
Information Processing Letters 73 (2000) 199–206

An improved testing scheme for catastrophic fault patterns✩

A. Nayak∗, J. Ren1, N. Santoro
School of Computer Science, Carleton University, Ottawa, Canada K1S 5B6

Received 3 December 1998; received in revised form 5 December 1999
Communicated by F. Dehne

Keywords:Redundant arrays; Catastrophic faults; Testing schemes; Algorithms

1. Introduction

In a linear array of processors, a single faulty
element in any location is sufficient to stop the flow
of information from one side to the other. A common
approach for achieving fault tolerance in such systems
is through the incorporation of redundant links in a
regular fashion. These links (calledbypass links) can
be activated in a reconfiguration phase to bypass faulty
elements.

There are some inherent limits in this approach.
In particular, there are sets of faults occurring in
strategic locations which affect the entire system in
an unrepairable way, regardless of the amount of
redundancy, and cannot be overcome by any clever
reconfiguration process, see [7]. These sets of faults
are calledCatastrophic Fault Patterns(CFP) and have
been extensively studied in the literature [1,2,4–6,8,
10]. The rather intuitive guess that any cut set is a CFP
is unfortunately incorrect; on the contrary, they have a
rather interesting structure with non-trivial symmetries

✩ This work was supported in part by Natural Sciences and
Engineering Research Council of Canada under Operating Grant
A2415. A preliminary version of the paper has appeared in the 6th
International Symposium on Algorithms and Computation.
∗ Corresponding author. Email: nayak@scs.carleton.ca. Currently

with Nortel Networks, Ottawa, Ontario, Canada.
1 Currently with Microsoft Corp., Seattle, USA.

and it is known that, to be catastrophic, the numberm

of faults must be at least as large as the lengthg of the
longest bypass link [7] (by comparison, cut sets need
only to be of sizek or 2k, depending on whether the
links are uni- or bidirectional).

An important question with regards to CFP is the
Testing Problem; that is, the problem of determining
whether a given set of faults is catastrophic. The com-
plexity of this problem depends on many parameters:
the sizeN of the array, the numberk of bypass links at
each element and their lengths, and the numberm of
faults. Any solution to this problem is called atesting
scheme.

The investigations on the testing problem have
been restricted to the particular case ofminimal fault
patterns (i.e.,m = g), and testing schemes have been
presented both for unidirectional and for bidirectional
arrays [4,5,7,9].

The general casem > g has been recently consid-
ered in [1]. Based on a graph-theoretic interpretation,
different bounds have been established depending on
whether the links are uni- or bidirectional. Namely, in
the case of bidirectional links they show that the prob-
lem has a simple O(mk) solution; on the other hand, if
the links of the array are unidirectional, the proposed
testing scheme requires time O(mk logk). Notice that
neither bounds depend on the sizeN of the array.

0020-0190/00/$ – see front matter 2000 Published by Elsevier Science B.V. All rights reserved.
PII: S0020-0190(00)00012-0

200 A. Nayak et al. / Information Processing Letters 73 (2000) 199–206

The difference in bounds is not significant from a
practical viewpoint; however, it raises the interesting
theoretical question of whether the Testing Problem is
computationally more difficult in the case of unidirec-
tional links. We provide evidence for a negative an-
swer by abolishing the existing gap between the two
upper bounds. In fact, we prove that testing can be
done in time O(mk) also for arrays with unidirectional
links improving the existing O(mk logk) bound. The
testing scheme achieving the bound is based on a novel
“geometric” approach.

We actually solve a more general version of the
classical problem of finding a obstacle-avoiding path
in a two-dimensional grid (e.g., [11,12]); in our case,
the mesh has a rather complex link structure in
addition to its own links.

2. Terminology and definitions

A unidimensional linear arrayA of size N is
composed of a setP = {p1,p2, . . . , pN } of processing
elements and two special processors, calledI (for
Input) andO (for Output), responsible for the I/O
functions of the system; eachpi is connected topi+1
(16 i < N), I is connected top1, andO topN . In the
following, for simplicity, we will denotepi simply by
i; henceP = {1,2, . . . ,N}.

Fault tolerance is achieved by symmetric addition
of links. Given an integerg ∈ (1,N], A has link
redundancyg, if every i ∈ P with i 6 N − g is
connected toi + g, I is connected to 1, . . . , g, and
N − g + 1, . . . ,N are connected toO . The array
has link redundancyG= {g1, g2, . . . , gk} wheregj <
gj+1 andgj ∈ (1,N], if it has link redundancyg1, g2,

. . . , gk .
A fault pattern for P is just a subsetF ⊆ P of

the processors. Thewidth ωF of a fault patternF =
{f1, f2, . . . , fm} is the number of processors between
and including the first and the last faults:ωF = fm −
f1+ 1.

Example 1. A fault pattern is shown in Fig. 1, where
black dots represent faulty elements.

Fig. 1. A fault pattern for an array with link redundancy{4}.

Consider a linear arrayP with a link redun-
dancyG = {g1, g2, . . . , gk} and a fault patternF =
{f1, f2, . . . , fm}. Without loss of generality, we will
always assumef1= 1 for convenience. The fault pat-
ternF can be uniquely represented by a Boolean ma-
trix W of size(ω+F × gk), whereω+F = dωF /gke, de-
fined as follows:

W [i, j] =
{

1 if (igk + j + 1) ∈ F ,

0 otherwise.

In the following, where no ambiguity arises, we will
use the coordinate pair(xl, yl) to denoteW [xl, yl].

Example 2. The Boolean matrix representation of the
fault patternF = {f1, f2, f3, f4, f5} = {(0,0), (0,3),
(1,1), (1,3), (2,2)} for G= {4} is given in Fig. 2.

Notice that, since we assumef1 = 1,W represents
the “status” (faulty or not faulty) of the firstωF
elements ofP .

A fault patternF ⊆ P represents a set of initially
faulty elements. Depending on the initial assignment
of faults, some non-faulty elements can become un-
reachable fromI (and thus, unable to participate in
the computation), orO becomes unreachable from
them (and thus their participation in the computation
in irrelevant); these elements are thus “functionally”
faulty. A fault pattern is said to becatastrophicif it
causes all elements to become functionally faulty and,
thus,I andO to become disconnected. To describe the
impact that the initial fault pattern has on the system,
we use the notion ofdeadelements. Consider a linear
arrayP with a link redundancyG = {g1, g2, . . . , gk}
and a fault patternF = {f1, f2, . . . , fm}. An element
p ∈ P is dead if p ∈ F , or if all the elements in
(p +G) ∩ P are dead, or all elements inp −G ∩ P
are dead. An elementp ∈ P which is not dead is said
to bealive.

Example 3. Consider the matrix shown on Fig. 3
where G = {3,5,7} and F = {(0,0), (0,2), (0,3),
(0,4), (0,6), (1,1), (1,5)}. It is not difficult to verify
that elements(1,0), (1,2), and(1,6) are dead, while
elements(0,1), (0,5), (1,3) and(1,4) are alive.

The fault patternF is catastrophicif all elements
of P are dead. Thus, the pattern of Example 3 is
not catastrophic forG = {3,5,7}; on the other hand,

A. Nayak et al. / Information Processing Letters 73 (2000) 199–206 2011 0 0 1

0 1 0 1

0 0 1 0

Fig. 2. A Boolean matrix of a catastrophic fault pattern of 5 faults with link redundancy{4}.

[
1 0 1 1 1 0 1

0 1 0 0 0 1 0

]
Fig. 3. Examples of dead elements in a matrix whereG= {3,5,7}.

it is not difficult to verify that the fault pattern in
Example 1 is catastrophic forG= {4}.

3. Segments, gaps and shadows

3.1. Dead segments

Using the introduced notation, we will extend the
notion of functionally faulty to sequences of elements
in W recursively as follows:

Definition 1. A dead segment is
(1) a set of consecutive dead elements in the same

rowS = {(x, y), (x, y+1), . . . , (x, y+d)}, where
06 d 6 gk − 1; or

(2) if S1= {(x, y), . . . , (x, y + d)} andS2 = {(x, y ′),
. . . , (x, y ′ + h)} are dead segments withy ′ = y +
d + 1, thenS = {(x, y), . . . , (x, y + h′)} is a dead
segment; or

(3) if S1 = {(x, y), . . . , (x, gk)} andS2= {(x + 1,0),
. . . , (x + 1, d)} are dead segments where 16
d 6 gk , thenS = {(x, y), . . . , (x, gk), (x + 1,0),
. . . , (x + 1, d)} is a dead segment.

Using the notion of segment, we now establish a
necessary and sufficient condition for a fault pattern,
with arbitrary number of faults for an arbitrary link
redundancy, to be catastrophic.

A live path is a path on which every element
is alive. Given live elementsp and q , q is reach-
able from p if there exists a live path fromp
to q . The set of entry points of row(i) is: Ei =
{live elements in row(i) reachable from some element
in Ei−1} if i > 1, andE1= {live elements in row(1)}.

We claim that for every row the set of entry points co-
incides with the set of live elements.

Property 1. Let Li be the set of live elements of
row(i), thenEi = Li .

Proof. By induction on i. By definition of E1, the
claim trivially holds fori = 1. Let it hold forEi, i >
1. Consider row(i + 1). By contradiction, define the
set of live elements which are not entry pointsWi+1=
Li+1 − Ei+1 6= ∅. Let j be the smallest index such
that (i + 1, j) ∈ Wi+1. Depending on whetherj = 1
or j > 1, we shall consider two cases.

Case 1 (j = 1). Since p = (i + 1,1) /∈ Ei+1,
then all (i, gk), (i,1 − g2 + gk), . . . , (i,1) are not
in Ei (which is Li by inductive hypothesis). Then,
by Definition 1(2),p = (i + 1, j) is dead. A clear
contradiction.

Case2 (j > 1). Sincep = (i + 1, j) /∈ Ei+1, then
there existsl such that all(i, j − gk + gk), (i, j −
gk−1+gk), . . . , (i, j−gl+gk) are not entry points and
by inductive hypothesis are dead. Sincep= (i + 1, j)
is live, then there existsd, 16 d 6 l−1, such thatq =
(i + 1, j − gd) ∈ Li+1; otherwise, by Definition 1(2),
p = (i + 1, j) is dead. Now,q cannot be inEi+1
(otherwise,p ∈ Ei+1). This contradicts the fact that
j is the smallest index for which(i + 1, j) /∈ Wi+1.
Therefore, the claim holds.2
Theorem 1. A fault pattern is catastrophic if and only
if it has at least one dead segment ofgk elements.

Proof. (⇒) By contradiction, let the fault pattern be
catastrophic, and∀i Li 6= ∅. Consider the element
sequencel1, l2, . . . ,LLast, li ∈ Li, li = (xi, yi), where
lLast is an arbitrary element inLLast 6= ∅; and li , i <
Last, is recursively constructed fromli+1 as follows:
Li+1 (which by Property 1 isEi+1) is the set of
live elements in row(i + 1) reachable from some
live element in row(i). Thus for everya ∈ Li+1,
there exists at least an elementb ∈ Li such thata

202 A. Nayak et al. / Information Processing Letters 73 (2000) 199–206

is reachable fromb. Chooseli be the element inLi
from whichli+1 is reachable. Therefore, the sequence
of l1, l2, . . . , lLast, defines a path of live elements,lLast

is reachable froml1; thus contradicts the fact that the
fault pattern is catastrophic.
(⇐) By contradiction, letLj = ∅ and the fault

pattern be not catastrophic. Since the fault pattern is
not catastrophic, then there existsl1, l2, . . . , lLast such
thatli ∈Li andli ∈ row(i), contradictingLj = ∅. 2
3.2. Gaps and shadows

It is possible for the Boolean matrix to have several
contiguous rows (called “gap”) which do not contain
any faulty element. Should this be the case, the given
fault pattern can be partitioned into smaller fault
patterns such that the Boolean matrix of each of these
fault patterns does not have any gap. The original fault
pattern is catastrophic if and only if at least one of
these smaller fault patterns is catastrophic; this is due
to the following theorem.

Theorem 2. Given the Boolean matrix representation
of a fault patternF = {(x1, y1), (x2, y2), . . . , (xn, yn)}
there existsi such thatxi+1− xi > 2, let

F1=
{
(x1, y1), (x2, y2), . . . , (xi, yi)

}
and

F2=
{
(xi+1, yi+1), (xi+2, yi+2), . . . , (xn, yn)

};
then F is catastrophic if and only ifF1 or F2 is
catastrophic.

Proof. (⇒) If F1 orF2 is catastrophic, then obviously
F is catastrophic.

(⇐) By contradiction, letF1 andF2 be not cata-
strophic. Then there exists a live pathL1 in F1 from
row(1) to row(xi), and a live pathL2 in F2 from
row(xi+1) to the last row ofF . Since row(xi+1) does
not have any faulty element, then (by Definition 1),
the only possible dead segment in this row has the
form {(xi + 1,1), . . . , (xi + 1, j)} wherej > 1, and
the rest of the row elements are live. Thus, there is
no dead segment in row(xi + 2). ThereforeL2 can
always be connected withL1. In other words, there
exists a live path from the first row ofF to the last
row of F , contradicting the assumption thatF is
catastrophic. 2

We now define the “shadow” of a segment.

Definition 2. Let S be a segment, andS′ be a segment
at distanced from S. ThenS is called the shadow of
S′ at distanced if
(1) |S| = |S′|, and
(2) ∀(x, y) ∈ S either(x, y − d) ∈ S′ or (x − 1, y −

d + gk) ∈ S′.

Given a segmentS, let x(S) be thex coordinate of
the first element ofS, yF (S) be they coordinate of the
first element ofS, yL(S) be they coordinate of the last
element ofS.

Definition 3. LetΩi,Ωj be two segments,Ωi < Ωj
if yL(Ωi) < yF (Ωj) andx(Ωi)= x(Ωj), or x(Ωi) <
x(Ωj).

Certain segments can be concatenated to form
larger segments. The definition for concatenation of
segments now follows.

Definition 4. Let Ωi,Ωj be two segments with
yL(Ωi) + 1 = yF (Ωj) and x(Ωi) = x(Ωj), or
yL(Ωi) = gk , yF (Ωj) = 1, andx(Ωi) + 1= x(Ωj).
The concatenation ofΩi andΩj , denoted byΩi@Ωj ,
is the segmentΩ whereyF (Ω)= yF (Ωi), yL(Ω) =
yL(Ωj), andx(Ω)= x(Ωi).

Lemma 1. Let S be a segment andSgi be the seg-
ment at distancegi fromS (16 i 6 k). The dead seg-
ments inS are those in the set{faulty elements inS} ∪
{∏gk

i=1 shadows of dead segments ofSgi at distancegi}.

Proof. By definition of dead element, the lemma
trivially holds. 2
Definition 5. Let DS[i] andDS[i+1] be the set of the
dead segments of row(i) and row(i + 1), respectively.
The concatenation ofDS[i] andDS[i+1], denoted by
DS[i] •DS[i + 1], is the set of dead elements defined
as follows: let

a =Max
{
yL(Ω): Ω ∈DS[i]},

b=Min
{
yL(Ω): Ω ∈DS[i + 1]};

and letΩa andΩb be the corresponding segments.

A. Nayak et al. / Information Processing Letters 73 (2000) 199–206 203

Then

DS[i] •DS[i + 1]

=
{DS[i] ∪DS[i + 1] ∪ {Ωa@Ωb} − {Ωa,Ωb}

if a = gk andb= 1,
DS[i] ∪DS[i + 1] otherwise.

4. An efficient testing scheme

4.1. The algorithm

The algorithm proceeds as follows. The given fault
patternF is decomposed into patterns which do not
contain any gap. By Theorem 2,F is catastrophic if
and only if at least one of the pattern is catastrophic.
By Theorem 1, any such patternF ′ is catastrophic if
and only if there exists a dead segment of sizegk .
Thus, the algorithm constructs all the dead segments;
in particular, it constructsDS[i] (the set of dead
segments of row(i)), given DS[i − 1] (the set of
dead segments of row(i − 1)). By Definition 1, a
segmentS is dead if all k segments at distance
g1, g2, . . . , gk fromS are dead. An important aspect of
the algorithm which is crucial to its efficiency is that
the dead segments of row(i) can only be found among
the shadows of the dead segments of row(i − 1).
Therefore, we can disregard all elements of row(i)

which are not in the shadows of the distance equal to
the longest bypass link.

Let S be a shadow at distancegk from some
segment inDS[i−1]. The algorithm determines which
parts of the segments inDS[i − 1] • DS[i] are at
distanceg1, g2, . . . , gk−1 from S and compute the
intersection of all these parts. Any element inS is dead
if and only if it belongs to this intersection. Another
aspect of the algorithm crucial for its efficiency is that
once the above described process has been completed
for S, no backtracking is done when considering
the next segment inDS[i − 1]. If, at any time, a
dead segment of sizegk is encountered, the fault
pattern is catastrophic. If all dead segments have been
constructed and no dead segment of sizegk has been
found, the pattern is not catastrophic.

More in detail, given a Boolean matrix representa-
tion of a fault patternF . The algorithm first checks
if F is empty. If it is empty, the algorithm stops and
reports that the fault pattern is not catastrophic; oth-
erwise, the algorithm scans linearly the fault pattern

to detect the existence of gaps (i.e., ifxi+1− xi > 2).
When the first gap is found, it decomposesF into two
fault patternsF1 andF2 such thatF1 does not con-
tain any gap. Then the algorithm calls a procedure
(DeadSegment) to check ifF1 is catastrophic. IfF1
is catastrophic, the algorithm stops; otherwise, it re-
cursively calls itself withF2 as its input. Note that if
F does not contain any gap, thenF1= F andF2= ∅.
The procedureDeadSegmentis shown in Fig. 4 and
theMergeSegment() is given in Fig. 5.

Note thatp + 1 is the operation of next(p), and
p− 1 is the operation of previous(p).

4.2. Analysis

Property 2. Algorithm correctly determines whether
or not a fault patternF is catastrophic.

Proof. F is decomposed into patterns which do not
contain any gap. By Theorem 2,F is catastrophic if
and only if at least one of these patterns is catastrophic.
Thus, to prove the correctness, it suffices to prove
that the algorithm correctly determines whether any
such patternF ′ is catastrophic. By Theorem 1,F ′
is catastrophic if and only if there exists a dead
segment of sizegk . Thus, it suffices to show that the
algorithm correctly constructs all the dead segments;
in particular, it suffices to show thatDS[i] will be
constructed correctly givenDS[i−1]. By Definition 1,
a segmentS is dead if all k segments at distance
g1, g2, . . . , gk from S are dead. First of all, observe
that it suffices to verify the above condition only
for the segments which are shadows at distancegk
from the segments inDS[i − 1]. In fact, any element
of row(i), which is a shadow at distancegk of
a live element, is live; in other words, the only
possible candidates for dead elements (and, thus, dead
segments) are those which are the shadow at distance
gk of a dead segment inDS[i − 1]. Let S be a shadow
at distancegk from some segment inDS[i − 1].
To determine whether an element ofS is dead, we
must determine whether its shadows at distanceg1,

g2, . . . , gk−1 are dead; that is, we must determine
whether its shadows at distanceg1, g2, . . . , gk−1 are
in DS[i − 1] • DS[i]. The algorithm first determines
which parts of the segments inDS[i − 1] • DS[i] are
at distanceg1, g2, . . . , gk−1 from S and compute the
intersection of all these parts. Any element inS is dead

204 A. Nayak et al. / Information Processing Letters 73 (2000) 199–206

DeadSegment(F)
Input: A Boolean representation ofF which does not contain any gaps.
Output: TRUE if F is catastrophic; FALSE ifF is not catastrophic.
Data structure used:DS[i] is an ordered (by the(x, y) coordinates of the starting element) set of dead segments of row(i),

and it is implemented as a linked list. For simplicity, letDS[i](k) denote thekth dead segment inDS[i]. DS[i] •DS[j] is
the concatenation ofDS[i] andDS[j], and it is also implemented as a linked list. For simplicity, let(DS[i] •DS[j])(k)
denote thekth dead segment in the concatenation ofDS[i] andDS[j].

Step 1: Initially, DeadSegment() checks if|F |> gk . If so, it continues; otherwise, it returns FALSE.
Step 2:Then,DeadSegment() scansF to form, for each row, the set of dead segments lying on that row. If, at any time,

DeadSegment() encounters a dead segment encompassing the entire row, it returns TRUE (by Theorem 1, the pattern is
catastrophic). If all dead segments inF have been built and no dead segment of sizegk is found,DeadSegment() returns
FALSE (by Theorem 1, the pattern is not catastrophic). The set of dead segments for row(1), DS[1], is composed of the
segments formed by the faulty elements in row(1). Given the setDS[i − 1] of dead segments for row(i − 1), the setDS[i]
of dead segments for row(i) is constructed as follows:

L0: form an initial setDS[i] by merging faulty elements in row(i);
p = 1;

L1: if DS[i − 1] = ∅ thenDS[i] is done;
α = |DS[i − 1]|;
for (16 d 6 k) ld = 2;
for (16 t 6 α) {
Sk←DS[i − 1](t);
Ω← shadow ofSk at distancegk ;
for (k− 1> j > 1) {
lj =max{lj , lj+1};

L2: Sj ← (DS[i − 1] •DS[i])(lj);
Ωj ← shadow ofSj at distancegj ;
if Ωj <Ω then

if lj = |DS[i − 1] •DS[i]| then goto L3;
else{lj = lj + 1; goto L2;}

if Ω <Ωj then goto L3;
Ω←Ω ∩Ωj ;
}
MergeSegment(Ω,DS[i],p);

L3: continue;
}

Fig. 4. ProcedureDeadSegment(F).

if and only if it belongs to this intersection. Since this
is done for every row, the claim follows.2
Property 3. For any row(i) in the Boolean represen-
tation of a fault pattern, letni be the number of faults
in that row, and|DS(i)| be the number of dead seg-
ments in that row, then|DS(i)|6 ni + 1.

Proof. By contradiction, let|DS(i)| > ni + 1. Then
there are at least two dead segments,S1 andS2, which
do not contain any faults. Without loss of generality,
let S1 < S2; thus yF (S2) > 1. In other words,w =

(i, yF (S2) − 1) exists and is live. SinceS2 does not
contain any faulty element, all elements inS2 are
reachable byp. This contradicts the fact thatS2 is a
dead segment. Thus, the statement holds.2
Property 4. Algorithm requiresO(kn) time, wherek
is the number of bypass links, andn is the number of
faults.

Proof. The given fault patternF is decomposed
into patterns which do not contain any gap. This is
done in time O(n). In the worst case, the procedure

A. Nayak et al. / Information Processing Letters 73 (2000) 199–206 205

MergeSegment(Ω,DS[i],p)
Input: Ω,DS[i],p;
Output: DS[i],p;
Outline: This procedure first scansDS[i] starting fromp to find the location forΩ ; then insertsΩ into DS[i]. The procedure

then returns the modifiedDS[i] and the location of the next segmentp.

while (yF (Ω) > yL(DS[i](p))), p = p+ 1;
y′
F
=min(yF (Ω), yF (DS[i](p)));

q = p;
while (yL(Ω) > yF (DS[i](q))), q = q + 1;
y′
L
=max(yL(Ω),yL(DS[i](q − 1)));

replace all segments fromp to q − 1 with the new segment
{(i, y′

F
), (i, y′

L
)} in DS[i];

p= pointer to this new segment;
returnDS[i] andp.

Fig. 5. ProcedureMergeSegment(Ω,DS[i],p).

DeadSegmentwill be applied to each such pattern.
For any inputF ′ of DeadSegment:
(1) The number of rows inF ′ is at most 2n′ wheren′

is the number of faults inF ′. This is becauseF ′
does not contain any gap. By Property 3,|DS(F ′)|,
the number of dead segments inF ′, is at most∑2n′
i (n′i + 1)= n′ + 2n′ = 3n′. Thus,|DS(F ′)| is

O(n′).
(2) DeadSegmentconstructs the overall setDS row

by row. It usesk − 1 pointers (theli ’s). At each
step of the execution, each pointer can move
forwards (“advance”) or not (“stay”); it cannot
ever move backwards. The number of “advances”
for each pointer is at most|DS(F ′)|, so is the
number of “stays”. Thus, each pointer requires at
most 2|DS(F ′)| = O(n) operations, for a total of
O(kn) time for k − 1 pointers.

(3) As for the cost of the merging operation, the initial
merge (executed in step L0 of the algorithm) re-
quires O(n′i) operations. The total cost of merging
new dead segments withDS[i] by callingMerge-
Segmentis O(n′i) since the entireDS[i] is only
scanned once. The total cost forF ′, is O(n′).

Therefore, the total cost forF ′ is O(kn′). Thus,
the total cost for each patternF ′ into which F has
been decomposed is O(kn′). Since these patterns are
disjoint, the total cost of algorithm is O(kn), wherek
is the number of bypass links andn is the number of
faults. 2

Theorem 3. Algorithm correctly determines whether
or not a fault pattern is catastrophic inO(kn) time,
wherek is the number of bypass links at each element,
n is the number of faults.

Proof. The theorem follows from Properties 2
and 4. 2

5. Concluding remarks

Let W∗ beW with two extra rows of all 0’s, one
at the top and the other at the bottom. We can view
the Boolean matrixW∗ as a directed mesh with an
additional link structure:∀g ∈G, every mesh element
(p, q) is also connected to(r, s) wherer = p + 1 if
q + g > gk , otherwisep, ands = (q + g) modgk .

In this rather complex mesh, elements correspond-
ing to 1 entries inW are obstacles. It is not dif-
ficult to verify that the pattern corresponding toW
is not catastrophic forG if and only if there is an
obstacle-avoiding path from any element in the first
row to any element in the last row ofW∗. Hence,
our testing scheme actually solves a more general ver-
sion of the classical problem of finding a obstacle-
avoiding path in a two-dimensional grid (e.g., [11,
12]).

206 A. Nayak et al. / Information Processing Letters 73 (2000) 199–206

References

[1] R. De Prisco, A. Monti, L. Pagli, Testing and reconfiguration
of VLSI linear arrays, Theoret. Comput. Sci. 197 (1998) 171–
188.

[2] R. De Prisco, A. De Santis, Catastrophic faults in reconfig-
urable systolic arrays, Discrete Appl. Math. 75 (1997) 105–
129.

[3] A. Nayak, V. Acciaro, P. Gissi, A note on isomorphic chordal
rings, Inform. Process. Lett. 55 (1995) 339–341.

[4] A. Nayak, L. Pagli, N. Santoro, On testing of catastrophic
faults in reconfigurable arrays with arbitrary link redundancy,
Integration, the VLSI J. 20 (1996) 327–342.

[5] A. Nayak, L. Pagli, N. Santoro, Efficient construction of
catastrophic patterns for VLSI reconfigurable arrays, Integra-
tion, the VLSI J. 15 (2) (1993) 133–150.

[6] A. Nayak, L. Pagli, N. Santoro, Combinatorial and graph
problems arising in the analysis of catastrophic fault patterns,
in: Proc. 23rd Southeastern Conf. on Combinatorics, Graph
Theory, and Computing, Congressus Numerantium 88 (Utilitas
Mathematica), 1992, pp. 7–20.

[7] A. Nayak, N. Santoro, R. Tan, Fault-intolerance of reconfig-
urable systolic arrays, in: Proc. 20th Internat. Symp. on Fault-
Tolerant Computers, Newcastle upon Tyne, 1990, pp. 202–209.

[8] L. Pagli, G. Pucci, Reliability analysis of redundant VLSI
arrays, Inform. Process. Lett. 50 (1994) 337–342.

[9] J. Ren, Geometric characterization of fault patterns in linear
systolic arrays, M.C.S. Thesis, School of Computer Science,
Carleton University, Ottawa, Canada, 1994.

[10] P. Sipala, Faults in linear arrays with multiple bypass links, Re-
search Report No. 18, Dipartimento di Informatica, Università
Degli Studi di Trieste, Italy, 1993.

[11] P. Widmayer, On graphs preserving rectilinear shortest paths
in the presence of obstacles, in: P.L. Hammer (Ed.), Annals
of Operations Research, Topological Network Design, Vol. 33,
Baltzer, 1991, pp. 557–575.

[12] Y.F. Wu, P. Widmayer, M.D.F. Schlag, C.K. Wong, Rectilinear
shortest paths and minimum spanning trees in the presence of
rectilinear obstacles, IEEE Trans. Comput. C-36 (1987) 321–
331.

