
Deployment of Asynchronous Robotic Sensors in
Unknown Orthogonal Environments ?

Eduardo Mesa Barrameda1, Shantanu Das2, and Nicola Santoro3

1 Universidad de La Habana, Cuba, eduardomesa@matcom.uh.cu
2 ETH Zurich, Switzerland, shantanu.das@inf.ethz.ch

3 Carleton University, Canada, santoro@scs.carleton.ca

Abstract. We consider the problem of uniformly dispersing mobile robotic
sensors in a simply connected orthogonal space of unknown shape. The
mobile sensors are injected into the space from one or more entry points
and rely only on sensed local information within a restricted radius. Un-
like the existing solution, we allow the sensors to be asynchronous and
show how, even in this case, the sensors can uniformly fill the unknown
space, avoiding any collisions and without using any explicit commu-
nication, endowed with only O(1) bits of persistent memory and O(1)
visibility radius. Our protocols are memory- and radius- optimal; in fact,
we show that filling is impossible without persistent memory (even if
visibility is unlimited); and that it is impossible with less visibility than
that used by our algorithms (even if memory is unbounded).

1 Introduction

The Framework: An important problem for wireless sensor systems is the ef-
fective deployment of the sensors within the target space S. The deployment
must usually satisfy some optimization criteria with respect to the space S (e.g.,
maximize coverage). In case of static sensors, they are usually deployed by exter-
nal means, either carefully (e.g., manually installed) or randomly (e.g., dropped
by an airplane); in the latter case, the distribution of the sensors may not satisfy
the desired optimization criteria.

If the sensing entities are mobile, as in the case of mobile sensor networks,
vehicular networks, and robotic sensor networks, they are potentially capable to
position themselves in appropriate locations without the help of any central coor-
dination or external control. However to achieve such a goal is a rather complex
task, and designing localized algorithms for efficient and effective deployment of
the mobile sensors is a challenging research issue.

We are interested in a specific instance of the problem, called the Uniform
Dispersal (or Filling) problem, where the sensors have to completely fill an un-
known space S entering through one or more designated entry points called
doors. In the process, the sensors must avoid colliding with each other, and
must terminate (i.e., reach a quiescent state) within finite time. The space S is

? Research partially supported by NSERC Canada.

assumed to be simply connected (i.e., without holes), and orthogonal, i.e. polyg-
onal with sides either parallel or perpendicular to one another (e.g., see Figure
1). Orthogonal spaces are interesting because they can be used to model indoor
and urban environment.

Fig. 1. An orthogonal region to be filled by the sensors.

We wish to study the problem from an algorithmic point of view, focussing
on the minimum capabilities required by the sensors in order to effectively com-
plete this task. We consider this problem within the context of robotic sensors
networks: the mobile entities rely only on sensed local information within a
restricted radius, called visibility range; when active they operate in a sense-
compute-move cycle; and usually they have no explicit means of communication.

Existing Results: The problem of deployment of mobile sensor networks has
been studied by several authors and continues to be the subject of extensive
research; e.g., see [7–10, 13, 16, 22]. Most of the work is focused on the uniform
self-deployment problem; that is, how to achieve uniform deployment in S (usu-
ally assumed to be polygonal) starting from an initial random placement of the
sensors in S. The uniform dispersal problem, studied here, has been previously
investigated by Howard et al. [9]: sensors are deployed one-at-a-time into an
unknown environment, and each sensor uses information gathered by previously
deployed sensors to determine its deployment location.

The robotic sensor networks, studied in this paper, have been and continue
to be the object of extensive investigations both from the control and the com-
puting point of view (e.g., [1, 3–6, 12, 14, 20, 21]; see [2, 18] for recent surveys). A
crucial difference between robotic sensor networks and traditional wireless sen-
sor networks is in the determination of an entity’s neighbours. In robotic sensor
networks, the determination of one’s neighbours is done by sensing capabilities
(e.g., vision): any sensor in the sensing radius is detected even if inactive. On
the other hand, in traditional wireless sensor networks, determination of the
neighbours is achieved by radio communication; since an inactive sensor does
not participate in any communication, the simple activity of determining one’s
neighbours, to be completed, requires the use of randomization or the presence
of sophisticated synchronization and scheduling mechanisms (e.g., [15, 17]). Both

problems, uniform self-deployment and uniform dispersal have been studied for
robotic sensor networks.

The uniform self-deployment problem for robotic sensor networks has been
studied recently, and localized solution algorithms have been developed when
the space S is a line (e.g., a rectilinear corridor) [3], and when it is a ring (e.g.,
the boundary of a convex region) [4]. The proposed solutions operate even if
the sensors are very weak; indeed they are anonymous (i.e., indistinguishable),
oblivious (i.e., without any recollection of computations and actions performed
in the previous activity cycles), asynchronous (i.e., when the time between suc-
cessive activity cycles is finite but unpredictable), and are communication-free
(i.e., they use no explicit form of communication).

The uniform dispersal problem for robotic sensor networks, in which the
sensors are injected one-at-a-time into the unknown environment S, has been
introduced and investigated by Hsiang et al.[11]. Their results are based on an
ingenious follow-the-leader technique where each sensor communicates with the
one following it and instructions to move are communicated from predecessor to
successor. The sensors are anonymous but they need some persistent memory to
remember whether or not is a leader4 and the direction of its movement. Since
the algorithm uses only O(1) bits of working memory in total, computationally
the sensors can be just finite-state machines. In addition to requiring explicit
communication, the solution of [11] makes the strong assumption that the sensors
operate synchronously, which allows perfect coordination between the sensors.

This fact opens a series of interesting questions on the capabilities needed
by the sensors to achieve uniform dispersal in orthogonal environments. In other
words, how ”weak” the sensors can be and still be able to uniformly disperse ?
In particular: is persistent memory needed ? can the task be performed if the
sensors are asynchronous ? is explicit communication really necessary ? In this
paper we consider precisely these questions and provide some definite answers.

Our Results: We identify intrinsic limitations on the type of memory and
the visibility radius of needed by asynchronous sensors to solve the uniform
dispersal problem for any simply connected orthogonal space whose shape is a
priori unknown. We then show that these results are tight; in fact we present
protocols and prove that they solve the problem while meeting these limitations,
and without using explicit communication.

We first consider the case of a single door. We show that oblivious sensors
can not deterministically solve the problem, even if they have unlimited visibility.
We then present (in section 4) an algorithm for solving the problem in the case
of single door with asynchronous identical sensors having persistent working
memory of only two bits and a visibility radius of just one unit.

For the case of multiple doors, we prove that asynchronous sensors can not
solve the problem if the visibility radius is less than two units, even if they
have unbounded memory. On the other hand, even with unbounded visibility
and memory, the problem is still unsolvable if the sensors are identical. Thus,
we assume that sensors entering the space from different doors have different
4 There is one leader for each door.

colors (i.e. they are distinguishable). We prove that under this assumption, the
problem can be solved with sensors having visibility radius two and constant
(persistent) memory. The proof is constructive: we present the radius-optimal
and memory optimal distributed algorithm for achieving this (in section 5).

Let us stress that, in our algorithms sensors use only constant memory; hence,
they can be simple finite-state machines like in [11]. Unlike those in [11], our algo-
rithms work for the asynchronous case; hence they are robust against occasional
stalling of the sensors.

2 Model, Definitions and Properties

2.1 Sensors and Dispersal

The space to be filled by the sensors is a simply connected orthogonal region S
that is partitioned into square cells each of size roughly equal to the area occupied
by a sensor. Simply connected means that it is possible to reach any cell in the
space from any other cell and there are no obstacle surrounded completely by
cells belonging to the space.

The system is composed of simple entities, called sensors, having sensory
and locomotion capabilities. The entities can turn and move in any direction.
The sensory devices on the entity allows it to have a vision of its immediate
surrounding; we assume the sensors to have restricted vision up to a fixed radius
around it5. Even if two sensors see each-other, they do not have any explicit
means of communicating with each-other. Each sensor functions according to an
algorithm preprogrammed into it. The sensors have a O(1) bits of working mem-
ory, and they have a local sense of orientation (i.e., each sensor has a consistent
notion of “up-down” and “left-right”);

If two sensors are in the same cell at the same time then there is a collision.
The algorithm executed by the sensors must avoid collisions (e.g., to prevent
damage to the sensor or its sensory equipment).

The sensors enter the space through special cells called doors [11]. A door is
simply a cell in the space which always has a sensor in it. Whenever the sensor
in the door moves to a neighboring cell, a new sensor appears instantaneously in
the door. A sensor may not distinguish a door cell from an ordinary cell, using
its sensory vision.

During each step taken by a sensor, the sensor first looks at its surrounding
(up to its visibility radius) and then based on the rules of the algorithm, the
sensor either chooses one of the neighboring cells to move to, or decides to remain
stationary. Each step is atomic and during one step a sensor can only move to
a neighboring cell. However, since the sensors are asynchronous, an arbitrary
amount of time may lapse between two steps taken by a sensor.

The problem to be solved is that of uniform dispersal (or filling) : within finite
time, the entire space must be filled, i.e., every cell of the space is occupied by
a sensor; furthermore the system configuration at that time must be quiescent,
5 A visibility radius of one means that the robot sees all eight neighboring cells.

i.e., no sensor moves thereafter. The goal is to design a protocol P , the same for
all sensors, that specifies which operations a sensor must perform whenever it is
active, and that will always correctly within a finite time and without collisions
lead the system to a quiescent configuration where the entire space is filled.

2.2 Space Representation and Properties

Let A = Ay × Ax be the smallest rectangular area containing the space S. We
consider a partition of the area A into pixels pi,j , 1 ≤ i ≤ r, 1 ≤ j ≤ c where
r = Ay/q, c = Ax/q and q is the length of each cell in the space. Thus, some
of the pixels (called valid pixels) correspond to the cells in the space while the
other pixels represent obstacles. We represent the structure of the space S in the
form a graph G = (N,E) defined as follow:

– Each column of the space is partitioned into segments of consecutive valid
pixels ended by an obstacle in both extremes and numbered from top to
down.

– Each segment is a node of G. We denote by lkj ∈ N the node corresponding
to the k − th segment of column j.

– We denote by d pk
j the bottom-most pixel of the segment lkj .

– There is an edge (lkj , lk
′

j′) ∈ E if and only if:
(a) j = j′ + 1 or j = j′ − 1 and
(b) There is a pixel pi,j′ ∈ lk

′

j′ neighbor to d pk
j or there is a pixel pi,j ∈ lkj

neighbor to d pk′

j′ .

The following propositions are easy to verify.

Proposition 1. If lkj and lk
′

j′ are two distinct nodes of G then there is at most
one edge between them.

Proposition 2. Two nodes lkj and lk
′

j′ have neighboring pixels if and only if there
is an edge (lkj , lk

′

j′) ∈ E between them.

Proposition 3. The graph G is connected.

Proposition 4. The graph G is acyclic.

If there is an edge (lkj , lk
′

j′) such that the bottom-most pixel d pk
j = pi,j of lkj

is a neighbor of the pixel pi,j′ ∈, lk
′

j′ , we say that pi,j is the entry point from
lkj to lk

′

j′ and pi,j′ is the entry point from lk
′

j′ to lkj .

3 Impossibility Results

We first show that the sensors must have some persistent memory of the past,
for solving the filling problem successfully.

. . .

(a)

(b) (c)

(e)

(d)

Fig. 2. (a) and (b) are indistinguishable configurations. (c) to (d) are allowable con-
figurations; (e) is an unavoidable configuration.

Theorem 1. The filling problem can not be solved by oblivious sensors, even
if they have unbounded visibility. This result holds even if there is only a single
door.

Proof. Consider the space consisting of a single line of n = 2m+1 pixels of which
one of them is a door. By contradiction, let P be a correct filling protocol. Since
the sensors have no memory of past, each step taken by a sensor depends only
on the current configuration (i.e. which cells are filled and which are empty). We
can represent each empty cell by 0 and each filled cell by 1; the door would be
represented by D; however note that it is not distinguishable from a filled cell.
A configuration can thus represented by the sequence < d1...dn > of the the
values of the cells left-to-right. If algorithm P is correct then the penultimate
configuration (i.e., the final configuration before the space is completely filled),
must have exactly one empty cell and this cell should be adjacent to the door.
So, if the door is the leftmost cell then the only possible final configuration is
< D011....11111 >. Notice that this is indistinguishable from the configuration
< 10D11....1111 > and the algorithm must make the same move in both cases.
In the former situation, the leftmost robot (from the door) must move to the
right, but the same move will leave the space unfilled in the latter scenario. So
the configuration < 10D11....1111 > must be avoided by the algorithm; this
implies that the only correct penultimate configuration when the door is the
third cell is < 11D01....1111 >. Extending this argument inductively, the only
correct penultimate configuration when the door is the 2i+1-th cell (0 ≤ i < m),
is the one where d2i+1 = D, d2(i+1) = 0, and all other dj ’s are 1. Hence the only
correct penultimate configuration when the door is the 2(m−1)+1-th cell, must
be < 11111....1D01 >. Notice that this configuration is indistinguishable from
< 11111....110D > which thus must be avoided by the algorithm, However this
is the only possible penultimate configuration when the door is the rightmost
cell. A contradiction.

Theorem 2. In the case of multiple doors, it is impossible for asynchronous
sensors to solve the filling problem avoiding collisions, if the visibility radius is
less than two. The result holds even if the sensors have distinct visible identities
and each sensor has an unbounded amount of memory.

1

* *

i i+2 n

(a)

(b)

(c) * * * * *a b

b

a

Fig. 3. A single line of cells with doors at one or both ends.

Proof. (Sketch) By contradiction, let P be a correct filling protocol for asyn-
chronous sensors in simply-connected orthogonal spaces with multiple doors.
Consider the space consisting of a single line of pixels, with a door at each end.
Since the sensors at one door do not know of the existence of the other door, P
must force the sensor initially at the left door (sensor ‘a’) to move towards the
right end of the line (as in the case when there is no right door: figure 3(a)).
Similarly, the protocol must force the sensor initially at the right door (sensor
‘b’) to move into the corridor towards the left end of the line (figure 3(b)).Thus,
if both doors were present the sensors ‘a’ and ‘b’ must move towards each other.
It is possible for an adversary to schedule the activations of the sensors (i.e., to
choose the finite delays between successive activity cycles) so as to generate the
situation where both ‘a’ and ‘b’ are about to enter the same empty cell that lies
between them (see figure 3(c)). Since the visibility is less than two, they do not
see each other but only the empty cell. By scheduling both sensors to move at
the same time, the adversary generates a collision during the execution of P ;
this contradicts the assumption that P is correct and thus collision-free. Notice
that even if the sensors remember a complete history of their past moves and
have distinct visible IDs, the collision can not be avoided.

Theorem 3. If sensors entering from distinct doors are indistinguishable from
each other, then there is no collision-free solution to the filling problem for mul-
tiple doors. The result holds irrespective of the visibility range of the sensors.

Proof. Consider the space S consisting of a single column of n− 2 cells (n > 2)
and two extra cells adjacent to the column—one on the left and one on the right
(see Figure 4). We consider three cases: (i) The cell on the left of the column
is the only door, (ii) The cell on the right is the only door, and (iii) Both the
cells to the left and the right of the column are doors. As before we consider the
penultimate configuration reached by any correct filling algorithm for each of
these cases, shown in Figure 4(a), (b) and (c) respectively. Notice that there is
only one cell adjacent to the door in each case and thus this cell must be empty
in the penultimate configuration. For cases (i) and (iii), let ‘a’ be the sensor
currently at the door on the left. For cases (ii) and (iii), let ‘b’ be the sensor
currently at the door on the right. It is possible for an adversary to schedule the

. . .

(c)(b)(a)

.
.
.

. . .

.
.
.

. . .

.
.
.

a ab b

Fig. 4. (a) Single door on the left (b) Single door on the right (c) Indistinguishable
sensors entering the column from two doors

activation of the sensors in such a way that both ‘a’ and ‘b’ become active for the
first time only after reaching the penultimate configuration. Thus, neither sensor
has any past history and any decision taken by sensor ‘a’ (or sensor ‘b’) would
depend only on the current configuration. Notice that the current configuration
in the three cases are indistinguishable from each other. So, sensor ‘a’ must take
the same decision for case (i) and (iii). Similarly, sensor ‘b’ must take the same
decision in case (ii) and (iii). If one of the sensors decides not to move to the
empty cell, then the space remains unfilled in at least one of scenarios. On the
other hand, if both decide to move, the adversary can force a collision for case
(iii), by scheduling them to move at the same time.

In Section 5 we show that if the sensors have visibility radius at least two and
sensors coming from distinct doors are distinguishable then there is a solution
to the filling problem for any connected space with any number of doors.

4 Filling Algorithm: Single Door

In this section we consider the case when is only one door through which the
sensors enter the space. We show that visibility radius of one and a constant
amount of memory for each sensor, is sufficient in this case. Each sensor just
needs one bit of memory, to remember its last location, so that it never back-
tracks. The idea of the algorithm (SINGLE) is to move the robots along the
paths in G, starting from the node containing the door. Since the sensor can
see the eight neighboring pixels, it can determine when it has reached an entry
point.

Following the rules of algorithm SINGLE, any path of consecutive pixels in
the space on which a sensor is allowed to travel is called a valid path. Notice that
any valid path corresponds to some path in G.

Theorem 4. Algorithm SINGLE solves the filling problem for any space of size
n and a single door, without any collisions and using n sensors each having a
constant amount of memory and a visibility radius of one.

Algorithm 1 SINGLE
Meta-Rule:

– A sensor never backtracks.

Rules: A sensor r in pixel pi,j executes the following rules:

if (pi+1,j is empty) then
r moves to pi+1,j .

else if (pi−1,j is empty) then
r moves to pi−1,j .

else if ((pi,j−1 is empty) ∧
((pi−1,j−1 is obstacle) ∨ (pi−1,j is obstacle))) then

r moves to pi,j−1.
else if ((pi,j+1 is empty) ∧

((pi−1,j+1 is obstacle) ∨ (pi−1,j is obstacle))) then
r moves to pi,j+1.

else
r does not move.

end if

5 Filling Algorithm: Multiple Doors

r

p
i,j1
2

3

(a)

r

p
i,j

(b)

r'
r

p
i,j

(c)

r'

r

p
i,j

(d)

r'

Fig. 5. Sensor r needs to check cells 1,2, and 3. The sensor (of the same color) that
last visited pi,j must be in one of these locations.

If there are multiple doors, then we know that the sensors must have a visi-
bility radius of at least two and they should not be indistinguishable. We assume
sensors coming from different doors have different colors and each sensor has vis-
ibility radius of two. Our algorithm for this case, uses the following restriction
on the movement of the sensors.

Meta-Rule “A sensor may not move until its previous position is occupied”.

The idea of our algorithm (called algorithm MULTIPLE) is sketched here.
Sensors coming from different doors (i.e. sensors of different colors) follow dis-
tinct paths in G and these paths do not intersect. In other words, we ensure that

the cells visited by sensors of color ci are occupied by sensors of the same color
(and never by sensors of any other color). Thus, a sensor before moving to a
pixel pi,j needs to determine if this pixel was visited by sensors of another color.
We show a sensor r of color cr can always determine if the next pixel pi,j (in one
of its valid paths) was visited by sensors of the same color (see Figure 5). In that
case, the sensor r moves to the pixel pi,j . Otherwise there may be two cases: (i)
either pixel pi,j was visited by sensors of another color or (ii) pixel pi,j was never
visited before. In the first case, sensor r does not move to pixel pi,j and searches
for alternate paths. In the second case, sensor r needs to take a decision based
on whether there are other sensors waiting to move into pixel pi,j . In case there
are two or more sensors in cells neighboring an unvisited pixel pi,j , the sensors
are assigned priorities6 based whether they are coming from the left, right, top
or bottom (in that order). The sensor with the highest priority (among those
sensors for whom pi,j is a valid move) moves to pixel pi,j . Notice that it may not
be always possible for a sensor r to determine if its neighbor pixel pi,j is unvisited
or has been visited by a sensor of another color (see Figure 6). If that is the case,
then sensor r simply waits until the situation changes (so that it is able to take
a decision). We shall show that such waiting never results in a deadlock, as the
sensor with the highest priority to move is always able to decide, without waiting.

r

p
i,j

(a)

b
b'

b'

r
p
i,j

(b)

b
b'b'

r

p
i,j

(c)

b
b'

b'

(i)

r
b

i,j
p

' ' 'bp
i,j

(a)

p

p'

r
b

i,j
p

' ' 'bp
i,j

p
r

b

i,j
p

' ' 'bp
i,j

p

(b) (c)(ii)

Fig. 6. (i) To determine if pi,j was visited by sensor b, sensor r should be able to see
both b and its successor b. (ii) If b′ has moved out of the visibility range of r then there
must be a sensor of the same color in cell P (or P’).

6 This is the only way to avoid collision as well as ensure progress of the algorithm.

r
b

i,j
p

' ' 'bp
i,j

p
r

b

i,j
p

' ''b p
i,j

p

(a) (b)

Fig. 7. If b′ has moved out of the visibility range of r then there must be a sensor of
the same color in the cell marked P.

The formal description of algorithm MULTIPLE is given in Algorithm 2. The
functions isValidUp(), isValidDown(), isValidLeft() and isValidRight() express
how the sensor makes a decision if it can move or not to an specific neighboring
pixel. We use the following notations in the algorithm:

– r.Color is the color of the door sensor r came from.
– If a pixel pi,j is occupied by some sensor r, then (pi,j).Color = r.Color.

Otherwise (pi,j).Color = None.

Algorithm 2 MULTIPLE
Meta-Rules:

– A sensor never backtracks.
– A sensor does not move if its previous position is empty.

Rules: A sensor r in a pixel pi,j of lkj executes the following:

if isValidUp(r) then
r moves to pi+1,j .

else if isValidDown(r) then
r moves to pi−1,j .

else if isValidLeft(r) then
r moves to pi,j−1.

else if isValidRight(r) then
r moves to pi,j+1.

else
r does not move.

end if

Proposition 5. The following properties hold during the execution of the algo-
rithm MULTIPLE.

(i) A sensor r can always determine if a neighboring pixel pi,j was visited by
sensors from the same door.

(ii) The sensor r having the highest priority to move into a pixel pi,j can always
determine if the pixel pi,j is unvisited or not.

(iii) Two sensors from different doors never visit the same pixel (i.e. no inter-
sections).

(iv) Two sensors are never in the same pixel at the same time (i.e. no colli-
sions).

Proposition 6. The algorithm MULTIPLE terminates in a finite time.

Based on the facts that there are no collisions and the sensors never re-visit
the same pixel, we can prove this proposition in the same way as for the previous
algorithm.

Proposition 7. On termination of algorithm MULTIPLE, there are no empty
pixels in the space.

Finally, we have the following result regarding the correctness of our algorithm.

Theorem 5. The algorithm MULTIPLE completely fills any connected space,
without collisions, even when the sensors enter from multiple doors (assuming
they have distinct colors). The algorithm requires n sensors each having visibility
radius two and a constant amount of memory.

Algorithm 3 Function IsValidDown(< sensor >)
bool IsValidDown(r){

if pi−1,j is occupied then
return false

else if ((pi−2,j is empty) ∧
((pi−1,j−1 is empty) ∨ ((pi−2,j−1 is not obstacle) ∨

(pi−2,j is not obstacle))) ∧
((pi−1,j+1 is empty) ∨ ((pi,j+1 is not obstacle) ∨

(pi−2,j is not obstacle)))) then
return true

else if (((pi−2,j).Color = r.Color) ∨
(((pi−2,j−1 is obstacle) ∨ (pi−2,j is obstacle)) ∧

((pi−1,j−1).Color = r.Color)) ∨
(((pi−2,j+1 is obstacle) ∨ (pi−2,j is obstacle)) ∧

((pi−1,j+1).Color = r.Color))) then
return true

else
return false

end if

}

Algorithm 4 Function IsValidUp(< sensor >)
bool IsValidUp(r){

if pi+1,j is occupied then
return false

else if ((pi+2,j is empty) ∧
((pi+1,j−1 is empty) ∨ (pi,j−1 is not obstacle)) ∧
((pi+1,j+1 is empty) ∨ (pi,j+1 is not obstacle))) then

return true
else if (((pi+2,j).Color = r.Color) ∨

((pi,j−1 is obstacle) ∧ ((pi+1,j−1).Color = r.Color)) ∨
((pi,j+1 is obstacle) ∧ ((pi+1,j+1).Color = r.Color))) then

return true
else if (((pi,j−1 is obstacle) ∧ (pi+1,j−1 is occupied)) ∨

((pi,j+1 is obstacle) ∧ (pi+1,j+1 is occupied))) then
return false

else if (((pi,j−1 is obstacle) ∧
(((pi+1,j−1).Color = (pi+2,j).Color) ∨
((pi+2,j−1).Color = (pi+2,j).Color) ∨
((pi+1,j−2).Color = (pi+2,j).Color))) ∨

((pi,j+1 is obstacle) ∧
(((pi+1,j+1).Color = (pi+2,j).Color) ∨
((pi+2,j+1).Color = (pi+2,j).Color) ∨
((pi+1,j+2).Color = (pi+2,j).Color)))) then

return false
else

return true
end if

}

Algorithm 5 Function IsValidLeft(< sensor >)
bool IsValidLeft(r){

if ((pi,j−1 is occupied) ∨
((pi−1,j−1 is not obstacle) ∧ (pi−1,j is not obstacle))) then

return false
else if ((pi+1,j−1 is empty) ∧ (pi−1,j−1 is empty) ∧

((pi,j−2 is empty) ∨
((pi−1,j−2 is not obstacle) ∧ (pi−1,j−1 is not obstacle)))) then

return true
else if (((pi+1,j−1).Color = r.Color) ∨ ((pi−1,j−1).Color = r.Color) ∨

(((pi,j−2).Color = r.Color) ∧
((pi−1,j−2 is obstacle) ∨ (pi−1,j−1 is obstacle)))) then

return true
else if ((pi,j−2 is occupied) ∧

((pi−1,j−2 is obstacle) ∨ (pi−1,j−1 is obstacle)))) then
return false

else if ((((pi+1,j−1).Color = (pi+1,j−2).Color) ∧
((pi−1,j−2 is obstacle) ∨ (pi−1,j−1 is obstacle))) ∨

(((pi+1,j−1).Color = (pi−1,j−2).Color) ∧
((pi−1,j−1 is obstacle) ∨ (pi−2,j−2 is obstacle) ∨

(pi−2,j−1 is obstacle))) ∨
((pi+1,j−1).Color = (pi−1,j−1).Color) ∨
((pi+1,j−1).Color = (pi−2,j−1).Color) ∨
(((pi−1,j−1).Color = (pi+1,j−2).Color) ∧

((pi−1,j−2 is obstacle) ∨ (pi,j−2 is obstacle))) ∨
((pi−1,j−1).Color = (pi+2,j−1).Color))) then

return false
else

return true
end if

}

Algorithm 6 Function IsValidRight(< sensor >)
bool IsValidRight(r){

if ((pi,j+1 is occupied) ∨
((pi−1,j+1 is not obstacle) ∧ (pi−1,j is not obstacle))) then

return false
else if ((pi+1,j+1 is empty) ∧ (pi−1,j+1 is empty) ∧

((pi,j+2 is empty) ∨
((pi−1,j+2 is not obstacle) ∧ (pi−1,j+1 is not obstacle)))) then

return true
else if (((pi+1,j+1).Color = r.Color) ∨ ((pi−1,j+1).Color = r.Color) ∨

(((pi,j+2).Color = r.Color) ∧
((pi−1,j+2 is obstacle) ∨ (pi−1,j+1 is obstacle)))) then

return true
else if (((((pi,j+2).Color = (pi+1,j+1).Color) ∨

((pi,j+2).Color = (pi+2,j+1).Color)) ∧
((pi−1,j+2 is obstacle) ∨ (pi−1,j+1 is obstacle))) ∨

((((pi,j+2).Color = (pi−1,j+1).Color) ∨
((pi,j+2).Color = (pi−2,j+1).Color)) ∧

(pi−1,j+2 is obstacle)) ∨
(((pi+1,j+1).Color = (pi+1,j+2).Color) ∧

((pi−1,j+2 is obstacle) ∨ (pi−1,j+1 is obstacle))) ∨
(((pi+1,j+1).Color = (pi−1,j+2).Color) ∧

((pi−1,j+1 is obstacle) ∨ (pi−2,j+2 is obstacle) ∨
(pi−2,j+1 is obstacle))) ∨

((pi+1,j+1).Color = (pi−1,j+1).Color) ∨
((pi+1,j+1).Color = (pi−2,j+1).Color) ∨
(((pi−1,j+1).Color = (pi+1,j+2).Color) ∧

((pi−1,j+2 is obstacle) ∨ (pi,j+2 is obstacle))) ∨
((pi−1,j+1).Color = (pi+2,j+1).Color))) then

return false
else

return true
end if

}

6 Conclusions and Open Problems

We have shown that, for uniform dispersal in simply connected orthogonal
spaces, synchronicity and explicit communication are not necessary, while per-
sistent memory is needed. More precisely, we have presented localized algorithms
(one in the case of a single entry point, and one in the case of multiple entry
points) that allow asynchronous mobile sensors to fill simply connected orthog-
onal spaces of unknown shape; the sensors do so without collisions and without
any explicit direct communication, endowed with only O(1) bits of persistent
memory and O(1) visibility radius. In both cases, the protocols are memory-
and radius- optimal; in fact, we have shown that filling is impossible without
persistent memory (even if visibility is unlimited); it is also impossible with less
visibility than that used by our algorithms (even if memory is unbounded).

There are many interesting research problem still open. For example, orthog-
onal spaces that are not simply connected (i.e., containing holes) can be filled by
synchronous sensors [11], but asynchronous solutions are not yet available. The
study of the filling problem in more general classes of spaces is still open both
in the synchronous and asynchronous settings. Another interesting direction for
future research is to study the impact of having communication capabilities.

References

1. N. Agmon and D. Peleg, “Fault-tolerant gathering algorithms for autonomous
mobile robots”. SIAM J. on Computing 36: 56-82, 2006.

2. F. Bullo, J. Cortes, and S. Martinez. “Distributed algorithms for robotic net-
works”. In R. Meyers (Ed.), Encyclopedia of Complexity and Systems Science.
Springer Verlag, to appear, 2008.

3. R. Cohen and D. Peleg. “Local algorithms for autonomous robot systems”. In
Proc. . 13th Colloquium on Structural Information and Communication Complex-
ity, 29–43, 2006.

4. P. Flocchini, G. Prencipe, and N. Santoro. “Self-deployment of mobile sensors
on a ring”. Theoretical Computer Science, Special issue of ALGOSENSORS’06
selected papers, 2008.

5. P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. “Gathering of asyn-
chronous mobile robots with limited visibility”. Theoretical Computer Science
337:147–168, 2005.

6. A. Ganguli, J. Cortes, and F. Bullo. “Visibility-based multi-agent deployment in
orthogonal environments”. In Proceedings American Control Conference, 3426-
3431, 2007.

7. N. Heo and P. K. Varshney. “A distributed self spreading algorithm for mobile
wireless sensor networks”. In Proceedings IEEE Wireless Communication and
Networking Conference, volume 3, 1597–1602, 2003.

8. N. Heo and P. K. Varshney. “Energy-efficient deployment of intelligent mobile
sensor networks”. IEEE Transactions on Systems, Man, and CyberNetics - Part
A 35(1):78–92, 2005.

9. A. Howard, M.J. Mataric, and G.S. Sukahatme. “An incremental self-deployment
algorithm for mobile sensor networks”. IEEE Transactions on Robotics and Au-
tomation 13(2): 113-126, 2002.

10. A. Howard, M. J. Mataric, and G. S. Sukhatme. “Mobile sensor network de-
ployment using potential fields: A distributed, scalable solution to the area cov-
erage problem”. In Proceedings 6th International Symposium on Distributed Au-
tonomous Robotics Systems (DARS’02), 299–308, 2002.

11. T.R. Hsiang, E. Arkin, M.A. Bender, S. Fekete, and J. Mitchell. “Algorithms
for rapidly dispersing robot swarms in unknown environment”. In Proc. 5th
Workshop on Algorithmic Foundations of Robotics (WAFR), 77-94, 2002.

12. J. Lee, S. Venkatesh, and M. Kumar. “Formation of a geometric pattern with a
mobile wireless sensor network”. Journal of Robotic Systems 21(10): 517–530,2004.

13. L. Loo, E. Lin, M. Kam, and P. Varshney. “Cooperative multi-agent constellation
formation under sensing and communication constraints”. Cooperative Control
and Optimization, 143–170, 2002.

14. E. Martinson and D. Payton. “Lattice formation in mobile autonomous sensor
arrays”. In Proc. International Workshop on Swarm Robotics (SAB’04), 98-111,
2004

15. S. E. Nikoletseas. “Models and algorithms for wireless sensor networks”. In Proc.
32nd Conference on Current Trends in Theory and Practice of Computer Science,
64–83, 2006.

16. S. Poduri and G.S. Sukhatme. “Constrained coverage for mobile sensor networks”.
In Proc. IEEE Int. Conference on Robotic and Automation, 165–173, 2004.

17. O. Powell, P. Leone, and J. Rolim. “Energy optimal data propagation in wireless
sensor networks”. Journal of Parallel and Distributed Computing, 67(3):302–317,
2007.

18. G. Prencipe and N. Santoro, “Distributed algorithms for mobile robots”. In Proc.
5th IFIP International Conference on Theoretical Computer Science (TCS’06),
2006.

19. J.H. Reif and H. Wang. “Social potential fields: A distributed behavioral control
for autonomous robots”. Robotics and Autonomous Systems 27(3): 171-194, 1999.

20. S. Susca, S. Martinez, and F. Bullo. “Monitoring enviromental boundaries with
a robotic sensor network”. IEEE Transactions on Control Systems Technology
16(2):288-296, 2008.

21. I. Suzuki and M. Yamashita. “Distributed anonymous mobile robots: Formation
of geometric patterns”. SIAM J. Comput. 28(4): 1347-1363, 1999.

22. G. Wang, G. Cao, and T. La Porta. Movement-assisted sensor deployment. In
Proc. IEEE INFOCOM, volume 4, pages 2469–2479, 2004.

