
1

Strictly Localized Sensor Self-Deployment for
Optimal Focused Coverage

Xu Li, Hannes Frey, Nicola Santoro, and Ivan Stojmenovic, Fellow, IEEE

Abstract—We consider sensor self-deployment problem, constructing FOCUSED coverage (F-coverage) around a Point of Interest
(POI), with novel evaluation metric, coverage radius. We propose to deploy sensors in polygon layers over a locally-computable
equilateral triangle tessellation (TT) for optimal F-coverage formation, and introduce two types of deployment polygon, H-polygon
and C-polygon. We propose two strictly localized solution algorithms, Greedy Advance (GA) and Greedy-Rotation-Greedy (GRG). The
two algorithms drive sensors to move along the TT graph to surround POI. In GA, nodes greedily proceed as close to POI as they
can; in GRG, when their greedy advance is blocked, nodes rotate around POI along locally computed H- or C- polygon to a vertex
where greedy advance can resume. We prove that they both yield a connected network with maximized hole-free area coverage. To
our knowledge they are the first localized sensor self-deployment algorithms that provide such coverage guarantee. We further analyze
their coverage radius property. Our study shows that GRG guarantees optimal or near optimal coverage radius. Through extensive
simulation we as well evaluate their performance on convergence time, energy consumption, and node collision.

Index Terms—Coverage, Self-deployment, Localized algorithms, Mobile sensor networks

✦

1 INTRODUCTION

S Ensor self-deployment is an important research issue
that deals with autonomous coverage formation in

mobile sensor networks (MSN). Relevant research is
still on its initial stage, with emerging new problem
statements and development of basic self-deployment
techniques extendable to future more complex proto-
cols. Considering potentially large network scale, unpre-
dictable sensor failure, dynamic topological change, and
limited network bandwidth, a sensor self-deployment
algorithm should be carried out in a localized manner.
Term “localized” means that each sensor makes self-
deployment decision independently, using k-hop neigh-
borhood information for a constant k. In the case of
k = 1, we call the algorithm strictly localized.

There exist a class of sensor network applications,
where sensors are designated to monitor concerned
events or environmental changes around a given strate-
gic site or coverage focus, called Point of Interest (POI).
For instance, in a battle field scenario, sensors are de-
ployed around a battalion headquarter to detect intru-
sion events, whose distance to the headquarter reflects

• X. Li is with the Department of Electrical and Computer Engineering,
University of Waterloo, 200 University Avenue West, Waterloo, ON N2L
3G1, Canada. Email: easylix@gmail.com. Part of this work was done when
he was with SCS, Carleton University, Canada.

• H. Frey is with the Faculty of Computer Science, Electrical Engineering
and Mathematics, University of Paderborn, Warburger Str. 100, 33098
Paderborn, Germany. Email: hannes.frey@uni-paderborn.de

• N. Santoro is with the School of Computer Science, Carleton University,
1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada. Email: san-
toro@scs.carleton.ca

• I. Stojmenovic is with the School of Information Technology and En-
gineering, University of Ottawa, 800 King Edward Avenue, Ottawa,
ON K1N 6N5, Canada, and the Department of Electronic, Energetics
and Telecommunications, FTN, University of Novi Sad, Serbia. Email:
stojmenovic@gmail.com

their degree of danger. Another example are sensors scat-
tered around a chemical plant to monitor its distance-
dependent pollutional impact on the soil/air in the
vicinity. These applications uniquely require that an area
close to POI have higher priority to be covered than a
distant one. We call the coverage of such a surrounding
network FOCUSED coverage or F-coverage. In this article,
we address how to achieve optimal F-coverage through
sensor self-deployment approach.

1.1 F-coverage evaluation
The coverage region of a sensor network is the region
enclosed by the outer boundary of the network. A sensing
hole is a closed uncovered area inside the coverage
region. The coverage of a sensor network is measured
by area. It is defined as the subtraction of the total area
of sensing holes from the area of the coverage region.
Area and sensing hole are two key evaluation metrics
for traditional area coverage problem. They reflect the
sensitivity of a sensor network over a Region of Interest
(ROI). An ideal area coverage has maximized area and
no sensing holes. In the F-coverage problem, measuring
area and hole existence is no longer sufficient, because
distance from POI to uncovered areas is also important
and must be taken into consideration. In this case, we
introduce an additional metric, coverage radius.

Definition 1 (Coverage Radius): The radius of an F-
coverage is the radius of the maximal hole-free disc
enclosed by sensors and centered at POI.

Optimal F-coverage has maximized coverage radius. If
number of sensors is unlimited and with sensing ranges
approaching zero, sensors can be deployed densely and
achieve close to circular coverage. The maximal hole-
free disc therefore has near circular shape. In this case,
coverage radius is called circular radius. Since the sensing

radius is finite, we consider here instead a discrete vari-
ant of coverage radius, referred to as polygonal radius. It is
alternatively measured by layer distance. Layer distance,
also called convex layers in computational geometry
or Tukey’s depth in statistics, represents the number
of successive complete convex polygons adjacently sur-
rounding POI. More precisely, we consider a discrete
set of convex polygons Pi (i = 1, 2, · · ·) composed of
sensors, centered at POI, and having a diameter of i ∗ d
for some constant d. We count the total number of such
polygons lying completely in the coverage region.

1.2 Problem statement
We consider an asynchronous MSN of unknown size
n. The network is randomly deployed in a 2D free
field (e.g., an area on ocean surface in practice) and
possibly initially disconnected. Sensors bear the same
communication radius rc and the same sensing radius rs.
They move asynchronously possibly at different speeds.
Sensors know about the location of POI, denoted by F .
We place F at origin (0, 0) without loss of generality.

The goal is to develop strictly localized sensor self-
deployment algorithms that yield a network surround-
ing F with an equilateral triangle tessellation (TT) lay-
out. This TT layout is desirable because it maximizes
the coverage area of a given number of sensors without
coverage gap when sensor separation is equal to

√
3rs

[2], [15], [18], and that it automatically maintains net-
work connectivity when rc ≥

√
3rs. As an additional

requirement, the final network should have maximized
coverage radius with respect to F .

We consider this new sensor self-deployment problem
under the following common assumptions: (1) rc ≥√
3rs; (2) sensors know their own spatial coordinates by

attached GPS devices or any effective localization algo-
rithm; (3) through lower-layer protocols (minor modifi-
cation may apply), sensors have the information about
their 1-hop neighbors, i.e., location, moving status, and
movement destination (if moving). In the sequel, we will
use terms “sensor” and “node” interchangeably.

1.3 Our contributions
We introduce an F-coverage evaluation metric, coverage
radius, which reflects the need to maximize the distance
from F to uncovered areas. This leads to a novel sensor
self-deployment problem, F-coverage formation around a
given coverage focus. We convert this problem to vertex
coverage problem over a locally-computable equilateral
triangle tessellation (TT) and propose, by the coverage
radius definition, to locate sensors in polygon layers con-
centric to F in TT. We introduce two types of deployment
polygon, H-polygon and C-polygon. The former are
hexagons. The latter are polygons best approximating
inscribed circles of, and thus requires less nodes than, the
former for achieving the same circular coverage radius.

We propose two strictly localized algorithms, Greedy
Advance (GA) and Greedy-Rotation-Greedy (GRG). In the
two algorithms, self-governing sensors align themselves
with the TT grid and locally compute virtual H- or C-

Fig. 1. Equilateral triangle tessellation (GTT).

polygons. In GA, sensors greedily proceed, from polygon
to polygon, as close to F as they can; in GRG, when
their greedy advance is blocked, sensors rotate around
F along the polygon that they are traversing, to a vertex
where greedy advance can resume. In both algorithms,
when sensors are compactly placed or collide, they may
temporarily move away from F . Both GA and GRG are
resilient to dynamic node addition and removal (failure)
and work regardless of network disconnectivity.

We formally prove that the two algorithms both yield
a connected network of TT layout with hole-free cov-
erage. We also analyze their coverage radius property.
Our study indicates that GRG with H-polygon (i.e.,
Hex-GRG) generates optimal hexagonal F-coverage and
near optimal circular F-coverage, and that GRG with C-
polygon (i.e., Cir-GRG) generates, compared with Hex-
GRG, circular F-coverage closer to the optimal using less
nodes. We evaluate the performance of GA and GRG
on convergence time, energy consumption, and node
collision through extensive simulation.

This article is an integration and generalization of
our previous work [11], [12], along with detailed and
extended analysis. It corrects a few mis-claims about
coverage radius maximization made in [12]. We briefly
review related work in Section 2. We introduce H-
polygon and C-polygon in Section 3. Then we propose
algorithms GA and GRG in Section 4, and present their
analytical and simulation study in Section 5 and 6. We
discuss possible extensions and practice issues in Section
7, followed by closing remarks presented in Section 8.

2 RELATED WORK

To our knowledge there is no previous work addressing
the F-coverage problem as identified here in this article.
Sensor self-deployment algorithms for coverage forma-
tion over ROI with no particular coverage focus exist in
the literature. Below we will review some of these related
work at very short length. An extensive survey can be
found in our recent article [13].

The most known sensor self-deployment approach
is vector-based (or virtual-force-based) approach. Algo-
rithms that belong to this category include [4], [15],
[16], to name a few. The basic idea is that each node
computes movement vectors in rounds using the relative
position of its neighbors and moves according to the

2

Fig. 2. Neighborhood pattern of vertex v

vector summation. Although proposed solutions appear
efficient, they leave coverage holes and could be highly
inefficient in terms of coverage radius.

Heo and Varshney [8] presented a Voronoi diagram
based algorithm, which enables sensors to identify local
sensing holes using Voronoi diagram and align their
sensing range along their Voronoi polygons for mini-
mizing uncovered area. Similar algorithms are VOR [16]
and the one in [5]. In [5], sensors find centroids of their
Voronoi polygons based on a utility function, e.g. Gaus-
sian density function representing reduced monitoring
ability for a sensor with squared distance from POI.
They move toward that centroid, exchange messages
and repeat the step until they stabilize. Voronoi diagram
based solutions are not localized since some links may
be very long, not between communication neighbors.
Further, coverage radius is again not considered.

Yang et al. [17] presented a scan-based sensor deploy-
ment scheme. The target field is partitioned into a mesh,
and nodes are treated as load. The goal is converted to
load balancing among mesh cells through multi-rounds
of scan. This approach requires the network to be dense
enough so that load balancing can be proceeded in the
entire field. As the authors admitted, it may generate
huge message overhead when the network is very dense
due to the increased number of rounds of scans.

Bartolini et al. [3] presented a snap and spread self-
deployment scheme. Sensors simultaneously construct a
hexagonal tiling portion by pushing and pulling sensors
to hexagon centers. Tilling portions of different sensors
merge when they meet. The algorithm is not purely
localized because, according to the implementation pre-
sented in [3], in a pull process for filling adjacent empty
hexagons, a snapped sensor has to visit (by sending a
message) every other hexagon in the worst case before
finding an unsnapped sensor.

Existing algorithms, when used for focused coverage
formation problem, do not provide (and even do not
study) guarantee on coverage radius. In worst case, the
resulting coverage radius can be as bad as 0 (mean-
ing that POI is located outside the network or on the
network border). Besides, they have major weaknesses
such as unrealistic assumptions (e.g., initial connectivity
out of randomized placement or fixed network size), re-
quirement for global computation (e.g., Voronoi diagram
construction or clustering), vulnerability to node failure,

and so on. The unsuitability and the incompleteness of
previous work motivate our research presented here.

3 DEPLOYMENT POLYGONS
An equilateral triangle tessellation (TT) is a planar graph
composed of congruent equilateral triangles, as shown
in Fig. 1. Given a common orientation, say the North,
and edge length le, nodes are able to compute a unique
TT containing F as vertex. Denote this TT by GTT . Two
vertices are neighboring or adjacent to each other if there
is an edge between them. With knowledge of its own
location, each node can determine whether it is located
at a vertex in GTT and which vertex (if so), and adjacent
vertices (in communication range).

If we deploy sensors at vertices around F in GTT ,
we automatically obtain a network with the required
TT layout; if we further assure that no empty vertex
exist in the coverage region, and that the coverage region
have an (approximate) circular shape centered at F , we
as well achieve the desired F-coverage with no sensing
hole and with (near) maximized radius. By this means,
we actually convert the F-coverage problem to a vertex
coverage problem over GTT .

In our work, TT edge length le is set to
√
3rs because

it ensures connectivity and minimizes sensing range
overlapping [2], [15], [18]. By coverage radius definition,
sensors should be deployed in polygon layers for opti-
mal F-coverage. In the following, we introduce two types
of deployment polygon in GTT , which will be used later
in our proposed sensor self-deployment algorithms.

The residence polygon of a vertex is the polygon that
the vertex belongs to; the residence vertex of a node is
the vertex at which the node is located. We denote by
|ab| the Euclidean distance of two points (nodes) a and
b and by |S| the size of a set S. Let SP (u, v) be the set of
edges along the shortest path connecting vertices u and
v in GTT . The TT distance of u and v is |SP (u, v)|.
3.1 H-polygon

Definition 2 (H-polygon): An H-polygon (Hi) of layer
distance i is a polygon whose perimeter is composed of
successive vertices that have equal TT distance i to F .

Each H-polygon is an hexagon. In GTT , a vertex v(6=
F) has two neighborhood patterns along H-polygon:

1) edge (−): v is located on polygon edge (Fig. 2(a));
2) convex corner (∧): v is located at convex polygon

corner (Fig. 2(b)).

3

 0

 20

 40

 60

 80

 100

 100 200 300 400 500 600

N
od

e
sa

vi
ng

 (
x

10
00

)

Target circular coverage radius (x 3/2 rs)

Fig. 3. Node saving ρ(i) v.s. cir. coverage radius i× 3
2rs

In Fig. 1, vertices a and b both reside on H4 respectively
with edge and convex corner neighborhood patterns.
H-polygons are concentric to F , as shown in Fig. 1

where H1, · · · ,H4 and H15 are highlighted by thick black
lines. Each H-polygon Hi (i ≥ 1) is composed of 6i
vertices. The total number νH(i) of vertices enclosed
by Hi (inclusive) is the sum of number of composing
vertices of all Hj (j ≤ i) plus 1 (counting for F). That is,

νH(i) = 1 +

i
∑

q=1

6q = 3i(i+ 1) + 1 . (1)

Then the optimal hexagonal coverage radius γH(n) (in
layer distance) that n nodes can provide over GTT is

γH(n) = max(i|νH(i) ≤ n) . (2)

3.2 C-polygon
For simplicity, we abuse the definition of layer distance
to allow concave polygons and define C-polygon below:

Definition 3 (C-polygon): A C-polygon (Ci) of layer dis-
tance i is a minimum area polygon enclosing the max-
imal inscribed circle C(Hi) of Hi and consisting of
successive vertices.
Ci best approximates circle C(Hi) without radius re-

duction (thus named C-polygon), and it must be com-
pletely contained in, or overlapped by, Hi because oth-
erwise it is not the minimum area polygon. In Fig. 1,
C(H14) and C(H15) are shown as dotted or dashed
circles, and C14 and C15 are marked and labeled.

Lemma 1: A vertex belongs to Ci if and only if it itself
does not reside inside C(Hi) and at least one of its
neighboring vertices lies inside C(Hi).

Knowing Hi, and C(Hi) and according to Lemma 1,
one may compute the total number νC(i) of vertices
enclosed by Ci (inclusive)

νC(i) =

{

νH(i) for i ≤ 7

νH(i)− ρ(i) for i > 7 ,
(3)

where ρ(i) = 6
∑⌈(1−

√
3

2
)i−1⌉

t=1 (2⌊ 1
2 (i− t−

√
6it− 3t2)⌋+ 1)

represents the number of vertices that exist inside Hi or
on its perimeter, but fall outside Ci. The computation is
omitted here for space limit and can be found in [9].

The optimal (i.e., maximum) circular coverage radius
γC(n) that n nodes can provide over GTT is

γC(n) =
3

2
rs max(i|νC(i) ≤ n) . (4)

(a) Lemma 2 (b) Lemma 3

Fig. 4. Pictures for Lemma 2 and 3

From Eqn. (3), C-polygon is equivalent to H-polygon for
the first 7 layers, and then it requires less nodes than H-
polygon for producing the same circular coverage radius
(in Euclidean distance) (see Fig. 3). Below we study
localized computation of C-polygon and its properties.

Six neighboring vertices of a vertex v define a circle
of radius le =

√
3rs that is centered at v. For v to belong

to Ci, this circle has to intersect C(Hi). Denote by Ri the
radius of C(Hi). Ri = ih, where h = 3

2rs is the height
of TT triangle. Hence, v can belong only to such Ci that
|vF | ≤ Ri + le. It can be derived that a satisfactory i is

either ⌊ |vF |
h

⌋ or ⌊ |vF |
h

⌋ − 1. Summarizing,

Theorem 1: A vertex v residing on Ci for i = ⌊ 2|vF |
3rs

⌋
will also reside on Ci−1 if and only if it is adjacent to a
vertex w such that |wF | < 3

2 (i− 1)rs.

Lemma 2: Any two different C-polygons share no
common TT edges.

Proof: Assume for the sake of contradiction that a TT
edge uv is part of Ci and Cj (i > j). Let w be the common
vertex neighbor of u and v that resides on the same side
of uv as Ci. Let d = |wF |. By Lemma 1, u and v must
not lie inside C(Hi); whereas, w must be located inside
C(Hj) (thus inside C(Hi)), namely, d < Rj (radius of
C(Hj)). Draw line segment vF . It intersects C(Hi) at v′.
Translate ∆uvw for vector ~vv′ and obtain ∆u′v′w′. Then
rotate ∆u′v′w′ around v′ to obtain ∆u′′v′′w′′ such that
u′′ = u′, u′′ is located on C(Hi) and w′′ inside C(Hi).
This translation and rotation process is shown in Fig.
4(a). Notice that w′′ is located on C(Hi−1), i.e., |w′′F | =
Ri−1 ≥ Rj , and obviously |w′′F | ≤ d. Therefore we have
d ≥ Rj , which contradicts our previous result.

Lemma 3: On a C-polygon, the two vertex neighbors
of any vertex are not adjacent to each other.

Proof: Consider an arbitrary vertex v on an arbitrary
C-polygon Ci. By Lemma 1, v must not lie inside C(Hi).
Denote the six vertex neighbors of v by a, b, c, d, l and
r. Further, let l and r be the two located on Ci. Assume
for the sake of contradiction that l and r are adjacent to
each other, as shown in Fig. 4(b).

By Lemma 1, at least one of the four vertices a, b, c

and d lies inside C(Hi) so that v is located on Ci. Let
a be that vertex. Then b must be inside C(Hi), because,
otherwise, b will be on Ci as well, which is not possible.
Since b is inside C(Hi), c must be inside C(Hi) for the
same reason. This way, every vertex neighbor of v other
than l and r is inside C(Hi), giving us a contradictory

4

result: v itself must be located inside C(Hi).
By Lemma 2 and 3 and through exhaustive enumera-

tion, we obtain the following theorem:
Theorem 2: In GTT , a vertex v(6= F) has four and only

four possible neighborhood patterns along C-polygon:

1) edge (−): v has one residence C-polygon, and is
located on a polygon edge (Fig. 2(a));

2) convex corner (∧): v has one residence C-polygon,
and is located at convex polygon corner (Fig. 2(b));

3) concave corner (∨): v has one residence C-polygon,
and is located at concave polygon corner (Fig. 2(c));

4) joint corner (×): v has two residence C-polygons
(Fig. 2(d)).

In Fig. 1, vertices c, d, f all have only one residence
C-polygon C14; their neighborhood patterns are edge,
convex corner, and concave corner, respectively. Vertex e

is a joint corner vertex, shared by C14 and C15.

3.3 Neighborhood division
We generally denote by Pi deployment polygon (simply
polygon), whether H-polygon or C-polygon, of layer dis-
tance i (i ≥ 1) and by ν(i) the total number of its enclosed
vertices. The neighborhood pattern set in C-polygon is a
superset of that in H-polygon, and thus serves as the
neighborhood pattern set for generalized Pi.

Nodes are able to compute all polygons Pi and thus
the neighborhood pattern of any vertex. But, since we
are aiming at strictly localized algorithm, they only de-
termine the neighborhood patterns of the vertices within
their communication range on the fly.

Each vertex v (6= F) has at least one and at most
two residence polygons, depending on its neighborhood
pattern Pat(v). For generalization purpose, suppose v

has two residence polygons. Let the outer one be Pi

and the inner one Pi′ . i
′ = i − 1 if v indeed resides on

two different polygons, and i′ = i otherwise. The layer
distance d(v) of v to F is equal to the layer distance of
its inner residence polygon, i.e., d(v) = i′. The left-hand
(right-hand) side of v is the clockwise (resp., counter-
clockwise) direction around F .

As shown in Fig. 2, the vertex neighbors of v may
be divided into four disjoint groups: left-hand neigh-
bors, right-hand neighbors, inward neighbors, and outward
neighbors. The first two groups share the same residence
polygons Pi and Pi′ with v, while the last two groups
respectively belong to Pi′−1 and Pi+1. We define four
multi sets NL(v), NR(v), NO(v) and N I(v), with respect
to these four groups, to ease future presentation.
NL(v) contains two elements, denoted by Inn(NL(v))

and Out(NL(v)), respectively the left-hand vertex neigh-
bors of v on Pi′ and Pi. When i′ = i, Inn(NL(v)) ≡
Out(NL(v)), refers to the same only left-hand vertex
neighbor. NO(v) is composed of three elements, denoted
as Ltm(NO(v)), Mid(NO(v)), and Rtm(NO(v)). When v

has three outward vertex neighbors, they respectively
represent the leftmost, the middle, and the rightmost
one. When v has two such neighbors, Ltm(N I(v)) refers
to the left one, and Mid(N I(v)) ≡ Rtm(N I(v)) refers to

the right one. When v has one outward vertex neighbor,
Ltm(NO(v)) ≡ Mid(N I(v)) ≡ Rtm(N I(v)) implies this
only outward vertex neighbor. NR(v) and N I(v) are
similarly defined as NL(v) and NO(v).

4 F-COVERAGE BY SELF-DEPLOYMENT

In this section, we propose two strictly localized sensor
self-deployment algorithms, Greedy Advance (GA) and
Greedy-Rotation-Greedy (GRG), which are both resilient to
node failure and able to operate regardless of network
partition. They are composed of a set of simple hop se-
lection rules. By these rules, nodes make self-deployment
decision using merely 1-hop neighborhood information
and move asynchronously toward F . They stop when
no eligible next hop is available and resume deployment
movement whenever possible.

Both GA and GRG require use of deployment poly-
gon P , which is un-specified in algorithm definition
for generalization purpose. The previously introduced
H-polygon and C-polygon are two special cases. For
hexagonal F-coverage, H-polygon should be adopted
(version Hex-GA and Hex-GRG); for circular F-coverage,
C-polygon is engaged (version Cir-GA and Cir-GRG).

For simplicity, a TT vertex v is considered occupied if
a node is not moving and is located in close proximity
to v, or if a node is moving toward v; F is considered
occupied in the case that it is not physically occupiable.

4.1 Greedy Advance (GA)
In GA, a node moves greedily along TT edges as close
to F in terms of layer distance as it can. Generally
speaking, it moves step by step, each step from current
residence vertex w to an empty (i.e., unoccupied) inward
vertex neighbor v ∈ N I(w) determined by a number
of hop selection rules. When multiple such vertices are
available, a random choice is made.

When multiple nodes are present at the same vertex
at the same time, collision occurs. Rules are necessary
for avoiding node collision which is not desirable since
each vertex is expected to be occupied by at most one
node for coverage maximization. Below we introduce
GA rules including the priority rule, the forbiddance rule
and the innermost-layer rule. We assume for the time
being that nodes are initially located at distinct vertices
of GTT . This assumption rarely holds in practice. We
relax it immediately after, by a few extra rules.

Notice that it is only when NO(v) (a multi set) contains
multiple distinct vertices that greedy advance may cause
node collision at vertex v(6= F). According to Fig. 2,
this is the case when Pat(v) = “ − ”|“ ∧ ”. Examine the
corresponding graphs Fig. 2(a) and 2(b). If two nodes are
greedily moving to v from vertices e (i.e., Ltm(NO(v)))
and d (i.e., Mid(NO(v))) in parallel, they may collide
at v. But this situation can be avoided by the following
priority rule as the two nodes are actually neighboring
each other and know the potential collision.

Rule 1 (Priority rule): For two nodes aiming at a ver-
tex v (6= F) from two different vertices Ltm(NO(v))

5

and Mid(NO(v)), the one from Ltm(NO(v)) has higher
priority to proceed.

If Pat(v) = “ ∧ ” and the two nodes are from vertices
e (i.e., Ltm(NO(v))) and c (i.e., Rtm(NO(v))), they could
also collide at v. In this case, because they are not adja-
cent to each other, the collision is not locally avoidable.
To eliminate this undesirable situation, we introduce the
following conservative forbiddance rule.

Rule 2 (Forbiddance rule): In the case of Pat(v) = “∧”,
a node located at Rtm(NO(v)) does not take vertex v

(6= F) as greedy next hop.
In Fig. 2, greedy advances to vertex v are shown

as lines with solid arrows. Among them, the dashed
have lower priority (by the priority rule), and the gray
is forbidden (by the forbiddance rule). Note: when
Pat(v) = “ ∧ ” (Fig. 2(b)), greedy advance to b from c

is allowed, whichever neighborhood pattern that c has,
as long as b is not occupied. Thus the forbiddance rule
itself does not block a node’s advance toward F .

Now let us examine F (see Fig. 1). All 6 adjacent
vertices of F are located on P1 and are outward vertex
neighbors of F . If F is not occupied, then the final
F-coverage will have the worst radius, equal to 0, by
definition. We can ensure the occupancy of F by the
following innermost-layer rule.

Rule 3 (Innermost-layer rule): A node located at a ver-
tex on P1 moves to F as long as F is to its knowledge
unoccupied.

The above aggressive innermost-layer rule may induce
greedy-greedy collision (i.e., multiple greedily advancing
nodes colliding) at F . Such a collision takes place at most
once, because a node will stay at F after it reaches F and
no node will try to move to F once F is occupied.

We now relax the temporary assumption that nodes
are initially located at distinct TT vertices by introducing
the alignment rule:

Rule 4 (Alignment Rule): A node located inside or on
the border of a TT triangle moves to the triangle ver-
tex that is occupied by the least number of nodes. If
more than one such triangle vertex exists, the closest is
selected. A random choice is made in case of tie.

This alignment rule is however very likely to cause
node collision and thus deployment redundancy at some
vertices. This leads us to develop a new type of node
movement, retreat, for collision resolution. Retreat is the
opposite to greedy advance. It happens from a vertex
on Pi (i ≥ 0) to a neighboring vertex on Pi+1 that
is occupied by the least number of nodes. In case of
tie, a random choice is made. Here P0 = F . By nodal
retreat, permanent collision no longer exists; both GA
and GRG gain the ability to spread out compactly-
placed sensors. The following retreat rule defines when
to perform retreat movement.

Rule 5 (Retreat Rule): After some nodes collide at a TT
vertex, they enter a local ranking process, during which
each of them is assigned a rank. The node with the
highest rank makes its next deployment decision first;
the others follow in accordance with the decreasing order

of their ranks. If the t-th node decides to stay at the
vertex, every node with rank lower than t retreats.

The retreat rule does not specify how local ranking is
conducted. It can be done either at random or according
to certain criterion (if available) such as residual energy
or node ID or the combination thereof. The colliding
nodes are able to do the ranking locally and indepen-
dently because they are neighboring each other.

4.2 Greedy-Rotation-Greedy (GRG)
GRG involves, in addition to greedy advance, a new
type of movement, rotation, which guides nodes around
blocking peers. Rotation is along nodal residence poly-
gon, and is restricted to a particular, say the counter-
clockwise, direction so as to avoid unnecessary collision
among rotating nodes. Specifically, a node located at
vertex v tries rotation by moving to inner right-hand
vertex neighbor Inn(NR(v)) when GA fails.

Notice that rotation is always along inner residence
polygon. The intuition is that a node should not move
away from F once it moves closer (in terms of layer
distance) to it. A node stops rotating when it reaches
a vertex where greedy advance can resume, or when
it returns to the vertex where it started rotating. To
properly react to neighbor failure, a return node resets
its rotation starting point to null whenever it finds its
rotation next hop becomes occupied.

In asynchronous environment, a node rotating on Pi

might never be able to move onto Pi−1 despite the
vacancies on Pi−1, if its neighboring nodes on Pi−1

rotate together with it and keep blocking its greedy
advance. However, by observing Fig. 2 we can find that
Rtm(NO(v)) is always adjacent to Out(NR(v)) regard-
less of Pat(v). If a node located at v discovers that some
node is rotating to Rtm(NO(v)), then it knows that the
node will proceed to Inn(NR(v)) through Rtm(NO(v))
(and Out(NR(v)) if Inn(NR(v)) 6= Out(NR(v))) if it itself
does not chose Inn(NR(v)) as rotation next hop. Thus
we introduce the following suspension rule:

Rule 6 (Suspension rule): A node located at vertex v

does not rotate to Inn(NR(v)) if any of its neighbors
is currently rotating to Rtm(NO(v)).

By the suspension rule, a node rotating on Pi will
either meet an empty vertex on Pi−1, surpassing some
Pi−1 nodes in between, or is blocked by a node located
at a joint corner of Pi and Pi−1, or find no vacancy on
Pi−1 and stops at its rotation starting point. No rotation
loop will take place. Note: when the collision avoidance
rules to be defined in Section 4.2.2 are applied, the
suspension rule ought to be ignored if greedy advance
at Rtm(NO(v)) is forbidden by those rules.

Nodal rotation brings about greedy-rotation collision
that need to be taken care of. Examine Fig. 2. If a node
is moving to v from f while another node is moving to
v from e, they are likely to collide at v. This collision can
be prevented by a competition rule:

Rule 7 (Competition rule): When two nodes are com-
peting for v from two different vertices Out(NL(v))

6

and Ltm(NO(v)) (Inn(NL(v)) and Out(NL(v))), the one
from Ltm(NO(v)) (resp., Out(NL(v))) wins.

If the two nodes are instead from f and an outward
vertex neighbor (e.g., d in Fig. 2(a), 2(b) and 2(d)) differ-
ent than e, they could also collide at v. But this greedy-
rotation collision is no longer avoidable by the above
rule. Depending on the way of handling this situation,
GRG has two variants: Collision alloWance (CW) and
Collision aVoidance (CV).

4.2.1 GRG/CW
In this variant, no additional restriction is applied.
Greedy-rotation collision is allowed and handled by
the retreat rule which defines movement order and
when to retreat. Through ordered decision making,
greedy-rotation collision could appear as a transient
phenomenon. However, there is no assurance that it
does not occur infinitely often. As illustrated in [11],
retreat movement may cause greedy-rotation collision
loop and endless movement in some rare scenarios. This
is due to the problematic rotation and retreat role switch,
which refreshes the rotating node’s rotation record. It
will not take place if we prevent the rotating node from
being retreated outwards, which in turn can be achieved
by enforcing the following ranking policy: a node that
rotates is always assigned the highest rank in a local
ranking process for collision resolution.

4.2.2 GRG/CV
The priority rule and the forbiddance rule preclude non-
POI-based greedy-greedy collision but leave POI-based
(due to the innermost-layer rule) still possible. Uni-
directional rotation prohibits rotation-rotation collision.
Greedy-rotation collision is eliminated only in part by
the competition rule. It is because the rule relies on the
adjacency of the greedy prior hop and the rotation prior
hop of a vertex, which however does not always re-
main. In CRG/CV, these collisions are totally precluded
through extra collision avoidance rules.

We say a node’s greedy advance to vertex v 6= F is
“safe” if and only if it will cause no greedy-rotation
collision at v. In order not to risk greedy-rotation col-
lision, the node must not greedily advance unless it
knows the movement is definitely safe. From local per-
spective, it is able to make such an assurance only
when its residence vertex is adjacent to both Inn(NL(v))
and Out(NL(v)). When Pat(v) = “ − ”|“ ∧ ”|“ ∨ ”,
Inn(NL(v)) = Out(NL(v)); when Pat(v) = “×′′, v

has only one unique outward vertex neighbor, which
is adjacent to Out(NL(v)). We define a safety rule for
avoiding greedy-rotation collision.

Rule 8 (Safety rule): A node does not choose inward
vertex neighbor v as greedy next hop if its residence
vertex is not neighboring Inn(NL(v)).

In Fig. 2, the greedy advances prevented by the above
rule are marked by “X” sign. Now we shall see how to
avoid greedy-greedy collision at F . This can be accom-
plished simply by replacing the inner-most layer rule
with the following gateway rule.

Rule 9 (Gateway rule): A vertex on P1 is pre-defined as
the gateway to F . A node located on P1 performs only
greedy advance if its residence vertex is the gateway, or
only rotation otherwise.

4.3 Execution examples
We have established three execution examples of GA,
GRG/CW and GRG/CV. Although these algorithms op-
erate regardless of network size and asynchrony and
how nodes are distributed, we considered for ease of
understanding a simple fully synchronized scenario,
where 7 nodes initially placed at distinct TT vertices start
the self-deployment algorithms simultaneously, make
deployment decision at the same time, and move step by
step at the same speed. In this setting, a sensor is not able
to know where its neighbors are moving and sometimes
has to make conservative decision (by assuming those
neighbors are static). For simplicity, we placed these
nodes within P4. The execution procedure is the same
whether H-polygon or C-polygon is used as in this case
the two types of polygon are equivalent according to
Eqn. (3). Due to space limit we are not able to present
these examples here, while details can be found in [11].

5 ANALYSIS
In this section, we first prove the correctness of the two
proposed algorithms GA and GRG. We prove that both
of them terminate and that they yield a connected net-
work with hole-free coverage. Afterwards, we analyze
their coverage radius property. We derive that GA has no
guarantee on coverage radius, and that GRG guarantees
(near) optimal coverage radius.

5.1 Correctness
Lemma 4: Both GA an GRG ensure that F will be

occupied by a single node within finite time.
Proof: By the alignment rule, F could be occupied

by multiple nodes during the initial node alignment. If
F is still empty after the alignment process terminates, it
will be eventually occupied by at least one node through
greedy advance, because the algorithms ensure a winner
in every competition for greedy advance. In any case, F
becomes occupied within finite time. Once F is occupied,
no node will move to it. If multiple nodes exist at F at
some moment, one and only one of them will stay, and
the others will move onto P1 by the retreat rule.

Theorem 3: GA terminates within finite time.
Proof: In the initial alignment step all nodes move

toward their closest vertex notwithstanding the move-
ment decisions of any other nodes. Thus, the alignment
process terminates obviously within finite time. More-
over, by Lemma 4, F will be occupied by a single node
within finite time. Henceforth, we safely assume that the
alignment process already passed and that F has been
occupied by a single node.

The GA rules prevent a node from greedily moving
to an already occupied vertex. They also prevent two
nodes located at different vertices from greedily moving
to the same empty vertex. A node may leave a vertex by

7

retreat only if the vertex is occupied by another node.
Otherwise, the node has no reason to retreat. Hence, the
number of occupied vertices never decreases.

Assume for the sake of contradiction that GA never
terminates. Since the number of occupied vertices never
decreases, there exists an m ≤ n where n is the network
size such that the algorithm runs infinitively long on m

occupied vertices. It is important to distinguish between
occupied vertices and the nodes actually occupying
those vertices. For the rest of the proof we assume that
GA already arrived at that maximum number m of
occupied vertices. This assumption does not mean that
this set may not change over time, but that the set of
occupied vertices will never again change in size.

Consider the currently occupied m vertices T =
{t1, . . . , tm}. Whenever an unoccupied vertex is visited
by a retreating node not colliding with a greedily ad-
vancing node, the number of occupied vertices increases
by one. This would contradict the assumption that GA
already arrived at the maximum number m of occupied
vertices. T may only change due to a greedy advance.
Since m is fixed, the set T changes only by nodes per-
forming greedy advance. We will show that this greedy
advance is however possible finite number of times.

Define by
∑

(T) the sum of the layer distance from F

to the vertices in T , i.e.,
∑

(T) =
∑

t∈T d(t). Recall that
we consider the occupied vertices not the nodes actually
occupying these vertices. Whenever T changes to T ′ due
to greedy advance, a node moves from a polygon Pi+1

to a polygon Pi (Pi−1 if the target vertex is joint corner
vertex). It follows,

∑

(T ′) ≤ ∑

(T)−1. Since
∑

(T) ≥ 0, it
follows that the set of occupied vertices can only change
a finite number of times.

If the algorithm does not terminate then there exist
infinite number of retreat only moves, which then occur
after the last performed greedy move. However we will
show now that the number of consecutive retreat moves
is also finite. Retreat only moves are possible only from
a vertex left occupied after moving by another node, to
another occupied vertex, as otherwise m would increase.
Retreating nodes always move from a polygon Pi to
a polygon Pi+1. Thus, a change from T to T ′ always
satisfies

∑

(T ′) ≥ ∑

(T) + 1. This sum is limited by the
farthest possible distance that each node could move.
Each retreat increases distance to F , and the maximal
distance can not exceed n. Otherwise there will be an
unoccupied vertex on the shortest path from retreating
node to F , and a node located before that vertex would
be able to make greedy advance, which contradicts
our previous conclusion about lack of further greedy
advances. Therefore retreat steps will also terminate in
a finite number of steps (it can be easily shown that
this is only possible when m = n). This means that the
algorithm itself will terminate, and proof is complete.

Lemma 5: Let P0, · · · , Pi−1 be fully occupied without
co-located nodes. Let n ≥ ν(i). In GRG, Pi will be fully
occupied without co-located nodes within finite time.

Proof: When P0, · · · , Pi−1 are all fully occupied,
nodes that have decided to stay on Pi never leave Pi

but counterclockwise rotate along Pi because they are
assigned highest rank in any local ranking process trig-
gered by node collision, making unoccupied Pi vertices
appear “rotating” in the opposite direction. In worst
case, they make a full rotation and then stop moving,
rendering unoccupied vertices fixed. In any case, some
Pi+1 nodes are guaranteed to meet the empty vertices
on Pi by counterclockwise rotation and move to fill their
location by the suspension rule and the competition rule.
Because n ≥ ν(i) and there are no co-located nodes on
the i − 1 inner polygons, Pi will be fully occupied at
the end as nodes keep moving toward it and eventually
stop on it. Nodal retreat guarantees that no Pi vertex be
occupied by multiple nodes.

Lemma 6: Let P0, · · · , Pi−1 be fully occupied without
co-located nodes. Let ν(i− 1) < n < ν(i). In GRG, nodes
located on Pi will stop moving within finite time.

Proof: As inner polygons P0, · · · , Pi−1 are all fully
occupied, nodes from outer polygons will rotate along
Pi, after arriving at Pi. In GRG/CW, these rotating nodes
could collide with some greedily advancing nodes; but
their rotation is not affected since they are assigned
highest rank in the local ranking process. Because ν(i−
1) < n < ν(i), either (at least) one of them will make
a full rotation if Pi does not have a joint corner with
Pi−1, or some of them will be blocked by nodes located
at those joint corners otherwise. By protocol definition,
such a node will stop moving and block the rotation
of any following node. Eventually, the nodes on Pi will
become fixed. After the nodes on Pi stop moving, the
nodes on Pi+1 (if any exits) will get onto Pi and possibly
rotate along Pi as well. These newly arriving nodes will
stop moving within finite time because of the blocking
from previously stopped nodes.

Theorem 4: GRG terminates within finite time.
Proof: It follows immediately from Lemma 4 – 6.

Theorem 5: Both GA and GRG yield a connected
network with hole-free coverage.

Proof: We prove this theorem by contradiction. By
Theorem 3 and 4, we know that both GA and GRG ter-
minate within finite time. Assume that there is a sensing
hole in the coverage region at some moment after the
algorithm (either GA or GRG) terminates. Denote by v a
vertex farthest (in layer distance) from F on the border
of the hole. There must exist a node at Ltm(NO(v)),
because, otherwise, v would not be the farthest border
vertex of the hole. In this case, that node will greedily
proceed to occupy v by protocol definition. This actu-
ally contradicts our assumption that the algorithm has
terminated. Thus the final coverage constructed by the
algorithm (either GA or GRG) contains no sensing hole.
Then network connectivity simply follows from the lack
of sensing holes and the assumption of rc ≥

√
3rs.

5.2 Coverage radius
In GA, the final coverage of a MSN has an unpredictable
shape, depending very much on the initial sensor place-

8

ment. As exemplified in [11], it is possible that F is
located on the border of the network, rendering coverage
radius equal to 0. This example implies that GA does
not provide coverage radius guarantee either in layer
distance or in Euclidean distance. In contrast, as we
will see below, GRG generates optimal or near optimal
focused coverage in both metrics.

Consider a MSN of size n. Let FH(n) (FC(n)) be
the F-coverage constructed by Hex-GRG (resp., by Cir-
GRG) using this network, and kH (kC) the index of the
outermost deployment polygon of FH(n) (resp., FC(n)).
For FH(n) (FC(n)), If n = νH(kH) (resp., νC(kC)), the
outermost deployment polygon HkH

(resp., CkC
) is fully

occupied, and partially occupied otherwise.

Denote by rH(n) (rC(n)) the hexagonal radius of
FH(n) (resp., circular radius of FC(n)). From Eqn. (2)
and (4) and Lemma 4 – 6, we have the following results.

Theorem 6: rH(n) = γH(n) for any n.

Theorem 7: rC(n) = γC(n) − δ, where δ = 0 if n =
νC(kC), or 0 < δ < 3

2rs otherwise.

Because of the complex neighborhood pattern in C-
polygon, the execution procedure of Cir-GRG would
intuitively be more complicated and costly than that of
Hex-GRG. In the following, we will see whether the
relatively simple Hex-GRG can be used as replacement
of Cir-GRG for (near) optimal circular F-coverage. Later,
in Section 6, we will study whether Cir-GRG is indeed
more expensive than Hex-GRG through simulation.

Let rCH(n) be the circular coverage radius of FH(n).
We first derive the upper bound of γC(n) in terms of kH
and then show rCH(n) is near optimal.

Lemma 7: γC(n) ≤ 3

√√
3

2π kHrs.

Proof: It is provable that hexagonal node placement
produces maximized coverage over the TT. γC(n) must
not be larger than the radius of the circle whose area is

equal to the area of HkH
, that is, γC(n) ≤ 3

√√
3

2π kHrs.

Lemma 8: rCH(n) ≥ 0.95γC(n) for n = νH(kH).

Proof: In the case of n = νH(kH), rCH(n) is equal to
RkH

, the radius of the maximal inscribed circle C(HkH
)

of HkH
. Namely, rCH(n) = 3

2kHrs. By Lemma 7,
rC
H
(n)

γC(n) ≥
3

2
kHrs

3

√√
3

2π
kHrs

=
√

π

2
√
3
> 0.95.

Lemma 9: rCH(n) ≥ 0.95kH−1
kH

γC(n) for n 6= νH(kH).

Proof: In the case of n 6= ν(kH), rCH(n) must not be
less than RkH−1, i.e., rCH(n) ≥ 3

2 (kH − 1)rs. By Lemma 7,
rC
H
(n)

γC(n) ≥
3

2
(kH−1)rs

3

√√
3

2π
kHrs

= kH−1
kH

√

π

2
√
3
= 0.95kH−1

kH
.

Summarizing Lemma 8 and 9, we have the following
theorem:

Theorem 8: rCH(n) ≥ 0.95δγC(n), where δ = 1 if n =
νH(kH), or δ = 1− 1

kH
otherwise.

According to Theorem 7 and 8, it would appear that
the resultant circular radius of GRG was far from optimal
in small-size network. For instance, if k = 2, the lower
bound will be 0.5γC(n) for Cir-GRG and 0.475γC(n) for
Hex-GRG. This is however not true, as indicated by the

 0.8

 0.9

1.0

 7 11 15 19 23 27 31 35 39 43 47

A
pp

ro
xi

m
at

io
n

fa
ct

or

K

Cir-GRG
Hex-GRG

Fig. 5. Approximation factor in relation to k

following theorem, because the lower bounds are too
coarse in the case of k ≤ 6.

Theorem 9: rCH(n) = rC(n) > 0.86γC(n) for n 6= ν(k)∧
k ≤ 6.

Proof: By Eqn. (3), Hk ≡ Ck, i.e., rCH(n) = rC(n), for
k ≤ 8. In this case, when n 6= ν(k), γC(n) is bounded

above 3
2krs and the radius R′

k−1 =
√
3
2 (k − 1)rs of the

circumcircle of Hk. Enforcing R′
k−1 < 3

2krs, we get k ≤ 6.
rC
H
(n)

γC(n) ≥
√

3

2
Rk−1

Rk−1

=
√
3
2 > 0.86 for k ≤ 6.

Figure 5 is obtained from Theorem 7 and 8. It shows
the lower bound (of the approximation factor) of the
circular coverage radius for k ≥ 7. It is observed that
GRG produces increasingly near optimal F-coverage as
the network size increases.

6 PERFORMANCE EVALUATION
Although sensor self-deployment is not a new research
issue, maximizing coverage radius for F-coverage is
addressed for the first time in this article. Existing sensor
self-deployment algorithms are either non-localized or
may possibly yield a network with coverage radius as
bad as 0. Because we emphasize on optimizing coverage
radius by localized solutions, they are not comparable to
our proposed main algorithm (GRG) here. Thus we are
going to comparatively evaluate GA and GRG only.

6.1 Evaluation metrics
We evaluate the performance of GA and GRG in three
aspects: convergence time, energy consumption, and node
collision. Because nodes obtain their neighborhood infor-
mation from lower layer protocols (e.g., routing proto-
col), and they themselves do not generate any message
during the course of self-deployment, communication
cost is not our concern.

Convergence time, also known as deployment latency,
is defined as the number of time units (nT) that it
takes a self-deployment algorithm to yield a stabilized
network (with no floating nodes). When n 6= ν(k), we
consider from guaranteed coverage viewpoint that GRG
converges once the k− 1 inner polygons are fully filled.

Energy consumption is measured by number of moves
(nM), mileage (Mg), progress (Mg), and mileage over
progress ratio (MoP). nM and Mg are respectively de-
fined as the number of times a node started its motor
and the total distance it traveled for self-deployment.
Let Dini and Dfin respectively be its initial and its final
Euclidean distance to F . We define Pg = |Dini −Dfin|.

9

Then MoP = Mg
Pg

. It gives an idea about how costly
zigzag node movement is.

Node collision happens when two nodes are present
at the same vertex. It is due to randomized initial node
placement and/or algorithmic design. Although node
collision appears as transient phenomenon both in GA
and in GRG, it matters because it could bring colliding
nodes radio signal interference at physical layer in prac-
tice, causing various communication failure. We measure
number of node collisions (nC) in simulation.

We say that a node conducted a wasted greedy step
if it performs a retreat step immediately after. Wasted
greedy movement increases both convergence time and
energy consumption. Since it results only from node
collision, measuring nC during sensor self-deployment
can help further clue in algorithm performance.

6.2 Simulation setup
We implemented GA and GRG (including CW and CV
variants) within a custom network simulator, and sim-
ulated their execution over a MSN randomly dropped
in 2D free plane. The geographic center of the dropping
area is taken as POI (i.e., F). Sensors are equipped with
sensing radius 10 and communication radius 10×

√
3 ≈

18. they may move at different speeds, ranging from
0.05 to 0.2 per simulated time unit, for every step. We
conducted two streams of simulation experiments.

In the first stream, we study the performance of GA
and GRG by using H-polygon as deployment polygon
(i.e., Hex-GA and Hex-GRG). We first evaluate their
performance under different node densities by fixing the
size Sz of the dropping area to 2002 and varying network
size n from νH(1) = 7 to νH(10) = 331. Then we evaluate
them with different average initial node distance to POI
by fixing n to ν(7) = 169 and varying Sz from 02 to 5002.
Sz = 02 implies that nodes are all initially placed at POI.

According to Section 5, Hex-GRG produces near op-
timal circular F-coverage. So in the second stream, we
wish to study the performance of Hex-GRG and Cir-
GRG (where C-polygon is used as deployment polygon)
for achieving the same target circular coverage radius,
referred to as cR. We fix Sz to 5002 and vary cR from 8 to
18 by changing the network size n according to Eqn. (1)
and (3). In both streams, for each simulation setting we
run the tested algorithms over 50 randomly generated
network scenarios in order to get average results.

6.3 Hex-GA v.s. Hex-GRG
Below we will elaborate on our simulation results dis-
played in Fig. 6 and 7. As we will see, Hex-GA outper-
forms Hex-GRG in the aspects of convergence time and
energy consumption; Hex-GRG/CV is more suitable for
dense networks when compared with Hex-GRG/CW.

6.3.1 Varied-sized network with fixed-sized field

Examine Fig. 6(a) and 6(b), which respectively indicate
cT and nM as a function of network size n and contain
curves of similar trend. We first investigate the mono-
tonically increasing curves of Hex-GA. When n = νH(1),

 0

 2

 4

 6

 7

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 ti

m
e

un
its

 (
x1

00
0)

Number of nodes (v(k))

 Hex-GA
 Hex-GRG/CW
 Hex-GRG/CV

(a) Convergence time (cT)

 0

 1

 2

 3

 4

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 m

ov
es

Number of nodes (v(k))

 Hex-GA
 Hex-GRG/CW
 Hex-GRG/CV

(b) # of moves per node (nM)

 2

 4

 6

 8

 10

 12

 14

1 2 3 4 5 6 7 8 9 10

M
ile

ag
e

(x
10

)

Number of nodes (v(k))

 Hex-GA
 Hex-GRG/CW
 Hex-GRG/CV

(c) Mileage per node (Mg)

 0

 2

 4

 6

 7

1 2 3 4 5 6 7 8 9 10

P
ro

gr
es

s
(x

10
)

Number of nodes (v(k))

 Hex-GA
 Hex-GRG/CW
 Hex-GRG/CV

(d) Progress per node (Pg)

 0
 1

 4

 8

 12

 14

1 2 3 4 5 6 7 8 9 10

M
ile

ag
e

ov
er

 p
ro

gr
es

s
(x

10
)

Number of nodes (v(k))

 Hex-GA
 Hex-GRG/CW
 Hex-GRG/CV

(e) Mileage over Progress (MoP)

 0

 2

 4

 6

 8
 9

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 c

ol
lis

io
ns

 (
x1

00
)

Number of nodes (v(k))

 Hex-GA
 Hex-GRG/CW
 Hex-GRG/CV

(f) # of node collisions (nC)

Fig. 6. GA and GRG with H-polygon (Sz = 2002))

the network is very sparse and has a very small size of
7. In such a network, greedy advance overwhelmingly
dominates the self-deployment process, and nodes move
most of time without frequently (or even never) being
blocked and waiting, resulting in low-valued cT and
nM . As n increases, the frequency of blocking and nodal
retreat rises, and waiting and resuming happens more
often. As a result, both cT and nM increase.

Now, let us look at the curves for Hex-GRG/CW
and Hex-GRG/CV in the two figures. If we link the
points with n = νH(k), we get two closely-located
monotonically-increasing curves in both figures. In ei-
ther figure, the two new curves are both located above
the curve for Hex-GA. It is because Hex-GRG in-
volves extra rotation movement, which complexes the
self-deployment process. Observe any interval between
νH(k − 1) and νH(k) for an integer k, and we find that
the curve of either variant of Hex-GRG descends in
this interval, which is reasonable. In the case of n =
νH(k), Hex-GRG does not converge until the outermost
hexagon is fully occupied; in any other case, it converges
as soon as all the inner k − 1 hexagons are fully filled,
making a dramatic decrease of both cT and nM . In fact,
when n is very close to νH(k), Hex-GRG performs even
better than Hex-GA, as shown in the two figures, since
the latter converges only when nodes all stop moving.

Figure 6(c) shows how Mg varies as n changes. It is
observed that the curves for Hex-GRG/CW and Hex-
GRG/CV have a declining trend when n lies between
νH(k−1) and νH(k) for an integer k. This phenomenon is

10

due to exactly the same reason as the similar phenomena
observed in Fig. 6(a) and 6(b). If we link points on Hex-
GRG curves with n = νH(k), we also get two closely-
located monotonically-increasing curves. The two new
curves surpass the curve for Hex-GA for every value of
n because Hex-GA does not generate rotation movement.
Besides, they also have the same trend as Hex-GA:
first declining and then increasing. It is because, as n

increases, the network becomes denser, and Dfin thereby
decreases and approaches Dini, which in turn makes
nodes travel a decreased distance. But, after node density
is beyond a saturated value (when n is around νH(6)),
the network shows an expanding behavior, i.e., that
nodes move outwards for coverage maximization, lead-
ing to the monotonic increase of Mg with increased n.

Examine the three figures Fig. 6(a) - 6(c) again. We can
find that Hex-GRG/CW performs better in sparse net-
works, but worse in dense networks, than Hex-GRG/CV.
This phenomenon is arguable. When n is small, greedy
advance dominates sensor self-deployment, and node
collision, which has obvious negative impact on cT ,
nM and Mg, happens rarely. In this case, aggressive
Hex-GRG/CW beats conservative Hex-GRG/CV, as the
latter often unnecessarily forces nodes to travel increased
distance. As n increases, the network shows more a
rotating or expanding behavior, and node collision oc-
curs increasingly often, as confirmed by Fig. 6(f) and
discussed in next paragraph. The positive impact of
the strict hop selection rules of Hex-GRG/CV keeps
growing, while their negative effect constantly decrease,
finally rendering it outperform Hex-GRG/CW.

Figure 6(d) illustrates Pg as a result of n. The curves
corresponding to Hex-GA and the two versions of Hex-
GRG are all in a “V” shape with the lowest point rooted
around n = νH(7). They imply that this particular
value of n makes the network reach a saturated status,
namely Dini is roughly equal to Dfin such that nodes
make no (large) progress during the course of self-
deployment. Such a network shows a rotating behavior
in general. When n deviates more and more from νH(7),
the difference between Dini and Dfin becomes larger,
resulting in the rise of nC. With no difficulty, we can see
that the network shows a concentrating behavior when
n < νH(7) and an expending behavior when n > νH(7).

Figure 6(e) exhibits MoP versus n. It is observed
that MoP is lower than 10 and very close to 1 for
both Hex-GA and Hex-GRG almost for all the values
of n. In the figure, MoP reaches its peak value around
n = νH(7). In fact, MoP can go to infinity in the case
of Pg = 0. Although this extreme situation appears
highly unlikely, it is possible in theory, for example,
when all the nodes are by any chance located at the
right deployment points at initiation. Additionally, it is
observed that MoP decreases and approaches 1 closer
as n increases or decreases toward the two end values.
Through a comparative study on the two figures 6(c)
and Fig. 6(d), the reason for this phenomenon becomes
fairly obvious: Pg has a way smaller value (nearly equal

 1

 2

 3

 4

 5

 6

0x0 100x100 200x200 300x300 400x400

N
um

be
r

of
 ti

m
e

un
its

 (
x1

00
0)

Size of dropping area

 Hex-GA
 Hex-GRG/CW
 Hex-GRG/CV

(a) Convergence time (cT)

 1

 2

 3

 4

0x0 100x100 200x200 300x300 400x400

N
um

be
r

of
 m

ov
es

Size of dropping area

 Hex-GA
 Hex-GRG/CW
 Hex-GRG/CV

(b) # of moves per node (nM)

 0

 4

 8

 12

 16

0x0 100x100 200x200 300x300 400x400

M
ile

ag
e

(x
10

)

Size of dropping area

 Hex-GA
 Hex-GRG/CW
 Hex-GRG/CV

(c) Mileage per node (Mg)

 0

 2

 4

 6

 8

 9

0x0 100x100 200x200 300x300 400x400

P
ro

gr
es

s
(x

10
)

Size of dropping area

 Hex-GA
 Hex-GRG/CW
 Hex-GRG/CV

(d) Progress per node (Pg)

 0

 5

 10

 20

 30

0x0 100x100 200x200 300x300 400x400

M
ile

ag
e

ov
er

 P
ro

gr
es

s

Size of dropping area

 Hex-GA
 Hex-GRG/CW
 Hex-GRG/CV

(e) Mileage over progress (MoP)

 0

 2

 4

 6

 8

0x0 100x100 200x200 300x300 400x400

N
um

be
r

of
 c

ol
lis

io
ns

 (
x1

00
)

Size of dropping area

 Hex-GA
 Hex-GRG/CW
 Hex-GRG/CV

(f) # of node collisions (nC)

Fig. 7. GA and GRG with H-polygon (n = ν(7))

to 0) than Mg round n = ν(7) and it increases at a much
faster speed than Mg with increased/decreased n.

Figure 6(f) shows nC in relation with n. Observe
that nC keeps ascending as n increases because the
probability of node collision increases with node density,
which is proportional to network size in the case of fixed-
sized dropping area, increases. Also observe that Hex-
GRG/CV always yields smaller nC than Hex-GRG/CW.
Recall that Hex-GRG/CV itself does not cause node col-
lision. Collision occurs during its execution only for the
sake of randomized initial node placement. As shown
in the figure, Hex-GA and Hex-GRG has nearly the
same performance in a small-sized network, and they
deviate from each other as n increases. Hex-GRG/CV
is below Hex-GA in all cases because rotation helps
to reduce retreat-related collision. Hex-GRG/CW is first
above GA because it generates a large proportion of
greedy-rotation collisions in a sparse network with con-
centrating behavior, and then gets below Hex-GA (after
n = νH(6)) because the proportion of greedy-rotation
collision diminishes, and that of retreat-related collision
avoided by rotation contrarily emerges.

6.3.2 Fixed-sized network with varied-sized field

Figures 7(a) - 7(c) respectively show cT , nM and Mg

as a function of Sz. The curves in the three figures
share a similar trend. When nodes are all located at
POI (i.e., when Sz = 02), they spread out with equal
probability in every direction along TT edges. In this
simple scenario, neither rotation nor greedy advance

11

often occurs, and nodes are very likely to travel a short
distance to their final position through continuous retreat
movement. As Sz increases, rotation and greedy advance
take place more and more frequently, complexing the
self-deployment process. In such a complicated situation,
nodes are prone to move intermittently and perform
wasted greedy advance, rendering the increase of cT ,
nM and Mg. As shown in the figures, the curves keep
ascending until Sz reaches certain value about 202 and
then descends thereafter. It is because Sz gradually be-
comes large enough for continuous node movement and
for reducing the possibility of wasted greedy advance.
But, after the network becomes sufficiently sparse the
curves rise again because nodes block each other dur-
ing their concentrating self-deployment, leading to large
amounts of non-progressive rotation, frequent stops and
therefore increased waiting time.

In Fig. 7(a) - 7(c), Hex-GA is always located below
Hex-GRG due to its algorithmic simplicity. It is also
observed that Hex-GRG/CV stays below Hex-GRG/CW
before Sz = 3002 and surpasses it thereafter as Sz

increases. The reason for this phenomenon is rooted
at the semi-greedy nature of Hex-GRG/CV. It gener-
ates no greedy-rotation collision due to its strict greedy
rules and therefore yields less wasted greedy advance
compared with Hex-GRG/CW. Under this circumstance,
Hex-GRG/CV outperforms Hex-GRG/CW in a dense
network (Sz < 3002), where greedy advance does
not occur as often as other types of movement; in an
adequately sparse network (Sz > 350) where greedy
advance is prevailing, Hex-GRG/CW however performs
better than Hex-GRG/CV because the latter yields more
frequent stop and non-progressive rotation.

Figure 7(f) illustrates nC versus Sz. When SZ = 02,
collision-prone retreat movement overwhelmingly dom-
inates the self-deployment process and gives rise to high-
valued nC. With a slight increase of Sz, the occurrence
frequency of retreat movement does not change appar-
ently, but rotation and greedy happen relatively much
often, leading to the rise of nC. However, as shown in
the figure, this rising trend exists only within a small
range of Sz, from 02 to 502. Note that the boosting
phenomenon in this Sz range happens to other metrics
like cT , nM and Mg as well (refer to Fig. 7(a) - 7(c)).
After Sz is beyond 502, retreat movement gradually loses
its dominating role, and retreat-related collision becomes
less and less possible, inducing the monotonic drop of
nC. In fact, if the network is very sparse, the nodes close
to POI could possibly stop moving before remote ones
arrive, leading to nC = 0. In a dense network (Sz <

2002), rotation helps reduce the probability of retreat-
related collision, making Hex-GRG outperforms Hex-
GA. In a sparse network (Sz > 2002), Hex-GRG/CW has
worse performance than Hex-GA because it can generate
extra greedy-rotation collisions, and Hex-GRG/CV stays
superior to Hex-GA as it brings no additional collisions
(it in fact prevents greedy collision at POI).

Recall that Pg = |Dini − Dfin|. Because n stays

unchanged, the average node final distance Dfin to POI
is fixed, and Pg depends solely on Dini, which is in
turn subject to the size of dropping area. Figure 7(d)
shows Pg in relation with Sz. It is observed that, for
both Hex-GA and Hex-GRG, Pg is lowest (nearly equal
to 0) when Sz = 2002, and that it rises as Sz approaches
the two end values, rendering the curves in “V” shape.
This phenomenon indicates that the closer Sz is to 2002,
the closer Dini is to Dfin. We can see that the two
variants of Hex-GRG have the same performance, and
that they always yield larger Pg than Hex-GA. We can
also find that the gap between Hex-GRG and Hex-GA
becomes larger and larger after Sz exceeds 2002. It is
because rotation increases the chance of nodes for greedy
advance, especially in a sparse network. Note that the
curves in this figure do not match those in Fig. 7(d)
but show a sharper change, because nodes do not move
straight to their final position but through curly paths in
the TT, especially in GRG that involves rotation.

Figure 7(e) exhibits MoP in relation with Sz. It is
observed that MoP is lower than 5 (in fact, very close
to 1) for both Hex-GA and Hex-GRG almost for all
the values of Sz. The figure shows that MoP reaches
its peak value when Sz = 2002. However, there is no
maximum value for MoP since Pg could be equal to 0 in
theory. Additionally, it is displayed that MoP decreases
and approaches 1 closer and closer as Sz increases
or decreases toward the two end values. Through a
comparative study on Fig. 7(c) and 7(d), the reason for
this phenomenon becomes fairly obvious: Pg has a way
smaller value (nearly equal to 0) than Mg at SZ = 2002,
and it climbs at a much faster speed than Mg with Sz

increased/decreased from 2002.

6.4 Hex-GRG v.s. Cir-GRG
We already know that Cir-GRG requires less nodes than
Hex-GRG for achieving the same circular coverage ra-
dius. Below we will see that it has shorter convergence
time and less node collisions, and consume slightly more
energy in sparse networks but much less energy in dense
networks. So Cir-GRG is generally superior to Hex-GRG.

Since Cir-GRG uses less nodes than Hex-GRG to
achieve the same cT (specifically, when cR > 7), it should
as well have smaller cT than Hex-GRG. This is true as
confirmed by Fig. 8(a), from which we can see the cT

curve of Cir-GRG always stays below that of Hex-GRG.
Notice that the gap between these curves gets bigger and
bigger after cR is beyond number 13. Later we will see
that this “magic” cR value is the one that leads to the
lowest nodal progress of Hex-GRG.

Figure 8(b) depicts nC as a result of cR. Observe that
Hex-GRG always generates a larger nC than Cir-GRG. It
is because Hex-GRG requires more nodes than Cir-GRG
for the same cR. Since the dropping area is fixed, the
more nodes, the larger node density, and thus the more
often node collision occurs. By Fig. 3, the two algorithms’
difference in required n becomes bigger and bigger as cR
goes up. This change is reflected by the growing gap of
the nC curves for Hex-GRG and Cir-GRG in Fig. 8(b).

12

 6

 8

 10

 12

 14

 16

 18

 20

 8 9 10 11 12 13 14 15 16 17 18

N
um

be
r

of
 ti

m
e

un
its

 (
x1

00
0)

Circular coverage radius (x 3/2 rs)

 Hex-GRG/CW
 Hex-GRG/CV
 Cir-GRG/CW
 Cir-GRG/CV

(a) Convergence time (cT)

 0

 1

 2

 3

 4

 8 9 10 11 12 13 14 15 16 17 18

N
um

be
r

of
 c

ol
lis

io
ns

 (
x1

00
0)

Circular coverage radius (x 3/2 rs)

 Hex-GRG/CW
 Hex-GRG/CV
 Cir-GRG/CW
 Cir-GRG/CV

(b) # of collisions (nC)

 0

 2

 4

 6

 8

 8 9 10 11 12 13 14 15 16 17 18

P
ro

gr
es

s
(x

10
)

Circular coverage radius (x 3/2 rs)

 Hex-GRG
 Cir-GRG

(c) Progress per node (Pg)

 10

 12

 14

 16

 18

 8 9 10 11 12 13 14 15 16 17 18

M
ile

ag
e

(x
10

)

Circular coverage radius (x 3/2 rs)

 Hex-GRG/CW
 Hex-GRG/CV
 Cir-GRG/CW
 Cir-GRG/CV

(d) Mileage per node (Mg)

 0

 1

 2

 3

 4

 5

 6

 8 9 10 11 12 13 14 15 16 17 18

M
ile

ag
e

ov
er

 p
ro

gr
es

s
(x

10
)

Circular coverage radius (x 3/2 rs)

 Hex-GRG/CW
 Hex-GRG/CV
 Cir-GRG/CW
 Cir-GRG/CV

(e) Mileage over Progress (MoP)

 2

 3

 4

 5

 8 9 10 11 12 13 14 15 16 17 18

N
um

be
r

of
 m

ov
es

Circular coverage radius (x 3/2 rs)

 Hex-GRG/CW
 Hex-GRG/CV
 Cir-GRG/CW
 Cir-GRG/CV

(f) # of moves per node (nM)

Fig. 8. GRG with H-polygon and with C-polygon

Dini is approximately constant as nodes are randomly
and uniformly placed at initiation. Observe Fig. 8(c) and
notice the difference between Hex-GRG and Cir-GRG:
the curve of Cir-GRG is always above that of GRG. It is
because of the larger Dfin of Hex-GRG, which is in turn
due to the coverage redundancy of Hex-GRG (between
H-polygon and C-polygon).

Figure 8(d) shows the difference between Hex-GRG
and Cir-GRG in Mg. Observe that Mg reaches the lowest
value later in Cir-GRG than in Hex-GRG. It is because
Cir-GRG uses less nodes than Hex-GRG for achieving
the same cR, delaying the behavioral change of the
network. We can also observe that the Mg of Cir-GRG
is slightly larger (much smaller) than that of Hex-GRG
in concentrating (resp., expanding) networks.

From Fig. 8(e) MoP is most of time below 5; it
increases dramatically only when cR is around the value
leading to lowest Pg (see Fig. 8(c)), although Mg ap-
proaches the lowest value at the same time (see Fig. 8(d)).
Again, as shown in the figure, the economic node usage
of Cir-GRG delays the appearance of the peak value of
MoP ; Hex-GRG and Cir-GRG have nearly same MoP

performance in other cases.
In Cir-GRG, nodes have to stop moving more of-

ten than in Hex-GRG due to the complex neighbor-
hood pattern. On the other hand, Hex-GRG requires
more nodes than Cir-GRG for achieving the same cR

and therefore possibly causes relatively frequent node
blocking. As confirmed by Fig. 8(f), when cR is not
too large compared with the dropping area, in other

words, when node density is moderate, the impact of
hop selection rules dominates the algorithm performance
on nM , making Hex-GRG generate smaller nM than
Cir-GRG; but it is slowly overwhelmed by the latter
as cR becomes increasingly large, rendering Cir-GRG
eventually overtaking Hex-GRG.
7 DISCUSSIONS
GA and GRG were presented and evaluated in the
scenario of rc

rs
≥

√
3 in previous sections. Their design

however does not rely on this ratio. Generally speaking,
we first need to find the node arrangement pattern for
optimal area coverage. Then based on this pattern, we
identify the successive polygon layers around POI for
sensor placement and their localized computation. After
that, we do neighborhood division according to these
polygons (see Section 3.3). Finally, GA or GRG may be
applied directly. For example, when 1

23
3

4 ≤ rc
rs

≤
√
2,

a square grid layout produces optimal area coverage
[2], and in this case, we naturally choose squares or
minimum area polygons containing the inscribed circles
of the squares as deployment polygons. Correctness and
optimality analysis will follow the same technique as de-
tailed in Section 5. Polygonal coverage radius maximiza-
tion remains, regardless of the rc

rs
ratio. The optimality of

circular coverage radius maximization will be different
since the deployment polygons used approximate circles
differently. The performance on convergence time and
related metrics will be different too. Due to space limi-
tations, here we only addressed the scenario of rc

rs
≥

√
3.

GA and GRG were described and studied in the
context of a single POI. As we have seen, this case is not
trivial to resolve. It involves careful design of localized
rules that govern the sensors movement and guaran-
tee termination and coverage optimality. The challenge
stems from the lack of global knowledge. When there are
multiple POIs, we are dealing with not only sensor self-
deployment but also POI assignment to sensors. Having
been assigned a POI, sensors run GA or GRG directly to
construct F-coverage around that POI. A simple solution
is random assignment. However, it is not efficient since
sensors may be shared between closely located POIs. POI
assignment is in essence a multi-robot task allocation
problem, which has been studied for years in robotics
and is not our focus here. GA and GRG will serve as
the basic techniques that later can be extended to more
complex protocols, for example, for multi-POI scenarios.

In this article, we did not consider localization errors
and transmission errors, which are common in reality.
The former may cause sensing holes, and GA and GRG
therefore lose their coverage optimality. Transmission
errors will cause incomplete neighborhood information,
and sensors may therefore make wrong deployment
decisions, resulting in node collision. Although GA and
GRG are able to resolve node collisions, their perfor-
mance on deployment latency and energy consumption
will decrease. The detailed study on how localization
errors and transmission errors affect the algorithms per-
formance is part of future work.

13

8 CONCLUSIONS
Wireless sensor networks present many unique research
problems [1], [6], [7], [10], [14]. In this article, we
pinpointed a new sensor self-deployment problem, F-
coverage formation and introduced an evaluation metric,
coverage radius. By converting the area coverage problem
to a vertex coverage problem on a virtual equilateral
triangulation (TT), we proposed the first localized solu-
tions, i.e., Greedy Advance (GA) and Greedy-Rotation-
Greedy (GRG), with desired coverage guarantee. We
proved their correctness, and studied their properties
and performance by throughout analysis and simulation.

ACKNOWLEDGEMENTS
This work was partially supported by NSERC Discovery
grant and NSERC Strategic Grant STPSC356913-2007B.

REFERENCES
[1] K. Akkaya, I. Guneydas, and A. Bicak, “Autonomous actor po-

sitioning in wireless sensor and actor networks using stable-
matching,” Int’l J. Parallel, Emergent and Distributed Systems,
25(6):439-464, 2010.

[2] X. Bai, S. Kumar, D. Xuan, Z. Yun and T.H. Lai, “Deploying
Wireless Sensors to Achieve Both Coverage and Connectivity,”
Proc. ACM MobiHoc, pp. 131-142, 2006.

[3] N. Bartolini, T. Calamoneri, E.G. Fusco, A. Massini, and S. Silvestri,
“Snap & spread: a self-deployment algorithm for mobile sensor
networks,” Proc. IEEE/ACM DCOSS, pp. 451-456, 2008.

[4] J. Chen, S. Li, and Y. Sun, “Novel Deployment Schemes for Mobile
Sensor Networks,” Sensors, 7(11):2907-2919, 2007.

[5] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control
for mobile sensing networks,” IEEE Trans. on Robotics and Automa-
tion, 20(2):243-255, 2004.

[6] M. Esnaashari and M.R. Meybodi, “Dynamic Point Coverage Prob-
lem in Wireless Sensor Networks: A Cellular Learning Automata
Approach”, Ad hoc & Sensor Wireless Networks, 10(2-3):193-234,
2010.

[7] S. He, J. Chen, Y. Sun, D.K.Y. Yau and N.K. Yip, “On Optimal In-
formation Capture by Energy-Constrained Mobile Sensors,” IEEE
Trans. on Vehicular Technology, 59(5):2472-2484, 2010.

[8] N. Heo and P.K. Varshney, “Energy-Efficient Deployment of Intel-
ligent Mobile Sensor Networks,” IEEE Trans. on Systems, Man, and
Cybernetics - Part A: Systems and Humans, 35(1):78-92, 2005.

[9] X. Li, H. Frey, N. Santoro, and I. Stojmenovic, “Localized Self-
Deployment of Mobile Sensors for Optimal Focused-Coverage
Formation,” Tech. Report TR-2007-13, SITE, U of Ottawa, Dec. 2007.

[10] X. Li, N. Santoro, and I. Stojmenovic, “Localized Distance-
Sensitive Service Discovery in Wireless Sensor and Actor Net-
works,” IEEE Trans. on Computers, 58(9):1275-1288, 2009.

[11] X. Li, H. Frey, N. Santoro, and I. Stojmenovic, “Focused Coverage
by Mobile Sensor Networks,” Proc. IEEE MASS, pp. 466-475, 2009.

[12] X. Li, H. Frey, N. Santoro, and I. Stojmenovic, “Localized Sensor
Self-deployment for Guaranteed Coverage Radius Maximization,”
Proc. IEEE ICC, 2009.

[13] X. Li, A. Nayak, D. Simplot-Ryl, and I. Stojmenovic, “Sensor
Placement in Sensor and Actuator Networks,” Wireless Sensor and
Actuator Networks: Algorithms and Protocols for Scalable Coordination
and Data Communication, Wiley, 2010.

[14] R. Lu, X. Lin, H. Zhu, X. Liang, and X. Shen, “BECAN: A
Bandwidth-Efficient Cooperative Authentication Scheme for Filter-
ing Injected False Data in Wireless Sensor Networks,” IEEE Trans.
on Parallel and Distributed Systems. To appear.

[15] M. Ma and Y. Yang, “Adaptive Triangular Deployment Algorithm
for Unattended Mobile Sensor Networks,” IEEE Trans. on Comput-
ers, 56(7):946-958, 2007.

[16] G. Wang, G. Cao, and T. La Porta, “Movement-Assisted Sensor
Deployment,” IEEE Trans. Mobile Computing, 5(6):640-652, 2006.

[17] S. Yang, M. Li, and J. Wu, “Scan-Based Movement-Assisted Sensor
Deployment Methods in Wireless Sensor Networks,” IEEE Trans.
on Parallel and Distributed System, 18(8):1108-1121, 2007.

[18] H. Zhang and J.C. Hou, “Maintaining Sensing Coverage and
Connectivity in Large Sensor Networks,” Ad Hoc & Sensor Wireless
Networks, 1(1-2):89-124, 2005.

Xu Li received his Ph.D. degree from Carleton
University, Canada in October, 2008, his master
degree from the University of Ottawa, Canada
in May, 2005 and his bachelor degree from Jilin
University, China in July, 1998, all in computer
science. He is holding/held post-doctoral fellow
positions in University of Waterloo, Canada, IN-
RIA, France, University of Ottawa, Canada and
CNRS, France. His current research interest is
on wireless ad hoc, sensor and robot networks.
He is on the editorial board of Ad Hoc & Sen-

sor Wireless Networks and guest editor of Computer Communications
(2011). He is/was in different chairing positions or TPC for many confer-
ences and workshops, e.g., IEEE/ACM DCOSS’11, IEEE MASS’07&11,
IEEE WiSARN’10&11, IEEE LCN’10, IEEE PIMRC’09, etc.

Hannes Frey received his graduate degree in
mathematical computer science from the Uni-
versity of Trier, Germany, in November 2001.
From the same University he received a Ph.D.
degree in computer science in April 2006. Until
April 2008 he was working at the University of
Southern Denmark, and until September 2009
at the University of Paderborn, Germany. Since
October he is affiliated as Jun. Prof. at the
University of Paderborn. His research interests
are networking algorithms in ad hoc and sensor

networks. Within this research field he is especially doing research in
localized routing and topology control. He published altogether over 40
journal articles, conference contributions, and book chapters in the re-
search area of ad hoc and sensor networks. He served in different chair
positions for ADHOC-NOW 2009, for WiSARN 2010, for IQ2S 2010, and
for LOCAN and LOCALGOS since 2007. He was a TPC member and
external reviewer for more than 30 conferences, including conferences
like EWSN, VTC, MASS, CoNext, INFOCOM, and MobiCom. He was
a reviewer for more than 20 international journals, for instance serving
regularly as a reviewer for IEEE Transactions on Parallel and Distributed
Systems and Elsevier Ad Hoc Networks.

Nicola Santoro received the PhD degree from
the University of Waterloo. He is Professor of
Computer Science at Carleton University. He
has been involved in distributed computing since
the beginning of the field. He has contributed
extensively on the algorithmic aspects, and he
is the author of the book Design and Analysis of
Distributed Algorithms (Wiley, 2007). His current
research is on distributed algorithms for mobile
agents, for autonomous mobile robots, and for
mobile sensor networks.
Ivan Stojmenovic received his Ph.D. degree in
mathematics. He held regular and visiting posi-
tions in Serbia, Japan, USA, Canada, France,
Mexico, Spain, UK (as Chair in Applied Comput-
ing at the University of Birmingham), Hong Kong,
Brazil, Taiwan, and China, and is Full Professor
at the University of Ottawa, Canada and Adjunct
Professor at the University of Novi Sad, Serbia.
He published over 250 different papers, and
edited seven books on wireless, ad hoc, sensor
and actuator networks and applied algorithms

with Wiley. He is editor of over dozen journals, editor-in-chief of IEEE
Transactions on Parallel and Distributed Systems (from January 2010),
and founder and editor-in-chief of three journals (MVLSC, IJPEDS and
AHSWN). Stojmenovic is one of 260 computer science researchers with
h-index ≥ 40 and has > 7000 citations. He received three best paper
awards and the Fast Breaking Paper for October 2003, by Thomson
ISI ESI. He is recipient of the Royal Society Research Merit Award,
UK. He is elected to IEEE Fellow status (Communications Society,
class 2008), and is IEEE CS Distinguished Visitor 2010-12. He received
Excellence in Research Award of the University of Ottawa 2009. Sto-
jmenovic chaired and/or organized > 60 workshops and conferences,
and served in > 200 program committees. He was program co-chair
at IEEE PIMRC 2008, IEEE AINA-07, IEEE MASS-04&07, EUC-05&08-
10, AdHocNow08, IFIP WSAN08, WONS-05, MSN-05&06, ISPA-05&07,
founded workshop series at IEEE MASS, ICDCS, DCOSS, WoWMoM,
ACM MobiHoc, IEEE/ACM CPSCom, FCST, MSN, and is/was Workshop
Chair at IEEE INFOCOM 2011, IEEE MASS-09, ACM Mobihoc-07&08.

14

