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Abstract

In this paper we are interested in synchronous distributed systems subject to transient and ubiquitous failures. This includes
systems where failures will occur on any communication link, systems where every processor will experience at one time or
another send or receive failure, etc., and, following a failure, normal functioning resuming after a finite time. Notice that these
cases cannot be handled by the traditional component failure models.

The model we use is the communication failure model, also called the transmission failure or dynamic faults or mobile faults
model. Using this model, we study the fundamental problem of agreement in synchronous networks of arbitrary topology with
ubiquitous faults.

We establish bounds on the number of dynamic faults that make any non-trivial form of agreement (even strong majority)
impossible; in turn, these bounds express connectivity requirements that must be met to achieve any meaningful form of agreement.
We also provide, constructively, bounds on the number of dynamic faults in spite of which any non-trivial form of agreement (even
unanimity) is possible. These bounds are shown to be tight for a large class of networks, which includes hypercubes, toruses,
rings, and complete graphs; incidentally, we close the existing gap between possibility and impossibility of non-trivial agreement
in complete graphs in the presence of dynamic Byzantine faults.

None of these results is derivable in the component failure models; in particular, all our possibility results hold in situations for
which those models indicate impossibility.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. The framework

In this paper we are concerned with the fundamental problem of reaching agreement in the presence of faults. We
are interested in synchronous distributed systems subject to (possibly transient) ubiquitous failures; that is, faults occur
anywhere in the system and, following a failure, normal functioning can resume after a finite (although unpredictable)
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time. This includes systems where failures will occur on any communication link, systems where every processor will
experience at one time or another send or receive failure, etc.

The reality of these systems is not fully captured by the component failure models proposed in the literature.
Consider, for instance, the processor failure model (e.g., see [15,17,19,21,28]). In this model, only processors can

be faulty; any other type of failure is inscribed to the faulty behaviour of some of the involved processors: if a message
is lost, either the sending or the receiving processor will be declared faulty; once this happens, that processor will be
forever considered faulty. This leads to undesirable conclusions: in the case of ubiquitous failures where any processor
may occasionally lose messages (a situation that clearly occurs in real systems), the entire system will be declared
unusable for any computation.

Analogous undesirable situations occur in the link failure model and in the hybrid failure models that consider
both links and processors (e.g. [8,33,36]). Some attempts have been made to remedy this situation by modifying
the model, allowing some failed processors and links to recover (e.g. [1,25]), but they are just partial and limited to
eventually-synchronous systems.

The model we use is the communication failure model, known also as the transmission failure or dynamic faults or
mobile faults model, introduced in [34] and investigated e.g. in [6,7,9,10,12,11,13,14,22,24,27,29,35].

In this model, a communication is a pair (α, β) of messages α, β ∈ M ∪ {Ω} for a pair (i, j) of neighbouring
processors called source and destination, where M is a fixed and possibly infinite message universe and Ω is the null
message: α is the message sent by the source and β is the message received by the destination; by convention α = Ω
denotes that no message is sent, and β = Ω denotes that no message is received. A communication (α, β) is faulty
if α 6= β, non-faulty otherwise. In this model, the only failures occurring in the system are communication faults,
and failures are fully dynamic: the set of pairs (source, destination) whose communications are faulty may change at
every clock cycle. An instance of this model is the single mobile failure model described in [30]: at each time instant,
the communications of at most one processor are faulty.

Notice that localized and permanent failures can be easily modeled by communication faults; for instance, omission
(i.e. α 6= Ω = β) of all messages sent by and to a processor can be used to describe the crash failure of that processor.
Analogously, with enough dynamic communication faults of the appropriate type, it is easy to describe faults such as
send and receive failures, Byzantine link failures, etc. In fact, most processor and link failure models can be seen as
a special localized case of the communication failure model, where all the faults are restricted to the communications
involving a fixed (though, a-priori unknown) set of processors or of links.

Dynamic communication faults are clearly more difficult to handle than those that occur always in the same places.
In the latter case, for example, once a fault is detected on a link, we know that we cannot trust that link; with dynamic
faults, detection will not help us with future events. The natural questions and open problems are about the nature of
this difficulty.

In this paper, we address those questions and problems, focusing on the agreement problem in synchronous systems
of arbitrary topology subject to dynamic communication faults.

1.2. Main contributions

In this paper we present several results, extending the existing knowledge on agreement to ubiquitous and transient
failures in arbitrary topologies.

Impossibility
First of all, we prove a general theorem characterizing classes of faulty communications for which any non-trivial
agreement is impossible. As a corollary, we prove several impossibility results, some of them quite unexpected, and
not inferable from the existing results of the other models.

Consider, e.g., a d-dimensional hypercube and let us consider the occurrence of just d communication faults per
clock cycle. With d omissions per clock cycle, we can simulate the crash failure of a single processor; hence, unanimity
clearly cannot be expected. What about other levels of agreement?

Something can be learned from the processor failure model. For the hypercube, Dolev’s results in the processor
failure model [15] state that unanimity among the non-faulty processors is possible if the number of the faulty
processors is less than d . If the d omissions per clock cycle are localized to a single processor, there is only one
“faulty” processor; hence, by Dolev’s result, an agreement among n − 1 processors is possible.
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What happens if those d omissions per clock cycle are dynamic (i.e. not localized to a single processor)? Since with
at most d omissions per clock cycle a single processor can be isolated from the rest, one might still reasonably expect
that an agreement among n − 1 processors can be reached even if the faults are dynamic. Not only is this expectation
false, but we prove that any form of non-trivial agreement can not be reached under those conditions. In fact, even a
strong majority (i.e. an agreement among dn/2e + 1 processors) is impossible.

If the communication faults are arbitrary (the Byzantine case), the gap between the static and dynamic cases is
even stronger. By Dolev’s result [15], it follows again that in the hypercube an agreement among n − 1 processors is
possible in spite of d Byzantine communication faults if they are statically restricted to the messages sent by a single
processor. From our results with omissions, we already know that if the faults are dynamic then strong majority is
impossible; if the faults are Byzantine, we show that this is so even if the number of faults is just dd/2e.

These results for the hypercube are instances of the more general results obtained here. We consider arbitrary
networks and establish bounds on the number of communication faults that make any non-trivial form of agreement
impossible; in turn, these bounds express topological requirements that must be met to achieve any meaningful form
of agreement. Let G = (V, E) be the network topology, and let d(G) be its degree. We prove that:

(a) with d(G) omissions per clock cycle, strong majority cannot be reached;
(b) if the failures are any mixture of corruptions and additions, the same bound d(G) holds for the impossibility of a

strong majority;
(c) in the case of arbitrary faults (omissions, additions, and corruptions: the Byzantine case), a strong majority cannot

be reached if only dd(G)/2e communications may be faulty.

A summary is shown in Fig. 2.
These results are established using the proof structure for dynamic faults introduced in [34]. Although based on

the bivalency argument of Fischer et al. [21], the framework differs significantly from those for asynchronous sys-
tems since we are dealing with a fully synchronous system where time is a direct computational element, with all its
consequences; e.g., non-delivery of an expected message is detectable, unlike asynchronous systems where a “slow”
message is indistinguishable from an omission; etc. This framework has been first defined and used in [34]; more
recently, similar frameworks have been used also in [2,3,30].

Possibility
We then turn to the possibility of agreement in spite of dynamic faults. We examine all the combinations of different
types of fault, and for each we establish bounds for achieving unanimity among the processors. The results we obtain
vary with the types of fault and are sometimes counterintuitive.

Consider, e.g., the case when the faults are just omissions. It is known that, in the d-dimensional hypercube, if the
faults are at most d − 1 omissions per clock cycle, then broadcast (and thus unanimity) is possible (e.g. [10,13]).

These results are actually just instances of the more general results established here. In fact, we prove that in any
network G, if the faults are omissions, then unanimity can be reached if the number of faults per clock cycle is at most
c(G) − 1, where c(G) is the edge-connectivity of G.

Interestingly, if the faults are corruptions, we show that unanimity can always be achieved regardless of the number
of faults. This is true also in systems where the faults are only additions. On the other hand, the combination of
additions and corruptions creates a c(G) − 1 threshold for unanimity.

In the more complex Byzantine case of omissions, additions and corruptions, we prove that unanimity is still
possible if at most dc(G)/2e − 1 transmissions per clock cycle may be faulty. A summary of all the possibility results
is shown in Fig. 4.

Let us stress that, regardless of any analogy with bounds established in the component failure models, none of
these results is implied or derivable from those models. On the contrary, these possibility results are obtained with a
number and type of fault for which all the component failure models indicate impossibility.

Tightness
For all systems, except those where faults are just corruptions or additions (and in which unanimity is possible
regardless of faults), the bounds we have established are similar except that the possibility ones are expressed in
terms of the connectivity c(G) of the graph, while the impossibility ones are in terms of the degree d(G) of the graph.

This means that in the case of d(G)-edge-connected graphs, the impossibility bounds are indeed tight:
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1. With the number of faults (or more) specified by the impossibility bound, even strong majority is impossible.
2. With one less fault than specified by the impossibility bound, even unanimity can be reached.
3. Any agreement among less than a strong majority of the processors can be reached without any communication.

In other words, in these systems, agreement is either trivial, complete or impossible.
This large class of networks includes hypercubes, toruses, rings, complete graphs, etc. In these networks,

the obtained results draw a precise “impossibility map” for the agreement problem in the presence of dynamic
communication faults, thus clarifying the difference between the dynamic and the static cases. In the case of complete
graphs, our results close the existing gap in [34,35] between possibility and impossibility with dynamic Byzantine
faults.

For those graphs where c(G) < d(G) there is a gap between possibility and impossibility. Closing this gap is
clearly a goal of future research.

1.3. Related work

Synchronous agreement in the component failure models is perhaps the most intensively and extensively studied
problem in distributed computing. We will just note that most of the work has focused on the complete graph (e.g. [5,
16,17,19,20,23,26,28,32,36]); fewer studies have focused on other classes of graph (e.g. [4,18,20,28]) or on arbitrary
networks [15].

In the communication faults model, the studies on agreement have focused on synchronous systems whose
communication topology is the complete graph, and both possibility and impossibility results have been established
[34,35]. In particular, for these systems the established bounds have been shown to be tight in the case of omission
(i.e. α 6= β = Ω ) failures, as well as in the case of any mix of corruption (i.e. Ω 6= α 6= β 6= Ω ) and addition (i.e.
Ω = α 6= β) failures. In the case of Byzantine (i.e. arbitrary) communication failures, there was, However, a gap
between the possibility and impossibility bounds.

The link between conditions for (partial) broadcast and for possibility of (partial) agreement with dynamic faults
was established in [34]. Most of the subsequent research on dynamic faults has focused on reliable broadcast in the
case of omission failures; the problem has been investigated in complete graphs [11,29,35], hypercubes [10,13,22,31],
tori [9,14], star graphs [10], as well as in arbitrary topologies [6].

The broadcast problem has also been studied when the upper bound on the number of dynamic communication
faults per clock cycle is not fixed [7,24,27].

The more general problem of evaluation of Boolean functions in the presence of dynamic communication faults
has been studied only for complete networks [12,35]; computation of some special functions has been investigated
also in the case of anonymous networks [12].

The employment of a bivalency argument to achieve impossibility results in a fully synchronous system has been
first done in [34]; more recently, it has been used also in [2,3,30].

2. Communication faults and agreement

Our universe is a synchronous system of n ≥ 2 processors p1, . . . , pn connected through dedicated communication
links. The connection structure is an arbitrary undirected, connected simple graph G = (V, E). An edge joining two
nodes of the graph is a bidirectional link between the two processors. We will denote by di the degree of a node pi in
the graph, and by d(G) the maximum node degree. We will also denote by c(G) the edge-connectivity of G.

Processors communicate by sending messages to adjacent processors. The message sent by a processor need not
be the same for all destination processors, i.e. separate links allow for different messages to different destinations at
the same time.

The failure model we use is the communication failure (also known as transmission failure or dynamic faults)
model, introduced by us in [34], and described below.

A communication is a pair (α, β) of messages α, β ∈ M ∪ {Ω} for a pair (i, j) of neighbouring processors called
source and destination, where M is a fixed and possibly infinite message universe and Ω is the null message: α is the
message sent by the source and β is the message received by the destination; by convention α = Ω denotes that no
message is sent, and β = Ω denotes that no message is received. Let Φ denote the set of all possible communications.
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Fig. 1. Hierarchy of combinations of fault types in the communication faults model.

A communication (α, β) is faulty if α 6= β, non-faulty otherwise. Faulty communications can be partitioned into
three sets, corresponding to the three types of fault considered in this paper:

• omissions: O = {(α, β) ∈ Φ : α 6= Ω = β}

(a sent message is not delivered to its destination processor);
• additions: A = {(α, β) ∈ Φ : α = Ω 6= β}

(a message is delivered to a processor, although no message was sent);
• corruptions: C = {(α, β) ∈ Φ : Ω 6= α 6= β 6= Ω}

(a sent message is delivered with different content to its destination processor).

While the nature of omissions and corruptions is quite obvious, that of additions may require some explanation.
Indeed, an addition describes a variety of situations. The most obvious one is when sudden noise in the transmission
channel is mistaken for a message. The more important occurrence of additions in systems is rather subtle: when we
say that, in an addition, the received message “was not sent”, this could mean that it “was not sent by any authorized
user”. Indeed, additions can be seen as messages surreptitiously inserted in the system by some outside, and possibly
malicious, entity. Spam being sent from an unintended and unsuspecting site clearly fits the description of an addition.
Summarizing, additions do occur and can be very dangerous.

These three types of fault are quite incomparable with each other in terms of danger. The hierarchy of faults comes
into place when two or all of these basic fault types can occur in the system (see Fig. 1). The presence of all three
types of fault creates what will be called a Byzantine faulty behaviour.

Notice that localized and permanent failures can be easily modeled by communication faults; for instance, omission
of all messages sent by and to a processor can be used to describe the crash failure of that processor. Analogously, with
enough dynamic communication faults of the appropriate type, it is easy to describe faults such as send and receive
failures, Byzantine link failures, etc. In fact, most processor and link failure models can be seen as a special localized
case of the communication failure model, where all the faults are restricted to the communications involving a fixed
(though, a priori unknown) set of processors or of links.

Each processor pi has an input register with an initial value xi , and an output register for which it must choose a
value vi as the result of its computation. For simplicity, we limit ourselves to Boolean inputs, i.e. xi ∈ {0, 1} for all
i ; all the results hold also for non-binary values. In the k-agreement problem (Agree(k)), at least k processors must
choose the same value v within a finite amount of time, subject to the validity constraint that, if all values xi were the
same, then v must be that value.

Depending on the value of parameter k, we have different types of agreement problem. Of particular interest are

• k = d
n
2 e + 1 called strong majority;

• k = n called unanimity, in which all processors must decide on the same value.

Note that any agreement requiring less than a strong majority (i.e. k ≤ dn/2e) can be trivially reached without
any communication; e.g. each pi chooses xi for v. In this paper, we are interested only in non-trivial agreements (i.e.
k > dn/2e).
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For both impossibility and possibility results, we will consider the case when the system operates in complete
synchrony: each processor has direct read-only access to a global clock, and every message sent at time t is received
(if no error occurs) and processed at its destination at time t + 1.

3. Impossibility of strong majority

3.1. Terminology and definitions

Most of the terminology is taken from [34]; some of it was in turn a modification and adaptation for the synchronous
case of that of [21].

A k-agreement protocol P , k > dn/2e, is a synchronous system where each processor pi , in addition to its one-bit
input register with initial value xi ∈ {0, 1} and to its output register, has an unbounded amount of local storage. In
particular, it has a message register holding a message vector mi ∈ (M ∪ {Ω})di , where M is a fixed and possibly
infinite message universe, and Ω is the null element indicating absence of communication. The component mi j of mi
is the message to be sent from pi to its neighbour p j . The values of the registers and of the global clock, together with
the program counters and the internal storage, comprise the internal state of each processor.

For each processor, the initial state prescribes fixed starting values for all but the input register; in particular, the
output register starts with null value b /∈ {0, 1} and the clock starts with value 0. Each processor acts deterministically;
it can never change the input register nor the clock, and can change the value of its output register only once, from b
to v ∈ {0, 1}. The states in which the output register has value v ∈ {0, 1} are distinguished as being v-decision states.

A configuration of the system consists of the internal state of all processors at a given time. An initial configuration
is one in which all processors are in an initial state at time t = 0. A configuration C has decision value v if at least
k processors are in a v-decision state, v ∈ {0, 1}; note that since k > dn/2e, a configuration can have at most one
decision value.

At any time t , the system is in some configuration C , and every processor may send a message to any of its
neighbours. The nature of the messages is defined by the contents of the message registers in C . The set of all
messages sent in a configuration C is represented by means of a message array Λ(C) composed of n2 entries defined
as follows: if pi and p j are neighbours, then the entry Λ(C)[i, j] contains the (possibly empty) message sent by pi
to p j ; if pi and p j are not neighbours, then we denote this fact by Λ(C)[i, j] = ∗, where ∗ /∈ M is a distinguished
symbol; by definition, (pi , pi ) 6∈ E .

During the actual communication, some of these messages will not be delivered, or their content will be corrupted,
or a message arrives when none was sent. We will describe what happens by means of another n × n array called
transmission matrix τ for Λ(C) and defined as follows: if pi and p j are neighbours, then the entry τ [i, j] of the
matrix contains the communication pair (α, β), where α = Λ(C)[i, j] is what pi sent and β is what p j actually
receives; if pi and p j are not neighbours, then we denote this fact by τ [i, j] = (∗, ∗). Where no ambiguity arises, we
will omit the indication C from Λ(C). Due to the different number and types of fault and the different way the faults
can occur, many transmission matrices are possible for the same Λ. We will denote by T (Λ) the set of all possible
transmission matrices τ for Λ.

Once the transmission specified by τ has occurred, the clock is incremented by one unit to t + 1; depending on its
internal state, on the current clock value and on the received messages, each processor pi prepares a new message for
each neighbour p j , and enters a new internal state. The entire system enters a new configuration. Since the processors
act deterministically, the new configuration is completely determined by the transmission matrix τ ; we will denote by
τ(C). We will call τ an event and the passage from one configuration to the next a step.

We will limit ourselves to sets of events that contain (at least) an event for each possible message array and at most
f faulty communications. A set S of events is f -admissible, 0 ≤ f ≤ 2|E |, if

1. For each message array Λ, there is an event τ ∈ S for Λ;
2. No event in S contains more than f faulty communications;
3. There is an event in S that contains exactly f faulty communications.

Let R1(C) = R(C) = {τ(C) : τ ∈ T (Λ(C))} be the set of all possible configurations resulting from C in one step,
sometimes called succeeding configurations of C. Generalizing, let Rt (C) be the set of all possible configurations
resulting from C in t > 0 steps, and R+(C) = {C ′

: ∃t > 0, C ′
∈ Rt (C)} be the set of configurations reachable from

C . A configuration that is reachable from some initial configuration is said to be accessible.
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Let v ∈ {0, 1}. A configuration C is v-valent if there exists a t > 0 such that all C ′
∈ Rt (C) have decision value v;

that is, a v-valent configuration will always result in at least k processors deciding on v. A configuration C is bivalent
if there exist in R+(C) both a 0-valent and a 1-valent configuration.

If two configurations C ′ and C ′′ differ only in the internal state of processor p j we say that they are j-adjacent;
and we call them adjacent if they are j-adjacent for some j .

We will be interested in sets of events (i.e. transmission matrices) that preserve adjacency of configurations. We
call a set S of events j -adjacency-preserving if for any two j-adjacent configurations C ′ and C ′′ there exist in S two
events τ ′ and τ ′′ for Λ(C ′) and Λ(C ′′), respectively, such that τ ′(C ′) and τ ′′(C ′′) are j-adjacent. We call S adjacency-
preserving if it is j-adjacency-preserving for all j .

A set S of events is continuous if for any configuration C and for any τ ′, τ ′′
∈ S for Λ(C), there exists a finite

sequence τ0, . . . , τm of events in S for Λ(C) such that τ0 = τ ′, τm = τ ′′, and τi (C) and τi+1(C) are adjacent,
0 ≤ i < m.

Let S be an f -admissible set of events and let the message system return only events in S. A k-agreement protocol
is correct in spite of f transmission faults in S if

(a)for each initial configuration C there exists a t ≥ 0 such that every C ′
∈ Rt (C) has a decision value v ∈ {0, 1};

(b)if all values xi are the same, then v is that value.

As we will see, any set of f -admissible events that is both continuous and j-adjacency-preserving for some j will
make any strong majority protocol fail.

3.2. Basic properties and main theorem

To prove our impossibility results, we are going to use two properties that follow immediately from the definitions
of state and of event. Let si (C) denote the internal state of pi in C .

First of all, if a processor p j is in the same state in two different configurations A and B, then it will send the same
messages in both configurations. That is,

Property 3.1. For two configurations A and B, let Λ(A) and Λ(B) be the corresponding message matrices. If
s j (A) = s j (B) for some processor p j , then 〈Λ(A)[ j, 1], . . . ,Λ(A)[ j, n]〉 = 〈Λ(B)[ j, 1], . . . ,Λ(B)[ j, n]〉.

Next, if a processor p j is in the same state in two different configurations A and B, and it receives the same
messages in both configurations, then it will enter the same state in both resulting configurations. That is,

Property 3.2. Let A and B be two configurations such that s j (A) = s j (B) for some processor p j , and let τ ′ and τ ′′

be events for Λ(A) and Λ(B), respectively. Let τ ′
[i, j] = (α′

i, j , β
′

i, j ) and τ ′′
[i, j] = (α′′

i, j , β
′′

i, j ). If β ′

i, j = β ′′

i, j for all
i , then s j (τ

′(A)) = s j (τ
′′(B)).

Given a set S of f -admissible events and an agreement protocol P , let C(P, S) denote the set of all initial and
accessible configurations when executing P and the events are those in S.

Theorem 3.1. Let S be continuous, j -adjacency-preserving, and f -admissible, f > 0. Let P be a (d n
2 e + 1)-

agreement protocol. If C(P, S) contains two accessible j-adjacent configurations, a 0-valent and a 1-valent one,
then P is not correct in spite of f transmission faults in S.

Proof. Assume on the contrary that P is a (d n
2 e + 1)-agreement protocol that is correct in spite of f communication

faults when the message system returns only events in S; and let A and B be j-adjacent accessible configurations in
C(P, S) that are 0-valent and 1-valent, respectively.

Since S is j-adjacency-preserving, there exist in S two events, πA,B for Λ(A) and ρA,B for Λ(B), such that the
resulting configurations πA,B(A) and ρA,B(B) are j-adjacent. Let π0(A) := A and ρ0(B) := B; for any t > 0
define π t (A) := ππ t−1(A),ρt−1(B)(π

t−1(A)) and ρt (B) := ρπ t−1(A),ρt−1(B)(ρ
t−1(B)). It is easy to verify that π t (A)

and ρt (B) are j-adjacent for all t ≥ 0.
Since P is correct, there exists a t ≥ 1 such that π t (A) and ρt (B) have a decision value. Since A is 0-valent, at

least d
n
2 e + 1 processors have a decision value 0 in π t (A); similarly, since B is 1-valent, at least d

n
2 e + 1 processors

have a decision value 1 in ρt (B). This means that there exists at least one processor pi , i 6= j , that has a decision
value 0 in π t (A) and 1 in ρt (B); hence, si (π

t (A)) 6= si (ρ
t (B)).
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However, since π t (A) and ρt (B) are j-adjacent, they only differ in the state of one processor, p j : a contradiction.
As a consequence, P is not correct. �

We can now prove the main negative result.

Theorem 3.2. Let S be adjacency-preserving, continuous and f -admissible. Then no k-agreement protocol is correct
in spite of f communication faults in S for k > dn/2e.

Proof. Assume P is a correct (dn/2e+1)-agreement protocol in spite of f communication faults when the message
system returns only events in S. In a typical bivalency approach, the proof involves two steps: first it is argued that
there is some initial configuration in which the decision is not already predetermined; second, it is shown that it is
possible forever to postpone entering a configuration with a decision value.

Lemma 3.1. C(P, S) has an initial bivalent configuration.

Proof. By contradiction, let every initial configuration be v-valent for v ∈ {0, 1} and let P be correct. Since, by
definition, there is at least a 0-valent initial configuration A and a 1-valent initial configuration B, then there must be
a 0-valent initial configuration and a 1-valent initial configuration which are adjacent. In fact, let A0 = A, and let Ah
denote the configuration obtained by changing into 1 a single 0 input value of Ah−1, 1 ≤ h ≤ w′ where w′ is the
number of 0 input values in A; similarly, define Bh , 0 ≤ h ≤ w′′, where w′′ is the number of 0 input values in B.
By construction, Aw′ = Bw′′ . Consider the sequence A0, A1, . . . , Aw′ = Bw′′ , . . . , B1, B0; in it, each configuration
is adjacent to the following one; since it starts with a 0-valent and ends with a 1-valent configuration, it contains a
0-valent configuration adjacent to a 1-valent one. By Theorem 3.1 it follows that P is not correct. Hence C(P, S) must
have an initial bivalent configuration. �

Lemma 3.2. Every bivalent configuration in C(P, S) has a succeeding bivalent configuration.

Proof. Let C be a bivalent configuration in C(P, S). If C has no succeeding bivalent configuration, then C has
at least one 0-valent and at least one 1-valent succeeding configuration, say A and B. Let τ ′, τ ′′

∈ S such that
τ ′(C) = A and τ ′′(C) = B. Since S is continuous, there exists a sequence τ0, . . . , τm of events in S for λ(C) such
that τ0 = τ ′, τm = τ ′′, and τi (C) and τi+1(C) are adjacent, 0 ≤ i < m. Consider now the corresponding sequence
of configurations: A = τ ′(C) = τ0(C), τ1(C), τ2(C), . . . , τm(C) = τ ′′(C) = B.

Since the sequence starts with a 0-valent and ends with a 1-valent configuration, it contains a 0-valent configuration
adjacent to a 1-valent one. By Theorem 3.1, P is not correct: a contradiction. Hence, every bivalent configuration in
C(P, S) has a succeeding bivalent configuration. �

From Lemmas 3.1 and 3.2 it follows that there exists an infinite sequence of accessible bivalent configurations, each
derivable in one step from the preceding one. This contradicts the assumption that for each initial configuration C
there exists a t ≥ 0 such that every C ′

∈ Rt (C) has a decision value; thus, P is not correct. This concludes the proof
of Theorem 3.2. �

The above theorem provides a powerful tool for proving impossibility results for non-trivial agreement: if it can
be shown that a set S of events is adjacency-preserving, continuous, and f -admissible, then by Theorem 3.2 no non-
trivial agreement is possible for the types and numbers of faults implied by S. Clearly, not every set S of events is
adjacency-preserving.

3.3. Impossibility: Omission faults

We can now show that no strong majority protocol is correct in spite of d(G) communication faults, even when the
faults are only omissions.

For message matrix A = (αi j ), let O(A) be the set of all events τ on A defined as follows: for at most d(G) pairs
(i, j) ∈ E, τ [i, j] = (αi j ,Ω), and for all other pairs (i, j) ∈ E, τ [i, j] = (αi j , αi j ). Then, O :=

⋃
A O(A) is the set

of all events containing at most d(G) omission faults.

Lemma 3.3. O is d(G)-admissible, continuous and adjacency-preserving.



240 N. Santoro, P. Widmayer / Theoretical Computer Science 384 (2007) 232–249

ACO : dd(G)/2e

(Byzantine)

AC : d(G) O : d(G)

No Faults
������)

PPPPPPq

PPPPPPq

������)

Fig. 2. Minimum number of faults per clock cycle that may render strong majority impossible.

Proof. From the definition of O, it follows immediately that O is d(G)-admissible.
To prove that O is continuous, consider a configuration C and any two events τ ′, τ ′′

∈ O for Λ(C). Let
m′

1, m′

2, . . . , m′

f ′ be the f ′ faulty communications in τ ′, and let m′′

1, m′′

2, . . . , m′′

f ′′ be the f ′′ faulty communications
in τ ′′. Since O is d(G)-admissible, then f ′

≤ d(G) and f ′′
≤ d(G). Let τ ′

0 = τ ′, and let τ ′

h denote the event
obtained by replacing the faulty communication m′

h in τ ′

h−1 with a non-faulty one (with the same message sent
in both), 1 ≤ h ≤ f ′; Similarly define τ ′′

h , 0 ≤ h ≤ f ′′. By construction, τ ′

f ′ = τ ′′

f ′′ . Consider the sequence
τ ′

0, τ
′

1, . . . , τ
′

f ′ = τ ′′

f ′′ , . . . , τ
′′

1 , τ ′′

0 . In this sequence, each event is adjacent to the following one; furthermore, since by
construction each event contains at most d(G) omissions, it is in O. Thus, O is continuous.

Given a message matrix Λ, let σΛ,l denote the event for Λ where all and only the messages sent by xl are lost.
Then, for each Λ and l, σΛ,l ∈ O. Let configurations A and B be l-adjacent. Consider the events σΛ(A),l and σΛ(B),l
for A and B, respectively, and the resulting configurations A′ and B ′. By Properties 3.1 and 3.2, it follows that A′ and
B ′ are also l-adjacent. Hence O is adjacency-preserving. �

Then, by Theorem 3.2, it follows that

Theorem 3.3. No k-agreement protocol P is correct in spite of d(G) communication faults in O for k > dn/2e.

3.4. Impossibility: Addition and corruption faults

Here, we show that no strong majority protocol is correct in spite of d(G) communication faults, when the faults
are additions and corruptions.

For message matrix Λ = (αi j ), let AC(Λ) be the set of all events τ on Λ defined as follows: for at most d(G)

pairs (i, j) ∈ E, τ [i, j] = (αi j , βi j ), αi j 6= βi j , where βi j 6= Ω if αi j 6= Ω , and for all other pairs (i, j) ∈ E ,
τ [i, j] = (αi j , αi j ).

Then AC :=
⋃

Λ AC(Λ) is the set of all events containing at most d(G) addition and corruption faults.

Lemma 3.4. AC is d(G)-admissible, continuous and adjacency-preserving.

Proof. From the definition of AC, it follows directly that AC is d(G)-admissible.
To prove that AC is continuous, consider a configuration C and any two events τ ′, τ ′′

∈ AC for Λ(C). Let
m′

1, m′

2, . . . , m′

f ′ be the f ′ faulty communications in τ ′, and let m′′

1, m′′

2, . . . , m′′

f ′′ be the f ′′ faulty communications
in τ ′′. Since AC is d(G)-admissible, then f ′

≤ d(G) and f ′′
≤ d(G). Let τ ′

0 = τ ′, and let τ ′

h denote the event
obtained by replacing the faulty communication m′

h in τ ′

h−1 with a non-faulty one (with the same message sent
in both), 1 ≤ h ≤ f ′; Similarly define τ ′′

h , 0 ≤ h ≤ f ′′. By construction, τ ′

f ′ = τ ′′

f ′′ . Consider the sequence
τ ′

0, τ
′

1, . . . , τ
′

f ′ = τ ′′

f ′′ , . . . , τ
′′

1 , τ ′′

0 . In this sequence, each event is adjacent to the following one; furthermore, since by
construction each event contains at most d(G) additions and/or corruptions, it is in AC. Thus, AC is continuous.

For any two h-adjacent configurations A and B, consider the events πh and ρh for Λ(A) = {αi j } and Λ(B) = {γi j },
where for all (xi , x j ) ∈ E

πh[i, j] =

{
(αi j , γi j ) if i = h and αi j = Ω
(αi j , αi j ) otherwise
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and

ρh[i, j] =

{
(γi j , αi j ) if i = h and αi j 6= Ω
(γi j , γi j ) otherwise

It is not difficult to verify that πh , ρh ∈ AC and the configurations πh(C ′) and ρh(C ′′) are h-adjacent. Hence AC
is adjacency-preserving. �

Then, by Theorem 3.2, it follows that

Theorem 3.4. No k-agreement protocol P is correct in spite of d(G) communication faults for AC for k > dn/2e.

3.5. Impossibility: Byzantine faults

We show that no strong majority protocol is correct in spite of dd(G)/2e arbitrary communication faults.
For a message matrix Λ = (αi j ), let ACO(Λ) be the set of all events τ on Λ containing at most dd(G)/2e faulty

communications. Then ACO:=
⋃

Λ ACO(Λ) is the set of all events containing at most dd(G)/2e communication
faults, where the faults may be omissions, corruptions and additions.

Lemma 3.5. ACO is dd(G)/2e-admissible, continuous and adjacency-preserving.

Proof. From the definition of ACO, it follows directly that ACO is dd(G)/2e-admissible.
To prove that ACO is continuous, consider a configuration C and any two events τ ′, τ ′′

∈ ACO for Λ(C). Let
m′

1, m′

2, . . . , m′

f ′ be the f ′ faulty communications in τ ′, and let m′′

1, m′′

2, . . . , m′′

f ′′ be the f ′′ faulty communications
in τ ′′. Since ACO is dd(G)/2e-admissible, then f ′

≤ dd(G)/2e and f ′′
≤ dd(G)/2e. Let τ ′

0 = τ ′, and let τ ′

h denote
the event obtained by replacing the faulty communication m′

h in τ ′

h−1 with a non-faulty one (with the same message
sent in both), 1 ≤ h ≤ f ′. Similarly, define τ ′′

h , 0 ≤ h ≤ f ′′. By construction, τ ′

f ′ = τ ′′

f ′′ . Consider the sequence
τ ′

0, τ
′

1, . . . , τ
′

f ′ = τ ′′

f ′′ , . . . , τ
′′

1 , τ ′′

0 . In this sequence, each event is adjacent to the following one; furthermore, since by
construction each event contains at most dd(G)/2e omissions, additions and/or corruptions, it is in ACO. Thus, ACO
is continuous.

Given any two h-adjacent configurations A and B, consider the events πh and ρh for Λ(A) = {αi j } and
Λ(B) = {γi j }, respectively, where for all (xi , x j ) ∈ E

πh[i, j] =

{
(αi j , γi j ) if i = h and j ∈ { jdd(h)/2e+1, . . . , jd(h)}

(αi j , αi j ) otherwise

and

ρh[i, j] =

{
(γi j , αi j ) if i = h and j ∈ { j1, . . . , jdd(h)/2e}

(γi j , γi j ) otherwise

where d(h) denotes the degree of ph and { j1, j2, . . . , jd(h)} are the indices of the neighbours of ph . Clearly the
configurations πh(A) and ρh(B) are h-adjacent; furthermore, since d(h) ≤ d(G) and both πh and ρh contain at most
dd(h)/2e faults, then πh , ρh ∈ ACO. Hence ACO is adjacency-preserving. �

Then, by Theorem 3.2, it follows that

Theorem 3.5. No k-agreement protocol P is correct in spite of dd(G)/2e communication faults in ACO for k >

dn/2e.

4. Achieving unanimity

In this section we examine the possibility of achieving unanimity among the processors in spite of dynamic faults.
Surprisingly, this can be achieved in several cases; the exact conditions depend not only on the type and number of
faults but also on the edge-connectivity c(G) of G.

In each graph G there are at least c(G) edge-disjoint paths between any pair of nodes. This fact has been used
in the component failure model to show that, with enough redundant communications, information can be correctly
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propagated in spite of faults and that the processors can reach some form of agreement (e.g. [15,18]). Our results on
the possibility of unanimity in spite of a certain amount f of dynamic faults also exploit this fact; the value of f
clearly depends on the nature of the faults.

In all cases, we will reach unanimity, in spite of f communication faults per clock cycle, by computing the OR of
the input values and deciding on that value. This is achieved by first constructing (if not already available) a mechanism
for correctly broadcasting the value of a bit within a fixed amount of time T in spite of f communication faults per
clock cycle. This reliable broadcast, once constructed, is then used correctly to compute the logical OR of the input
values: all processors with an input value 1 will reliably broadcast their value; if at least one of the input values is 1
(thus, the result of OR is 1), then this fact will be communicated to everybody within time T ; on the contrary, if all
input values are 0 (thus, the result of OR is 0), there will be no broadcasts and everybody will be aware of this fact
within time T .

The variable T will be called timeout. The actual reliable broadcast mechanism will differ, depending on the nature
of the faults.

4.1. Possibility: Single type faults

4.1.1. Omissions
Consider the case when the communication errors are just omissions. Let f ≤ c(G)−1. When broadcasting in this

situation, it is rather easy to circumvent the loss of messages. In fact, it suffices for all processors involved, starting
from the initiator of the broadcast, to send the same message to the same neighbours for several consecutive time
steps. More precisely, consider the following algorithm:

Algorithm Bcast-Omit

1. To broadcast in G, node x sends its message at time 0 and continues transmitting it to all its neighbours in each
time step until time T (G) − 1 (the actual value of the timeout T (G) will be determined later).

2. A node y receiving the message at time t < T (G) will transmit the message to all its other neighbours in each time
step until time T (G) − 1.

It is not difficult to verify that for T (G) large enough (e.g. T (G) ≥ c(G) (n − 2) + 1), protocol Bcast-Omit
broadcast is allowed in spite of f ≤ c(G) − 1 omissions. Let us denote by T ∗(G) the minimum timeout value
ensuring that the broadcast is correctly performed in G in spite of c(G) − 1 omissions per clock cycle. Then, using
Bcast-Omit to compute the OR we have:

Theorem 4.1. Let the system faults be omissions. Unanimity can be reached in spite of f = c(G)− 1 faults per clock
cycle in time T = T ∗(G) transmitting at most 2m(G) T ∗(G) bits.

Where m(G) = |E(G)| denotes the number of links in G. As for estimates on the actual value of T ∗(G), as already
mentioned, it is easy to verify that

Lemma 4.1. T ∗(G) ≤ c(G) (n − 2) + 1.

This value for the timeout is rather high, and depending on the graph G can be substantially reduced. Currently, the
best available bound is [6]:

Lemma 4.2. T ∗(G) = O(D(G)c(G))

where D(G) is the diameter of the graph G. Which estimate is better (i.e. smaller), depends on the graph G. For
example, in a hypercube H , c(H) = diam(H) = log n; hence if we use Lemma 4.1 we have O(n log n) while with
Lemma 4.2 we would have a time O(nloglog n).

Better bounds are known for specific networks [9,10,13,14,22,29,35]. Interestingly, in a hypercube, both estimates
are far from accurate; in fact, D(G) + 2 clock cycles are known to suffice [22]. In other words, with only two time
units more than in the fault-free case, broadcast can tolerate up to log n − 1 message losses per time unit.
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4.1.2. Additions
Let us consider systems where the faults are additions; that is, messages are received although none of them were

sent by any authorized user. To deal with additions in a fully synchronous system is possible albeit expensive. Indeed,
if each processor transmits to its neighbours at each clock cycle, it leaves no room for additions.

The processors can correctly compute the OR using a simple diffusion mechanism in which each processor
transmits for the first T (G) − 1 time units: initially, a processor sends its value; if during this time it is aware of
the existence of a 1 in the system, it will only send 1 from that moment on.

The process clearly can terminate after T (G) = D(G) clock cycles. Hence

Theorem 4.2. L Let the system faults be additions. Unanimity can be reached regardless of the number of faults in
time T = diam(G) transmitting at most 2m(G) D(G) bits.

Observe that if a spanning-tree ST (G) of G is available, it can be used for the entire computation. In this case, the
number of bits is 2(n − 1) diam(ST (G)) while time is diam(ST (G)).

4.1.3. Corruptions
Surprisingly, if the faults are just corruptions, unanimity can be reached regardless of the number of faults.
To understand this result, first consider that, since the only faults are corruptions, there are no omissions; thus,

any message transmitted will arrive, although its content may be corrupted. Furthermore, there are no additions; thus,
only the messages that are transmitted by some processor will arrive. This means that if a processor starts a broadcast
protocol, every node will receive a message (although not necessarily the correct one). Notice also that since there are
no omissions nor additions, each processor needs to participate in the broadcast (i.e. transmit to its neighbours) only
once.

We can use this fact in computing the OR. Each processor with an input value 1 starts a broadcast. Regardless of
its content, a message will always and only communicate the existence of an initial value 1. A processor receiving a
message thus knows that the correct value is 1 regardless of the content of the message, and will forward it to all is
neighbours (if it has not already done so). As we already observed, since there are no omissions nor additions, each
processor needs to participate in this computation (i.e. transmit to its neighbours) at most once.

If there is an initial value 1, since there are no omissions, all processors will receive a message within time
T (G) = D(G). If all initial values are 0, no broadcast is started and, since there are no additions, no messages
are received; thus, all processors will detect this situation since they will not receive any message by time T (G).

The resulting protocol yields the following:

Theorem 4.3. Let the system faults be corruptions. Unanimity can be reached regardless of the number of faults in
time T = D(G) transmitting at most 2 m(G) bits.

4.2. Possibility: Composite faults

4.2.1. Omissions and corruptions
If the system suffers from omissions and corruptions, the situation is fortunately no worse than that of systems

with only omissions.
Since there are no additions, no unintended message is generated. Indeed, in the computation of the OR, the

only intended messages are those originated by processors with an initial value 1 and only those messages (possibly
corrupted) will be transmitted along the network.

A processor receiving a message thus knows that the correct value is 1, regardless of the content of the message.
If we use Bcast-Omit, we are guaranteed that everybody will receive a message (regardless of its content) within
T = T ∗(G) clock cycles in spite of c(G) − 1 or fewer omissions, iff at least one originated (i.e. if there is at least one
processor with initial value 1). Hence

Theorem 4.4. Unanimity can be reached in spite of f = c(G) − 1 faults per clock cycle if the system faults are
omissions and corruptions. The time to agreement is T = T ∗(G) and the number of bits is at most 2 m(G) T ∗(G).

Observe that, although expensive, it is no more so than what we have been able to achieve with just omissions.
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4.2.2. Omissions and additions
In the case of systems with omissions and additions, consider the following strategy.
To counter the negative effect of additions, each processor transmits to all its neighbours in every clock cycle.

Initially, a processor sends its value; if at any time it is aware of the existence of a 1 in the system, it will send only 1
from that moment on. Since there are no corruptions, the content of a message can be trusted.

Clearly, with such a strategy, no additions can ever take place. Thus, the only negative effects are due to omissions;
however, if f ≤ c(G) − 1, omissions can not stop the nodes from receiving a 1 within T = T ∗(G) clock cycles if at
least one processor has such an initial value. Hence

Theorem 4.5. Unanimity can be reached in spite of f = c(G) − 1 faults per clock cycle if the system faults are
omissions and additions. The time to agreement is T = T ∗(G) and the number of bits is at most 2 m(G) T ∗(G).

4.2.3. Additions and corruptions
Consider the environment when faults can be both additions and corruptions. In this environment messages are

not lost but none can be trusted; in fact the content could be incorrect (i.e. a corruption) or it could be a fake (i.e. an
addition).

This makes the computation of OR quite difficult. If we only transmit when we have 1 (as we did with only
corruptions), how can we trust that a received message was really transmitted and not caused by an addition ? If we
always transmit the OR of what we have and receive (as we did with only additions), how can we trust that a received
1 was not really a 0 transformed by a corruption?

For this environment, indeed we need a more complex mechanism employing several techniques, as well as knowl-
edge of the network G by the processors.

The first technique we use is that of time slicing [35]:

Technique Time Slice:

1. We distinguish between even and odd clock ticks; an even clock tick and its successive odd tick constitute a
communication cycle.

2. To broadcast 0 (resp. 1), x will send a message to all its neighbours only on even (resp., odd) clock ticks.
3. When receiving a message at an even (resp., odd) clock tick, processor y will forward it only on even (resp., odd)

clock ticks.

In this way, processors are going to propagate 1 only at odd ticks and 0 at even ticks.
This technique, however, does not solve the problem created by additions; in fact, the arrival of a fake message

created by an addition at an odd clock tick can generate an unwanted propagation of 1 in the systems through the odd
clock ticks.

To cope with the presence of additions, we use another technique based on the edge-connectivity of the network.
Consider a processor x and a neighbour y. Let S P(x, y) be the set of the c(G) shortest disjoint paths from x to y,
including the direct link (x, y); see Fig. 3. To communicate a message from x to y, we use a technique in which the
message is sent by x simultaneously on all the paths in S P(x, y). This technique, called Reliable Neighbour Trans-
mission, is as follows:

Technique Reliable Neighbour Transmission

1. For each pair of adjacent processors x , y and paths S P(x, y), every processor determines in which of these paths
it resides.

2. To communicate a message M to neighbour y, x will send along each of the c(G) paths in S P(x, y) a message,
containing M and the information about the path, for t consecutive communication cycles (the value of t will be
discussed later).

3. A processor z on one of those paths, upon receiving in communication cycle i a message for y with the correct
path information, will forward it only along that path for t − i communication cycles. A message with incorrect
path information will be discarded.
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Fig. 3. The c(G) edge-disjoint paths in S P(x, y).

Note that incorrect path information (due to corruptions and/or additions) in a message for y received by z is
detectable and so is incorrect timing since

• because of local orientation, z knows the neighbour w from which it receives the message;
• z can determine if w is really its predecessor in the claimed path to y;
• z knows at what time such a message should arrive if really originated by x .

Let us now combine these two techniques. To compute the OR, all processors broadcast their input value using the
Time Slice technique: the broadcast of 1’s will take place at odd clock ticks, that of 0’s at even ones. However, every
step of the broadcast, in which every involved processor sends the bit to its neighbours, is done using the Reliable
Neighbour Transmission technique. This means that each step of the broadcast now takes t communication cycles.
Let us call OR-AddCorrupt the resulting protocol.

Since there are no omissions, any transmitted message is possibly corrupted but it arrives; the clock cycle in which
it arrives at y will indicate the correct value of the bit (even cycles for 0, odd for 1). Therefore, if x transmits a bit, y
will eventually receive one and be able to decide the correct bit value. This is, however, not sufficient. We need now
to choose the appropriate value of t so that y will not mistakenly interpret the arrival of bits due to additions, and will
be able to decide if they were really originated by x .

The obvious property of Reliable Neighbour Transmission is that

Lemma 4.3. In t communication cycles at most f t copies of incorrect messages arrive at y.

The other property of Reliable Neighbour Transmission is less obvious. Observe that, when x sends 1 to neighbour
y using Reliable Neighbour Transmission, y will receive many copies of this “corrected” (i.e. corrected using the
properties of time slicing) bit. Let l(x, y) be the maximum length of the paths in S P(x, y); and let l = max{l(x, y) :

(x, y) ∈ E} be the largest of such lengths over all pairs of neighbours. Then

Lemma 4.4. y will receive at least (l − 1) + c(G)(t − (l − 1)) corrected copies of the bit bx,y from x within t > l
communication cycles.

Proof. Let bx,y = 1 (respectively, bx,y = 0). For the first l − 1 odd (respectively, even) clock ticks y will receive
the corrected copy of bx,y through link (x, y). During this time, the corrected copy of bx,y will travel down each of
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the other c(G) − 1 disjoint paths in S P(x, y), one link forward at each odd (respectively, even) clock tick. Since
the paths in S P(x, y) have length at most l, from the l-th communication cycle onward, y will receive the corrected
copy of bx,y from all the c(G) disjoint paths in S P(x, y) at each odd (respectively even) clock tick. Thus, after t > l
communication cycles, y will receive at least l − 1 + c(G)(t − (l − 1)) corrected copies of bx,y . �

Processor y can determine the original bit sent by x provided that the number of corrected copies received is greater
than the number of incorrect ones.

Lemma 4.5. After t > (c(G) − 1)(l − 1) communication cycles, y can determine bx,y .

Proof. For the number (l − 1) + c(G)(t − (l − 1)) of corrected copies to be larger than the number (c(G) − 1)t of
incorrect ones received as a result of additions, it is enough to request t > (c(G)− 1)(l − 1). By Lemmas 4.3 and 4.4,
y can identify and reject incorrect messages. �

Consider that broadcast requires D(G) steps, each requiring t communication cycles, each composed of two clock
ticks. Hence

Lemma 4.6. Using Algorithm OR-AddCorrupt, it is possible to compute the OR of the input value in spite of c(G)−1
additions and corruptions in time at most 2D(G) (c(G) − 1)(l − 1).

Hence, unanimity can be guaranteed if at most c(G) − 1 additions and corruptions occur in the system:

Theorem 4.6. Let the system faults be additions and corruptions. Unanimity can be reached in spite of f =

c(G) − 1 faults per clock cycle; the time is T ≤ 2 D(G) (c(G) − 1) (l − 1) and the number of bits is at most
4m(G)(c(G) − 1)(l − 1) messages.

4.2.4. Byzantine faults
In case of Byzantine faults, any type of fault can occur: omissions, additions and corruptions. Nevertheless, using

a simpler mechanism than that for additions and corruptions we are able to achieve consensus, albeit tolerating fewer
( f = dc(G)/2e − 1) faults per clock cycle.

To broadcast, we use precisely the technique Reliable Neighbour Transmission introduced to deal with additions
and corruptions; we do not, however, use time slicing: this time, a communication cycle lasts only one clock cycle;
that is, any received message is forwarded along the path immediately.

The decision process (i.e. how y, out of the possibly conflicting received messages, determines the correct content
of the bit) is according to the simple rule:

Acceptance Rule
y selects as correct the bit value received most often during the t time units.

To see why the technique Reliable Neighbour Transmission with this Acceptance Rule will work, let us first pretend
that no faults occur. If this is the case, then in each of the first (l − 1) clock cycles, a message from x will reach y
through the direct link between x and y. In each later clock cycle out of the t cycles, a message from x to y will reach
y on each of the at least c(G) paths. This amounts to a total of at least (l − 1) + c(G)(t − (l − 1)) messages arriving
at y if no fault occurs.

However, as we know, there can be up to t (dc(G)/2e − 1) faults in these t cycles. This leaves us with a number
of correct messages that is at least the difference between both quantities. If the number of correct messages
is larger than the number of faulty ones, the Acceptance Rule will decide correctly. Therefore, we need that
(l − 1) + c(G)(t − (l − 1)) > 2t (dc(G)/2e − 1). This is satisfied for t > (c(G) − 1)(l − 1). We therefore obtain:

Lemma 4.7. Communication to a neighbour using Reliable Neighbour Transmission tolerates dc(G)/2e − 1
Byzantine communication faults per clock cycle, and uses (c(G) − 1)(l − 1) + 1 clock cycles.

Consider that broadcasting requires D(G) rounds of Reliable Neighbour Transmission. Hence

Theorem 4.7. Let the system faults be arbitrary. Unanimity can be reached in spite of f = dc(G)/2e − 1 faults per
clock cycle; the time is at most T ≤ D(G) ((c(G) − 1) (l − 1) + 1).
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Fig. 4. Maximum number of faults per clock cycle in spite of which unanimity is possible.

4.3. Tightness of bounds

The results of this section together with those of Section 3 show that the established bounds for agreement protocols
are indeed tight for those graphs G where c(G) = d(G). In fact, in this case:

1. With the number of faults (or more) specified by the impossibility bound, even strong majority is impossible.
2. With one less fault than specified by the impossibility bound, even unanimity can be reached.
3. Any agreement among less than a strong majority of the processors can be reached without any communication.

This large class of networks includes hypercubes, toruses, rings, complete graphs, etc. As a consequence, we
also close the existing gap in [34,35] between possibility and impossibility for non-trivial agreement with dynamic
Byzantine faults in complete graphs.

5. Concluding remarks

We have employed a failure model for synchronous distributed systems, the communication failure model,
originally introduced in [34]. This model allows ubiquitous transient failures to be represented simply and explicitly,
avoiding many of the unwanted conclusions derivable by the component models; furthermore, it has allowed us to
focus on the inherent complexity of computing with dynamic faults.
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As already observed, localized and permanent faults can be described easily in terms of communication failures,
with enough dynamic communication faults of the appropriate type. Indeed, most component failure models can
be seen as a special localized case of the communication failure model, where all the faults are restricted to
the communications involving a fixed (though, a-priori unknown) set of processors or of links. Because of this
fact, traditional possibility/impossibility results in the component failure models immediately carry over, as special
localized instances, to the communications failure model. The only proviso is that, in this model, processors are never
faulty: only their actions (i.e. communication with the neighbours) possibly are.

Using the communication failure model, we have established bounds for arbitrary graphs on the impossibility of
non-trivial agreement in the presence of dynamic faults.

For graphs whose connectivity is the same as the degree, we have drawn a precise map of safe and unsafe
computations in the presence of dynamic faults, generalizing the existing results for complete graphs.

For those graphs where c(G) < d(G), the results established here leave a gap between possibility and impossibility.
Closing this gap is the goal of future investigations. Preliminary results indicate that neither parameter provides the
“true bound” for arbitrary graphs: there are graphs where d(G) is too large a parameter and there are networks where
c(G) is too low. An intriguing open question is whether there actually exists a single parameter for all graphs.

The performance (in terms of time and/or messages) of the proposed protocols for achieving unanimity was not the
main concern of this paper. Designing more efficient reliable broadcast protocols would be of considerable interest,
both practically and theoretically. Extensive investigations exist in the case of omissions (e.g., [6,9,10,13,14,22]). No
results, other that those presented here, are known for other types and combinations of fault.
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