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Abstract 
Autocalibration algorithms based on the fundamen- 

tal matrix must solve the problem of finding the global 
minimum of a cost function which has many local min- 
ima. We describe a new method of achieving this goal, 
which uses a stochastic optimization approach taken 
from the field of evolutionary algorithms. In theory, 
approaches that use the fundamental matrix for auto- 
calibration are inferior to those based on a projective 
reconstruction. We argue that in practice if we use this 
new stochastic optimization approach this is not true. 
When autocalibrating focal length and aspect ratio both 
methods achieve comparable results. We demonstrate 
this experimentally using published image sequences 
for which the ground truth is known. 

1 Introduction 
The goal of autocalibration is to find the intrinsic 

camera parameters directly from an image sequence 
without resorting to a formal calibration process. The 
recent interest in autocalibration comes from advances 
in the field of projective vision which makes it possible 
to compute various quantities from an uncalibrated 
image sequence; in particular, the fundamental matrix 
between image pairs. 

In this paper we perform a comparison of two auto- 
calibration algorithms that use fundamental matrices; 
the first uses Kruppa’s equation [l, 2, 31, and the sec- 
ond autocalibrates by optimally converting a funda- 
mental matrix to an essential matrix [4]. We assume 
that the intrinsic camera parameters are constant over 
the entire image sequence. In both cases, the prob- 
lem can be formulated as the minimization of a cost 
function. The correct camera calibration corresponds 
to the global minimum of this cost function over the 
space of possible camera parameters. The claim has 
been that such minimization approaches to autocali- 
bration are sensitive to the initial starting point of the 
required gradient descent algorithm [5]. As is shown in 

the paper when autocalibrating only the focal length, 
this is not true because we can exhaustively solve the 
associated 1D optimization problem using standard 
numerical approaches [6]. We also show that when au- 
tocalibrating both focal length and aspect ratio a sim- 
ple stochastic approach from the field of evolutionary 
algorithms overcomes this problem [7]. Experiments 
demonstrate that this stochastic method reliably finds 
the 2D global minimum. 

2 Autocalibration from the Funda- 
mental Matrix 

The standard linear camera calibration matrix E;c 
has the following entries [2] : 

(1) 

This assumes that the camera skew is r/2. Here f is 
the focal length in millimeters, and I%, , I%, the number 
of pixels per millimeter. The terms fk,, fk, can be 
written as au, aV, the focal length in pixels on each 
image axis. The ratio au/a, is the aspect ratio. The 
four free calibration parameters are therefore the focal 
length au, CY~, and the center of projection ug, ~0. All 
are in pixel co-ordinates. 

The fundamental matrix F is a rank two matrix of 
size three by three which defines the epipolar geometry 
between two images [a]. Given a point in one image, 
the fundamental matrix can be used to compute a line 
in the other image on which the matching point must 
lie. The fundamental matrix can be computed from a 
set of 2D correspondences between two images. 

2.1 Equal Singular Values Approach 
If we know the camera calibration matrix K, then 

the essential matrix E is related to the fundamental 
matrix by E = KtFK. The matrix E is the calibrated 
version of F; from it we can find the camera positions 
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in Euclidean space. Since F is a rank two matrix, 
E also has rank two. However, E has the extra con- 
dition that the two non-zero singular values must be 
equal. This fact can be used for autocalibration by 
finding the E;c that makes the two singular values of F 
as close to equal as possible [4]. Given two non zero 
singular values of E: 01 and 02 (01 > aa), then, in 
the ideal case (ai - 02) should be zero. Consider the 
difference (1 - a&). If the singular values are equal 
this quantity is zero. As they become more different, 
the quantity approaches one. Given a fundamental 
matrix, autocalibration proceeds by finding the cali- 
bration matrix E;c 

Assume we are 

which minimizes (1 - as/m>. 

given a sequence of n images, along 
with their fundamental matrices. Then Fi, the fun- 
damental matrix relating images i and i + 1, has 
non zero singular values oil and Q. To autocali- 
brate from these n images using the equal singular 
values method we must find the E;c which minimizes 

c ;T-l Wi(l - Q/Q)* Here wi is a weight factor, 
which defines the confidence in a given fundamental 
matrix. The weight wi is set in proportion to the 
number of matching 2D feature points that support 
the fundamental matrix Fi. The larger this number, 
the more confidence we have in that fund 
trix. 

.ament al ma- 

2.2 Kruppa’s Equation Approach 

Another way to perform autocalibration from a set 
of fundamental matrices is to use Kruppa’s equation 
[a]. To understand this method we must first define 
the absolute conic. In Euclidean space the absolute 
conic lies on the plane at infinity. It can be shown 
that a 2D image point belongs to the projected image 
of the absolute conic if and only if it lies on the conic 
represented by matrix E;c -TK-l. Similarly, KKT is 
the dual of the image of the absolute conic, and is la- 
beled as C. If we can find C, then we can directly 
compute the camera parameters K by Cholesky fac- 
torization. 

Kruppa’s equation relates the fundamental matrix 
to the terms of the absolute dual conic. Recently a new 
derivation of Kruppa’s equation based on the singular 
value decomposition (SVD) was described [a]. Con- 
sider the SVD of a fundamental matrix F = UDVT. 
Here D is a diagonal matrix of the singular values 
(r, s, 0). The column vectors of U are ui, 2~2, ~3, and 
the column vectors of V are IU~,IU~, 2~3. Then the new 

form of Kruppa’s equation is --$$ = * = 
1 rsupL2 

UpAll 
&Fag* Given the fundamental matrix F we can 

compute its SVD, and set up these three ratios. The 
unknown values are the elements of C. To autocal- 

ibrate we must find the C which makes these three 
ratios as close to being equal as possible. Let rai be - - 
defined as --&$ - ~ 

-II; CUl 
rsupL2 with ra2, ru3 defined in 

the same fashton as the other two possible differences 
of these ratios. Then autocalibration can be achieved 
by finding the C which minimizes ra: + rui + ~a$. 
Assume as before that we are given n images along 
with their fundamental matrices. The Kruppa ratios 
for images i and i - 1 are labeled as rail, rug, rui3. 
Then to autocalibrate over n images we must find the 
C which minimizes Cri-’ wi(ru& + rut2 + rut3). Here 
again the weights wi represent our confidence in the 

matrix as defined in the end of the given fundamental 
previous section. 

2.3 Numerical Optimization 
The two autocalibration approaches we have de- 

scribed require the minimization of a cost function of 
the calibration parameters. In theory a gradient de- 
scent algorithm can find the solution. The problem 
is that there are often many local minima in the cost 
function, so the solution that is found depends on the 
starting point of the gradient descent algorithm. How- 
ever, we note that the calibration parameters can all 
be bounded; i.e. the center of projection is rarely more 
than one fifth of the image size from the image cen- 
ter. Thus we are need to find the global minimum 
of a set of real-valued, bounded optimization parame- 
ters. This problem has been dealt with in the field of 
evolutionary algorithms. 

We use an approach called dynamic hill climbing 
(DHC) which is very successful in solving such real val- 
ued optimization problems [7] . It performs repeated 
gradient descent in the search space, but restarts the 
descent as far as possible from previous solutions. A 
single gradient descent of the cost function uses the 
Powell optimization algorithm [6]. The pseudo-code 
for the DHC optimization algorithm is as follow: 

For n times 
For each free optimization parameter 
in the calibration matrix 

Find the largest contiguous region not 
containing a previous local optimum 
of the gradient descent. 

Choose a random point in this region 
as the new starting point. 

Endfor 
Run the gradient descent algorithm from 

this new starting point. 
Save the best cost function value. 

Endfor 
Return the best calibration parameter s. 
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Name of True Eigen Kruppa Name of True Eigen Kruppa 
Sequence focal focal focal Sequence focal focal focal 

castle 1100 1156.50 1197.70 curve 6.97 4.71 7.49 
valbone 682 605.50 685.71 cylinder 28.0 26.35 31.70 
nekt 700 798.58 872.44 plant 24.20 22.55 24.39 
etlueshiba 837 857.25 1233.85 statue 5.11 3.67 5.29 

Table 1: Autocalibration of focal length (in pixels) for 
published sequences. 

Table 2: Autocalibration of focal length (in mm.) for 
photogrammetric sequences. 

3 Experimental Results 
For many autocalibration algorithms, performance 

evaluation consists of a simple visual inspection of a 
3D reconstruction based on the computed camera cal- 
ibration. This is not adequate because the quality 
of the final reconstruction is visually acceptable for 
a wide variety of calibration parameters [8]. Instead 
we perform tests on image sequences for which the 
ground truth camera calibration is known. We exper- 
iment with two different types of image sequences; one 
where we are given the correspondences a-priori, and 
one where we must compute the correspondences au- 
tomatically from the images. In both cases, the fun- 
damental matrix is calculated from these correspon- 
dences. The software used in our experiments is part 
of the Projective Vision Toolkit and is available on our 
web page [9]. It can compute the fundamental matrix 
from a given set of correspondences, and can automat- 
ically find a reliable set of correspondences between 
image pairs. 

The first experiment demonstrates the autocali- 
bration of only the focal length. Table 1 shows re- 
sults for a number of sequences which have been pro- 
cessed in previously published autocalibration papers 
[l, 3, 10, 111. In particular, the castle sequence is used 
as a test case for the autocalibration approach which 
requires a projective reconstruction [lo]. In these ex- 
periments the 2D features used to compute the fun- 
damental matrices were found automatically from the 
images using our software. 

In the next experiment, 2D features were selected 
by hand as part of a model building process using a 
well known photogrammetric package [12]. The as- 
sumption is that they are correct correspondences. 
We know all the intrinsic parameters of the camera 
a-priori and assume they are constant. The exception 
is the focal length, which we autocalibrate. Table 2 
shows the autocalibrated focal length in millimeters 
versus the true focal length. Another measure of the 
quality of the autocalibration are the reprojection er- 

rors. These are the pixel differences between the 2D 
projections of the reconstructed 3D feature points and 
their original corresponding 2D feature points. This 
can be computed because we have created a 3D recon- 
struction of these 2D features. For each focal length 
we calculate the reprojection errors for all the points, 
sort these errors, and save the median value. This 
median is a good indicator of the quality of the 3D 
reconstruction created using a given focal length. We 
repeat this calculation for all the focal lengths in Ta- 
ble 2. The median value of the reprojection error of 
all four sequences using the correct focal length is 1.7 
pixels, with the focal length from the singular value 
method is 3.85 pixels and from Kruppa’s method is 
1.75 pixels. We see that using the autocalibrated fo- 
cal lengths to create a 3D reconstruction increases the 
reprojection errors only slightly versus the true focal 
lengths. 

In the final experiment, we autocalibrate both as- 
pect ratio and focal length using as input the same 
images sequences listed in Table 2. The results, as 
shown in Table 3, demonstrate that the errors when 
autocalibrating two camera parameters are sometimes 
higher than when autocalibrating just one parameter. 
One possible explanation is that the gradient descent 
algorithm is stuck in a local minima. To check this hy- 
pothesis the results shown in Table 3 were computed 
by averaging over one hundred separate runs of our 
optimization algorithm. The variance for the com- 
puted aspect ratio is 0.00391 and for the computed 
focal length is 0.1735. The stochastic process starts 
each gradient descent in a different part of the search 
space. This implies that if it were converging prema- 
turely then this local minimum would change. There- 
fore the low variance indicates that the true global 
minimum is being found. 

4 Conclusions 

m 
In th .eory, autocalibration methods 

.ent al matri ces should not perform 
that u 

as well 
se funda- 
as those 
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Name of True Eigen True Eigen 
Sequence aspect aspect focal focal 

curve 1.0 1.08 6.97 3.46 
cylinder 1.0 0.98 28.0 26.72 
plant 1.0 0.98 24.2 22.96 
dam 0.81 0.972 30.75 38.52 

Name of True Kruppa True Kruppa 
Sequence aspect aspect focal focal 

curve 1.0 0.997 6.97 7.56 
cylinder 1.0 1.03 28.0 32.91 
plant 1.0 0.92 24.2 26.33 
dam 0.81 0.997 30.75 38.43 

Table 3: Autocalibration of focal length (in mm.) and 
aspect ratio for photogrammetric sequences. 

that use the camera projection matrices of a projective 
reconstruction [13]. However, we show that for non- 
degenerate motions with fixed camera parameters this 
is not the case. Both the equal singular value approach 
and Kruppa’s equations approach perform as well as 
all the methods published in the literature when cali- 
brating only the focal length, or the focal length and 
aspect ratio. One possible explanation for the good re- 
sults using Kruppa’s approach is that using the SVD 
based cost function [2] is superior to the cost function 
which requires the computation of the camera epipoles 
[ 131. The equal singular values approach is very simple 
and works just as well as Kruppa’s method. It perform 
better than Kruppa’s method in situations where we 
are close to a degenerate motion, such as pure transla- 
tion. Using two different autocalibration methods has 
the advantage of increasing confidence in the results 
when both answers are similar. 

Computationally the fundamental matrix based ap- 
proaches are very efficient since a single evaluation of 
the cost function does not take long to compute. The 
total time taken for autocalibration is in the order of 
seconds for all the experiments. Some approaches to 
autocalibration require the solution to a set of poly- 
nomial equations [lo], but this is not computationally 
feasible for long image sequences. With our optimiza- 
tion based approach we can efficiently process long im- 
age sequences, which is an advantage. One argument 
against the optimization based methods has been that 
they are sensitive to the starting point of the gradient 
descent algorithm [5, 141. We have shown that when 
using our stochastic optimization approach this is not 

the case. The error in the autocalibration of the fo- 
cal length is usually in the range of 5% to 10%. This 
is adequate for applications such as visualization or 
model building. 
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