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Mobile agents operating in networked environments face
threats from other agents as well as from the hosts (i.e.,
network sites) they visit. A black hole is a harmful host
that destroys incoming agents without leaving any trace.
To determine the location of such a harmful host is a
dangerous but crucial task, called black hole search.
The most important parameter for a solution strategy
is the number of agents it requires (the size); the other
parameter of interest is the total number of moves per-
formed by the agents (the cost). It is known that at least
two agents are needed; furthermore, with full topologi-
cal knowledge, �(n log n) moves are required in arbitrary
networks. The natural question is whether, in specific
networks, it is possible to obtain (topology-dependent
but) more cost efficient solutions. It is known that this
is not the case for rings. In this article, we show that this
negative result does not generalizes. In fact, we present
a general strategy that allows two agents to locate the
black hole with O(n) moves in common interconnec-
tion networks: hypercubes, cube-connected cycles, star
graphs, wrapped butterflies, chordal rings, as well as in
multidimensional meshes and tori of restricted diameter.
These results hold even if the networks are anonymous.
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1. INTRODUCTION

The use of mobile agents is becoming increasingly pop-
ular when computing in networked environments, ranging
from Internet to the Data Grid, both as a theoretical compu-
tational paradigm and as a system-supported programming
platform.

Computing in such environments is termed distributed
mobile computing, and has recently been the focus of exten-
sive theoretical research (e.g., see [1, 3, 5, 6, 9, 10, 12, 15, 18,
23]). In its terminology, a network site is a host; local pro-
cesses are stationary agents; mobile agents navigate moving
from host to neighboring host, and perform computations
at each host, according to a predefined set of behavioral
rules called protocol, the same for all agents. In the set-
ting we consider, the agents are asynchronous in their actions
(e.g., computation, movement, etc.) (i.e., the amount of time
required by an action is finite but otherwise unpredictable).
The hosts provide a storage area called whiteboard for incom-
ing agents to communicate and compute, and its access is held
in fair mutual exclusion.

The major practical concern in these systems is definitely
security [4, 11, 17, 20]. Among the severe security threats
faced in distributed mobile computing environments, two are
particularly troublesome: harmful agent (that is, the pres-
ence of a malicious mobile process), and harmful host (that
is, the presence at a network site of a harmful stationary pro-
cess). The former problem is particularly acute in unregulated
noncooperative settings such as Internet (e.g., e-mail trans-
mitted viruses). The latter not only exists in those settings, but
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also in environments with regulated access and where agents
cooperate towards common goals (e.g., sharing of resources
or distribution of a computation on the Grid [2]). In fact, a
single local (hardware or software) failure might render a host
harmful.

The problem posed by the presence of a harmful host has
been intensively studied from a programming point of view
(e.g., see [13,14,19,21,22]), and recently also from an algo-
rithmic prospective [7, 8]. Obviously, the first step in any
solution to such a problem must be to identify, if possible,
the harmful host; that is, to determine and report its location;
following this phase, a “rescue” activity would conceivably
be initiated to deal with the destructive process resident there.
Depending on the nature of the danger, the task to iden-
tify the harmful host might be difficult, if not impossible,
to perform.

Consider the presence in the network of a black hole: a host
that disposes of visiting agents upon their arrival, leaving no
observable trace of such a destruction [7, 8]. The task is to
unambiguously determine and report the location of the black
hole, and will be called black hole search.

Note that this type of highly harmful host is not rare; for
example, the undetectable crash failure of a site in an asyn-
chronous network turns such a site into a black hole. Hence,
the problem is relatively common.

Consider how a team of searching agents can solve this
problem. The searching agents start from the same safe site,
the home base; the task is successfully completed if, within
finite time, at least one agent survives and knows the loca-
tion of the black hole. The research concern is to determine
under what conditions and at what cost mobile agents can
successfully accomplish this task.

Some answers follow from simple facts. For example, if
the network is not biconnected, the problem is unsolvable
(i.e., no deterministic protocol exists which always correctly
terminates.); hence, we will only consider biconnected net-
works. Similarly, at least two agents are needed to solve the
problem.

The problem has been investigated and its solutions char-
acterized for ring networks [7]. Subsequently, the problem
has been studied also for arbitrary networks and differ-
ent solutions and matching lower bounds were presented,
depending on the amount of topological information avail-
able to the agents [8]. In particular, if the agents have full
knowledge of the network topology, two agents are sufficient,
and can locate the black hole using �(n log n) moves.

A natural question to ask is whether the O(n log n)

bound for two agents with full topological knowledge of a
general network can be improved for networks with special
topologies. A negative result holds for rings where �(n log n)

moves are needed by any two-agents solution [7].
In this article we show that the negative result for rings

does not generalize. On the contrary, we present a gen-
eral technique for efficient black hole location and prove
that its application leads to �(n) protocols for most of
the frequently used interconnection networks: hypercubes,

cube-related networks, chordal rings, and multidimensional
tori and meshes of restricted diameter. These results hold
even if the networks are anonymous (i.e., the nodes are
undistinguishable).

These results are obtained by exploiting the properties of
the traversal pair of a biconnected graphs, a novel concept
we introduce and analyze in this article. In particular, we
show how to construct a traversal pair of an arbitrary bicon-
nected graph; and analyze the properties of traversal pairs in
several common interconnection networks. We then present
a general solution protocol for two agents, T P , based on the
constructed traversal pair, that allows two searching agents
to efficiently locate the black hole. The properties of traver-
sal pairs lead to the �(n) bound in common interconnection
networks.

We also show that, for the class of networks considered
here, full topological knowledge is not necessary and topo-
logical awareness suffices: in fact, both the network size and
the position of the home base can be efficiently determined
from topological awareness.

This article is organized as follows. In the next section
we present the model, definitions and basic properties. In
Section 3, we introduce the notion of traversal pair, present
the algorithm for locating the black hole using this notion and
derive its complexity in terms of attributes of the traversal
pair it uses. In Section 4 we show how to construct traver-
sal pairs, analyze their properties in specific networks and
apply the results to obtain �(n) black hole location algo-
rithm for most commonly used interconnection networks.
Finally, in Section 5 we show how to relax the somewhat
strong requirements on the structural information available
to the agents.

2. DEFINITIONS AND BASIC PROPERTIES

Let G = (V , E) be a simple biconnected graph; let n =
|V | be the size of G, E(x) be the links incident on x ∈ V ,
d(x) = |E(x)| denote the degree of x, and � denote the
maximum degree in G. If (x, y) ∈ E then x and y are said to
be neighbors. The nodes of G can be anonymous (i.e., without
unique names).

At each node x, there is a distinct label (called port number)
associated to each of its incident links (or ports); let λx(x, z)
denote the label associated at x to the link (x, z) ∈ E(x),
and λx denote the overall injective mapping at x. The set
λ = {λx|x ∈ V} of those mappings is called a labeling,
and we shall denote by (G, λ) the resulting edge-labelled
graph.

Operating in (G, λ) is a team of two autonomous mobile
agents. The agents can move from a node to a neighboring
node in G, have computing capabilities and bounded compu-
tational storage (O(log n) bits suffice for all our algorithms),
obey the same set of behavioral rules (the protocol). The
agents are asynchronous in the sense that every action they
perform (computing, moving, etc.) takes a finite but otherwise
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unpredictable amount of time. Initially, all agents are in the
same node h, called home base.

Each node has a bounded amount of storage, called white-
board; O(log n) bits suffice for all our algorithms. Agents
communicate by reading from and writing on the white-
boards; access to a whiteboard is gained fairly in mutual
exclusion.

We can assume that the agents have unique names with-
out loss of generality. In fact, should the agents be initially
anonymous, distinct names can be easily assigned; for exam-
ple, by having a counter on the whiteboard of home base, and
having each agent increasing the counter and acquiring the
current value as its name.

A black hole (shortly Bh) is a node where a stationary pro-
cess resides that destroys any agent arriving at that node; no
observable trace of such a destruction will be evident outside
the node. The location of the black hole is unknown to the
agents. The Black Hole Search (Bhs) problem is to find
the location of the black hole. More precisely, Bhs is solved
if at least one agent survives, and the surviving agents know
the location of the black hole.

The main measure of complexity of a solution protocol P
is the number of agents used to locate the black hole, called
the size of P .

Lemma 2.1 ([7]). At least two agents are needed to locate
the black hole.

The actual number of agents depends also on the amount of
a priori network information the agents have. We assume that
the agents have complete topological knowledge of (G, λ);
that is, they have available: (1) knowledge of the labelled
graph (G, λ); (2) correspondence between port labels and the
link labels of (G, λ); and (3) location of the home base in
(G, λ).

Example. Consider a 5 × 9 mesh with the source node at
position (2, 3) from the lower left corner. (1) means that the
agents know they are in 5 × 9 mesh; note that (1) implies the
knowledge of n; (2) means that the agents know for each node
that links lead to north, east, south, and west; this knowledge
implies the ability to optimally route between any two nodes,
even if there are given “forbidden” nodes that have to be
avoided; (3) means that the agents know that they start at
position (2, 3) from the lower left corner.

Lemma 2.2 ([8]). With complete topological knowledge,
two agents suffice to locate the black hole.

The other measure of complexity is the total number of
moves performed by the agents, called the cost of P . We are
interested in size-optimal cost-efficient protocols.

At any moment of the execution of a protocol, the ports will
be classified as unexplored—no agent has been sent/received
via this port, explored—an agent has been received via this
port, or dangerous—an agent has been sent via this port, but

no agent has been received via it. Obviously, an explored
port does not lead to a black hole (we will call such ports
also safe); on the other hand, both unexplored and dangerous
ports might lead to it. To minimize the number of casualties
(i.e., agents entering the black hole), we will not allow any
agent to leave through a dangerous port. To prevent the exe-
cution from stalling, we will require any dangerous port not
leading to the black hole, to be made explored as soon as
possible.

This is accomplished as follows: Whenever an agent a
leaves a node u through an unexplored port (transforming it
into dangerous), upon its arrival to the node v, and before
proceeding somewhere else, a returns to u (transforming that
port into explored). This technique is called Cautious Walk
and has been employed in [7,8]. A node is considered safe if
at least one of its incident edges is explored.

3. THE BHS PROTOCOL

3.1. Overview

The approach our agents will use consists in coopera-
tively and dynamically dividing the work between them.
Specifically, the unexplored area is partitioned into two parts
of (almost) equal size. Each agent explores one part with-
out entering the other one. Because the parts are disjoint,
one of them does not contain the black hole and the cor-
responding agent will complete its exploration. When this
happens, the agent reaches the last safe node visited by
the other agent and partitions whatever is still left to be
explored, leaving a note for the other agent (should it be
still alive). This process is repeated until the unexplored
area consists of a single node: the black hole. Because the
unexplored area is almost halved each time, the number
of times (i.e., “rounds”) the process must be repeated is
O(log n).

In this approach, there are two costs, the one due to the
exploration (i.e., the moves needed to explore the nodes),
and the one due to communication (i.e., the moves needed
by an agent to notify the other of a new partition). Using this
type of approach in a ring network (like in [7]), the agents
explore by moving in opposite directions, and thus the total
exploration cost is O(n) moves; however, the communication
cost between the agents consists of O(n) moves in each round,
with a total of O(log n) rounds, yielding an overall cost of
O(n log n) moves.

If G has an Hamiltonian circuit, we could use this circuit
for the exploration (like in a ring) and use the other links
as shortcuts to reduce the communication cost. The research
question then becomes:

(1) How to find good shortcuts and how to estimate the
resulting communication costs?

If G is not Hamiltonian, then we have the additional more
important research question
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FIG. 1. (a) Hamiltonian circuit defining a T P pair for a mesh with at least
one side of even length. In this case πb is a reverse of πa. (b) T P of a mesh
with both sides of odd length (only the two top rows differ from the even
case). In this case πa differs from πb.

(2) What structure, other than a circuit, would allow the
agents to explore the network moving in “opposite
directions”?

The answer, as we will see, is the novel notion of Traversal
Pair (T P) of a biconnected graph. The BHS algorithm we
construct will use a traversal pair T P , not only to indicate the
order in which the network must be explored by the agents,
but also to indicate to the agents how to avoid “dangerous”
parts of the network.

The properties of a traversal pair T P will allow us to
answer the first question for all biconnected G even if they
are not Hamiltonian.

3.2. Traversal Pair

In the rest of the article, we denote by <G an arbitrary
fixed total ordering v1 <G v2 . . . <G vn of the nodes of G.
We say that a walk v1, v2, . . . , vn explores a node vi = w at
(logical) round i, if vi is the first occurrence of w in the walk.

Definition 3.1 (Traversal Pair). Let G = (V , E) be an n-
node graph with a total ordering <G of its nodes. Let πa and
πb be two walks in G starting from v1 and vn, respectively,
and exploring the nodes of G in the order v1, v2, . . . , vn and
vn, vn−1, . . . , v1, respectively. Then π = (πa, πb) is called
v1-vn traversal pair of G with respect to <G.

We will callπa (resp.πb) the left (resp., right) traversal (see
Fig. 1), and by |πa| (resp., |πb|) the length of πa (resp., πb).
Note that, in general |πa| need not be equal to |πb|.

The above definition binds a v1-vn T P to the ordering
<G. Throughout this article we will need the following more
general notions:

Definition 3.2.

1. G has an u-v T P , with u, v ∈ V, if ∃ an ordering <G

and an u-v T P with respect to <G.
2. G is traversable if it has u-v T P for any u, v ∈ V.

3. G has T P from u ∈ V, if there exists a neighbor v of u
such that G has u-v T P .

As we will see later, a black hole location algorithm with
home base h is based on a T P from h. To achieve good
complexity, we need the T P to have nice properties. Let
π = (πa, πb) be a u-v T P of G, and let Ga

i (resp., Gb
i ) denote

the subgraph of G induced by vertices v1, v2, . . . , vi (resp.,
vn, vn−1, . . . , vi). Moreover, let r(Ga

i ) (resp., r(Gb
i )) be the

depth of the breadth first search tree of Ga
i (resp., Gb

i ) rooted
at v1 (resp., vn).

Definition 3.3 (Size and Radius). The size of π is
sπ (G) = max{|πa|, |πb|}, that is, the maximum of the
lengths of walks πa and πb. The radius of π is rπ (G) =
maxi(max{r(Ga

i ), r(Gb
i )}).

Note that, if a graph G has an Hamiltonian circuit, then G
is traversable, with sπ (G) ≤ n and rπ (G) ≤ n.

The following lemma shows that our notion of a
traversable graph actually coincides with biconnectivity.
Because a black hole can always be located if and only if
the network is biconnected [7], we do not lose anything by
focusing only on graphs with a T P .

Lemma 3.1. A graph G is traversable if and only if it is
biconnected.

Proof. To show the “only if” direction consider a
traversable graph G. By contradiction, let v be an articu-
lation point of G (i.e., a node whose removal disconnects
the graph). If every component of G − {v} contains only
one vertex then G is a star and there is no T P . So let us
consider a vertex u �= v such that there are at least two ver-
tices in the component of G − {v} containing u and choose
z be a neighbor of u in the component of G − {v}. There
exists a T P in G between any pair of vertices, so let us
choose an u-z T P π . Because v is an articulation point,
there is some vertex w, which is in a different component of
G − {v} than u (refer to the example depicted in Fig. 2a).
Clearly, πa ≡ u = v1, v2, . . . , v, . . . , w, . . . , vn = z, and
πb ≡ z = vn, vn−1, . . . , v, . . . , w, . . . , v1 = u; thus, in both
πa and πb, v is explored before w: a contradiction.

The “if” direction is shown by an inductive construction.
Consider a biconnected graph G and an edge (v, z) ∈ G. Let
Gi denote the induced subgraph of G for which a T P has

FIG. 2. Proof of Lemma 3.1. (a) v is an articulation point of G. (b) The
thick edges represent an “ear” in Gi.
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been already constructed, where G1 = {v, z}. If Gi = G we
are done; otherwise, take a T P π i for Gi. Consider π i

a. Let
u be the first appearance of a vertex with a neighbor not in
Gi. Because G is biconnected, there exists an “ear”—a path
u = u0, u1, . . . , uk = w such that u, w ∈ Gi and uj �∈ Gi

for 1 ≤ j < k (see Fig. 2b). The existence of an ear follows
readily from the biconnectivity: u has one neighbor in Gi and
another outside Gi and there is a circle containing both of
them. Part of this circle outside Gi forms an ear. Moreover,
as u was chosen to be the first appearance of a vertex with
a neighbor outside Gi in π i

a, it must be the case that w is
explored after u in π i

a. Given an ear, we extend the T P π i

as follows. After the first occurrence of u in π i
a we insert the

sequence u1, u2, . . . , uk−1, uk−2, . . . , u1, u and the rest of π i
a is

left unchanged. With π i
b, the situation is somewhat different:

just before the first occurrence of u the walk π i
b returns to w

using only vertices already visited by π i
b. Then the sequence

uk−1, . . . , u1, u is inserted and the rest stays unchanged. ■

The following notation will be used in the rest of the arti-
cle. We will denote by V [i, j] for i < j the set of nodes
{vi, vi+1, . . . , vj}. Gîj is the graph induced by the nodes in
V \ V [i, j]. The segment of πa (resp., πb) between the first
occurrences of vi and vj will be denoted by πa[i, j] (resp.,
πb[i, j]).

3.3. Algorithm PRESTO

We are now ready to present and analyze a size-optimal
Bhs protocol Presto. The algorithm uses a traversal pair
T P , which has two main functions: it will indicate the order
in which the network must be explored by the agents, and
will be used by the agents to avoid “dangerous” parts of the
network.

The two agents, a and b, start from the same node v0 = h;
a T P (πa, πb) of G from v0 is available to both. The algo-
rithm proceeds in logical rounds. In each round, the agents
follow the cooperative approach of dynamically dividing the
work between them: the unexplored area is partitioned into
two parts of (almost) equal size. Each agent explores one
part without entering the other one; exploration and avoid-
ance are directed by the traversal pair. Because the parts are
disjoint, one of them does not contain the black hole and
the corresponding agent will complete its exploration. When
this happens, the agent (reaches the last safe node visited by
the other agent and there) partitions whatever is still left to
be explored, leaving a note for the other agent (should it be
still alive). This process is repeated until the unexplored area
consists of a single node: the black hole.

At any time, an agent will be either exploring its part of the
network, or searching for the other agent to perform another
partition, or destroyed by the black hole.

We remind that a node is safe if there is a safe link incident
to it, or if it is the home base of an agent. The safe nodes
represent the explored part of the network. Let U be the set
of unexplored nodes, and p be the node where the partition
occurs. Initially, U = V [1, n − 1], and p = v0.

3.3.1. Presto: Start

1. Initially, one of the two agents, say a, partitions V [1,
n − 1] into two sets Va[1, k] and Vb[k + 1, n − 1], where
k = �n/2�.

2. Agents a and b leave v0 to explore the corresponding
sets, using cautious walk on πa[1, k] and πb[k+1, n−1],
respectively. Note that, because Va and Vb do not overlap,
one of them does not contain Bh, and the corresponding
agent will finish its exploration.

3. When the agent completes the exploration, it searches for
the other agent to compute the new partition. In general,
let U = V [i, j] be the unexplored area when the explo-
ration began (initially, U = V [1, n − 1]). All operations
on indices are modulo n.

3.3.2. Searching for the other agent

1. If a is searching for b: a goes to vj+1 (the node from
which b departed towards its unexplored part) using the
shortest possible route avoiding Vb. It then follows the
safe links of the path πb[j, k + 1] until it reaches the last
safe vertex p reached by b. Let vj′ be the vertex to which
b has departed. Then now U = V [k + 1, j′]. Agent a
computes the new partitions of U.

2. If b is searching for a: b goes to vi−1 (the node from which
a departed towards its unexplored part) using the shortest
possible route avoiding Va. It follows the safe links of the
path πa[i, k] until it reaches the last safe vertex p reached
by a. Let vi′ be the vertex to which a has departed. Then,
now U = V [i′, j]. Agent b computes the new partitions
of U.

3.3.3. Partitioning U = V[ f , l] at p

1. The agent performing the partition sets Va = V [f , k′] and
Vb = V [k′ + 1, l], where k′ = �(f + l)/2� (see Fig. 3);

2. it then writes at p a note informing the other agent of the
partition, and leaves to explore its assigned set.

3. If the other agent finds the note informing it of the new
partitions Va and Vb, it will reach and explore the new
assigned part.

3.3.4. Reaching and Exploring the Partition

1. If a is the agent moving towards its partition, it returns to
vf −1 using the shortest possible route avoiding the new

FIG. 3. Algorithm Presto. (a) Beginning of a round. (b) After finishing
its part, the agent b finds the node from which agent a departed to vi′ and
the remaining unexplored part is divided into new Va and Vb.
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Vb; it then departs towards vf and starts exploring Va

using cautious walk on πa[f , k′].
2. If b is the agent moving towards its new partition, it

returns to vl+1 using the shortest possible route avoiding
the new Va; it then departs towards vl and starts exploring
Vb using cautious walk on πb[l, k′ + 1].

3. When an agent completes the exploration of its part,
it will search for the other agent to compute the new
partition.

3.3.5. Termination. When computing the new partition, if
U contains a single node, that node is the black hole.

Theorem 3.1. Let a graph G have a T P π from h of size
sπ (G) and radius rπ (G). Then two agents placed at h can
locate the black hole in G using O(sπ (G) + rπ (G) log n)

moves.

Proof. Correctness. Note that from the definition of T P
and the way the algorithm works, it never happens that two
agents depart to the same nonsafe node. In fact, the algo-
rithm uses the T P to be able to safely explore Va without
wandering into Vb, and vice versa. T P allows us to specify
in a unified format the way Va and Vb are explored, regard-
less of the actual values of Va and Vb, which depend of the
specifics of the particular execution. This means that one
agent will always survive. The fact that the agents never wait
ensures progress of the algorithm. Because in each round
the number of the unexplored nodes is halved, after log n
rounds there is a single unexplored node and the algorithm
terminates.

Complexity. We now focus on the number of moves.
The time complexity cannot be higher, and because there
are only two agents, neither it could be asymptotically
lower.

In each round, the only steps of the algorithm when agents
move are to

1. Explore the assigned area (without loss of generality, we
assume that b explored whole Vb, while a explored only
part of Va).

2. Move to the “beginning” of Va.
3. Chase the other agent through the newly explored area.
4. Move to the “starting” node for the next round.

Let vbh be the node containing the black hole. Note
that the total exploration path performed by agent a dur-
ing Step (1) over all rounds is at most |πa[1, bh]| (the
bound is |πb[bh, n] + 1| for b). Clearly, the total cost of
Step (1) over all rounds is less then 2sπ (G). Using similar
arguments, the same bound holds also for the total cost of
Step (3).

The cost of Steps (2) and (4) for one agent in one round is
clearly bound by 2rπ (G).

Combined with the fact that there are at most 	log n

rounds results in O(sπ (G)+rπ (G) log n bound on the number
of moves. ■

4. TRAVERSAL PAIR CONSTRUCTION
AND PROPERTIES

4.1. T P Construction

In this subsection we present a technique for construction
of T P based on hierarchical decomposition of the graph,
making use of the T Ps of the graph’s components.

Let H = (VH , EH) be a biconnected graph with |VH | = k;
let πH = (πH

a , πH
b ) be a traversal pair of H.

Let F1 = (V1, E1), F2 = (V2, E2), . . . , Fk = (Vk , Ek) be a
set of (traversable) biconnected graphs. Let us denote by s(Fi)

the maximal size among all T Ps (between any pair of nodes)
of Fi, and by r(Fi) the maximal radius among all T Ps of Fi.
Moreover, define r(F) = maxk

i=1(r(Fi)). Let d(G) denote
the diameter of a graph G and let d(F) = maxk

i=1(d(Fi)).

Definition 4.1. We say that G = (V , E) is a T P-compo-
sition of H and F1, F2, . . . , Fk if and only if the following
holds:

1. V = ∪k
i=1Vi and ∪k

i=1Ei ⊂ E.
2. If (vi, vj) ∈ EH then there exists an edge (ui, uj) ∈ E such

that ui ∈ Vi and uj ∈ Vj.
3. Let, for all 2 ≤ i < k, vai and vbi be the nodes from which

vi is for the first time visited in πH
a and πH

b , respectively.
Then, there are two different nodes w, z ∈ Vi such that w
has a neighbor in Vai and z has a neighbor in Vbi .

Moreover, if ∀ (vi, vj) ∈ EH, and ∀ u ∈ Vi, ∃w ∈ Vj such that
the distance from u to w is less than or equal to c, we say that
G has dilation c.

Informally, the T P-composition of H and F1, F2, . . . , Fk

is obtained by replacing a vertex vi of H by graph Fi; the
connectivity requirements are designed to allow the T P of H
to be extended to the T P of G (refer to the example depicted
in Fig. 4).

Lemma 4.1. Let G = (V , E) be a T P-composition of H
and F1, F2, . . . , Fk. Then G has a T P πG from any vertex
u ∈ V1 with a neighbor in Vk, such that

sπG(G) ≤ (d(F) + 1)sπH (H) +
k∑

i=1

s(Fi),

FIG. 4. G is a T P-composition of H and F1, F2, F3, and F4.
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and radius

rπG(G) ≤ r(F) + (d(F) + 1)rπH (H).

Moreover, if G has dilation c, then

sπG(G) ≤ c·sπH (H)+
k∑

i=1

s(Fi), rπG(G) ≤ r(F)+c·rπH (H).

Finally, if G has dilation 1, then

rπG(G) ≤ max{rπH (H) + d(F1), r(F1)}.

Proof. The proof is constructive. In fact, we now show
how to build πG

a (the left traversal of G); πG
b is constructed

analogously.
Assume the vertices of H are ordered v1, . . . , vk according

to when they were explored by πH
a . Consider the moment

when πG
a has arrived for the first time to a node u of Vi (the

following works also for i = 1). That corresponds to the
first occurrence of vi in πH

a . Let vai (resp., vbi ) be the node
from which vi was reached the first time in πH

a (resp. πH
b ),

and let vj be the node following the first occurrence of vi in
πH

a . Clearly, j ≤ i + 1, and j = i + 1 exactly if vj has not
yet been explored by πH

a . Let u′
i be any node of Vi different

from u, which has a neighbor in Vbi (from the third point of
Definition 4.1 we know that such node must exist) and u′′

i be
any node of Vi which has a neighbor in Vj.

We extend πG
a from u first with a u-u′

i traversal of Fi

(in π
Fi
a ), then with a path from u′

i to u′′
i (if u′

i �= u′′
i ), and

finally with the edge that leads from u′′
i to Vj (see Fig. 5).

This way πG
a explores the vertices of Fi in the order of π

Fi
a ,

FIG. 5. Extending the traversal in Fi.

thus allowing a symmetrical construction of πG
b by using a

u′
i-u traversal of Fi (in π

Fi

b ).
If j = i + 1, the last added edge from u′′

i entered a Vj

containing only vertices unexplored by πG
a so far, and the

process of extending πG
a continues. If, on the other hand,

j �= i + 1, the node vj has already been visited in πH
a , which

also means that all nodes in Vj have already been visited in
πG

a . In this case, let vq be the node in πH
a after vj, and let w

be a node from Vj which has a neighbor in Vq. We extend πG
a

by first adding the shortest path (in Fj) leading to w, and then
by adding the link that leads to Vq.

Size: exploring a component Fi for the first time costs
s(Fi); the path from u′

i to u′′
i , if needed, costs at most d(Fi) <

d(F); finally, the edge added to reach the next component
costs 1. Each next occurrence of vi in πH

a (resp., πb(H)) corre-
sponds to an additional traversing of Fi of length at most d(F).
Summing up over the whole length of πH

a (resp., πb(H)) pro-
duces the result. If G has dilation c, then all traversing can be
done with at most c links (including the link for reaching to
the next component).

Radius: consider a node w ∈ Vi, and let ui ∈ Vi be the first
node of Vi in πG

a (the case for πG
b is analogous). The distance

between w and ui in Fi is at most r(Fi) ≤ r(F). Consider
now the nodes in πH between v1 and vi. There are at most
rπH (H) edges in the path from vi to v1 using only those nodes.
Because in πG each edge is replaced by a path of length at
most 1 + d(F), the total distance between w and u (the first
node in πa

G) results in r(F) + (d(F) + 1)rπH (H).
If G has dilation c then the term d(F) can be replaced by

c − 1. If G has dilation 1 then each node of Fj is connected
to all neighboring components. Hence, we can reach F1 from
w with a path of length at most rπH (H). Once F1 is reached,
we still need to reach u1; hence, the total length is rπH (H) +
d(F1).

Note that, if i = 1, F1 is not yet fully explored; hence,
the distance between w and the first node in πa

G is simply
r(F1). ■

Quite often a more limited composition will be sufficient:

Definition 4.2. We say that G is uniform T P-composition
of H and F, if G is T P composition of H and F1, F2, . . . , Fr,
with F = Fi for all 1 ≤ i ≤ r.

Directly applying Lemma 4.1 yields:

Corollary 4.1. Let G be a uniform T P-composition of H
and F such that sπ (F) ≤ c|F| for some constant c. If there is
a T P for H of size sπ (H) ≤ q|H| where q ≥ 2c then there
is a T P for G of size sπ (G) ≤ q(|G| + |H|).

Proof. Lemma 4.1 bounds the size of T P for G to be at
most (d(F) + 1)sπ (H) + ksπ (F). Because F is biconnected
it holds d(F) ≤ |F|/2 yielding sπ (G) ≤ q|H|(|F|/2 + 1) +
kc|F|. As |H||F| = k|F| = |G| we get sπ (G) ≤ q(|G| +
|H|). ■
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4.2. Traversal Pairs for Specific Topologies

Lemma 4.1 and Corollary 4.1 can be used to find good
traversal pairs in a number of well-known interconnection
networks (for definitions, see e.g., [16]).

Lemma 4.2. Let G be a d-dimensional torus with n vertices
and diameter diam(G). Then G is traversable with a T P of
size at most 4n and radius diam(G).

Proof. We denote Zq = Z/qZ and εi the vector with a
single 1 at position i. Torus is a Cayley graph over a group
Zdim1 × · · ·× Zdimd where all dimi > 2, with generators ±εi.
As Cayley graphs are vertex transitive, it is sufficient to show
the existence of a T P from one vertex.

If d = 1 then G is a cycle and there is a traversal of
size 2n and radius n/2 = diam(G). Now consider a d-
dimensional torus for d > 1. W.l.o.g we may assume dim1 ≤
dim2 ≤ · · · ≤ dimd . The diameter of G is 1

2

∑d
i=1 dimi. Let

F be a cycle in the first dimension, that is of length dim1.
F is biconnected and traversable with sπ (F) = 2dim1 and
rπ (F) ≤ dim1.

We show that G has a uniform T P-composition with
dilation 1 of H and F, where H is a (d − 1)-dimensional
torus with dimensions dim2, . . . , dimd . The first two con-
ditions in Definition 4.1 are trivial. The fact that G has
dilation 1 follows directly from the commutativity of the
group. Consider a vertex u in a set Vi. The set Vi consists
of vertices u + cε1 for all c. If u has a neighbor in some
other component Vk , say, v = u + εj then every u + cε1

has neighbor u + cε1 + εj = v + cε1 in Vk . The third
condition of Definition 4.1 is a consequence of G having a
dilation 1.

We prove the bound on the size and radius of the T P
by induction on the number of dimensions. The first step (a
ring) is trivial. Following the induction hypothesis, H has a
T P with size sπ (H) = 4|H| and radius rπ (H) = diam(H).
Using Corollary 4.1 we conclude that G has a T P of size
at most 4n. To bound the diameter, we combine the fact
that G has dilation 1 with Lemma 4.1 yielding rπ (G) ≤
max{rπ (H)+diam(F), rπ (F)}. Because diam(F) = dim1/2,
the term rπ (H) + diam(F) = 1

2

∑d
i=1 dimi = diam(G).

The result follows from the fact that rπ (F) ≤ dim1 ≤
dim1/2 + dim2/2. ■

Lemma 4.3. Let G be a d-dimensional hypercube. Then G
is traversable with a T P of size at most 2d+2 and radius d.

Proof. It is the same as the proof of Lemma 4.2 with
all dimi = 2. This time, however, we set F to be a cycle
of length four induced by the first two dimensions and then
H is a (d − 2)-dimensional hypercube. The diam(F) = 2,
rπ (F) ≤ 4 and diam(H) = d − 2. The basis of the induction
are cases d = 2 and d = 3. ■

Lemma 4.4. Cube-connected cycles of CCC(d) and
wrapped butterfly WBF(d) are traversable with a T P of size

O(d2d) and radius O(d2 (see [16] for formal definitions of
cube-connected cycles and wrapped butterflies).

Proof. It is sufficient to show that both topologies are
uniform T P-compositions, where H is a d-dimensional
hypercube and F is a cycle of length d. The size then
comes from Corollary 4.1 and Lemma 4.3 and radius from
Lemma 4.1 as rπ (G) ≤ rπ (F) + (diam(F) + 1)rπ (H) ≤
d + (d/2 + 1)d.

To prove the T P-composition property consider the
cycles corresponding to a particular hypercube vertex (i.e.,
induced by “shift” operations) in both topologies. The only
nontrivial part to show is the condition 3 in Definition 4.1.

CCC: consider a circle Vi in CCC(d). Every vertex v ∈ Vi

has exactly one neighbor outside Vi, and any two distinct ver-
tices in the circle Vi have their outside neighbors in different
circles (corresponding to neighbors in the hypercube along
appropriate dimensions). The condition 3 follows from the
fact that vli �= vri .

WBF(d): condition 3 directly follows from the fact that
in each circle Vi and Vj in WBF(d) there are two different
nodes u, v ∈ Vi, which have a neighbor in Vj (see Fig. 6). ■

Lemma 4.5. The star graph S(d) has a T P of size at most
3d! and radius at most 2d−1 + 1.

Proof. The star graph S(d) is a Cayley graph over the
symmetric group Sd generated by the involutions (1, q) for
1 < q ≤ d. Let S(k, d) be a Cayley graph over the coset
group Sd |Sk with generators g ◦ (1, q)[Sk], where g ∈ Sk and
k < q ≤ d. Clearly, S(1, d) = S(d) and S(d −1, d) = Kd is a
complete graph with d vertices. We can visualize the vertices
of S(k, d) as strings of length d − k consisting of different
symbols from the alphabet {1, 2, . . . , d}. The edges of S(k, d)

connect vertices that differ in exactly one place.
Now we show that S(k, d), 2 ≤ k < d − 1 is a uniform

T P-composition of H = S(k + 1, d) and F = Kk+1. We
have to prove that the three conditions from Definition 4.1
are fulfilled. The first one is trivial. For the remaining two we
show that if there is an edge (vi, vj) ∈ EH , there are two pairs
of vertices (ui, uj) ∈ E, (u′

i, u′
j) ∈ E such that ui, u′

i ∈ Vi and
uj, u′

j ∈ Vj. Consider an edge (vi, vj) ∈ EH where vi = αaβ,
vj = αcβ; here, α, β stand for strings. As k ≥ 2, there are two
distinct symbols g, g′ not present in α, β and different from
q, c. Let ui = bαaβ, u′

i = g′αqβ, uj = gαcβ and u′
j = g′αcβ.

It is easy to see that (ui, uj) ∈ E and (u′
i, u′

j) ∈ E.
As a next step we shall prove that S(k, d), 2 ≤ k < d − 1

has a T P of size at most 3d!/k! and radius 2d−k − 1. For

FIG. 6. WBF is a uniform T P-composition of a hypercube and a cycle.
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FIG. 7. T P for a 3D mesh.

k = d −1 the statement clearly holds. As S(k, d) is a uniform
T P-composition of S(k +1, d) and Kk+1 we get the size and
the radius from Lemma 4.1, as sπG(G) ≤ (d(F)+1)sπH (H)+∑k

i=1 s(Fi) = 2sπH (H) + n
k+1 (k + 1) ≤ d!

k!
∑

i

( 2
k+1

)i
and

rπ (G) ≤ rπ (F)+ (d(F)+1)rπ (H) = 1+2 · (2d−k−1 −1) =
2d−k − 1.

To finish the proof we have to bridge the gap between
S(d) = S(1, d) and S(3, d). Similar arguments as above
lead to conclusion that S(d) is a uniform T P-composition
of S(3, d) and a circle of length 6 and the result follows. ■

Lemma 4.6. Let G be a d-dimensional mesh with n vertices
and diameter diam(G). Then G is traversable with a T P of
size at most 4n and radius diam(G).

Proof. By induction on the number of dimensions. The
basis of induction are cases d = 2 and d = 3. The T P for
a 2D mesh is depicted in Figure 1. Its size is n for a mesh
with at least one side even, and n + 2 for all sides odd. It is
not difficult to see that the radius of this T P is no more that
diam(G) + 1.

The T P for a 3D mesh is depicted in Figure 7. The left
traversal starts by going to the topmost 2D submesh using
the (0, 0) column. The 2D meshes are then traversed from
the top to the bottom using a left traversal for 2D mesh from
(0, 1), ending at (1, 0), returning to (0, 1) and going down.
The right traversal traverses 2D meshes from the bottom to
the top, and returns by the (0, 0) column. Each 2D mesh is
traversed using right traversal for 2D mesh starting at 1, 0)

and ending at (0, 1), then returning to (1, 0) and moving one
level up. Again, it is easy to see that the size of this T P is
O(n) and its radius is O(diam(G)).

A d dimensional mesh for d ≥ 4 is a uniform T P com-
position of a 2D mesh F with a d − 2 dimensional mesh H
with dilation 1. The proof (as well as of the result bounds on

its size and diameter) is analogous to the tori and hypercube
case. ■

4.3. Main Theorem

Combining Theorem 3.1 with the results of Section 4.2,
yields the main theorem of this paper:

Theorem 4.1. With complete topological knowledge, two
agents can locate the black hole in O(n) moves in the
following topologies:

1. hypercubes,
2. CCC,
3. wrapped butterflies,
4. star graphs, and
5. tori and meshes of diameter O(n/ log n).

5. RELAXING THE KNOWLEDGE
REQUIREMENTS

In deriving our results, we have assumed that the agents
have complete topological knowledge; that is, the agents
know not only the network topology type and labeling (e.g.,
torus with “N-S-E-W” labeling), but also the actual size n of
the network and the location of the home base.

This requirement is somewhat stronger than the assump-
tions typically used in related literature, that is, only the
network topology type, not its size, is known to the agents.

In this section we show that our assumptions can be
relaxed to match the standard model, by showing how to
compute the network size and the location of the home base
for the class of the networks considered. This is achieved
by adding a precomputation phase, in which agents com-
pute the size of the network and the location of the home
base (knowledge of the topology class, e.g., CCC, or mesh is
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still assumed, as well as a knowledge of globally consistent
labeling, e.g., being able to distinguish between cycle and
hypercube edges in CCC, or identify north, east, south, west
in a two-dimensional mesh).

For vertex symmetric topologies (tori, hypercubes, CCC,
wrapped butterflies, and star graphs), the problem of identi-
fying the location of the home base is irrelevant, as all nodes
are alike. For hypercubes and star graphs the size immedi-
ately follows from the degree of nodes; in tori and meshes
the number of dimensions can be determined in that way.

We present a general scheme for determining n and
location of the home base (if relevant) for CCC and two-
dimensional meshes, the extensions to wrapped butterflies
and multidimensional meshes and tori are quite straight-
forward.

5.1. The General Scheme

1. Choose two disjoint sets of vertices in G: Sa and Sb such
that Sa∩Sb = {v} (v is the home base) and it is possible to
determine the size of the network (and the location of the
home base, if needed) from each of them independently
(see Fig. 8, left).

2. If no such sets can be found, explore some neighborhood
S′ of v in a way that at least one agent survives. S′ is
chosen such that for every |S′| − 1 node subset S′′ of S′
there exist Sa and Sa such that Sa ∩ Sa ⊂ S′′ and n and
location of v can be determined from each of them. See
Figure 8, right, for an example for a two-dimensional
mesh: S′ consists of the four direct neighbors of v. The
cross Sb is chosen to intersect Sa in two neighbors of v,
which are known to be safe.

3. The agents a and b explore Sa and Sb, respectively, and
return to the home base. The way Sa and Sb were chosen
ensures that at least one of them (w.l.o.g. assume that b)
succeeds.

4. b goes to the last safe node visited by a and leaves a mark
with the meaning “Stop exploring Sa, a already know n
and location of v. Join me in Algorithm Presto.” and
starts executing Algorithm Presto.

5. Let vi be the node to which a was travelling when b left
the message for it. The first assignment of Va and Vb

FIG. 8. Left: Sl and Sr in a CCC. Right: Sl and Sr in a two-dimensional
mesh.

will not be V [1..�n/2�] and V [�n/2� + 1, n − 1], but
V [1..i − 1] and V [i + 1..n − 1]. Furthermore, if a is still
blocked at i when b finishes its part, b will “switch” with
a (i.e., b will start exploring from the left, while a will
be asked to explore from the right). This prevents both
agents disappearing in i if the black hole is there.

Note that the cost of such precomputation is O(|S′|+|S1|+
|S2|), which is for all relevant topologies O(n).

6. CONCLUSIONS

We have presented a novel concept, traversal pairs of a
biconnected graph, and shown how to use it to obtain a size-
optimal black hole searching technique. We have shown that
this technique leads to solutions which are also cost-optimal
for all the common interconnection networks.

The outstanding open question is to determine for what
other types of networks �(n) cost can be achieved by two
searching agents.
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