S Information
ﬁ Processing
Letters

ELSEVIER Information Processing Letters 73 (2000) 199-206

www.elsevier.com/locate/ipl

An improved testing scheme for catastrophic fault patterns

A. Nayak*, J. Rert, N. Santoro

School of Computer Science, Carleton University, Ottawa, Canada K1S 5B6

Received 3 December 1998; received in revised form 5 December 1999
Communicated by F. Dehne

Keywords:Redundant arrays; Catastrophic faults; Testing schemes; Algorithms

1. Introduction and it is known that, to be catastrophic, the number
of faults must be at least as large as the lerggttithe

In a linear array of processors, a single faulty longest bypass link [7] (by comparison, cut sets need
element in any location is sufficient to stop the flow only to be of sizek or 2k, depending on whether the
of information from one side to the other. A common |inks are uni- or bidirectional).
approach for achieving fault tolerance in such systems An important question with regards to CFP is the
is through the incorporation of redundant links in & Testing Problemthat is, the problem of determining
regular fashion. These links (callé@ypass linkscan whether a given set of faults is catastrophic. The com-
be activated in a reconfiguration phase to bypass faulty plexity of this problem depends on many parameters:

elgrn;ents. inh limits in thi h the sizeN of the array, the numbérof bypass links at
ere are some inherent limits in this approach. ., element and their lengths, and the numberf

In part_lcular, Fhere are sets of faults oceurring in e s, Any solution to this problem is calledt@sting
strategic locations which affect the entire system in scheme

an unrepairable way, regardless of the amount of The i tiati the testi bl h
redundancy, and cannot be overcome by any clever € investigations on he testing problem have
been restricted to the particular casenghimal fault

reconfiguration process, see [7]. These sets of faults))
patterns (i.e.m = g), and testing schemes have been

are calledCatastrophic Fault Pattern€CFP) and have L e
been extensively studied in the literature [1,2,4-6,8, presented both for unidirectional and for bidirectional

10]. The rather intuitive guess that any cut set is a CFp arays [4,5,7,9]. _
is unfortunately incorrect; on the contrary, they havea The general casa > ¢ has been recently consid-

rather interesting structure with non-trivial symmetries €red in [1]. Based on a graph-theoretic interpretation,
different bounds have been established depending on
° This work was supported in part by Natural Sciences and Whether the links are uni- or bidirectional. Namely, in
Engineering Research Council of Canada under Operating Grant the case of bidirectional links they show that the prob-
A2415. A preliminary.version of th.e paper has appeargd in the 6th lem has a Simp'e @1k) So|ution; on the other hand, if
International Symposium on Algorithms and Computation, the links of the array are unidirectional, the proposed
Corresponding author. Email: nayak@scs.carleton.ca. Currently
with Nortel Networks, Ottawa, Ontario, Canada. testing scheme requires time#k logk). Notice that

1 Currently with Microsoft Corp., Seattle, USA. neither bounds depend on the si¥eof the array.

0020-0190/00/$ — see front mattér 2000 Published by Elsevier Science B.V. All rights reserved.
PIl: S0020-0190(00)00012-0

200

The difference in bounds is not significant from a
practical viewpoint; however, it raises the interesting

theoretical question of whether the Testing Problemis { f1, fo, ..

computationally more difficult in the case of unidirec-
tional links. We provide evidence for a negative an-

A. Nayak et al. / Information Processing Letters 73 (2000) 199-206

Consider a linear arrayP with a link redun-
dancyG = {g1, g2, ..., g} and a fault patterr¥ =
., fm}- Without loss of generality, we will
always assume¢j = 1 for convenience. The fault pat-
tern F can be uniquely represented by a Boolean ma-

swer by abolishing the existing gap between the two trix W of Size(a)}r X gk), Wherew}r = [wr /g1, de-
upper bounds. In fact, we prove that testing can be fined as follows:

done intime @mk) also for arrays with unidirectional
links improving the existing Onklogk) bound. The

testing scheme achieving the bound is based on a novel

“geometric” approach.

We actually solve a more general version of the
classical problem of finding a obstacle-avoiding path
in a two-dimensional grid (e.g., [11,12]); in our case,
the mesh has a rather complex link structure in
addition to its own links.

2. Terminology and definitions

A unidimensional linear arrayA of size N is
composed of aset = {p1, p2, ..., py} Of processing
elements and two special processors, calle¢for
Input) and O (for Output), responsible for the 1/O
functions of the system; eagh is connected t; 1
(1<i < N), Iisconnectedt®;, andO to py. Inthe
following, for simplicity, we will denotep; simply by
i;henceP ={1,2,..., N}.

Fault tolerance is achieved by symmetric addition
of links. Given an integerg € (1, N], A haslink
redundancyg, if everyi € P with i < N — g is
connected t@ + g, I is connected to ,1..,g, and
N —g+1,...,N are connected ta@). The array
has link redundancg = {g1, g2, . . ., gk} whereg; <
gj+1andg; € (1, N1, if it has link redundancyy, g,

vy k-

A fault patternfor P is just a subsetr C P of
the processors. Theidth wr of a fault patternF =
{f1, f2, ..., fm} is the number of processors between
and including the first and the last faultsy = f,, —
fi+1

Example 1. A fault pattern is shown in Fig. 1, where
black dots represent faulty elements.

oJeX JoXeX Jol X JeJe

Fig. 1. A fault pattern for an array with link redundangi}.

1 if@ j+1)€F,
W[i,j]={ va e
0 otherwise.
In the following, where no ambiguity arises, we will
use the coordinate paix;, y;) to denoteW [x;, y;].

Example 2. The Boolean matrix representation of the
fault patternt” = { f1, f2, f3, fa. fs} =1{(0,0), (0, 3),
1,1),(1,3), (2,2)} for G = {4} is given in Fig. 2.

Notice that, since we assunyg =1, W represents
the “status” (faulty or not faulty) of the firstop
elements ofP.

A fault patternF C P represents a set of initially
faulty elements. Depending on the initial assignment
of faults, some non-faulty elements can become un-
reachable from/ (and thus, unable to participate in
the computation), or0 becomes unreachable from
them (and thus their participation in the computation
in irrelevant); these elements are thus “functionally”
faulty. A fault pattern is said to beatastrophicif it
causes all elements to become functionally faulty and,
thus,! andO to become disconnected. To describe the
impact that the initial fault pattern has on the system,
we use the notion aleadelements. Consider a linear
array P with a link redundancyG = {g1, g2, . . ., gk}
and a fault patterr¥ = { f1, f2, ..., fm}. An element
p € P is deadif p € F, or if all the elements in
(p + G) N P are dead, or all elements p— G N P
are dead. An element € P which is not dead is said
to bealive.

Example 3. Consider the matrix shown on Fig. 3
where G = {3,5,7} and F = {(0,0), (0, 2), (0, 3),
(0,4),(0,6), (1,1), (1,5)}. It is not difficult to verify
that elementsl, 0), (1, 2), and(1, 6) are dead, while
elementq0, 1), (0, 5), (1, 3) and(1, 4) are alive.

The fault patternF’ is catastrophicif all elements
of P are dead. Thus, the pattern of Example 3 is
not catastrophic folG = {3, 5, 7}; on the other hand,

A. Nayak et al. / Information Processing Letters 73 (2000) 199-206 201

1 00 1
0101 0000000000900
0010

Fig. 2. A Boolean matrix of a catastrophic fault pattern of 5 faults with link redundéicy

[1 01110 1] We claim that for every row the set of entry points co-
01 00 010 incides with the set of live elements.

Fig. 3. Examples of dead elements in a matrix wh@re {3, 5, 7}. Property 1. Let L; be the set of live elements of
row(i), thenE; = L;.

it is not difficult to verify that the fault pattern in i i L

Example 1 is catastrophic f@¥ = {4}. Proof. By induction oni. By deflnmon of E1, the
claim trivially holds fori = 1. Let it hold forE;, i >

1. Consider rowi + 1). By contradiction, define the
set of live elements which are not entry poifits; 1 =
Li+1 — Eiy1 # @. Let j be the smallest index such
that(i + 1, j) € W;+1. Depending on whethej =1
or j > 1, we shall consider two cases.

. . . . Casel (j =1). Sincep =G+ 11 ¢ Eit1,
Using the introduced notation, we will extend the then all (. g1). G.1 — g2 + 20)..... (0. 1) are not

_notlon of fur_10t|0nally faulty.to sequences of elements in E; (which is L; by inductive hypothesis). Then,
in W recursively as follows:

by Definition 1(2),p = (i + 1, j) is dead. A clear
contradiction.

Case2 (j > 1). Sincep = (i + 1, j) ¢ Ei+1, then
there existd such that all(i, j — gx + gx), (i,] —

3. Segments, gaps and shadows

3.1. Dead segments

Definition 1. A dead segmentis
(1) a set of consecutive dead elements in the same

Boivj :;Zx;yl); (()); y+1,.... (x,y+d)}, where (tg)k,_lJrgk)_, ... (i, j— g+ gc) are not entry points and
VS A S) , y inductive hypothesis are dead. Since- (i +1, j)
(2) if 1= (e y), - (6, y +d)) andSz = {(x, y"), is live, then there exist$, 1 <d <[—1, such thay =
ooy (x,y"+ h)} are dead segments/Wl_§h= y+ (i+1,j — g4) € Li+1; otherwise, by Definition 1(2),
d+1,thens={(x,y),....(x,y+h)}isadead , _ ;"4 1 ;) is dead. Nowg cannot be inEs1
segment; or (otherwise,p € E;;1). This contradicts the fact that

) if S1={(x,y),.... (x, g} and Sz = {(x + 1,0), j is the smallest index for whicki + 1, j) ¢ Wi1.
...,(x +1,d)} are dead segments where<l Therefore, the claim holds.O

d < gr,thenS ={(x,y),...,(x,g), (x +1,0),
..., (x +1,d)} is a dead segment. Theorem 1. A fault pattern is catastrophic if and only
if it has at least one dead segmentegpfelements.
Using the notion of segment, we now establish a
necessary and sufficient condition for a fault pattern, Proof. (=) By contradiction, let the fault pattern be
with arbitrary number of faults for an arbitrary link catastrophic, an&vi L; # . Consider the element

redundancy, to be catastrophic. sequencéy, o, ..., Liast l; € L, l; = (x;, y;), where
A live path is a path on which every element [55 is an arbitrary element it a5t # @; andl;, i <
is alive. Given live elementg and ¢, ¢ is reach- Last, is recursively constructed from, 1 as follows:
able from p if there exists a live path fromp Liy+1 (which by Property 1 isE;;1) is the set of
to ¢. The set of entry points of ro) is: E; = live elements in roW + 1) reachable from some

{live elements in row§) reachable from some element live element in rowi). Thus for everya € L;;1,
in E;_1} if i > 1, andE1 = {live elements in row(1) there exists at least an elemédnt L; such thata

202

is reachable fronb. Choosel; be the element irL;
from which/; ;1 is reachable. Therefore, the sequence
of l1, 12, ..., lLast, defines a path of live elementg,st

is reachable fronk;; thus contradicts the fact that the
fault pattern is catastrophic.

(<) By contradiction, letL; = ¢ and the fault
pattern be not catastrophic. Since the fault pattern is
not catastrophic, then there exigtsly, . .., I ast SUCh
thatl; € L; andl; € row(i), contradictingL; =9. O

3.2. Gaps and shadows

It is possible for the Boolean matrix to have several
contiguous rows (called “gap”) which do not contain
any faulty element. Should this be the case, the given
fault pattern can be partitioned into smaller fault

patterns such that the Boolean matrix of each of these

fault patterns does not have any gap. The original fault
pattern is catastrophic if and only if at least one of
these smaller fault patterns is catastrophic; this is due
to the following theorem.

Theorem 2. Given the Boolean matrix representation
of a fault patternF’ = {(x1, y1), (x2, y2), ..., (%, yn)}
there exists such thaty; 11 — x; > 2, let

F1={(x1,y1), (x2,y2), ... (xi, yi) }
and

Fo={(xi41, yit1), (Kig2, Yit2)s .-, (s y) 3

then F is catastrophic if and only ifFy or F> is
catastrophic.

Proof. (=) If F1 or F is catastrophic, then obviously
F is catastrophic.

(<) By contradiction, letF; and F» be not cata-
strophic. Then there exists a live path in F; from
row(1) to row(x;), and a live pathLy in F» from
row(x;+1) to the last row ofF. Since rowx; + 1) does
not have any faulty element, then (by Definition 1),
the only possible dead segment in this row has the
form {(x; +1,1),...,(x; + 1, j)} wherej > 1, and
the rest of the row elements are live. Thus, there is
no dead segment in raw; + 2). ThereforeL, can
always be connected with;. In other words, there
exists a live path from the first row of to the last
row of F, contradicting the assumption that is
catastrophic. O

A. Nayak et al. / Information Processing Letters 73 (2000) 199-206

We now define the “shadow” of a segment.

Definition 2. Let S be a segment, anfl be a segment

at distancel from S. ThenS is called the shadow of

S’ at distance if

(1) 1S1=15"|,and

(2) V(x,y) e Seither(x,y—d)e Sor(x -1,y —
d+ges.

Given a segmeng, let x(S) be thex coordinate of
the first element of, yr(S) be they coordinate of the
first element ofS, y; (S) be they coordinate of the last
element ofSs.

Definition 3. Let §2;, £2; be two segments?; < £2;
if yo(£2;) < yr(2;) andx(£2;) = x(£2;), orx(£2;) <

X(Qj).

Certain segments can be concatenated to form
larger segments. The definition for concatenation of
segments now follows.

Definition 4. Let £2;,2; be two segments with
yL(2) + 1 = yp(2)) and x(2;) = x(82)), or
yL(R2i) = gk, yr(82j) = 1, andx(£2;) + 1 = x(£2;).
The concatenation a; ands2;, denoted by2; @52},
is the segmenf2 whereyr(22) = yr(£2;), yL(£2) =
yL(£2)), andx (£2) = x(£2).

Lemma 1. Let S be a segment and,, be the seg-
ment at distancg; from S (1 <i <k). The dead seg-
ments inS are those in the sgfaulty elements ii§} U
{TT3, shadows of dead segmentsSofat distance;}.

Proof. By definition of dead element, the lemma
trivially holds. O

Definition 5. LetDYi] andDYi + 1] be the set of the
dead segments of rawy and row(i + 1), respectively.
The concatenation dSi] andDSi + 1], denoted by
DSi] e DY + 1], is the set of dead elements defined
as follows: let

a=Max{y.(22): 2 € DYil},
b=Min{y.(2): 2 eDSi +1]};

and let£2, and £2, be the corresponding segments.

A. Nayak et al. / Information Processing Letters 73 (2000) 199-206

Then

DSi]e DYi + 1]
Dql] U DS[l +1]U {Qa@gb} - {-Qaa -Qb}
if a =g andb =1,

DYiluDYi +1] otherwise

4. An efficient testing scheme
4.1. The algorithm

The algorithm proceeds as follows. The given fault
pattern F is decomposed into patterns which do not
contain any gap. By Theorem Z; is catastrophic if
and only if at least one of the pattern is catastrophic.
By Theorem 1, any such patte#fi is catastrophic if
and only if there exists a dead segment of size
Thus, the algorithm constructs all the dead segments;
in particular, it constructdSi] (the set of dead
segments of ro)), given DYi — 1] (the set of
dead segments of rgw— 1)). By Definition 1, a
segmentsS is dead if all k segments at distance
g1, 82, ..., g from S are dead. An important aspect of
the algorithm which is crucial to its efficiency is that
the dead segments of rgiy can only be found among
the shadows of the dead segments of ow 1).
Therefore, we can disregard all elements of (Qw
which are not in the shadows of the distance equal to
the longest bypass link.

Let S be a shadow at distancg from some
segmentirDYi — 1]. The algorithm determines which
parts of the segments iDFi — 1] ¢ DYi] are at
distancegs, g2, ..., gk—1 from § and compute the
intersection of all these parts. Any elemensiis dead
if and only if it belongs to this intersection. Another
aspect of the algorithm crucial for its efficiency is that

203

to detect the existence of gaps (i.exif1 — x; > 2).
When the first gap is found, it decompogéto two
fault patternsFy and F»> such thatF; does not con-
tain any gap. Then the algorithm calls a procedure
(DeadSegmentto check if Fy is catastrophic. IfF;
is catastrophic, the algorithm stops; otherwise, it re-
cursively calls itself withF» as its input. Note that if
F does not contain any gap, théia = F and F> = @.
The procedur®eadSegmenis shown in Fig. 4 and
the MergeSegmen() is given in Fig. 5.

Note thatp + 1 is the operation of negp), and
p — 1is the operation of previogg).

4.2. Analysis

Property 2. Algorithm correctly determines whether
or not a fault patternF is catastrophic.

Proof. F is decomposed into patterns which do not
contain any gap. By Theorem Z; is catastrophic if
and only if at least one of these patterns is catastrophic.
Thus, to prove the correctness, it suffices to prove
that the algorithm correctly determines whether any
such patternF’ is catastrophic. By Theorem 1’

is catastrophic if and only if there exists a dead
segment of sizg;. Thus, it suffices to show that the
algorithm correctly constructs all the dead segments;
in particular, it suffices to show thddS[i] will be
constructed correctly givadSi — 1]. By Definition 1,

a segmentS is dead if allk segments at distance
g1, 82, ..., 8, from S are dead. First of all, observe
that it suffices to verify the above condition only
for the segments which are shadows at distagice
from the segments iDSi — 1]. In fact, any element

of row(i), which is a shadow at distancg, of

a live element, is live; in other words, the only

once the above described process has been completegossible candidates for dead elements (and, thus, dead

for S, no backtracking is done when considering
the next segment iDYi — 1]. If, at any time, a
dead segment of sizg; is encountered, the fault

segments) are those which are the shadow at distance
g, of adead segmentiDSi — 1]. Let S be a shadow
at distanceg; from some segment iIDSi — 1].

pattern is catastrophic. If all dead segments have beenTo determine whether an element 8fis dead, we

constructed and no dead segment of gigdas been
found, the pattern is not catastrophic.

More in detail, given a Boolean matrix representa-
tion of a fault patternF’. The algorithm first checks
if F is empty. If it is empty, the algorithm stops and
reports that the fault pattern is not catastrophic; oth-
erwise, the algorithm scans linearly the fault pattern

must determine whether its shadows at distagce
g2,..., 81 are dead,; that is, we must determine
whether its shadows at distange, g, ..., gk—1 are

in DYi — 1] e DYi]. The algorithm first determines
which parts of the segments DSi — 1] e DYi] are

at distancegs, g2, ..., gk—1 from S and compute the
intersection of all these parts. Any elemensiis dead

204

A. Nayak et al. / Information Processing Letters 73 (2000) 199-206

DeadSegmentF)

Input: A Boolean representation & which does not contain any gaps.

Output: TRUE if F is catastrophic; FALSE iF is not catastrophic.

Data structure used:D[i] is an ordered (by théx, y) coordinates of the starting element) set of dead segments ¢f)row
and it is implemented as a linked list. For simplicity, BHi](k) denote theth dead segment iDi]. D]i] e DY /] is
the concatenation d»Si] andDY[j], and it is also implemented as a linked list. For simplicity([25[i] e DS /1) (k)
denote théth dead segment in the concatenatio&i] andDY ;].

Step 1:Initially, DeadSegmen() checks if| F| > g. If s0, it continues; otherwise, it returns FALSE.

Step 2: Then,DeadSegmen() scansF to form, for each row, the set of dead segments lying on that row. If, at any time,
DeadSegmer() encounters a dead segment encompassing the entire row, it returns TRUE (by Theorem 1, the pattern is
catastrophic). If all dead segmentsfirhave been built and no dead segment of gjzés found,DeadSegmer() returns
FALSE (by Theorem 1, the pattern is not catastrophic). The set of dead segments(fr, @%1], is composed of the
segments formed by the faulty elements in ¢bw Given the seDSi — 1] of dead segments for raw— 1), the seDSi]

of dead segments for raw is constructed as follows:

LO: form an initial setDSi] by merging faulty elements in ra@);

r=1
L1: if DYi — 1] =¥ thenDY] is done;
o =|DJi - 1];

for(A<d<k)l;=2;
for(l<t<a){
Sy < DYi — 1](2);
2 < shadow ofS;, at distanceg;
for(k—1>j>1{
lj=maxl;. lj1};
L2: S; < (DSi — 1] e DYiN(;);
2 < shadow ofS; at distanceg;;
if 2; < then
if /; = |DSi — 1] « DYi]| then goto L3;
else{l; =1; + 1, goto L2}
if 2 < og then goto L3;
R < 2NQj;
1
MergeSegmengs2, D], p);
L3: continue;

}

Fig. 4. Procedur®eadSegmentr).

if and only if it belongs to this intersection. Since this
is done for every row, the claim follows.O

Property 3. For anyrow(i) in the Boolean represen-
tation of a fault pattern, let; be the number of faults
in that row, and|DS(i)| be the number of dead seg-
ments in that row, thetDS(i)| <n; + 1.

Proof. By contradiction, letDS(i)| > n; + 1. Then
there are at least two dead segmesfitsandS», which
do not contain any faults. Without loss of generality,
let S1 < So; thus yr(S2) > 1. In other wordsw =

(i, yr(S2) — 1) exists and is live. Sincé2 does not
contain any faulty element, all elements # are
reachable byp. This contradicts the fact thab is a
dead segment. Thus, the statement holds.

Property 4. Algorithm requiresO(kn) time, wherek
is the number of bypass links, ands the number of
faults.

Proof. The given fault patternF is decomposed
into patterns which do not contain any gap. This is
done in time @n). In the worst case, the procedure

A. Nayak et al. / Information Processing Letters 73 (2000) 199-206

205

MergeSegments2, D], p)
Input: §2, DY), p;
Output: DYi], p;

Outline: This procedure first scai3y] starting fromp to find the location fos2; then inserts2 into DSi]. The procedure
then returns the modifie@Si] and the location of the next segment

while (y£(2) > y (DSi1(p)))., p=p +1;

Y =min(yr (2), yr(DFil(p)));

q=p;

while (y. (£2) > yr(DSil(@))), g=¢q + 1,

yp =max(yr(£2), y.(DSil(g — 1)));

replace all segments fromto ¢ — 1 with the new segment
{G, ¥p), G, yp)} in DY,

p = pointer to this new segment;

returnDYi] and p.

Fig. 5. ProcedurdergeSegments2, DYi], p).

DeadSegmentwill be applied to each such pattern.
For any inputF’ of DeadSegment
(1) The number of rows i is at most 2’ wheren’
is the number of faults irF”’. This is becausé”
does not contain any gap. By Propertyl3S(F’)|,
the number of dead segments ki, is at most
Zizn/(n; +1)=n'+2n' =3n’. Thus,|DS(F’)| is
o).
DeadSegmentconstructs the overall s&S row
by row. It usesk — 1 pointers (thd;’s). At each
step of the execution, each pointer can move
forwards (“advance”) or not (“stay”); it cannot
ever move backwards. The number of “advances”
for each pointer is at mogDS(F’)|, so is the
number of “stays”. Thus, each pointer requires at
most 2DS(F’)| = O(n) operations, for a total of
O(kn) time fork — 1 pointers.
As for the cost of the merging operation, the initial
merge (executed in step LO of the algorithm) re-
quires Qn;) operations. The total cost of merging
new dead segments withSi] by callingMerge-
Segmentis O(n;) since the entirdgi] is only
scanned once. The total cost Bf, is O(n').
Therefore, the total cost foF’ is O(kn’). Thus,
the total cost for each patterfi’ into which F has
been decomposed is(’). Since these patterns are
disjoint, the total cost of algorithm is @n), wherek
is the number of bypass links ands the number of
faults. O

)

®)

Theorem 3. Algorithm correctly determines whether
or not a fault pattern is catastrophic i@(kn) time,
wherek is the number of bypass links at each element,
n is the number of faults.

Proof. The theorem follows from Properties 2
and4. O

5. Concluding remarks

Let W* be W with two extra rows of all O’s, one
at the top and the other at the bottom. We can view
the Boolean matrixW* as a directed mesh with an
additional link structure¥g € G, every mesh element
(p,q) is also connected t@, s) wherer = p + 1 if
q + g > gk, otherwisep, ands = (¢ + g) modgy.

In this rather complex mesh, elements correspond-
ing to 1 entries inW are obstacles It is not dif-
ficult to verify that the pattern corresponding %
is not catastrophic foiG if and only if there is an
obstacle-avoiding path from any element in the first
row to any element in the last row d¥*. Hence,
our testing scheme actually solves a more general ver-
sion of the classical problem of finding a obstacle-
avoiding path in a two-dimensional grid (e.g., [11,
12)).

206

References

[1] R. De Prisco, A. Monti, L. Pagli, Testing and reconfiguration
of VLSI linear arrays, Theoret. Comput. Sci. 197 (1998) 171—
188.

[2] R. De Prisco, A. De Santis, Catastrophic faults in reconfig-
urable systolic arrays, Discrete Appl. Math. 75 (1997) 105—
129.

[3] A. Nayak, V. Acciaro, P. Gissi, A note on isomorphic chordal
rings, Inform. Process. Lett. 55 (1995) 339-341.

[4] A. Nayak, L. Pagli, N. Santoro, On testing of catastrophic
faults in reconfigurable arrays with arbitrary link redundancy,
Integration, the VLSI J. 20 (1996) 327-342.

[5] A. Nayak, L. Pagli, N. Santoro, Efficient construction of
catastrophic patterns for VLSI reconfigurable arrays, Integra-
tion, the VLSI J. 15 (2) (1993) 133-150.

[6] A. Nayak, L. Pagli, N. Santoro, Combinatorial and graph
problems arising in the analysis of catastrophic fault patterns,
in: Proc. 23rd Southeastern Conf. on Combinatorics, Graph
Theory, and Computing, Congressus Numerantium 88 (Utilitas
Mathematica), 1992, pp. 7-20.

A. Nayak et al. / Information Processing Letters 73 (2000) 199-206

[7] A. Nayak, N. Santoro, R. Tan, Fault-intolerance of reconfig-
urable systolic arrays, in: Proc. 20th Internat. Symp. on Fault-
Tolerant Computers, Newcastle upon Tyne, 1990, pp. 202—-209.

[8] L. Pagli, G. Pucci, Reliability analysis of redundant VLSI
arrays, Inform. Process. Lett. 50 (1994) 337-342.

[9] J. Ren, Geometric characterization of fault patterns in linear
systolic arrays, M.C.S. Thesis, School of Computer Science,
Carleton University, Ottawa, Canada, 1994.

[10] P. Sipala, Faults in linear arrays with multiple bypass links, Re-

search Report No. 18, Dipartimento di Informatica, Universita
Degli Studi di Trieste, ltaly, 1993.

[11] P. Widmayer, On graphs preserving rectilinear shortest paths

in the presence of obstacles, in: P.L. Hammer (Ed.), Annals
of Operations Research, Topological Network Design, Vol. 33,
Baltzer, 1991, pp. 557-575.

[12] Y.F. Wu, P. Widmayer, M.D.F. Schlag, C.K. Wong, Rectilinear

shortest paths and minimum spanning trees in the presence of
rectilinear obstacles, IEEE Trans. Comput. C-36 (1987) 321—
331.

