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Abstract. Unlike localized communication failures that occur on a fixed
(although a priori unknown) set of links, dynamic faults can occur on any
link. Known also as mobile or ubiquitous faults, their presence makes
many tasks difficult if not impossible to solve even in synchronous sys-
tems. Their analysis and the development of fault-tolerant protocols have
been carried out under two main models. In this paper, we introduce a
new model for dynamic faults in synchronous distributed systems. This
model includes as special cases the existing settings studied in the lit-
erature. We focus on the hardest setting of this model, called simple
threshold, where to be guaranteed that at least one message is delivered
in a time step, the total number of transmitted messages in that time
step must reach a threshold T ≤ c(G), where c(G) is the edge connectiv-
ity of the network. We investigate the problem of broadcasting under this
model for the worst threshold T = c(G) in several classes of graphs as
well as in arbitrary networks. We design solution protocols, proving that
broadcast is possible even in this harsh environment. We analyze the
time costs showing that broadcast can be completed in (low) polynomial
time for several networks including rings (with or without knowledge of
n), complete graphs (with or without chordal sense of direction), hyper-
cubes (with or without orientation), and constant-degree networks (with
or without full topological knowledge).

1 Introduction

1.1 Dynamic Faults

In a message-passing distributed computing environment, entities communicate
by sending messages to their neighbors in the underlying communication net-
work. However, during transmission, messages might be lost.

The presence of communication faults renders the solution of problems diffi-
cult if not impossible. In particular, in asynchronous settings, the mere possibility
of faults renders unsolvable almost all non trivial tasks, even if the faults are lo-
calized to (i.e., restricted to occur on the links of) a single entity [11]. Due to this
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inherent difficulty connected with asynchrony, the focus is on synchronous envi-
ronments, both from the point of view of theoretical investigation, and industrial
application (e.g. communication protocols for wireless networks).

Clearly no computation is possible if the amount of faults that can occur
per time unit and the modality of their occurrence is unrestricted. The research
quest has thus been on determining under what conditions on the faults non-
trivial computations can be performed in spite of those faults. Constructively,
the effort is on designing protocols that can correctly solve a problem provided
some restrictions on the occurrence of faults hold. The approaches to describe the
restrictions needed can be broadly divided into probabilistic and deterministic.

In the probabilistic model there is no a priori upper bound on the total number
of faults per time unit, but each transmission has a (known) probability p < 1
to fail. The investigations in this model have focused on designing broadcasting
algorithms with low time complexity and high probability of success [2, 17]. The
drawback of this model is that the solutions derived for it have no deterministic
guarantee of correctness.

In our work we follow the deterministic approach in which the worst com-
bination of faults satisfying given restrictions is studied. The most basic model
of deterministic faults is the model of static (or localized) faults, in which faults
can occur only on a fixed (but a priori unknown) set of links [1, 13]. This re-
striction is well suited for modeling permanent faults but is inappropriate to
deal with transient faults, which are very common in practice. Indeed, most of
the errors occurring in a network, from a packet loss in transmission medium
to links turned off during network reconfiguration, can be viewed as transient
failures: they are repaired after some time but their location can be arbitrary.
Hence, a natural extension in the modeling of network failures is to bound not
the location but the number of faults.

In this regard, the investigations have focused mostly on the basic problem
of broadcast: an entity has some information that must communicate to all other
entities in the network. Indeed, the ability or impossibility of performing this
task has immediate consequence for many other tasks.

A first large group of investigations have considered the so-called cumulative
model; that is, there is a (known) limit L on the number of messages that
can be lost at each time unit. If the limit is less than the edge connectivity
of the network, L < c(G), then broadcast can be achieved by simply flooding
and repeating transmissions for an appropriate amount of time. The research
has been on determining what is the smallest amount of time in general or for
specific topologies [3–6, 8–10, 12, 15, 16], as well as on how to use broadcast for
efficiently computing functions and achieving other tasks [7, 19, 20].

The advantage of the cumulative model is that solutions designed for it are
L-tolerant; that is they tolerate up to L communication faults per time units.
The disadvantage of this approach is that it neglects the fact that in real systems
the number of lost messages is generally a function of the number of all message
transitions. This feature leads to an anomaly of the cumulative model, where



solutions that flood the network with large amounts of messages tend to work
well, while their behavior in real faulty environments is often quite poor.

In order to eliminate this unwanted feature from the model, the so called
fractional model has been introduced in [14]. This deterministic setting explicitly
takes into account the interaction between the number of omissions and the
number of messages, bounding the amount of faults that can occur at time
t not by a fixed constant but rather by a linear fraction ⌊α mt⌋ of the total
number mt of messages sent at time t, for some (fixed, known) constant 0 ≤
α < 1. The advantage of the fractional model is that solutions designed for it
tolerate the loss of up to a fraction of all transmitted messages. The anomaly
of the fractional model is that, in this setting, transmitting a single message
per communication round ensures its delivery; thus, the model leads to very
counterintuitive algorithms which do not behave well in real faulty environments.

Summarizing, to obtain optimal solutions, message redundancy must be
avoided in the fractional model, while massive redundancy of messages must
be used in the cumulative model; in real systems, both solutions might not fare
well. In many ways, the two models are opposite extremes. The lesson to be
learned from their anomalies is that on one hand there is need to use redun-
dant communication, but on the other hand brute force algorithms based on
repeatedly flooding the network do not necessarily solve the problem.

In this paper we propose a deterministic model that combines the cumulative
and fractional models in a way that might better reflect reality. This model is
actually more general, in that it includes those models as particular, extreme
cases. It also defines a spectrum of settings that avoid the anomalies of both
extreme cases.

1.2 Fractional Threshold and Broadcast

The failure model we consider, and that we shall call fractional dynamic faults
with threshold or simply fractional threshold model, is a combination of the frac-
tional model with the cumulative model. Both fractional and cumulative models
can be described as a game between the algorithm and an adversary: in a time
step t, the algorithm tries to send mt messages, and the adversary may destroy
up to F (mt) of them. While in the cumulative model, the dependency function
F is a constant function, in fractional model F (mt) = ⌊αmt⌋. The dependency
function of the fractional threshold model is the maximum of those two:

F (mt) = max{T − 1, ⌊α mt⌋}

where T ≤ c(G) is a constant at most equal to the edge connectivity of the
graph, and α is a constant 0 ≤ α < 1. The name “fractional threshold” comes
from the fact that it is the fractional model with the additional requirement that
the algorithm has to send at least T messages in a time step t in order to have
any guarantees about the number of faults.

Note that both the cumulative and the fractional models are particular, ex-
treme instances of this model. In fact, α = 0 yields the cumulative setting: at



most T − 1 faults occur at each time step. On the other hand, the case T = 1
results in the fractional setting. In between, it defines a spectrum of new settings
never explored before, which avoid the anomalies of both extreme cases.

From this spectrum, the settings that give the maximum power to the ad-
versary, thus making the broadcasting most difficult, are what will be called a
simple threshold model defined by T = c(G) and α = 1 − ε with ε infinitely
close to 0. In this model, if less than c(G) messages are sent in a step, none of
them is guaranteed to arrive (i.e., they all may be lost); on the other hand, if
at least c(G) messages are transmitted, at least one message is guaranteed to be
delivered.

In this paper we start the analysis of fault-tolerant computing in the frac-
tional threshold model, focusing on the simple threshold setting. In this draco-
nian setting the tricks from cumulative and fractional models fail: if the algo-
rithm uses simple flooding the adversary can deliver only one message between
the same pair of vertices over and over. If, on the other hand, the algorithm
sends too few messages, they all may be lost.

1.3 The Results

The network is represented by a simple graph G of n vertices representing the
entities and m edges representing the links. The vertices are anonymous, i.e.
they are without distinct IDs. The communication is by means of synchronous
message passing (i.e. in globally synchronized communication rounds), local com-
putation is performed between the communication rounds and is considered in-
stantaneous. The communication failures are dynamic omissions in the simple
threshold model.

We consider the problem of broadcasting: At the beginning, there is a single
initiator v containing the information to be disseminated. Upon algorithm ter-
mination, all entities must have learned this information. We consider explicit
termination, i.e. when the algorithm terminates at an entity, it will not process
any more messages (and, in fact, no messages should be arriving anyway).

The complexity measure of interest is time (i.e., number of communication
rounds). We consider various levels of topological knowledge about the network
(knowing network size n, being aware of the network topology, having Sense of
Direction or having full topological knowledge).

In this paper, we focus on the hardest setting, the simple threshold, where
to be guaranteed that at least one message is delivered in a time step, the total
amount of transmitted messages in that time step must be at least c(G), i.e. the
edge connectivity of the network.

By definition, it is sufficient to ensure that c(G) or more messages are trans-
mitted at each time unit to guarantee that at least one of these messages is
delivered. The problem however is that an entity does not know which other
entities are transmitting at the same time and in general does not know which
of its neighbors has already received its messages. Indeed the problem, in spite
of synchrony and of the simplicity of its statement, is not simple.



We investigate the problem of broadcasting under this model in several classes
of graphs as well as in arbitrary networks. We design solution protocols, proving
that broadcast is possible even under the worst threshold c(G). We analyze the
time costs showing the surprising result that broadcast can be completed in (low)
polynomial time for several networks including rings (with or without knowledge
of n), complete graphs (with or without chordal sense of direction), hypercubes
(with or without orientation), and constant-degree networks (with or without
full topological knowledge). In addition to the upper bounds, we also establish
a lower bound in the case of complete graphs without sense of direction. The
results are summarized in the Table 1.

Topology Condition Time complexity

ring n not necessarily known Θ(n)
complete graph with chordal sense of direction O(n2)
complete graph unoriented Ω(n2), O(n3)
hypercube oriented O(n2 log n)
hypercube unoriented O(n4 log2 n)

arbitrary network full topological knowledge O(2c(G)nm)

arbitrary network
no topological knowledge

except c(G), n, m O(2c(G)m2n)

Table 1. Summary of results presented in this paper.

2 Ring

The ring is a 2-connected network, i.e. T = c(G) = 2. Hence, at least two
messages must be sent in a round to ensure that not all of them are lost.

We first present the algorithm assuming the ring size n is known, and then
show how it can be extended to the case n unknown.

At any moment of time, the vertices can be either informed or uninformed.
Since the information is spreading from the single initiator vertex s, informed
vertices form a connected component. The initiator splits this component into
the left part and the right part. Each informed vertex v can easily determine
whether it is on the left part or on the right part of the informed component –
this information is delivered in the message that informs the vertex v.

Each informed vertex can be further classified as either active or passive.
A vertex is active if and only if it has received a message from only one of its
neighbor. A passive vertex has received a message from both neighbors. This
implies that, as long as the broadcast has not yet finished, there is at least one
active vertex in both left and right part of the informed component (the left-
most and the right-most informed vertices must be active; note, however, that
also the intermediate vertices might be active).



The computation consists of n− 1 phases, with each phase taking four com-
munication rounds. The goal of a phase is to ensure that at least one active
vertex becomes passive.

Algorithm 1 Rings

1: state ∈ {uninformed, active, passive}
2: location ∈ {left, right}
3: dir-to-init ∈ Neigh

4: procedure Phase
5: time t:
6: if state = active then send (discover, location) to opposite of dir-to-init
7: end if

8: time t + 1:
9: if location = right then

10: if state = active then send (discover, location) to opposite of dir-to-init
11: end if

12: else

13: if received (discover) in time t then reply with (ack)
14: end if

15: end if

16: time t + 2:
17: if location = left then

18: if state = active then send (discover, location) to opposite of dir-to-init
19: end if

20: else

21: if received (discover) in time t then reply with (ack)
22: end if

23: end if

24: time t + 3:
25: if received (discover) in time t . . . t + 2 then reply with (ack)
26: end if

27: if state = uninformed and received (discover, l) via dir in time t . . . t + 3 then

28: state := active;
29: location := l;
30: dir-to-init := dir;
31: end if

32: if state = active and received (ack) in time t . . . t + 3 then state := passive;
33: end if

34: end procedure

Each phase consists of the following four steps:



1. Each active vertex sends a message to its possibly uninformed neighbor.
2. Each active vertex in the right part sends a message to its possibly unin-

formed neighbor. Each vertex in the left part that received a message in step
1 replies to this message.

3. Same as step 2, but left and right parts are reversed.
4. Each vertex that received a non-reply message in steps 1–3 replies to that

message.

To avoid corner cases at the initiator of the broadcast, the initiator is split
into two virtual vertices such that each of them starts in active state (i.e. the
initiator acts as if it belongs both to the left and to the right part).

Lemma 1. At least one reply message passes during the phase.

Proof. Since there is at least one active vertex in both the left and the right part
of the informed component, at least two messages are transmitted in step 1 and
thus at least one of them is delivered. Assume that this message passed in the
left part. Then there will be at least two messages transmitted in step 2 leading
to different vertices (the reply message in the left part, and the discover message
in the right part) and therefore at least one message passes in steps 2 (or step
3 if the delivered message of step 1 was in the right part). If no reply message
passed in step 2 (or 3), a discover message must have passed in the right (left)
part – the opposite part then in step 1. Therefore, at least two replies will be
sent in step 4 and at least one of them will pass.

Initially, there are two active (virtual) vertices (the left- and right- part of
the initiator). Lemma 1 ensures that during each of the subsequent phases, at
least one previously active vertex becomes passive. Since passive vertices never
become active again, it follows that after at most n − 1 phases, there are n − 1
passive vertices. Once there are n−1 passive vertices, the remaining two must be
informed (both are neighbors of a passive vertex), i.e. n− 1 phases are sufficient
to complete the broadcast.

Note also that the algorithm does not require distinct IDs or ring orientation
(it can compute them, though, as it is initiated by a single vertex).

Theorem 1. There is 4(n − 1)-time fault-tolerant broadcasting algorithm for
(anonymous, unoriented) rings of known size.

If n is unknown, the above algorithm cannot be directly used, as it does
not know when to terminate. This is not a serious obstacle, though. Assume
that the algorithm is run without a time bound, and each discover message also
contains a counter how far is the vertex from the initiator. After at most n
phases there will be a vertex v that has received discover messages from both
directions. From the counters in those messages v can compute the ring size n. In
the second part of the algorithm v broadcasts n (and the time since the start of
the second broadcast) using the algorithm for known n; when that broadcast is
finished, the whole algorithm terminates. In order to make this work, we have to



ensure that there is no interaction between the execution of the first broadcast
and the second broadcast. That can be easily accomplished by scheduling the
communication steps of the first broadcast in odd time slots and the second
broadcast in even time slots.

Theorem 2. There is an O(n)-time fault-tolerant broadcasting algorithm for
(anonymous, unoriented) rings of unknown size.

3 Complete Graphs

As the connectivity of complete graphs is n − 1, we assume that least n − 1
messages must be sent to ensure that at least one passes through.

3.1 Complete Graphs with Chordal Sense of Direction

Chordal Sense of Direction in a complete graphs means that vertices are num-
bered 0, 1, . . . , n − 1 and the link from a vertex u to a vertex v is labelled
v − u mod n. 4

The algorithm consists of two parts. The purpose of the first part is to make
sure that at least ⌈n/2⌉ vertices are informed; the second part uses these vertices
to inform the remaining ones. The algorithm is executed by informed vertices.
Each message contains a time counter, so a newly informed vertex can learn the
time and join the computation at the right place.

The first part of the algorithm consists of phases 0, 1, . . . , ⌈n/2⌉ − 2. During
phase 0 the initiator sends messages to all its neighbors. The goal of a phase
k is to ensure that there are at least k + 1 informed vertices distinct from the
initiator; this ensures that after the first part, there are at least ⌈n/2⌉ informed
vertices.

Consider a phase k and suppose that there are exactly k informed vertices

distinct from the initiator at the beginning of phase k. Let d =
⌊

n−1
k+1

⌋

, and

consider k+1 disjoint intervals I0, . . . , Ik each of size d, consisting of non-initiator
vertices. The phase will consist of k + 1 rounds. The idea is that during the i-th
round, the informed vertices (including initiator) try to inform an additional
vertex in the interval Ii by sending messages to all vertices in Ii. If Ii does
not contain any informed vertices, and at least one message is delivered, then
a new vertex must be informed. The problem is, however, that only d(k + 1)
messages are sent, which may not be sufficient to guarantee delivery. To remedy
this, the i-th round will span over d steps. In a j-th step, all informed vertices
send messages to all vertices in Ii and to the j-th vertex of Ii⊕1 (the addition is
taken modulo k+1). Now, in each step there are (k+1)(d+1) messages sent, so

4 Strictly speaking, the vertices do not necessarily need to know their ID, the link
labels are sufficient: The initiator may assume ID 0 and each message will also carry
the link label it travels on and the ID of the sender, allowing the receiver to compute
its ID.



at least one must be delivered. Hence we can argue that, during phase k, a new
vertex is informed if there is an interval Ii that does not contain any informed
vertices, followed by interval Ii⊕1 that contains at least one non-informed vertex.
However, the existence of such Ii follows readily from the fact that there are only
k informed vertices distinct from initiator and d ≥ 2.

Algorithm 2 Complete graphs with chordal sense of direction - Part I

1: the initiator sends message to all other vertices // phase 0
2: for 1 ≤ k ≤ ⌈n/2⌉ − 2 do // phase k

3: d =
j

n−1
k+1

k

4: for 0 ≤ i ≤ k do // round i
5: for 1 ≤ j ≤ d do // step j
6: all informed vertices send messages to vertices
7: {di + 1, di + 2, . . . , di + d, d((i + 1) mod (k + 1)) + j}
8: end for

9: end for

10: end for

Lemma 2. After phase k there are at least k+1 informed vertices distinct from
the initiator.

Proof. By induction on k. The statement holds for phase 0, as the initiator send
n−1 messages and at least one of them will be delivered. Consider now situation
after phase k−1 with exactly k informed vertices distinct from the initiator. We
show that at least one vertex will be informed during phase k.
Divide the interval [1, n− 1] into k + 2 parts in such a way that each of the first

k + 1 parts is of size d =
⌊

n−1
k+1

⌋

. During step j of the round i of the phase k all

informed vertices (including the initiator) send messages to all vertices in part
i and to the j-th vertex of part (i + 1) mod (k + 1). As (k + 1)(d + 1) ≥ n − 1
messages are sent, at least one of them is delivered. Hence it is sufficient to prove
the following claim:

Claim. There exists 0 ≤ i ≤ k such that there is no informed vertex in the i-th
part and there is at least one non-informed vertex in the i⊕ 1-th part, where ⊕
is addition modulo k + 1.

Let there be exactly e parts Iz1
, Iz2

, . . . , Ize
of size d containing no informed

vertices. Assume that the claim does not hold, hence there are at least e disjoint
parts Iz1⊕1, Iz2⊕1, . . . , Ize⊕1 of size d containing only informed vertices. Since
each of the remaining k + 1 − 2e parts contains at least one informed vertex,
there are at least ed+k+1−2e informed vertices. So it must hold ed+k+1−2e ≤ k

which is equivalent to e(d−2)+1 ≤ 0. As e ≥ 0, this yields d =
⌊

n−1
k+1

⌋

< 2, and

hence n−1
k+1 < 2. However, this contradicts to k ≤ ⌈n

2 ⌉ − 2.



Each phase k consists of k + 1 rounds with d steps each, therefore every
phase takes O(n) time steps. Since there are O(n) phases, the first part of the
algorithm finishes in O(n2) time.

The second part of the algorithm starts with at least ⌈n/2⌉ informed vertices
and informs all remaining ones. The algorithm is as follows: consider all pairs
[i, j] such that 1 ≤ i, j ≤ n − 1, sorted in lexicographic order. In each step, all
informed vertices consider one pair and send messages to vertices i and j. Since
at least 2⌈n/2⌉ ≥ n−1 messages are sent, at least one of them is delivered. This
ensures that a new vertex is informed whenever both i and j were uninformed.
In this manner, all but one vertex can be informed (at any moment the two
smallest uninformed vertices form a pair that has not been considered yet).

To inform the last vertex, all n − 1 informed vertices send in turn messages
to vertices 1, 2, . . . , n − 1.

Theorem 3. There is a O(n2) time fault-tolerant broadcasting algorithm for
complete graphs with chordal sense of direction.

Proof. The first part consist of ⌈n/2⌉ − 2 phases, with each phase taking O(n)
time steps. The second part consists of n(n − 1)/2 steps and informing the last
vertex takes n − 1 steps.

Note that the algorithm did not exploit all properties of the chordal sense
of direction, it is sufficient for the informed vertices to agree on the IDs of the
vertices, and to be able to determine the ID of the vertex on the other side of a
link. Therefore, we get:

Corollary 1. There is a O(n2) time broadcasting algorithm for complete graphs
with neighboring (Abelian group based) sense of direction.

3.2 Unoriented Complete Graphs

The algorithm in the previous section strongly relied on the fact that the vertices
know the IDs of the vertices on the other side of the links. In this section, we
use very different techniques to develop an algorithm that works for unoriented
complete graphs (i.e. the only structural information available is the knowledge
that the graph is complete; of course, local orientation – being able to distinguish
incident ports – is also required).

We will view the flow of messages as tokens traveling through the network
(and possibly spawning new tokens). A message (token) arriving to a vertex may
cause the vertex to transmit some messages (either immediately, or in some of
the subsequent steps). We will view those new messages as child tokens of the
parent token. This means the tokens form a tree structure, and each token can
be assigned unique identifier (corresponding to a path in the tree structure).
Note that each vertex can also be given unique identifier (the ID of the token
that first informed it). Each token carries all information about itself and its
ancestors (i.e. IDs of its ancestors, traversed vertices and traversed ports).



Each token may be of two types: green and red. The intuition is that a token
is green if it is “exploring”, i.e. trying to traverse a port that has never been
explored by its ancestors. When every port has been explored by the token’s
ancestors, the broadcast is finished, and no new tokens are sent. Ideally, if a
token arrives to a vertex v, it would be spawned as a green token along all
links that have not yet been explored by its ancestors. However, there is usually
not enough unexplored ports in v5. In this case red tokens are sent along some
already explored links. The meaning is that a red token carries a “request for
help” to already explored vertices that are not yet engaged in helping. This
request triggers new tokens to be sent from those vertices, and eventually a
situation occurs when only green tokens are sent and at least one of them is
delivered.

Let T be any token. The green ancestor of T is the closest green ancestor
of T , if T is red, and T itself, if T is green. The red tail of token T is the path
(sequence of tokens) between the green ancestor of T and T itself. Note that all
tokens on the red tail are red except the first one.

We present a fault-tolerant broadcast algorithm that satisfies the following
invariants:

I1 Let T be a token that is sent over an oriented edge 〈a, b〉. If T is green, then
it holds that no ancestor of T has been sent over 〈a, b〉. Conversely, if T is
red, there exists some ancestor of T that has been sent over 〈a, b〉.

I2 Let T be a red token. Then the red tail of T contains at most n vertices.
I3 Let T be a red token. Then T is sent exactly one round later than the parent

of T .
I4 Let T be a green token. Then T is sent at most n + 1 rounds later than the

last green ancestor of the parent of T .
I5 Let T be a green token delivered in round t. If the broadcast is not finished

yet, at least one green token is delivered in some of the rounds t+1, . . . t+n.

These invariants imply that the broadcast completes in O(n3) time: the in-
variant I5 ensures that the algorithm can not stop before the broadcast is fin-
ished. Consider a path from root to a leaf in the tree of tokens. Invariant I1
ensures that the leaf is green and that there are at most O(n2) green tokens on
this path. Invariant I4 implies that there are at most n+1 consecutive red tokens
on the path. Hence the overall time of the broadcasting algorithm is O(n3).

The algorithm works as follows. In the first round of the algorithm, the
initiator sends green tokens through all its ports. All these tokens are children
of some virtual root token. In each subsequent round t, each vertex gathers all
received tokens in this round and processes them in parallel using procedure
Process described in Algorithm 3.

5 recall that at least n − 1 messages must be sent in every step to make sure that at
least one is delivered



Algorithm 3 Complete graphs without sense of direction

1: procedure Process(T ) // process token T
2: Let P be the set of all ports
3: Let A be the set of ports that have never been traversed by any ancestor of T
4: If A = ∅, the broadcast is finished.
5: Let S be the set of vertices acting as a source of a red token in the red tail of T .
6: Let B ⊆ P − A be the set of ports that lead to a vertex in S.
7: Let C = P − (A ∪ B)

// Note that since only ports already traversed by (an ancestor of) T
// are considered, the vertex processing T can indeed compute B and C.

8: for the first round of processing T do

9: Send new red tokens with parent T to all ports in C
10: Send new green tokens with parent T to all ports in A
11: end for

12: Let l be the length of the red tail of T .
13: for subsequent n − l rounds of processing T do

14: Send new green token with parent T to all ports in A
15: end for

16: end procedure

If some processor should send more than one token through a port in one
round, it (arbitrarily) chooses single one of them to send and discards the re-
maining ones.

Lemma 3. The presented algorithm satisfies invariants I1, I2, . . . , I5.

Proof.

I1 Since green (red) tokens are sent only at lines 10 and 14 (at line 9), the
definition of A at line 3 (C at line 7) ensures the first (second) statement of
this invariant, respectively.

I2 Red token T can not be sent to a vertex that sent some token from the red
tail of T . This is ensured by the definition of C at line 7. (Note that this does
not hold for green token T .) Hence, the red tail of any token can contain
each vertex at most once.

I3 The red token can be sent only at line 9, i.e. immediately after receiving its
parent token.

I4 Let T be a green token, token U be the parent of T , l be the length of the
red tail of U and V be the first token on the red tail of U . It is necessary to
prove that T is sent at most n + 1 rounds later that V .
The invariant I2 implies that l ≤ n. The invariant I3 ensures that U is sent
exactly l rounds later than V . Hence, if T is sent at line 10, it is sent l + 1
rounds later than V . Otherwise T is sent at line 14 at most l + 1 + n − l
rounds later than V .



I5 Assume the contrary, i.e. some green token is delivered in round t, only
red tokens are delivered in subsequent n rounds and the broadcast is not
finished. Invariants I2 and I3 ensure that no red tokens can be delivered in
the round t+n or later. Therefore, the last token is delivered in the round u,
for some u < t + n. Since exactly n − 1 messages are sent in the first round
of processing token T (see lines 9 and 10), it holds that t < u.
Let T be any token delivered in the round u to vertex p. Let k < n be the
number of tokens in the red tail of T . Let S 6= T be a token in the red tail
of T , delivered to a vertex q. From construction it follows that in round u
the token S is still processed by q at line 14. Because the broadcast is not
finished yet, q sends at least one token in round u; combining for all such
vertices in the red tail of T yields k−1 tokens sent in the round u. Processor
p sends |P | − (|A| + |B|) ≥ (n − 1) − (|A| + k − 1) tokens at line 9 and A
tokens at line 10 in the round u. Summing up, there are at least n−1 tokens
sent in round u, therefore there is at least one token delivered in round u+1,
a contradiction.

Combining Lemma 3 with the discussion about the invariants we get

Theorem 4. There exist a O(n3) fault-tolerant broadcasting algorithm for un-
oriented complete networks.

3.3 Lower Bound for Unoriented Complete Networks

The O(n) algorithm for rings is obviously asymptotically optimal. An interesting
question is: How far from optimal are our algorithms for oriented and unoriented
complete networks? In this section we show that

Theorem 5. Any fault-tolerant broadcasting algorithm on unoriented complete
networks must spend Ω(n2) time.

Proof. In the course of the computation there are two kinds of ports: the ports
that have never been traversed by any message in any direction are called “free”,
the ports that are not free are called “bound”. The lower bound proof is based
on the following simple fact:

Let p be a free port of vertex u in time t. Let v be any vertex such that no
bound port of u leads to v. Then it is possible that port p leads to vertex v.

Indeed, if p would lead to v, the first t rounds of computation would be
the same. Hence, the computation can be viewed as a game of two players: the
algorithm chooses a set of ports through which messages are to be sent. The
adversary chooses one port through which the requested message passes. If this
port is free, it chooses also the vertex to which this port will be bound.

We show now that it is possible for the adversary to keep the vertex n un-

informed for (n−1)(n−2)
2 = Ω(n2) communication rounds. The idea is that some

message has to traverse through all edges between vertices 1 . . . n− 1 before any
message arrives to the vertex n.



Consider the time step i < (n−1)(n−2)
2 and assume that the vertex n is not

informed yet. There exist at most 2i bound ports, since in each time step at most
one edge, i.e two ports are bounded. This means that at least (n−1)(n−1)−2i ≥
n ports of vertices 1 . . . n − 1 are free.

The following cases can occur:

1. The algorithm sends some message through some bound port. The adversary
passes this message, hence the vertex n stays uninformed.

2. The algorithm sends messages only through free ports.
(a) The algorithm does not send messages from all vertices 1 . . . n− 1. Then

there have to be at least 2 messages sent from one vertex. The adversary
delivers one of these messages and binds the corresponding port to any
vertex other than n. (Since there are at least two free ports, it is possible
for the adversary to do so.)

(b) The algorithm sends messages from all vertices 1 . . . n−1. Since at least n
ports of vertices 1 . . . n−1 are free, at least one vertex w from 1 . . . n−1,
has 2 free ports. The adversary delivers the message sent from w, and
binds corresponding port to any vertex other than n. (Again, since there
are at least two free ports, it is possible for the adversary to do so.)

Hence it is possible for the adversary to keep the vertex n uninformed for
the first Ω(n2) time steps.

Now assume a stronger computation model: each vertex immediately learns
for any message it has sent whether this message has been delivered or not. It is
interesting to note that our lower bound is valid also in this model. Furthermore,
it is easy to see that the lower bound is tight in this model.

4 Arbitrary k-connected graphs

In this section we consider k-edge-connected graphs and we assume the threshold
is k, i.e. at least k messages must be sent to ensure that a message is delivered.

4.1 With full topological knowledge

The algorithm runs in n − 1 phases. Each phase has an initiator vertex u (in-
formed) and a destination vertex v (uninformed), with the source s being the
initiator of the first phase. The goal of a phase is to inform vertex v, which then
becomes the initiator of the next phase; the process is repeated until all vertices
are informed.

The basic idea is a generalization of the idea from rings. The ring algorithm
tried to “push” the information simultaneously along the left and right part of
the ring. Here, the initiator u chooses k edge-disjoint paths6 P = {P1 . . . Pk} from

6 since the graph is k-edge-connected and the vertices have full topological knowledge,
the initiator can always find these paths



itself to v and then pushes the information through all the paths simultaneously.
Let Pi = (u0 = u, u1, . . . uli = v); consider an oriented edge e = 〈uj , uj+1〉. This
edge can be either sleeping, active or passive:

1. The edge e is passive if and only if a message has been received over both e
and the edge opposite to e, i.e. 〈uj+1, uj〉.

2. The edge e is active if and only if it is not passive and a message has been
received over the edge 〈uj−1, uj〉. In case j = 0 the edge e is active whenever
it is not passive.

3. The edge e is sleeping if and only if it is not active nor passive.

One phase consists of several rounds, each round spanning over many com-
munication steps. The goal of one round is to ensure that a progress over at least
one edge has been made: at least one active edge becomes passive, at least one
sleeping edge becomes active or the vertex v becomes informed.

The procedure Round() defined in Algorithm 4 is the core of the algorithm;
it is performed in each round by every vertex w ∈ P .

Algorithm 4 k-connected graphs

1: procedure Round(vertex w)
2: Let A be the set of active edges incident to w at the beginning of the round
3: for i:=0 to k do // One subround:
4: for B ⊆ {1 . . . k} such that |B| = i do // one iteration per time step
5: Let C be the set of edges incident to w via which an activating message
6: has been received in the current round // not in the current time step
7: for e ∈ C do

8: send deactivating message through e // all in one time step
9: end for

10: for e ∈ A such that e ∈ Pz ∧ z /∈ B do

11: send activating message through e // all in the same time step as
in 8

12: end for

13: end for

14: end for

15: end procedure

It is easy to see that the uninformed vertices never send any messages and
that at any time each vertex can determine all active edges incident to it. Syn-
chronous communication and full topological knowledge ensure that all proce-
dures (phases/rounds/subrounds) are started and executed simultaneously by
all participating vertices.

Lemma 4. During one round at least one active edge becomes passive, or a
sleeping edge becomes active, or v is informed.



Proof. By contradiction. Assume the contrary, we show that in such case, at the
beginning of the i-th subround there will be at least i paths P ′ ⊆ P such that
on any path Pj ∈ P ′ there is an edge through which an activating message has
been delivered in the current round. This would mean that in the k-th subround
there are at least k deactivating messages sent and therefore at least one of them
will be delivered and an active edge will become passive, a contradiction.

We prove that above statement about subrounds by induction on i. The
statement trivially holds for i = 0, as there is nothing to prove. Assume (by
induction hypothesis) that at the beginning of the i-th subround there are exactly
i paths P ′ with an edge over which an activating message has been delivered in
the current round(if there are more, the hypothesis is already true for i + 1).
From the definition of an active edge and from construction it follows that unless
the vertex v is informed, there is at least one active edge on each path Pj . Let
us focus on the time step in the i-th subround when B contains exactly the
numbers of paths from P ′ (i.e. B = {j|Pj ∈ P ′}). In this time step, at least
k − i activating and at least i deactivating messages are sent, therefore at least
one of them must be delivered. As no activating message is sent over an edge
e ∈ P ′ and no deactivating message is delivered (by assumption that no active
edge becomes passive), an activating message must be delivered on a path not
in P ′. Hence, the invariant is ensured for the subround i + 1, too.

Theorem 6. There is a fault-tolerant broadcasting algorithm on k-connected
graphs with full topology knowledge that uses O(2knm) time, where n is the
number of vertices and m is the number of edges in the graph.

Proof. The correctness follows straightforwardly from construction and Lemma 4.
The time complexity of one round is 2k, as it spends one time step for each

subset of {1, 2, . . . , k}. The number of rounds per phase is7 2m, as all paths in
P together cannot contain more than all m edges and each edge can change
its state at most twice (from sleeping to active to passive). Finally, the number
of phases is n − 1 as n − 1 vertices need to be informed. Multiplying we get
O(2kmn).

Theorem 6 can be successfully applied to many commonly used intercon-
nection topologies. However, better results can usually be obtained by carefully
choosing the order in which the vertices should be informed, allowing for short
paths in P . One such example is oriented hypercubes (i.e. each link is marked
by the dimension it lies in):

Theorem 7. There is a fault-tolerant broadcasting algorithm for oriented d-
dimensional hypercubes that uses O(n2 log n) time, where n = 2d is the number
of vertices of the hypercube.

Proof. The basic idea is to use the algorithm for k-connected graphs, with the
initiator of a phase choosing as the next vertex to inform its successor in (a
fixed) Hamiltonian path of the hypercube.

7 some topology-specific optimization is possible here



The algorithm for one phase is the same as in the case of k-connected graphs
with the following exception: it is possible to choose d edge-disjoint paths from
vertex u to its neighbor vertex v such that each of these paths has length at
most 3. This results in P containing only O(d) edges instead of O(n log n), thus
reducing the cost of one phase from O(n2 log n) to O(nd) = O(n log n). The
resulting time complexity is therefore O(n2 log n).

4.2 Without topological knowledge

Finally, we show that the broadcasting on a k-connected graph with n vertices
and m edges can be performed in time O(2km2n) even in the case when the only
known information about the graph are the values of n, m, and k. To achieve this,
we combine the ideas used for complete graphs with those using full topology
knowledge. In particular, the vertices accumulate topology information (using
local identifiers) in a fashion similar to the algorithm for complete graphs. The
algorithm works in phases, where each phase is performed within one informed
component, and uses the topology knowledge of that component. However, since
there may be many phases active at the same moment, great care must be given
to avoid unwanted interference. Now we present this algorithm in more detail.

As in the case of complete graphs, it is possible to assign unique labels to
informed vertices (e.g. the sequence of port labels traversed by the chain of
messages that resulted in informing the vertex for the first time). Each informed
vertex u has some knowledge of the communication graph (called K(u)) that can
be formalized as a set of triples (a, p, b) such that there are informed vertices v1

and v2 with labels a and b and the port p of the vertex v1 leads to the vertex v2.
Throughout the algorithm, the knowledge of the sending vertex v will always be
piggybacked on every message sent by v. This means that if u and v are vertices
such that at time step t a message passed from u to v via the port p of u, and
K(u) and K(v) is their knowledge at time t, then the knowledge of v at time
t + 1 is the superset of K(u) ∪ K(v) ∪ {(u, p, v)}.

It is clear that if there is at least one vertex u such that |K(u)| = 2m then
all vertices are informed.

The broadcasting algorithm runs in 2m phases. At the beginning of phase i
there is at least one vertex (phase initiator) with a knowledge of at least i triples,
the goal of phase i is to ensure this invariant holds for phase i + 1.

Let a be an initiator8 of a phase and K(a) be its knowledge at the beginning of
the phase. Then all ports (directed edges) can be classified as red and green (with
respect to a, in the current phase), depending on whether the corresponding
triple is contained in K(a) or not. The goal of a is to propagate its knowledge
through some of its green ports. Any vertex u that receives information through
such port becomes an initiator in the next phase. As u’s knowledge at that
moment is strictly larger than what K(a) was at the beginning of the phase, the
phase invariant holds.

8 a phase might have several initiators



The main idea of the algorithm for one phase is similar to the approach used
in the case of full topology knowledge: The initiator chooses k edge-disjoint paths
such that the last edge of each path is green and all inside edges are red, and
then pushes the information along these paths until at least one path is fully
traversed. The fact that the last edge of a path is green ensures progress; the fact
that inside edges are red ensures that the participating vertices know where the
paths continue (in fact, the initiator cannot construct paths with inside green
edges as it does not know what their endpoints are).

If there is a single initiator in the phase, this approach would work nicely
with no changes to procedure Round(). However, each phase can have several
initiators and their computations can disrupt each other. The algorithm for one
phase thus consists of n− 1 subphases. The goal of a subphase is to ensure that
either some knowledge is propagated (i.e. one path is fully traversed), or at least
one initiator (but not all of them) is eliminated. Hence, after n − 1 subphases
some knowledge is propagated.

The algorithm for one subphase is as follows. Each initiator v chooses k edge
disjoint directed paths starting at v. We call these paths threads and denote
them T (v, j) for j = 1, 2 . . . , k. Let T (v, j) = (v = u0, u1, . . . , ul). The ports
(ui, ui+1) are called forward ports of T (v, j); analogously, ports (ui, ui−1) are
called backward ports. The threads are chosen in such a way that all forward
ports of T (v, j) are red with respect to v, except the last port (ul−1, ul), which
is green. Note that v can always choose k such threads (from the k-connectivity
of the graph; a thread might consist of a single green port).

In a subphase, the messages are propagated in the same way as in a phase of
the Algorithm described in the section 4.1, until the threads of different initiators
collide (that is, a vertex receives messages from different initiators). In such case,
the threads “bounce” back to their initiators. The algorithm guarantees that if
no knowledge has been propagated then each subphase initiator receives at least
one bounced thread. Each bounced thread carries the ID of the initiator of
the colliding thread, therefore each initiator knows the ID of at least one other
initiator. Only the initiators which have not seen an ID higher then their own
proceed to become initiators of the next subphase. Obviously, the initiator with
the biggest ID survives and initiator with the smallest ID does not. This means
that the number of initiators decreases, but there is always at least one initiator
left.

Each subphase consists of 4m rounds. Let p = {u1, u2} be a port at vertex u1.
At the beginning of each round the state of p with respect to a thread T (v, j)
is determined as follows (only messages received in the current subphase are
considered):

1. The port p is passive if and only if u1 has received message of type passive
through p (i.e. from u2).

2. The port p is forward-active if and only if all of the following conditions hold:
(a) p is not passive.
(b) p is a forward port in T (v, j) and u1 has received some message of the

thread T (v, j)



(c) u1 has not received any message of a thread T (v′, j′) such that v′ 6= v.

3. The port p is backward-active if and only if all of the following conditions
hold:

(a) p is not passive.
(b) p is a backward port of T (v, j) and u1 has received some message of the

thread T (v, j)
(c) u1 has received a message from a thread T (v′, j′) such that v′ 6= v or the

vertex u1 has received a message of the thread T (v, j) of type backward-
active.

4. Otherwise the port p is sleeping.

In each round each vertex tries to push forward-active messages through all
its forward-active edges and backward-active messages through all its backward-
active edges. An initiator receives a bounced thread if it receives a backward
active message of that thread.

Each round ensures that if there is at least one initiator that has not received
a bounced thread nor propagated its knowledge, then at least one active port
becomes passive or at least one new active message is delivered, i.e. some sleeping
port becomes active in the next round. Hence after applying at most 4m rounds
the subphase is complete.
The algorithm for one round is very similar to the one used before:

Algorithm 5 k-connected graphs without additional structural information

1: procedure Round(vertex v)
2: Let A is the set of active ports of v at the beginning of the round
3: for i:=0 to k do // One subround:
4: for B ⊆ {1 . . . k} such that |B| = i do

5: // all messages for one B are sent simultaneously
6: for e such that an activating message has been received through e
7: in the current round do

8: if the activating message belongs to T (u, z) such that z ∈ B then

9: send a message of type passive through e
10: end if

11: end for

12: for e ∈ A such that e ∈ T (u, z) ∧ z /∈ B do

13: send an activating message of same type as the state of e through e
14: end for

15: end for

16: end for

17: end procedure

The correctness of the algorithm relies on the following facts:

1. No port can be forward-active and backward-active at the same time. Indeed,
if some vertex v has received messages from threads of different initiators,



then it cannot have forward-active ports. Moreover, the threads of the same
initiator are edge-disjoint.

2. Each forward-active port is forward-active on exactly one thread. (The same
reasons.)

3. Each backward-active port is backward-active on exactly one thread. From
construction: if some port of the vertex v was backward-active on two threads
T1 = T (v1, j1), T2 = T (v2, j2), then T1 and T2 share the predecessor u of v
and the port {u, v} would had been forward-active on both threads.

This implies that at most one active message is sent per port per time step. If
both an active and a passive message should be sent through one port in the
same time step, the passive message takes priority.

Lemma 5. During one round either an initiator has propagated its knowledge,
or all initiators have received a bounced thread, or an active edge becomes passive
or a sleeping edge becomes active.

Proof. By contradiction, analogous to the proof of Lemma 4. Assuming the
contrary, we show that at the beginning of the i-th subround there are at least
i threads T = T (v1, j1), . . . , T (vi, ji) such that no two j1, . . . ji are equal and
some active message belonging to any of these threads has been delivered in the
current round. This means that in the k-th subround at least k passive messages
are being sent and at least one of them is delivered, contradiction.

The proof is by induction on i, with the case i = 0 being trivial. Assume
that at the beginning of the i-th subround there are exactly i threads satisfying
above-mentioned conditions (if there are more than i such threads, the invariant
obviously holds for the subround i + 1). Let v be any initiator that has not
received a bounced thread. It is easy to see that there is at least one active
port (either forward-active or backward-active) on each thread of v such that
no passive message is to be sent on this port. Indeed, let T be any such thread.
If it has not collided with any other thread yet, then the last informed vertex
of T has a forward-active port (and a passive message is never sent through a
forward-active port). Otherwise at least one vertex of T has a backward-active
port such that no passive message is to be sent on it (the one that is closest to
the thread initiator).

Now focus on the time step in the subround when B contains exactly the
numbers of the threads from T (i.e. B = {j|T (u, j) ∈ T }). In this time step
at least |B| passive and at least k − |B| active messages are sent, therefore at
least one of them must be delivered. Assuming no passive message is delivered
yields that an active message on a new, i + 1-th, thread is delivered. Hence the
induction hypothesis is ensured for i + 1 as well.

Putting the pieces together:

1. The whole algorithm: Consists of 2m phases.
2. One phase: The goal is to increase the maximal knowledge in the system by

at least one directed edge. Consists of n − 1 subphases.



3. One subphase: The goal is to eliminate at least one phase initiator, unless
the maximal knowledge is increased. Consists of 4m rounds.

4. One round: The goal is to make some sleeping port active or some active port
passive, unless the subphase makes progress. Consists of k + 1 subrounds.

5. One subround: The goal is to deliver a new active message, thus increase the
number of passive messages that are to be sent. The i-th subround of the
round consists of

(

k

i

)

time steps.

Combining together results in 2m × (n − 1) × 4m × 2k = O(2km2n) overall
time complexity.

Theorem 8. There is a fault-tolerant broadcasting algorithm on k-connected
graphs without sense of direction that uses O(2km2n) time, where m is the num-
ber of edges and n is the number of the vertices of the graph.

As the time complexity is only exponential in the connectivity of the graph, we
get:

Corollary 2. There is a polynomial-time broadcasting algorithm on any graph
without sense of direction with edge connectivity O(log n).

Directly applying Theorem 8 yields:

Corollary 3. There is a broadcasting algorithm on d-dimensional hypercube
without sense of direction that uses O(n4 log2 n) time.

5 Conclusions

We have introduced a new model for dynamic faults in synchronous distributed
systems. This model includes as special cases the existing settings studied in the
literature. We have focused on the simple threshold setting where, to be guar-
anteed that at least one message is delivered in a time step, the total amount
of transmitted messages in that time step must be above the threshold T . We
have investigated broadcasting in rings and complete graphs, as well as arbitrary
networks, and we have designed solution protocols, proving that broadcast is pos-
sible also under the worst threshold (i.e., equal to the connectivity). The perhaps
surprising result is that the time costs are (low) polynomial for several networks
including rings, complete graphs, hypercubes, and constant-degree networks.

This investigation is the first step in the analysis of distributed computing
in spite of fractional dynamic faults with threshold.
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8. S. Dobrev and I. Vrťo, “Optimal broadcasting in hypercubes with dynamic faults”.
Information Processing Letters 71, 81–85, 1999.
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