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Abstract

We consider the problem of uniformly dispersing mobile robots in an unknown connected
orthogonal space. The robots are autonomous and identical, they enter the space from a single
point, and move in coordination with other robots, relying only on sensed local information
within a restricted radius. The existing solutions for the problem require either the robots to be
synchronous or the space to be without holes and obstacles. In this paper we allow the robots
to be fully asynchronous and the space to contain holes. We show how, even in this case, the
robots can uniformly fill the unknown space, avoiding any collisions, when endowed with only
O(1) bits of persistent memory and O(1) visibility radius. Our protocols are asymptotically
optimal in terms of visibility and memory requirements, and these results can be achieved
without any direct means of communication among the robots.

1 Introduction

Unlike their static counterparts, mobile sensors and robots can self-deploy within a target space
S to “cover” it so to satisfy some optimization criteria. To achieve such a goal without the help
of any central coordination or external control is a rather complex task, and designing localized
algorithms for efficient and effective deployment of these mobile entities is a challenging research
issue. Such a task has been studied by several authors and continues to be the subject of extensive
research. Most of the work is focused on the (uniform) self-deployment problem; that is, how to
achieve uniform deployment in S (usually assumed to be polygonal) starting from an initial
random placement of the sensors in S (e.g., [2, 6, 7, 8, 9, 10, 12, 13, 16, 17]).

The problem has recently been studied within the context of weak robots: the mobile entities
rely only on sensed local information within a restricted range, called visibility radius; usually
they have no explicit means of communication or with a very limited radius, called called com-
munication range. Localized solution algorithms for such weak robots have been developed for
special spaces such as a line (e.g., a rectilinear corridor), a ring (e.g., the boundary of a convex
region), a grid , etc. (e.g., [1, 3, 4]; see [5] for a recent survey).

We are interested in a specific instance of the self-deployment problem, called the Uniform
Dispersal (or Filling) problem, where the robots have to completely cover an unknown space S
entering through a designated entry point. In the process, the robots must avoid colliding with
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each other, and must terminate (i.e., reach a quiescent state) within finite time [9, 11, 15]. The
space S is assumed to be orthogonal, i.e. polygonal with sides either parallel or perpendicular
to one another; orthogonal spaces are of particular interest because they can be used to model
indoor and urban environment (e.g., floorplans, city maps, etc).

Figure 1: An arbitrary closed space (Left) represented as an orthogonal grid of cells(Right). Each
cell can contain a single robot.

Our focus is on the minimum capabilities required by the sensors in order to effectively com-
plete the uniform dispersal task.

There are some intrinsic limitations on the type of memory and the visibility/communication
radius needed to solve the uniform dispersal problem for any connected orthogonal space whose
shape is a priori unknown.

In particular, it is known that the robots need to have some persistent memory of the past;
the problem is in fact unsolvable by oblivious robots even if the system is fully synchronous and
the robots have unlimited visibility and unlimited communication radius [15]. It is similarly
unsolvable by robots that cannot see nor communicate, even if the system is fully synchronous
and the robots have unlimited persistent memory [15].

Since oblivious robots cannot deterministically solve the problem, the question is whether
the problem is solvable by finite-state robots, that is robots with a constant number of bits of
non-volatile memory. More specifically, since robots that cannot see nor communicate cannot
deterministically solve the problem, the main research question is whether the problem is solvable
by finite-state robots that have just a constant visibility radius (and constant communication
range) .

Two existing results hints that, under very restrictive conditions, the answer to those ques-
tions is positive. In fact, it has been proven that finite-state robots with constant visibility and
communication radius are able to solve the problem if the system is fully-synchronous (FSYNC),
which allows perfect coordination between the robots [11]. A similar positive result has been
established for asynchronous systems (ASYNC) if the space S contains no holes (i.e., obstacles
completely within S) [15].

In this paper we lift these two restrictions: we allow the robots to be fully asynchronous and
the space to contain holes; and we the show that the answer is indeed positive in all cases. We
constructively prove that robots endowed with only O(1) bits of persistent memory and O(1)
visibility radius can always uniformly fill the unknown space, avoiding any collisions; this results
can be achieved without any direct means of communication.

In particular, we present a solution protocol that, without using any direct communication,
solves the problem for robots having only a few states and a visibility radius v = 6. We then
investigate the use of direct communication of constant range and show how to use it to decrease
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the visibility radius, without increasing the memory requirement. Namely, we introduce a second
protocol that, using communication radius c = 1, solves the problem for finite-state robots having
visibility radius v = 1; transmitted messages in this protocol are of constant size. A summary
of these results is shown in table 1. Due to the space constraint, some of the proofs have been
omitted and they can be found in the appendix.

Algorithm Memory Visibility Communication Synchronous
of Robots Radius Radius

MUTE O(1) 6 no communication NO

TALK O(1) 1 1 NO

Table 1: Summary of contributions.

2 Model and Definitions

The system is composed by a set R of mobile entities, called robots, whose task is to completely
cover a space S that they enter sequentially from the same place.

The space S is a connected finite orthogonal region of the plane possibly with holes; the shape
of S is arbitrary (see Figure 1). Connected means that it is possible to reach any point of S from
any other point of S; a hole is a region of the plane which is not part of S and is surrounded
completely by points of S; the boundaries of S and holes are called obstacles. The region S and
its holes are assumed to be partitioned into square cells; each cell can be covered completely by
a robot, and each hole is composed of an integral number of cells. Let |S| = n be the number of
cells of S.

The robots in R are simple computational entities with sensory and locomotion capabili-
ties.The sensory devices on the entity allows it to have a vision of its immediate surroundings up
to a fixed distance called visibility radius1 v. The robots may have or may not have an explicit
means of communicating; if available, this ability is also restricted to a fixed distance called com-
munication range2 c, and each transmission is restricted to a constant number of bits. Both the
visibility radius and the communication range remain constant in time. The robots have local
sense of orientation, that is a consistent notion of up-down and right-left ; however, they do not
have any global positioning mechanism, and have no knowledge of the shape of S other than
that it is connected and orthogonal. The robots are anonymous, in the sense that there are no
distinct ids and they are externally identical, autonomous, and they all follow the same protocol.
Each robot has a constant number of bits of non-volatile working memory; thus the robots are
finite-state machines with s distinct states.

On entering S, a robot operates in continuous active-inactive cycles. When active, a robot
performs a Look-Compute-Move sequence of operations: It first takes a snapshot of its surrounding
inside the visibility radius to know which cells are occupied, empty or obstacle (Look). Using the
information provided by the snapshot and its local state, the robot executes the protocol to
determine a new state and a destination cell, which is either the same where it currently resides
or one of the four adjacent cells (Compute). Finally, it moves to the computed destination (Move).

1A visibility radius of one means that the robot sees all eight neighboring cells.
2A communication range of one means that the robot can communicate directly to the robots located in the

eight neighboring cells.
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It then becomes inactive. In case the robots have communication capabilities, a robot may send
messages to any robot within its communication range, during the Compute stage. The message is
immediately received and causes the receiving robot to change its state. Each cycle of activity is
assumed to be non-interruptable, in the sense that once they are started they will be completed.
However, the robots are asynchronous: there is no global synchronization among the cycles of
different robots, and the time elapsed between two consecutive operations by the same robot, as
well as between two consecutive activations, is finite but arbitrary.

The robots enter S through a special cell called door. This cell could be located anywhere and
it is indistinguishable from other cells; that is, a robot cannot distinguish the door from other
cells using its sensory vision. However, unlike other cells, the door is never empty: whenever a
robot leaves the door cell, a new entity appears it. If a robot is in a cell, it completely covers it.
If two or more robots are in the same cell at the same time then there is a collision. Two cells
are called neighbors if a robot can move from one to the other in one step. The distance between
two cells is the smallest number of steps a robot needs to move to reach one cell from the other.
The successor of a robot r is the robot that entered S just after r and its predecessor is the robot
that entered just before r.

The problem to be solved called uniform dispersal (or filling), requires that within finite
time, the entire space is completely filled, i.e., every cell of the space is occupied by exactly one
robot. Furthermore the system configuration at that time must be quiescent, i.e., no robot moves
thereafter.

3 Algorithm for Filling without Communication

In this section, we consider robots that do not have any explicit means of communication. The
robot can still see other robots (if they are within the visibility range). So the only way for
robots to coordinate with each other is by means of their vision and their movements. We present
an algorithm (MUTE) that succeeds in filling the entire space with such robots, without any
collisions, even under the restriction that both the amount of memory available to a robot and
its visibility range are constants (independent of the size of the space and the number of robots).

The strategy of Follow the Leader introduced in [11], solves the filling problem by moving the
robots in a single file, with one leading robot. However, when there are holes, it is possible there
are cycles in the path of the leader, which would lead to either a deadlock or a collision. To avoid
forming any cycles, the algorithm MUTE uses the simple trick of putting up a wall to block any
secondary access to the path. In other word, whenever the Leader reaches a cell from which it can
move in more than one direction (henceforth such a cell is called a bifurcation cell), the leadership
is passed to the next robot and the old leader moves to one of the neighbouring cell to block this
access until the current path is completely filled.

During the algorithm MUTE, the robots can be in one of the following four states:

• Leader: There is at most one robot in this state at any time during the execution of the
algorithm3.

• Follower: A robot in this state is always in the path followed by the current leader.

• Blocking: A robot in this state was a Leader that reached a bifurcation cell and moved to
block one of the access to the path. A robot in this state remains stationary until all other

3Except during the process of transferring the leadership as explained later

4



possible directions4 become completely filled. At this moment, if it is possible for this robot
to move, then it reassumes the leadership and starts moving again.

• Stopped: Any robot in this state was a Leader that reached a dead-end. This is a termi-
nating state so robots that enter this state never move again.

The transition from one state to another, during any execution of algorithm MUTE, is defined
by the diagram shown in Figure 2.

None

Follower Leader

Stopped

Blocking

Figure 2: States transition diagram of algorithm MUTE where None is the state of the robot
when it appears at the door.

Note that the robots need to coordinate with each other to pass the leadership, exchange state
information, avoid collisions and so on. Since the robots lack any means of explicit communi-
cation, we need to use the visual capabilities of the robots to implement some sort of implicit
communication. In algorithm MUTE, this is achieved by assuming a visibility range of six cells
(i.e. the robots can see up to a distance of six cells in each direction). This visibility range is
enough to permit each robot to see the preceding and succeeding robots, and still maintain an
appropriate distance between them so that the robots can move in special patterns as a signalling
mechanism to exchange information whenever necessary. In order to communicate implicitly us-
ing vision, both robots, the sender and the receiver of the information, effectuate some special
movements. This is reminiscent of the way some species of animals or insects communicate among
themselves (e.g. the dancing of the bees when they find a source of food).

Thus, during the algorithm the robots move along a path maintaining a fixed pattern (i.e.
a fixed distance between successive robots). This pattern is broken when a robot (typically
the leader) needs to communicate with its successor. The successor realizes the break in the
pattern and thus, it knows that a communication process has started. The receiver acknowledges
that it has received the information by making a special movement (specified later). Once the
information exchange is completed, the two robots continue moving along the path, maintaining
the fixed pattern as before. Algorithm 1 presents the rules for movement of a robot r when it is
not is the process of communicating with another robot. Algorithm 2 defines the rules for two
consecutive robots in the path that are in the process of communicating something.

During the algorithm, the system of robots is always in a correct configuration as defined
below.

Definition 1 During algorithm MUTE, at any time t, the system is said to be in a correct
configuration if and only if the following conditions hold:

• There is at most one Leader, or, the leadership is being passed from one robot to another
(by means of a special communication process).

4the blocking robot only takes into account the direction that were still open at the moment it enters in the
Blocking state
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Algorithm 1 (MUTE): Rules for movement

A robot r moves forward (except when it is in the process of communicating) if and only if the
following conditions hold:

1. Robot r is not is state Blocking or Stopped.

2. The cell to which r wants to move is not occupied

3. r does not have a predecessor or the predecessor is at distance four.

4. r does not have a successor or the successor is at distance three or the successor is at the
door, at a distance less than three.

• Let Π be the path followed by the Leader from the door to its current location (If the leadership
is being passed we consider the old leader), then:

– Except the Leader, any robot located on Π is in state Follower.

– Any robot in state Follower is located in Π.

– Every cell p′ /∈ Π that has a neighboring cell p ∈ Π is occupied by a robot either in state
Blocking or in state Stopped.

• Let R = {ri : 0 ≤ i ≤ l}, be the ordered sequence of robots in Π where l is the number of
robot in state Follower, rl is the leader and r0 is the robot at the door. And let ri and rj,
i, j > 0, j = i + 1, be two consecutive robots in R

– If neither ri nor rj is in the middle of a communication process then the distance in Π
between them is either three or four.

– If ri and rj are at distance less than three, then they are in the process of communicating
with each-other.

Note that the robot r0 which is at the door, is not required to satisfy the last condition of a
correct configuration. This is because, whenever the door becomes empty, a new robot appears
at the door. Thus, the pattern of distances cannot be maintained near the door. However, as we
will show this does not affect the behavior of the rest of the robots.

We shall now explain in more details when and how communications take place in algorithm
MUTE. During any execution of the algorithm there are four situations in which a robot needs
to communicate some information to its successor. We describe below these four types of com-
munications called Blocking, Stopping, Bifurcation and Reopening.

1. Blocking: This situation occurs when the leader reaches a cell with more than one possible
direction of movement (see figure 4). In this case the leader (the dark-gray robot in the
figure) does not need to take any special action. The leader waits until its successor (the
white robot) is at distance three; it then moves to one of the possible directions and changes
its state to Blocking (the light-gray robot in the figure). When the successor robot was at
distance four (figure 4 (a)), it realizes, before its next move, that its predecessor has more
than one possible movement. So after the move, the successor becomes the new leader (the
dark-gray robot in figure 4 (b)), while the predecessor changes to state Blocking. As a
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Algorithm 2 (MUTE): Rules for implicit communication

Robot s needs to notify something to its successor r which is at distance three (see Figure 3).

1. s waits until r’s successor becomes visible. This is to ensure that r’s successor knows
that there is a communication process in progress ahead so it does not move until the
communication is completed.

2. s moves one step back to notify a communication of either a Bifurcation or Reopening
(Figure 3 (b)). As explained later, the visibility range of the robots and the pattern main-
tained by the robots in the path, allows robot r to realize which kind of communication is
taking place. After the move, robot s waits for an acknowledgement from robot r.

3. To acknowledge the receipt of the communication, robot r now moves one step ahead and
waits for a notification from robot s (Figure 3 (c)).

4. s signals the end of the communication process by moving one step ahead; it then waits for
an acknowledgement again (Figure 3 (d)).

5. Robot r acknowledges by moving one step back. At this time, the communication has ended
and both robots are back in their original positions (Figure 3 (e)).

result, the leadership was passed from one robot to another and the communication process
ends here.

2. Stopping: This situation occurs when the leader rl is moving to the end of the path and
it has only one more move to perform (Figure 5(b)). In this case, the Leader’s successor rs,
cannot distinguish whether its predecessor is in the middle of a communication process with
some robot ahead (Figure 3) or, the predecessor is the leader going to a dead-end (Figures
5 (b) and (e)). Thus rs will wait at distance four from rl. The Leader rl moves one step
ahead to communicate to the successor rs that the leader has reached a dead end and the
leadership should be passed to another robot. Note that if rl was at a bifurcation cell (before
the move) then it will now become Stopped (Figure 5 (c)). In this case, the next Blocking
robot will notify rs which is the new direction. Otherwise, if rl was not at a bifurcation cell,
it will become Blocking (Figure 5(f)), and then communicate to rs that the path is going
to a dead-end. This communication is similar to the Reopening communication (described
below) when a new direction of movement is communicated (except that the new direction
is actually a dead-end in this case, and the robot rs will realize that).

3. Bifurcation: This situation occurs when a robot, either a Follower or a Leader, is in a
bifurcation cell with only one possible movement (Figure 6), so the robot must communicate
to its successor the information that this is at a bifurcation cell.

4. Reopening: A Blocking robot b must reopen the blocked direction because all other direc-
tions that were open before, are now completely filled (figure 5 (c) and (e)). It is possible that
are other Blocking robots in neighboring cells, but if those directions were blocked before b
became Blocking, then robot b has the higher priority to reopen its blocked direction.

In the two last types of communication (Bifurcation and Reopening) robots must take some
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Figure 3: Behavior of sender robot s and receiver robot r, during a communication process.

(a) (b)

Figure 4: (a) The Leader (colored Dark-grey) reaches a cell with more than one possible moves
(b) It blocks one direction and passes leadership to the successor.

special action in order to communicate. The behavior of the two robots during these two types of
communication is essentially the same and follows the rules of Algorithm 2. Notice that whenever
two robots start such a communication process they do nothing else until the communication has
terminated. In this sense, the communication process can be thought of as an atomic action.

There are a few complications that can occur during the communication process of Algorithm
2, due to the special condition for robots at the door. First consider what happens if at the start
of the communication process, the successor of the receiver ( rs ) is at distance less than three
from the receiver ( r ). There are two cases when this situation could occur. Either when rs is
at door or when rs itself is communicating with r. In the first case rs will not move since its
predecessor is at distance less than three. And, in the second case, rs will move back just one step
returning to distance three from r. Notice that r will not move until rs moves back since they
are in a communication process. After that, r can start communicating with its predecessor s.
Thus, both communications would be successful. Now, let us consider the case when the receiver
robot r is at the door. In this case, since robots can see at distance six and all the robots enter
the space through a unique door, any robot at the door can distinguish among the four scenarios
in which some communication is needed. Thus it is not actually necessary to notify anything to
a robot that is at the door. Moreover since the sender robot s would itself be within a constant
distance of the door, it can remember whether its successor r is at the door or not. Thus the
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Figure 5: The Leader (colored Dark-grey) is moving to the end of the path. The white robot is
a Follower which is next robot in the path. Black robots are in state Stopped, while Grey robots
with an arrow are in state Blocking (i.e. blocking the exit in the direction of the arrow).

robot s would act as if the communication has already been sent to r.
We can show the following properties about the algorithm MUTE to prove its correctness.

Proposition 1 The following holds during algorithm MUTE: (1) Starting from a correct config-
uration, every communication process ends in a correct configuration. (2) Starting from a correct
configuration, every movement following the rules of Algorithm 1 ends in a correct configuration.

Proposition 2 There are no collisions during Algorithm MUTE.

Proposition 3 There are no deadlocks during any execution of algorithm MUTE.

Proposition 4 Algorithm MUTE always terminates within a finite time.

Proposition 5 Algorithm MUTE always completely fills the space S.

The above results prove the correctness of the algorithm. Recall that the robots can be in only
five states and in each state a robot needs to remember only a constant amount of additional
information. To summarize:

Theorem 1 Algorithm MUTE solves the filling problem for any connected mesh of size n without
collisions and using exactly n robots, each of which has O(1) memory and a visibility radius of
six.
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(b)(a)

Figure 6: Either a Follower (colored White) or the Leader (colored Grey) is in a bifurcation cell.

4 Algorithm for Filling with Explicit Communication

The algorithm in the previous section used robots having a visibility radius of six to solve the
Filling problem. We now show that if explicit communication is allowed between robots (even
within short ranges), then the visibility radius of the robots could be reduced one. Note that this
is the minimum visibility radius necessary to solve Filling without any collisions [15].

In this section we present an algorithm (TALK) which solves the filling problem when both
the visibility and communication ranges are limited to distance one. The algorithm still requires
only a constant amount of memory for each robot, and fills the complete space without any
collisions. Algorithm TALK also uses the basic strategy of follow-the-leader, but no robot moves
until its previous position is occupied by the successor. This ensures that the distance between
consecutive robots in the path is never more than two (at most one cell between consecutive
robots). If the leader robot r is about to move to a cell x that was visited before (e.g. when
the path has a cycle), robot r can determine whether cell x has been already visited, by asking
the robots in the cells neighboring x (Robot r can see at least two such cells and one of them
would contain a robot). Thus the algorithm can avoid collisions. During the algorithm, the leader
always moves to an unvisited cell, while the followers always move to the previous position of
their predecessor. If the leader does not have any unvisited neighboring cell, it stops moving and
passes the leadership to its successor.

The robots could be in one of the following states while executing this algorithm:

1. Leader: At any time, there is at most one robot in this state. This robot always moves to
an unvisited cell. If there is no possible movement it passes the leadership to its successor
and changes to state Stopped.

2. Follower: A robot in the state is always on the path from the door to the current Leader.
A Follower robot always moves to the previous position of its predecessor unless it receive
the leadership (in this case it changes to state Leader).

3. Stopped: A Robot in this state has terminated and does not ever move again during the
execution of the algorithm.

A new robot appearing at the door changes to state Follower or Leader depending on whether or
not it sees any robots in the neighboring cells.
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The following variables and functions are used by a robot r to store and share information about
past and future moves:

• r.Entry is the cell from which r entered its current position. This variable is NULL if r is
at the door.

• r.Exit is the cell to which r should move in the next step. This variable is NULL for the
Leader and the Stopped robots.

• Find-Next-Move(NewCell) is a function that returns true or false depending on whether or
not there is a valid next move (i.e. an unvisited neighboring cell). The possible destination
is returned as parameter NewCell.

The communication between robots uses the following types of messages:

1. Leadership: This message is sent by the Leader to transfer the leadership to its successor.

2. N ext-Pos: This message is sent by either a Leader or a Follower, just before moving. This
informs their successor about the next position in the path.

When a robot r receives a Next-Pos message from the cell x, the variable r.Exit is set to cell
x. The rules of the algorithm are presented in Algorithm 3. The implementation of function
Find-Next-Move() is straightforward and it is omitted.

We can prove the following properties for the algorithm.

Proposition 6 There are no collisions during Algorithm TALK.

Proof: As in the previous algorithm, a robot never moves to an occupied cell. Furthermore,
according to the rules of the algorithm, no robot backtracks and a Follower robot can move only
to the last position of its predecessor, when this cell becomes empty. Since only the Leader can
move to unvisited cells, no collisions are possible. Therefore, algorithm TALK is collision free.

Proposition 7 Algorithm TALK terminates in finite time.

Proof: According to the rules of the algorithm, the Follower robots always move on the path
of Leader while the Leader only moves to unvisited cells and passes the leadership to its successor
whenever it cannot find any empty cell to move to. Since the number of cells are finite, any Leader
must eventually stop and pass the leadership. Every new leader will also stop in finite time and,
thus every robot on the path will stop. Therefore the algorithm terminates in a finite time when
every robot has stopped.

Proposition 8 Algorithm TALK completely fills the space S.

Proof: Suppose that after termination of the algorithm, at time t, there are some cells that
remain empty. Let p be such a cell. Notice that if this cell was visited before then there must be
a Follower robot r in one of its neighboring cells and the next time this robot executes, it will
move to cell p, contradicting the fact of the termination of the algorithm. Thus, every empty cell
must be an unvisited cell.

However since the space is connected, there must be an empty (and hence unvisited) cell
adjacent to an occupied cell q. Consider the last robot that visited cell q. This robot is now
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Algorithm 3 (TALK) : Rules followed by robot r

if (r.State = None) then
if (all neighboring cells are empty) then
r.State← Leader

else
r.State← Follower

end if
else if ( r.State = Follower ) then

if ( ( r.Exit 6= NULL ) ∧ ( r.Entry is occupied )) then
NewPos← r.Exit
r.Exit← NULL
Send message Next-Pos to r.Entry.
r.Entry ← Current cell.
Move to NewPos

end if
else if ( r.State = Leader ) then

if ( r.Entry is occupied ) then
if ( Find-Next-Move(NewCell) = true ) then

Send message Next-Pos to r.Entry.
r.Entry ← Current cell.
Move to NewCell

else
Send message Leadership to r.Entry.
r.State← Stopped

end if
end if

end if

Stopped (since the algorithm has terminated). But according to the rules of the algorithm, a
robot cannot become Stopped if there is an unvisited cell adjacent. This contradiction proves
that there cannot be any empty cells after the termination of the algorithm. Thus, the algorithm
completely fills S.

We summarize the above results as follows:

Theorem 2 Algorithm TALK solves the filling problem for any connected space of size n without
collisions and using only n robots each having a constant amount of memory and a visibility and
communication radius of one.
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APPENDIX

Proof of Proposition 2
In algorithm MUTE, robots may backtrack only during a communication process. During the
communication process, the sender moves back only when the receiver (its successor) is at distance
three, and the rules of the communication process ensure that these two robots do not collide.
Moreover these two robots do not go beyond the stretch of path between them (when they started
the communication), and all cells neighboring the path are blocked, in any correct configuration.
Thus no collisions can occur during a communication process.

Let us now assume that no communication takes place and suppose a collision occur the
normal movement of the robots. Since robots never move to an occupied cell, such a collision
must involve either Follower or Leader robots that move to the same cell simultaneously. Now,
the movements of a Follower is restricted to the part of the path between its current cell and its
predecessor which is always at least three cells away and no other robot can enter this path as
all exits are blocked. Thus, a Follower robot is never involved in a collision. This leaves us with
only Leader robots, and since there is at most one such robot at any time, there cannot be any
collisions.

Proof of Proposition 3
First notice that any communication process ends within a finite time. Outside of the communi-
cation process, let us consider the cases when a robot waits for another robot. Note that Stopped
robots have already terminated and a blocking robot never waits for another blocking robot, so
any deadlock must involve at least a Leader or Follower robot. The only case when a leader
waits is when its successor s is at distance four. But in this case successor s would move unless
the successor of s is also at a distance four from s. This implies that every robot in the path
has its successor at distance four. Otherwise the robot that is closer than distance four from its
successor, would move, contradicting the existence of deadlock. However, since the robot at the
door does not have any successor, it could move and this contradicts the existence of a deadlock.
Thus no leader or follower could be involved in a deadlock and thus there are no deadlocks during
the algorithm.

Proof of Proposition 4
We have already seen that the algorithm ensures there are no cycles in the path and thus no
robot visits the same cell twice except during a communication process. A communication process
always ends in finite time, and at that both the receiver and the sender are back in their original
positions. Moreover, according to the rules of the algorithm no pair of robots communicates more
than twice from the same cells. So, within a finite time the robots involved in a communication,
must either moves to a new cell or stop moving. Since there are only a finite number of new cells,
all robots must stop after a finite time.

Proof of Proposition 5
Suppose for the sake of contradiction that after the algorithm terminates there are some empty
cells and let us consider an empty cell p that is adjacent to an occupied cell q (such a cell must
exist as S is connected). Since the algorithm has terminated, the robot r in cell q is in state
Stopped. This implies that when r became Stopped, either cell p was occupied or it was the
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previous location of robot r. In either case cell p had been occupied by some robot in the past.
Consider the last robot rl to visit p. When robot rl moved out of cell p, it must have a successor
and thus the successor must have visited cell p too. This contradicts the fact rl was the last robot
to visit cell p. Thus, there cannot be any empty cells after the termination of algorithm MUTE.
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