]. For detection of port scanning based on a small number of probes, see
Jung [44], and Staniford [79] for detecting stealthy port scans. For use of exposure maps
to enumerate sockets responsive to external connection attempts, see Whyte [84]. For
Internet-wide scanning using ZMap, see Durumeric [28].

Abliz [1] offers a comprehensive survey on DoS. Paxson [65] explores DDoS attacks
by which packets sent to a large number of reflectors (any IP host that responds to packets
sent) target a specific true victim as the false source IP address, with responses flooding
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that victim. See Rossow [73] for a study of UDP-based network protocols vulnerable
to amplification attacks, and countermeasures. Moore [59] measures global DoS activity
using backscatter analysis. Jung [43] discusses relationships between DoS, flash crowds,
and CDNs. For ingress filtering, see RFC 2827 [33]; and for additional TCP SYN flooding
mitigations, RFC 4987 [29]. SYN flooding, popularized by daemon9 [22], was known
to Bellovin [18]. DoS-related CERT Advisories (CA) and Incident Notes (IN) include
suggested mitigations: CA-1996-01 (UDP flood), CA-1996-21 (TCP SYN flood), CA-
1996-26 (Ping of Death), CA-1997-28 (Teardrop, LAND), CA-1998-01 (Smurf) and IN-
99-07 (Trinoo, TFN). DNS is standardized in two RFCs by Mockapetris [57, 58]; for
a threat analysis, see RFC 3833 [9], and Bellovin [17]. DNSSEC, a collection of new
resource records and protocol modifications for DNS to provide data origin authentication
and integrity to query-response pairs, is specified in three primary RFCs [6, 7, 8]; for
implementation notes, see RFC 6840 [82].

TCP/IP suite vulnerabilities and mitigations are discussed in Gont’s security roadmap
[38], as a companion to RFCs; see also Bellovin’s annotated lookback [18], including for
routing-based attacks allowing on-path hijacking. TCP off-path (or blind) attacks aiming
to disrupt (e.g., by resets) or inject data into/hijack connections, typically require knowing
or guessing socket details plus an acceptable SEQ and/or ACK number; mitigations include
using unpredictable TCP ISNs [37], randomization of ephemeral ports [50], and ([69],
cf. [38]) narrowing the range of acceptable SEQ/ACK numbers plus additional challenge
ACKs. These build on Morris’ 1985 blind TCP connection-spoofing attack [37, Appendix
A.1]. Joncheray [42] explained the details of TCP-based session hijacking. For TCP
session hijacking by an on-path attacker that is not on the LAN of either end-host, ARP
spoofing can be used on intermediate routers; see Skoudis [76, p. 488]. For ARP spoofing,
see Bruschi [20]. ARP is defined in RFC 826 [66]. Regarding Ettercap, its authors note in
an interview with Biancuzzi [19]: “We were studying for a university exam on networking,
and we noticed that network security was more fun than differential equations.”
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