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Abstract—Almost all the vast literature on graph exploration
assumes that the graph is static: its topology does not change
during the exploration, except for occasional faults. To date,
very little is known on exploration of dynamic graphs, where
the topology is continously changing. The few studies have
been limited to the centralized (or post-mortem) case, assuming
complete a priori knowledge of the changes and the times of their
occurrence, and have only considered fully synchronous systems.

In this paper, we start the study of the decentralized (or live)
exploration of dynamic graphs, i.e. when the agents operate in
the graph unaware of the location and timing of the changes. We
consider dynamic rings under the standard 1-interval-connected
restriction, and investigate the feasibility of their exploration, in
both the fully synchronous and semi-synchronous cases. When
exploration is possible we examine at what cost, focusing on the
minimum number of agents capable of exploring the ring. We
establish several results highlighting the impact that anonymity
and structural knowledge have on the feasibility and complexity
of the problem.

Keywords-Distributed algorithms; Mobile agents;

I. INTRODUCTION

A. Framework

Consider a networked system, modeled as a graph, supporting
mobile computational entities, called agents. The exploration
problem requires a team of system agents to move in the graph
so that, within finite time, each node is visited by at least
one agent. The exploration is said to be with termination
if the agents are required to stop within finite time upon
completing the task, perpetual otherwise. This problem has
been extensively investigated under a huge spectrum of different
assumptions (e.g., see [8]–[10], [17]) but always assuming that
the graph is static: its topological structure does not change
during the exploration, except for occasional faults.

Recently, distributed computing researchers have started to
investigate environments where the graph is highly dynamic,
that is where the topology changes continuosly (see [5], [24]
for recent surveys). This research is motivated by the rapid
development of networked systems (e.g., ad-hoc wireless
mobile networks) where changes are not anomalies (e.g., faults)
but rather integral part of the nature of the system.

The studies of distributed computations in highly dynamic
networks (e.g., see [1], [3], [4], [7], [11], [13] [15], [18]) clearly
make strong assumptions in order to restrict the universe of the
possible topological changes and their temporal occurence. A
common assumption made in the deterministic investigations is
that the network is 1-interval-connected: at each time step, the

network topology may change but there is always a connected
spanning subgraph, and the latency is sufficient for an agent
movement or a message transmission before the next time
step (e.g., [20], [25]). Some studies further assume that the
connected spanning subgraph persists for T > 1 time steps
(e.g., see [14], [19], [22], [23]), defining the sub-class of T-
interval-connected systems.

Very little is known on the exploration of dynamic networks.
On the probabilistic side, there is the early seminal work
on random walks [2]. On the deterministic side, the only
studies are on: the complexity of computing a foremost
exploration schedule in 1-interval-connected systems [14]
or on general temporal graphs [26]; the computation of an
exploration schedule for T-interval-connected rings [22]; and
the computation of an exploration schedule for 1-interval-
connected cactuses [20].

All these studies however assume that the exploring agents
have complete a-priori knowledge of all the topological changes
and the times of their occurence; that is, they are centralized
post-mortem investigations. Furthermore, they assume that the
system is fully synchronous; that is all the entities are always
active in every time step.

The only decentralized investigation is on the exploration of
periodic time-varying graphs by a single agent [15]. Otherwise,
for the distributed live case, i.e. when the location and timing
of the changes are unknown to the agents, no results are known,
even in the fully synchronous setting. In this paper, we start
such an investigation extending it also to the more complex
semi-synchronous environment.

B. Contributions
We examine the problem of exploring 1-interval-connected

dynamic rings. That is, we consider a ring network in which,
at each time step, at most one link is missing, the choice being
performed by an adversary. We study under what conditions
all nodes can be visited by a team of agents unaware of the
choices of the adversary. When exploration is possible, we
examine the cost, in terms of number of agents and time.

We first consider the fully-synchronous systems (Section
III), traditionally assumed in the literature; i.e., all agents are
active at each round, We then introduce the notion of semi-
synchronous systems (Section IV), where only a subset of
agents might be active at each time step (the choice of the
subset is made by an adversary). The semi-synchronous model
is common in the context of mobile agents in continuous spaces



N. Agents Assumptions Exploration and Termination
2 No bounds on n, Anonymous Ring Exploration with Termination impossible (Th. 1)
2 Known upper bound N , Anonymous Ring, Chirality Exploration with Termination in time 3N
2 Known upper bound N , Anonymous Ring, No Chirality Exploration with Termination in time 5N

2 No bounds on n, Landmark, Chirality Exploration with Termination in time O(n)
2 No bounds on n, Landmark, No Chirality Exploration with Termination in time O(n log(n))

Fig. 1. Results for FSYNC model
Model N. Agents Assumptions Exploration and Termination
(NS) Any Non-Anonymous Ring, Known n Exploration impossible (Th. 8)

(PT) 2 Known n Exploration impossible (Th. 9)
Known Upper Bound N , Chirality Exploration with Termination of one agent in moves O(N2)

Lower Bound of Ω(nN) moves (Th. 11)
3 Known Upper Bound N , No Chirality Exploration with Termination of one agent in moves O(N2)

(ET)
Any Known upper bound N , Non-Anonymous Ring, Chirality Exploration with Terminantion impossible (Th. 14)

3 Known ring size, No Chirality Exploration with Termination of one agent

Fig. 2. Results for SSYNC models

(e.g., [16]) but has never been studied before for agents moving
in graphs. Our main focus is on the impact that the level of
synchrony as well as other factors such as knowledge of the
size of the ring, chirality ((i.e., common sense of orientation),
anonymity, and communication, have on the solvability of the
problem.

– We first concentrate on fully synchronous systems
(FSYNC) examining solvability of the exploration problem
with two agents (after showing that it is unsolvable with one).

For anonymous rings, we establish a computational sep-
aration between exploration with termination and perpetual
exploration. More precisely, we prove that perpetual explo-
ration is possible with two agents, even without knowledge
of the ring size, chirality and communication. By contrast, we
show that exploration with termination is impossible without
knowledge of (an upperbound on) the ring size; this holds
even if the agents have unique IDs and can communicate
when they meet at the same node. We conclude by showing
that knowledge of an upperbound on the ring size is actually
sufficient for two agents to explore with termination.

For non-anonymous rings, we show that the presence of
a single observably different node (landmark) allows two
agents to solve the exploration problem with global termination
without the need of any additional information.

– We then examine semi-synchronous systems (SSYNC),
distinguishing among different transportation models (de-
scribed in details later in the paper) depending on what happens
to an agent a waiting to traverse a missing link e, if the agent
is inactive when e appears.

If a is not allowed to move (No Simultaneity Model - NS),
exploration is impossible with any number of agents, even
with exact knowledge of the ring size, nodes with distinct IDs,
agents with communication ability and common chirality. If a
is not allowed to move, but is guaranteed to be eventually active
at a round when the edge is present (Eventual Transport Model
- ET)), exploration with global termination is impossible, with
any number of agents, even if an upperbound on the ring size
is known, nodes have distinct IDs, agents communicate and
agree on chirality. On the other hand, with exact knowledge of

the ring size, we prove that exploration is possible with three
agents even without chirality or communication, and with a
stronger termination condition than perpetual exploration: at
least one of the agent terminates within finite time. Finally,
if a is passively transported on e agents it appear (Passive
Transport Model - (PT)), we show that, without chirality,
two anonymous robots with finite memory are not sufficient to
explore the ring; the result holds even if there is a distinguished
landmark node and the exact network size is known. On the
other hand, with chirality, two agents with a known upperbound
on the ring size can perform the exploration.

All the sufficiency proofs are constructive. A summary of
the results is shown in Figures 1 and 2. Due to lack of space
some proofs are omitted and can be found in [12].

II. MODEL AND BASIC LIMITATIONS

A. Model and Terminology

Let R = (v0, . . . vn−1) be a discrete time-varying graph that
is never disconnected and whose footprint is a ring; in other
words, R is a synchronous ring where, at any time step t ∈ N ,
one of its edges might not be present. Such a dynamic network
is known in the literature as a 1-interval connected ring.

The ring is anonymous, that is the nodes have no distin-
guishable identifier. Each node vi is connected to its two
neighbours vi−1 and vi+1 via distinctly labeled ports qi−1 and
qi+1, respectively (all operations on the indices are modulo
n); the labeling of the ports may not be globally consistent
and thus might not provide an orientation.

Operating in R is a set A = {a0, . . . , am−1} of agents,
each provided with memory and computational capabilities.
The agents are anonymous and all execute the same protocol.
Any number of agents can reside at a node at the same time.
Initially located at arbitrary nodes, they do not have any explicit
communication mechanism, nor can leave marks on the nodes.
The agents are mobile, that is they can move from node to
neighboring node. To move, an agent has to position itself on
the port from which it wants to leave and access to a port
is done in mutual exclusion: at every time step, on each port
there is at most one agent.



Each agent aj has a consistent private orientation of the ring;
that is, it has a function λj which designates each port either
left or right and λj(qi−1) = λj(qk−1), for all 0 ≤ i, k < n.
The orientation of the agents might not be the same. If all
agents agree on the orientation, we say that there is chirality.

The system operates in synchronous time steps, called rounds.
Initially, all agents are inactive. Each time step t ∈ N starts
with a non-empty subset A(t) ⊆ A of the agents becoming
active. Upon activation, agent aj at node vi performs a sequence
of operations: Look, Compute, and (possibly) Move.
• Look: The agent determines its own position within the

node (i.e., whether or not is on a port, and if so on
which one), and the position of the other agents (if any)
at that node. We call this information a snapshot. Let
myPos ∈ {left, right, nil} indicate the position of aj .

• Compute: Based on the snapshot and the content of
its local memory, the agent executes its protocol (the
same for all agents) to determine whether or not to
move and, if so, in what direction; the result will be
direction ∈ {left, right, nil}, where left and right are
with respect to its own local orientation. If myPos ∈
{left, right} and direction 6= myPos, the agent leaves
the port. Then, if direction = nil, the agent becomes
inactive. If direction 6= nil, aj attempts to access the
appropriate port (if not already there); if it gains access,
it positions itself on the port, otherwise it sets private
variable moved = false and becomes inactive.

• Move: Let the agent be positioned on port qi−1 (resp.,
qi+1) after computing. If the link between vi and vi−1
(resp., vi+1) is present in this round, then agent aj will
move to vi−1 (resp., vi+1), reach it, set private variable
moved = true, and become inactive. If the link between
vi and vi−1 (resp., vi+1) is not present, then agent aj
will remain in the port, set moved = false, and become
inactive. In either case, access to port qi−1 (resp., qi+1)
continues to be denied to any other requesting agent during
this round.

By definition, the delays are such that all active agents have
become inactive by the end of round t; the system then starts
the new round t+ 1.

Notice that, since access to a port is in mutual exclusion, in
the same round at most one agent will move in each direction
on the same edge. Also note that two agents moving in opposite
directions on the same edge in the same round might not be
able to detect each other.

A major computational factor is the nature of the activation
schedule of the agents. If A(t) = A for all t ∈ N , that is
all agents are activated at every time step, the system is said
to be fully synchronous (FSYNC). Otherwise the system is
said to be semi-synchronous (SSYNC); the agents that are
not activated in a round are said to be sleeping in that round;
every agent is activated infinitely often.

Observe that in SSYNC it is possible for an agent to be
sleeping on a port. This is indeed the case when an agent
a gains access to a port q when the link is not there (thus,
it remains on q), and a is not activated in the next round.

What may happen to an agent sleeping on a port gives raise
to different models, described in the following in a decreasing
order of computational power (for the agents):
• Passive Transport (PT): If an agent is sleeping on a port

at round t and the corresponding edge is present in that
round, the agent is moved to the other endpoint of the
edge in round t.

• Eventual Transport (ET): A sleeping agent cannot move. If
an agent is sleeping on a port at round t, it will eventually
become active at a round t′ > t when the corresponding
edge is present (simultaneity condition).

• No Simultaneity (NS): A sleeping agent cannot move.
There is no guarantee of simultaneity for an agent sleeping
on a port.

B. Basic Impossibilities

We begin our study by showing simple impossibility results.
It is interesting to notice that, without some knowledge of
the ring topology, or without the asymmetry introduced by a
landmark node, exploration with termination is impossible even
in the fully synchronous model, and even if the agents have
distinct IDs and are equipped with face to face communication.

Observation 1. The adversary can prevent an agent from
leaving the initial node v0, by always removing the edge over
which the agent wants to leave v0.

From this Observation, we immediately get:

Corollary 1. A single agent is not able explore the ring.

Observation 2. The adversary can prevent two agents starting
at different locations from meeting each other, if they have
only face-to-face communication, even if they have unlimited
memory and know each other’s ID.

Since the ring is anonymous, if its size in unknown, the only
way to detect the termination of exploration is to meet at least
once. Hence, Observation 2 yields:

Theorem 1. There does not exist an explicitly terminating
deterministic exploration algorithm of anonymous rings of
unknown size by two agents with unique IDs endowed with
only face-to-face communication.

III. RING EXPLORATION IN FSYNC

We consider exploration when the system is fully syn-
chronous, presenting and analyzing solutions under different
assumptions on knowledge of the ring size, anonimity of the
nodes, and presence of chirality. In all solutions we assume
the agents cannot communicate explicitly.

Our algorithms use procedure EXPLORE (dir | p1 : s1; p2 :
s2; . . . ; pk : sk) as a building block, where dir is either left or
right, pi is a predicate and si is a state. Procedure EXPLORE
essentially describes an exploration in the specified direction:
The agent performs Look, then evaluates the predicates from
left to right. When a predicate is satisfied, the procedure exits
and the agent transitions to the specified state. Otherwise it



tries to Move in the specified direction and the process is
repeated in the next round.

Furthermore, the following variables are maintained:
• Ttime, Tsteps: the total number of rounds and the

successful moves, respectively, since the beginning of
the execution.

• Etime, Esteps: the total number of rounds and the
successful moves, respectively, since procedure EXPLORE
has been called.

• Btime: the number of consecutive rounds the agent has
been waiting in a queue.

In addition to predicates referring to these variables, the
following predicates are used:
• meeting: both agents are in the node, having performed

successful move.
• catches: the agent is in the node after successful move,

the other agent is observed on a port (in the moving
direction).

• catched : the agent is on the port after failed move, the
other agent is observed in the node.

A. Known Upper Bound on Ring Size
In this section we study the simple case of exploring the

ring when the agents know an upper-bound N ≥ n on the ring
size. We first show how to solve the problem when the agents
agree on the ring chirality; we then show how the two agents
can explore the ring even if no such agreement exists, albeit
with a higher time complexity.

1) With Chirality: If the agents agree on chirality (i.e.,
on left/right orientation), then they can explore the ring and
terminate, even if they are anonymous. The algorithm is fairly
simple: Upon wake-up, an agent explores moving to the left
until it crosses N edges, or 3N time steps elapsed since the
start, or it catches up with the other agent. In the first two
cases, the agent terminates. In the latter case, it continues the
exploration changing direction, and terminates at time 3N .

In state Init:
EXPLORE(left | Ttime ≥ 3N ∨ Tsteps ≥ N : Terminate; catches:

Bounce)
In state Bounce:

EXPLORE(right | Ttime ≥ 3N : Terminate)

Fig. 3. Algorithm KNOWNNWITHCHIRALITY

Theorem 2. Algorithm KNOWNNWITHCHIRALITY allows
two anonymous agents with chirality to explore a 1-interval
connected ring and to terminate in time 3N , where N is a
known upper-bound on the ring size.

Proof: Termination follows by construction since in all
calls to EXPLORE a Ttime ≥ 3N threshold is specified
for termination. It remains to show that at the moment of
termination the ring has been explored.

Assume the contrary. If an agent terminates due to the
Tsteps threshold being reached, this agent has explored the
whole ring. Observe that (by chirality and construction) in each
round either at least one agent makes progress, or both agents

are waiting on the same edge from the opposite directions.
Note that the latter case means that the ring has been explored.
Hence, at time 3N the total number of moves by the two agents
is at least 3N ; since only one of them can reverse direction,
at least one of them has traveled N edges in one direction,
exploring the ring completely.

2) Without Chirality: Also without chirality, the problem is
solvable (with a slightly higher complexity). Note that left and
right now refer to the local orientation of an individual agent.

In state Init:
EXPLORE(left | Ttime ≥ 5N : Terminate; Btime = N : Reverse;

catches: Bounce; catched : Forward)
In state Reverse or Bounce:

EXPLORE(right | Ttime ≥ 5N : Terminate)
In state Forward:

EXPLORE(left | Ttime ≥ 5N : Terminate)

Fig. 4. Algorithm KNOWNNNOCHIRALITY

Theorem 3. Algorithm KNOWNNNOCHIRALITY allows two
anonymous agents without chirality to explore a 1-interval
connected ring and to terminate in time 5N − 7, where N is
a known upper-bound on the ring size.

Proof: As in Theorem 2, it is sufficient to show that the
ring has been explored in the case that both agents terminate
when Ttime = 5N − 7.

First, observe that each agent changes direction at most once.
This means that if the number of moves by both agents is at
least 4N − 7, at least one of them has made N − 1 moves
in one direction and has fully explored the ring. Second, note
that the only steps when no agent makes a move is when they
are both waiting on the same edge in the opposite direction.
However, as long as the ring has not been explored, this can
happen only once (when they first approach each other from
opposite directions; the second approaching means the ring has
been explored), and for at most N consecutive rounds. Hence,
exploration is guaranteed after 5N − 7 rounds.

B. No Bounds On Ring Size
We now consider exploring the ring when no upper-bound

on its size is available to the agents. Under this condition,
by Theorem 1, it is impossible for two agents to explore an
anonymous ring with termination, even if the agents have
unique IDs. Hence, for exploration to occur, either termination
must not be required or the ring must not be anonymous.
In the following we consider precisely those cases. We first
show how perpetual exploration can be performed without
any other condition even if the agents are anonymous. We
then consider a ring in which there is a special node, called
landmark, different from the others and visible to the agents;
we prove that exploration can be performed with termination,
even if the agents are anonymous, in time O(n) if there is
chirality, O(n log n) otherwise.
B.1 Perpetual Exploration

We present a protocol that allows two anonymous agents to
perform perpetual exploration without knowing any bound on
the ring size. The basic idea of Algorithm PERPETUALEXPLO-
RATION is for each agent to guess the size of the ring with an



initial estimate and move in one direction for a time equal to
twice the estimate; the agent will then double the size estimate,
change direction, and repeat this process with the new guess.

In state Init:
N ← 2, dir ← left
EXPLORE(dir; Etime ≥ 2N : Reverse, catches: Backward,

catched :Forward)
In state Reverse:

N ← 2 ∗N , dir ← opposite(dir)
EXPLORE(dir; Etime ≥ 2N : Reverse, catches: Backward,

catched :Forward)
In state Backward:

EXPLORE(opposite(dir))
In state Forward:

EXPLORE(dir)

Fig. 5. Algorithm PERPETUALEXPLORATION

Theorem 4. Algorithm PERPETUALEXPLORATION allows two
anonymous agents without chirality to explore a 1-interval
connected ring in O(n) time (but never explicitly terminates).

Proof: If the agents catch each other, then they start
moving in opposite directions and in the subsequent n − 1
moves (unknown to them) they will explore the whole ring.
Consider now the case when the agents never catch each other.
Since N is always doubled after 2N time steps, at time t0 ≤ 4n
it exceeds n. If the agents are moving in the same direction,
since they do not catch each other and in each time step at
least one of them makes progress, in the next 2N time steps
they will explore the ring. If the agents are moving in opposite
directions, they will either explore the ring, or get blocked on
the same edge. In the latter case, they reverse direction at time
t0 + 2N and explore the ring by time t0 + 3N ∈ O(n).
B.2 Landmark and Chirality
We consider a ring with a special landmark node v∗, called
landmark, identifiable by the agents. When performing a Look
operation at some node v, a flag IsLandmark is set to true
if and only if v = v∗. We assume chirality, but no other
additional knowledge. We show that two anonymous agents
can explore the ring and terminate.

The basic idea is to explore the ring using the landmark to
compute the size and allow termination. In order to coordinate
termination, the agents implicitly “communicate” when they
catch each other (by waiting at the node if not sure whether to
terminate, and by leaving it if they already know the ring is
explored). When the agents catch each other for the first time,
they break symmetry and assume different roles. We assign to
them logical names: F for the agent being caught, and B for
the one that caught F . These names do not change afterwards,
even though it is possible for F to catch B later on.

Procedure LEXPLORE is very similar to EXPLORE with the
following additions:

• The agent keeps track whether it is crossing the landmark
and in which direction; furthermore, it tracks its distance
from the landmark (since the moment it has encountered
the landmark for the first time). In this way it can detect
whether it made a full loop around the ring. When it does
so for the first time, variable n is set to the ring size (n

In state Init:
LEXPLORE(left | Ntime > 2n: Terminate; catches: Bounce; catched :

Forward)
In state Bounce:

LEXPLORE(right | meeting: Terminate; Etime > 2Esteps ∨
Ntime > 0: Return)
In state Return:

bounceSteps← Esteps
LEXPLORE(left | Ntime > 3n∨ catched: Terminate; catches: BComm)

In state Forward:
LEXPLORE(left | Ntime > 5n∨meeting∨ catches: Terminate; catched :

FComm)
In state BComm:

returnSteps← Esteps
if returnSteps ≤ 2 ∗ bounceSteps then . both must have waited on

the same edge
Move (right) . signal the need to terminate
Terminate in the next round

else
Stay for one round in the node
if agent F is in the node then . agent F waited to learn whether to

terminate
change state to Bounce and process it (in the same round)

else . agent F left, or tried to leave and is on the port – signalling to
terminate

Terminate
In state FComm:

if you know that the ring is explored (n is known) then
Move (left) . signal to B that F knows n
Terminate in the next round

else
Move from the port to the node . i.e. staying at the same node
if agent B is in the node then . this happens next round

Change state to Forward and process it (in the same round)
else . B has left or is on the port

Terminate

Fig. 6. Algorithm LANDMARKWITHCHIRALITY

is initialized to infinity, all the tests using it while it has
this initial value will fail).

• An additional variable Ntime is maintained, tracking the
total number of rounds since the agent learned n.

The complete pseudocode is in Figure 6. Both agent start
going left, if they catch each other, the naming is done. If
they never meet, they terminate (see Lemma 1). After naming,
agent F keeps going left. Agent B goes right until it is blocked
for a number of rounds that is equal to two times the number
of edges it has traversed (Etime > 2Esteps) or it does a
loop on the ring. When one of these conditions is satisfied
agent B goes left, and it tries to catch F . If F has done less
than Esteps steps to the left from its old position, then B
and F have waited on the same edge. B knows this, and it
can “communicate” the end of exploration to F . Intuitively,
the condition (Etime > 2Esteps) on B forces F to do the
same steps of B to the left direction, and this leads to a linear
termination time (see Th. 5 and Lemma 2). If the agents cannot
“communicate” because they do not meet for a certain number
of rounds, then they will both know that the ring is explored
and they can terminate independently (see Lemma 2).

Lemma 1. In Algorithm PERPETUALEXPLORATION, if the
agents do not catch each other and stay in the Init state, then
they will explore the ring and terminate by round 7n− 2.

Proof: As the agents are moving in the same direction, but
are in different nodes, in each round at least one of them makes
progress. Since they do not catch each other, the difference



between the number of successful moves by the agents is
at most n − 1. Therefore, if by round 5n − 2 no agent has
terminated, then both agents have crossed at least 2n−1 edges
and hence both know n. By construction, in further 2n steps
the agents will terminate. If an agent has terminated at round
r < 5n − 2, this means that at time r − 2n this agent knew
n, i.e. it has entered the landmark for the second time. As
the agents did not catch each other, the other agent must have
already entered the landmark. Since in the subsequent 2n steps
the agents do not catch each other and together made progress
at least 2n times, by round r the other agent will enter the
landmark for the second time and by round r + 2n it will
terminate as well.

Lemma 2. In Algorithm PERPETUALEXPLORATION, if an
agent terminates, then the ring has been explored and the
other agent will terminate as well.

Theorem 5. Algorithm PERPETUALEXPLORATION allows
two anonymous agents with chirality to explore a 1-interval
connected ring with a landmark and to terminate in O(n) time.

Proof: If the agents do not catch each other, the proof
follows from Lemma 1. Consider now the case that the agents
catch each other at least once. By the same lemma we know
that the meeting will happen no later than in round 7n − 3.
The crucial observation is that, either the time between two
consecutive meetings is linear in the progress made by agent
F , or the agents terminate following the catch.

Let pT imei denote the time between i-th and i+ 1-th catch
and let forwardStepsi be the progress made in that time
by the agent F . We have returnStepsi = bounceStepsi +
forwardsStepsi. Furthermore, pT imei ≤ 2∗bounceStepsi+
returnStepsi + forwardStepsi. Substituting returnSteps
into the latter yields pT imei ≤ 3 ∗ bounceStepsi + 2 ∗
forwardStepsi. If the agents do not terminate after this
catch, it must be forwardStepsi > bounceStepsi, hence
pT imei ≤ 5 ∗ forwardStepsi. This means that by time 5n at
the latest since the first catch, agent F will know n and will
terminate in further 5n rounds (if it does not terminate earlier
due to some other terminating condition). The correctness now
follows from Lemma 2.
B.3 Landmark without Chirality

We first consider and solve the problem when both agents
start from the landmark; we then adapt the algorithm to work
when agents start in arbitrary positions.

B.3(a) Starting from the Landmark:
The pseudocode of the Algorithm is in Figure 7. The main
difficulty lies in the case when the agents start in opposite
directions and never break the symmetry. Our approach to
solve this case is to add an initial phase in which the agents
use the event of waiting on a missing edge to break symmetry,
obtain different IDs (of size O(n3)) and then use these IDs to
ensure that if the agents do not catch each other (or outright
explore the ring), then eventually there is sufficiently long
time in which they are moving in the same direction so that
Algorithm LANDMARKWITHCHIRALITY succeeds.

In state InitL:
dir ← left, r1 ← 0, r2 ← 0, r3 ← 0
LEXPLORE(dir | n is known: Happy; Btime ≥ 0: FirstBlockL; catches:

Bounce, catched : Forward)
In state Happy:

LEXPLORE(dir | Ttime ≥ 32((3dlog(n)e+3)5 ·n) + 1: Terminate;
catches: Bounce; catched : Forward)
In state FirstBlockL:

dir ← right, r1 ← Ttime
LEXPLORE(dir | n is known: Happy, isLandmark: AtLandmarkL;

Btime ≥ 0: Ready; catches: Bounce catched : Forward)
In state AtLandmarkL:

r3 ← Etime
if both agents are at the landmark then

Wait one round
if both agents are at the landmark then

Terminate
LEXPLORE(dir | n is known: Happy, Btime ≥ 0: Ready; catches:

Bounce; catched : Forward)
In state Ready:

r2 ← Ttime−max(r1, r3)
Compute your ID by interleaving bits of r1, r2 and r3.
set(ID)
Change to state Reverse and process it

In state Reverse:
dir ←direction(Ttime)
if n is known then

LEXPLORE(dir | Ttime ≥ 32((3dlog(n)e + 3)5 · n): Terminate;
catches: Bounce; catched : Forward)

else
LEXPLORE(dir | switch(Ttime): Reverse; catches: Bounce; catched :

Forward)
In state Bounce, Return, Forward, BComm, FComm:

The same as in Algorithm LandmarkWithChirality.

Fig. 7. Algorithm STARTFROMLANDMARKNOCHIRALITY

Let us remark that if the agents somehow catch each other,
they establish chirality, thus using Algorithm LANDMARK-
WITHCHIRALITY will lead to exploration and termination.
Therefore, if at any point the agents catch each other, they
enter states Forward and Bounce and proceed with Algorithm
LANDMARKWITHCHIRALITY.
Computing the ID. Each agent tries to compute its ID
according to the procedure described below. If an agent does
not succeed in computing its ID then it has explored the ring
and it is aware of that. If an agent does not know the ring
size, then it immediately changes direction the first two times
it enters in a waiting queue.

The computed ID of an agent consists of interleaved bits of
three rounds r1, r2 and r3. Where r1 is the first round at which
an agent was waiting in the queue of a missing edge, r2 is
the second round where the agent was waiting in a queue and
r3 is the time when it entered the landmark for the first time
between times r1 and r2 (0 if it did not enter it at that time
interval). Note that two IDs are equal if and only if their ri’s
are equal (the same is not necessarily true if we constructed
the IDs by concatenation).

Moreover, notice that if a round r1 or r2 do not exist, because
the agent encountered a missing edge less than two times, then
we have that the agent has looped around the landmark, in
this case it enters in the Happy State (c.f. pseudocode). So
it knows the ring size and it can compute an upper bound on
termination time of the other agent, in Happy state an agent
will not change direction.
Using the IDs to decide the direction. The
following procedure is used when an agent has computed
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Phases: 1 2 3 4
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0
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Rounds:
Direction:

1 2 3 4 5 6 7 ......
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Fig. 8. Directions for an agent with ID = 1 , a round with value 0/1
corresponds to left/right direction

its ID.
Agents agree on a predetermined subdivision of rounds

in phases. Round r belongs to phase j, r ∈ phase(j), iff
r ∈ (

∑j−1
i=0 2i,

∑j−1
i=0 2i+2j ]. Given the ID, an agent computes

a string of bit S(ID) = 10 ◦ (b(ID)) ◦ 0, where ◦ is the string
concatenation and b(ID) is the minimal binary representation
of ID. Let us define as j the minimum value for which
2j ≥ len(S(ID)) and S(ID) = (0)2

j−len(S(ID)) ◦ S(ID)
hold. For each phase j ≥ j we associate the binary string
ds(ID, j) = Dup(S(ID), 2(j−j)), where Dup(s, k) is the
string obtained by s repeating each character k times, e.g.
Dup(1010, 2) = 11001100. For each round r ∈ phase(j),
with j > j, the direction of the agent is equal to left if
(ds(ID, j))r−(

∑j−1
i=0 2i+1) == 0, otherwise it is right.

In our algorithm we abstract this procedure by using three
functions:
• set(ID): This function takes as parameter the ID of the

agent, and it initializes the aforementioned procedure.
• direction(Ttime): This function takes as parameter the

current round and it returns the direction according to the
aforementioned procedure.

• switch(Ttime): This function takes as parameter the
current round and it returns true if direction(Ttime) 6=
direction(Ttime− 1).

Lemma 3. Let us consider two agents with different
IDs:{ID, ID′}, with len(ID) ≥ len(ID′). Given c · n, by
round r < 32((len(ID) + 3)c · n) + 1 there have been a
sequence of c · n rounds in which the agents had the same
direction. Moreover, by round r, each agent has moved in both
directions for a sequence of rounds of length at least c · n.

Theorem 6. Algorithm STARTFROMLANDMARKNOCHIRAL-
ITY allows two anonymous agents starting from the landmark
without chirality to explore a 1-interval connected ring with a
landmark and to terminate in O(n log(n)) time.

Proof: First note that if the agents catch each other, by the
proof of Theorem 5, they will explore the ring and terminate
in O(n) time since the moment they catch. Hence, in the
remainder of the proof we deal with the case when the agents
never catch each other.

Second, if the agents meet at the landmark and terminate
from state AtLandmark, they must have bounced from the
same edge and the ring has been explored; this is because they
started from the landmark and returned in the same time while
both were blocked exactly once.

Third, observe that, by time 2n+ 1, either an agent knows
n (and terminates in O(n log(n)) time from Happy state, or
it knows its own ID. Note that IDs are bound from above
by n3, since each ri is at most n, which implies len(ID) ≤

3dlog(n)e.
Consider now the case that at time 2n+ 1 an agent (say a)

does not know its ID (and hence since time 2n+ 1 knows n),
while the other (b) knows its ID but does not know n. Agent
b therefore repeatedly switches its direction in state Reverse,
while agent a moves in the same direction. Note that by Lemma
3, by time 32((3dlog(n)e + 3)5 · n) + 1, agent b has moved
to the left and right direction for a sequence of rounds of
length at least 5n, in one of the two both a and b move in the
same direction. As at least one agent makes progress in each
of those time steps, while (by assumption) they don’t catch
each other, b must have moved for at least 2n time units. This
means that b learns n and eventually terminates as well.

The final case to consider is when both agents know their
IDs, but do not know n. Note that if the agents have the same
values of r1 and r2, they must have covered the whole ring
and at least one of them will have r3 6= 0. This means that
the agents necessarily have different IDs, since if they had the
same values of r1 and r3 6= 0, they would have terminated in
AtLandmark state.

Since the IDs are different, by Lemma 3, by round
32((3dlog(n)e + 3)5 · n) + 1 there has been a time segment
of length 5n in which both agents were moving in the same
direction. Thus, either they catch each other, or both learnt n
and terminated thereafter.

B.3(b) Starting from Arbitrary Initial Positions:
Algorithm STARTATLANDMARKNOCHIRALITY almost works
also in the case of agents starting in arbitrary position. The
only failure would be due to the fact that, when the agents
meet in the landmark while establishing r1 and r2, it does
not necessarily mean that they have already explored the ring.
The modification to introduce is not to terminate in this case,
but to reset and start a new instance in state InitL, executing
algorithm STARTATLANDMARKNOCHIRALITY, as now the
agents are indeed starting at the landmark. If the agents do not
meet at the landmark, then their values of r3 are different and
the algorithm works using the same arguments. The complete
pseudocode is in Figure 9. Since this adds at most O(n) to
the overall time, we obtain the following theorem.

Theorem 7. Algorithm LANDMARKNOCHIRALITY allows two
anonymous agents starting in any initial position and without
chirality to explore a 1-interval connected ring with a landmark
and to terminate in O(n log(n)) time.

IV. RING EXPLORATION IN SSYNC

In this section we investigate the exploration problem when
the system is semi-synchronous. The complexity measure we
consider in this case is the total number of edges traversed by
the agents. Let us begin by showing an intuitive result for the
weak NS model:

Theorem 8. In the NS model, exploring the ring is impossible
with any number of agents, regardless of their computational
capabilities and the orientation of the ring.



In state Init:
dir ← left, r1 ← 0, r2 ← 0, r3 ← 0
LEXPLORE(dir | n is known: Happy; Btime ≥ 0: FirstBlock; catches:

Bounce; catched : Forward)
In state FirstBlock:

dir ← right, r1 ← Ttime
LEXPLORE(dir | n is known: Happy; isLandmark: AtLandmark;

Btime ≥ 0: Ready; catches: Bounce; catched : Forward)
In state AtLandmark:

if both agents are at the landmark then
r1 ← 0, r2 ← 0, r3 ← 0, Ttime← 0
LEXPLORE(dir | n is known: Happy, Btime ≥ 0: FirstBlock;

catches: Bounce; catched : Forward)
else

r3 ← Etime
LEXPLORE(dir | n is known: Happy; Btime ≥ 0: Ready; catches:

Bounce; catched : Forward)
In state S 6∈ {Init, FirstBlock, AtLandmark}:

The same as in Algorithm StartAtLandmarkNoChirality.

Fig. 9. Algorithm LANDMARKNOCHIRALITY

Proof: (sketch) Let us consider a ring where all agents
start in node v0. Initially, the adversary removes the “right”
edge leading to v−1 and pauses all the agents that, if active,
would have moved there. So no agent leaves v0 in the first
round. In the next round, the adversary pauses the agents that
(if active) would move left and removes the right edge. By
continuing this alternating process, the adversary prevents the
agents to explore other nodes besides v0.

Motivated by this impossibility result, we now examine the
other SSYNC models.

A. Exploration in the PT Model

We begin our investigation of the PT Model by showing that
without chirality two agents cannot explore the ring, even with
precise knowledge of the network size and with the presence
of a landmark.

To understand this impossibility, consider the behaviour of
an agent a, executing a solution algorithm for a fixed ID and
network size, in the following scenario:
Scenario: (i) let u be the starting node of the agent and let u′

be the neighbour of u towards which the agent initially decided
to depart; (ii) whenever a tries to cross an edge different from
(u, u′), that edge is blocked; neither u nor u′ are the landmark,
nor does the other agent enter these nodes.

In this scenario, there are two possible behaviours:
- Eventually Fixed Direction: Eventually, the agent decides

to wait indefinitely on an edge until it becomes available
- Perpetual Switching: The agent forever keeps switching

direction on blocked edges (with possibly different timeouts).

Lemma 4. In a ring of at least five nodes, if the algorithms
for both agents have Perpetual Switching behaviour, then the
agents cannot explore the ring.

Theorem 9. In the PT model without chirality two anonymous
agents with finite memory are not sufficient to explore a ring.
The result holds even if there is a distinguished landmark node
and the exact network size is known to agents.

Proof: W.l.o.g. assume that agent a starts at u, going
towards u′ and b starts at v going towards v′. The adversary

can select u and v in such a way that u, u′, v, v′ and the
landmark are all different. Since the agents are anonymous,
their algorithms are either both Perpetual Switching, or both
Eventually Fixed Direction. By Lemma 4 in the first case the
agents cannot explore the ring; hence it is sufficient to consider
the case of both agents being Eventually Fixed Direction. Let
(u∗, u′′), where u∗ ∈ {u, u′} is the edge on which a would
eventually start indefinite waiting if the edges exiting {u, u′}
were always blocked, and let (v∗, v′′) be such an edge for b.
Since the agents have no chirality and they never enter u′′ and
v′′, the adversary can choose u, v and an initial orientation
of the agents in such a way that u∗ = v′′ and v∗ = u′′. The
adversary starts by making agent b passive and letting agent a
be active, but always blocking the edges leaving {u, u′} until it
enters (u, u′) for the last time before starting indefinite wait on
(u∗, u′′). Now, it makes a passive and activates b but always
blocking the edges leaving {v, v′} until b starts the indefinite
wait on (v∗, v′′), and now it activates a (b is still active) and
blocks edge (u∗, v∗) forever. Since both a and b are waiting
indefinitely, the algorithm will never explore the ring.

As a consequence any solution must either use chirality or
employ three agents. In the algorithms we present, at east one
agent always explicitly terminates, the other agents will either
terminate or will stop moving.

tSL← 0 . totalStepsLeft
In state Init:

EXPLORE(left | Esteps ≥ N : Terminate, catches: Bounce)
In state Bounce:

if totalStepsLeft = 0 then
tSL←Esteps

else
leftSteps←Esteps
if rightSteps ≥ leftSteps then

Terminate
else

tSL← tSL + (leftSteps− rightSteps)
if tSL ≥ N then

Terminate
EXPLORE(right | Esteps ≥ N : Terminate, Btime > 0: Reverse)

In state Reverse:
rightSteps←Esteps
EXPLORE(left | Esteps ≥ N : Terminate, catches: Bounce)

Fig. 10. Algorithm PTBOUNDWITHCHIRALITY

A.1 Chirality and Knowledge of an Upper Bound
An algorithm for two agents is given in Figure 10.

Theorem 10. Two agents executing Algorithm
PTBOUNDWITHCHIRALITY in the PT model with a
known upper bound N on the size of the ring and with
chirality will explore the ring using at most O(N2) edge
traversals. Furthermore, one agent explicitly terminates, while
the other either terminates or it waits perpetually on a port.

Proof: First we prove exploration. Note that variable tSL
maintains (after the first bounce) the total distance traveled left
from the initial position. Hence, if either Esteps or tSL exceeds
N , the ring has been explored. The only non-trivial case is the
termination due to rightSteps ≥ leftSteps] condition.

Note that if agent a stayed at the same place while b bounced
off it, reversed direction on a blocked edge and returned to



a, b must have bounced on the same edge on which a had
been blocked (otherwise the PT condition would have ensured
passive transport of a). However, in such a case the ring has
been explored. If rightsteps < leftSteps then, since a and
b were moving in opposite direction after the last bounce of b,
this could have happened only if a and b crossed each other,
i.e. they have explored the ring after the last bounce of b.

We now have to show that at least one agent terminates. If the
adversary keeps an edge perpetually removed, eventually the
algorithm terminates due to condition rightsteps = leftSteps.
Moreover, if an agent is not blocked in its traversal it will
eventually do N steps leading to termination. The only
possibility that we need to analyze is if a is blocked on edge
e0, b bounces first on edge e0, then on edge ex and, when b
catches on a, it holds that rightSteps < leftSteps. When
this happens, both a and b have done at least one step further to
the left. Therefore, reiterating this case we will eventually have
tSL > N for one of the two. If an agent terminates, the other
one cannot bounce to the right. Hence, it will either terminate
due to exceeding N left moves, or will be perpetually blocked
on a port and the last part of the theorem holds.

Complexity Discussion: Observe that during one Bounce-
Reverse phase an agent can do O(N) steps. There could be at
most N of these Bounce-Reverse phases: in each of them the
agent has to do an additional step left otherwise the termination
condition is satisfied. Since the termination check bounds the
total number of left steps by N , this yields O(N2) complexity
of Algorithm PTBOUNDWITHCHIRALITY.

Theorem 11. Let us consider the PT model with chirality in
which two agents know an upper bound N on the ring size.
In any terminating algorithm an agent does at least Ω(N · n)
movements.

A.2 Landmark with Chirality
The algorithm is essentially a variation of the previous,

where an agent terminates also when it loops around the
landmark. The proof follows the same lines as the one of
Theorem 10.

A.3 No Chirality and Knowledge of an Upper Bound
In this case, we employ three agents, two of which will

necessarily agree on the direction. The algorithm is described
in Figure 11. An agent always bounces when catching another
agent, performing a zig-zag tour. In doing so, it counts
the number of steps it took in each direction, and if these
lengths stop increasing (or even decrease), it terminates. This
termination check is done not only when bouncing, but also
when encountering an agent in a node (which might be a
passively transported agent).

Lemma 5. In Algorithm PTBOUNDNOCHIRALITY, if an agent
terminates then the ring has been explored.

Proof: The only non trivial part is the terminating
condition [if Esteps ≤ d ] in function CheckD. Let a, b, c be
the tree agents. W.l.o.g we consider the first round after which
two agents are going left (a and b), and c is going right. This

d← 0
In state Bounce:

CHECKD(Esteps)
EXPLORE(right | Esteps ≥ N : Terminate, meeting: MeetingB, catches:

Reverse)
In state Reverse:

if d = 0 then
d←Esteps . Fist time I change state from Bounce to Reverse

else
CHECKD(Esteps)

EXPLORE(left | Esteps ≥ N : Terminate, meeting: MeetingR, catches:
Bounce)
In state MeetingR:

CHECKD(Esteps)
EXPLORE(left | Esteps ≥ N : Terminate, catches: Bounce)

In state MeetingB:
CHECKD(Esteps)
EXPLORE(right | Esteps ≥ N : Terminate, catches: Bounce)

In state Init,Bounce:
As in Algorithm PTBoundWithChirality

function CHECKD(x)
if d > 0 then

if Esteps ≤ d then
Terminate

else
d←Esteps

Fig. 11. Algorithm PTBOUNDNOCHIRALITY

has to happen otherwise the agents just keep looping around
the ring until one terminates. Consider the first round r0 in
which an agent changed direction on another agent. W.l.o.g.
assume b bounced on a in node x0. Let r be the first round
such that c is between a and b (including the position of a and
b). Since a and b were moving in different directions and could
not bounce on each other, there was no bounce between r0 and
r. Observe that the area between a and b containing x0 has
been explored (let us ignore in the remainder the area explored
by c up to now), and from now on, there is always the leftmost
agent expanding this area to the left, the rightmost expanding
it to the right and the middle agent traveling between them.
Note that the agents can overtake each other (due to passive
transport) and change who is the leftmost/rightmost/middle,
however there is always at most one middle one.

Note that, as long as the endpoints of the explored area do
not cross each other (in which case the ring has been fully
explored), d > Esteps: The check can only be performed on
the boundary of the explored area as in the middle there is only
one agent. Condition d ≥ Esteps follows from the fact that d is
the length of the second last crossing and Esteps is the length
of the last crossing of this agent. Condition d = Esteps would
mean that the explored area did not meanwhile grow, which,
from the PT condition, implies that both agents on which this
agent bounced were blocked on the same edge (otherwise there
would have been passive transport and d would have grown),
i.e. the ring is explored.

Theorem 12. Three anonymous agents performing Algorithm
PTBOUNDNOCHIRALITY in the PT model with a known upper
bound on the ring size and no chirality, explore the ring with
O(N2) edge traversals. One agent explicitly terminates, the
other either terminates or waits perpetually on a port.

Proof: The correctness of termination derives from Lemma



5. It remains to prove that eventually at least one agent
terminates. Having three agents, at least two will agree on
the same direction. We will consider this direction as global
left. It is easy to see that if an edge is perpetually removed, then
eventually the agents terminate: two agents will be positioned at
the end point of the missing edge and the third agent terminates
detecting Esteps = d. If an agents is not forced to change
direction and the edges are not perpetually removed, then it will
terminate since Esteps > N . Therefore, the adversary has to
force the agents to bounce on each other. But let us notice that,
as soon as an agent changes state from Bounce to Reverse,
it sets a distance d; if this distance does not increase at each
state change, the agent terminates. This implies that eventually
we will have d > N and termination for Esteps > N .

Complexity Discussion: If an agent does not set d, then it
performs at most O(N) steps. If an agent sets d, its value is at
most O(N); there are at most O(N) increases of d, therefore
an agent will do at most O(N2) movements. Since the number
of agents is constant, the total sum of movements over all
agents is at most O(N2).

B. Exploration in the ET Model

A trivial perpetual motion adaptation of the Algorithm
explained in Section III-A1 solves the exploration also in ET.

Theorem 13. In the ET model with chirality, two robots are
sufficient to explore a ring.

Given the previous results, a natural question is whether
there is an algorithm with at least one agent terminating, as
we have shown for the PT model. Unfortunately the following
theorem shows that, without exact knowledge of the network
size, it is impossible to design such an algorithm.

Theorem 14. Let us consider the ET model with chirality
where only an upper bound on the ring size is known. Given
any number of agents with finite memory, there does not exist
any exploration algorithm where an agent terminates in a
bounded number of rounds, signalling the exploration of the
ring. This holds true even if the ring has a landmark node
and/or the agents have distinct IDs.

We know from Theorem 14 that the size of the ring must
be known. With this knowledge, it is easy to adapt Algorithm
PTBOUNDNOCHIRALITY to the ET model, setting N to
n− 1, and making the inequality check in CheckD strict: (if
Esteps < d). As in the PT model, three agents are employed,
with no chirality assumption.

Theorem 15. Three anonymous agents in the ET model with
known ring size and no chirality can explore the ring, with
one agent explicitly terminating and the other agents either
terminating or waiting perpetually on a port.
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