
The Power of Lights: Synchronizing Asynchronous Robots
using Visible Bits

Shantanu Das∗, Paola Flocchini†, Giuseppe Prencipe‡, Nicola Santoro§, Masafumi Yamashita¶
∗BGU & Technion-Israel Institute of Technology, shantanu@tx.technion.ac.il

†EECS, University of Ottawa, flocchin@site.uottawa.ca
‡Dipartimento di Informatica, Università di Pisa, prencipe@di.unipi.it

§School of Computer Science, Carleton University, santoro@scs.carleton.ca
¶ Department of Informatics, Kyushu University, mak@inf.kyushu-u.ac.jp

Abstract—In this paper we study the power of us-
ing lights, i.e. visible external memory, for distributed
computation by autonomous robots moving in Look-
Compute-Move (LCM) cycles. With respect to the LCM
cycles, the most common models studied in the lit-
erature are the fully-synchronous (FSYNC), the semi-
synchronous (SSYNC), and theasynchronous (ASYNC).
In this paper we introduce in the ASYNC model, the
weakest of the three, the availability of visible external
memory: each robot is equipped with a light bulb that is
visible to all other robots, and that can display a constant
numbers of different colors; the colors are persistent,
that is they are not automatically reset at the end of
each cycle.

We first study the relationship betweenASYNC with
visible bits and SSYNC. We prove hat asynchronous
robots, when equipped with a constant number of
colors, are strictly more powerful than traditional semi-
synchronous robots. We also show that, when enhanced
with visible lights, the difference between asynchrony
and semi-synchrony disappears; this result must be
contrasted with the strict dominanceASYNC <SSYNC
between the models without lights.

We then study the relationship betweenASYNC with
visible bits and FSYNC. We prove that asynchronous
robots with a constant number of visible bits, if they can
remember a single snapshot, are strictly more powerful
than fully-synchronous robots. This is to be contrasted
with the fact that, without lights, ASYNC robots are not
even as powerful asSSYNC, even if they remember an
unlimited number of previous snapshots. These results
demonstrate the power of using visible external memory
for distributed computation with autonomous robots. In
particular, asynchrony can be overcome with the power
of lights.

I. I NTRODUCTION

A. The Framework

The computational capabilities of a team of au-
tonomous mobile entities, usually calledrobots or
agents, have been the object of extensive research
in a variety of fields. In particular, in the last few
years, a large amount of work in distributed computing
has been devoted to the study of models of au-
tonomous mobile robots operating inLook-Compute-
Move (LCM) cycles. During a cycle, a robot obtains

a snapshot of the environment (Look); executes the
protocol, the same for all robots, using the snap-
shot as an input (Compute); and moves towards the
computed destination, if any (Move). After each cy-
cle, a robot may be inactive for some time. The
main goal of the research efforts has been to un-
derstand the relationships between the capabilities of
the robots and their power to solve common tasks.
With respect to the LCM cycles, the most com-
mon models used in these studies are thefully syn-
chronous(FSYNC), thesemi-synchronous(SSYNC),
and theasynchronous(ASYNC). In theasynchronous
(ASYNC) model [17], the robots are activated inde-
pendently, and the duration of each cycle is finite but
unpredictable. As a result, the robots do not have a
common notion of time, robots can be seen while
moving, and computations can be made based on ob-
solete observations. On the opposite side of the spec-
trum, in thefully synchronous(FSYNC) model [24],
the activations of the robots can be logically divided
into global rounds; in each round, all the robots are
activated, obtain the same snapshot, compute and
perform their move. As a result, no robot can be
seen while moving, and no information is out-of-date.
Note that, this is computationally equivalent to a fully
synchronized system in which all robots are activated
simultaneously and all operations are instantaneous.
The semi-synchronous(SSYNC) model is like the
fully synchronous model where however not all robots
are necessarily activated in each round [24]. Since
there are problems that can be solved in FSYNC but
not in SSYNC (e.g. [24]), and problems that can be
solved in SSYNC but not in ASYNC (e.g. [22]), the
relationship between the computational power of the
models is strict: FSYNC> SSYNC> ASYNC.

In this paper we introduce in the ASYNC model,
the weakest of the three, a simple form of direct and
explicit communication: each robot is equipped with
a light bulb that is visible to all other robots, and that
can display a constant numbers of different colors; the
colors are persistent, that is they are not automatically



reset at the end of each cycle. In other words, we
equip the robots with a constant number of visible
and persistent bits of memory. We denote this model
as ASYNCO(1), and study the computational power
of robots so endowed, with respect to the traditional
models SSYNC and FSYNC.

Peleg [21] first suggested the use of external lights
to enhance the capabilities of mobile robots. To our
knowledge, no results have been presented so far on
a set of mobile robots that have available some kind
of visible memory (such as the visible lights used in
this paper); the only reference to the use of visible
lights can be found in [14], which provided the earliest
indication that incorporating in the robot model some
simple means of signaling might positively affect the
power of the team. This paper explores this research
direction.

B. Main Contributions

In this paper we introduce the ASYNCO(1) model
and show that with just six colors it is at least
as powerful as the traditional SSYNC. We do so
constructively: we present a ASYNC6 protocol that,
for any given SSYNC protocolP , produces a semi-
synchronous execution ofP . We then solve, in
ASYNC with four colors, the gathering of two obliv-
ious robots, a problem that is not solvable in SSYNC.
In other words, we prove that asynchrony with a
constant number of colors is strictly more powerful
than semi-synchrony: ASYNCO(1) > SSY NC.

We also show that, when enhanced with visi-
ble lights, the difference between asynchrony and
semi-synchrony disappears; in fact we prove that
ASYNCO(1) ≡ SSYNCO(1). This result must be
contrasted with the strict dominance in absence of
lights: ASYNC < SSYNC.

Next, we investigate whether ASYNC robots with
lights can match the power of FSYNC. To this
end, we consider augmenting ASYNC robots with
internal (i.e., not visible) persistent memory ofk
previous snapshots, a model denoted as ASYNCk.
This enhancement has been already considered in
the literature (e.g., see [6], [24]). There are however
problems solvable in FSYNC that are not solvable in
ASYNC∞, i.e., even if the asynchronous robots are
endowed with enough memory to store an unbounded
number of snapshots [22]. We show that with the
simultaneous use of both external lights and internal
snapshots, ASYNC becomes at least as powerful as
FSYNC. In fact, we demonstrate that if ASYNC
robots with only three colors can remember a single
snapshot, they can solve any problem solvable in
FSYNC. This proof is also constructive: we present
a ASYNC3

1 protocol that allows to produce a fully

≡ASYNCO(1)

ASYNCO(1)
O(1)

FSYNC

SSYNCO(1)

SSYNC

Figure 1. Relationship between models.

synchronous execution of any given protocol. On
the other hand, we show the existence of problems
solvable with ASYNC robots having three colors and
one snapshot, but not solvable in FSYNC, without
these additional powers. In other words, we prove
that asynchrony with a constant number of colors and
a single snapshot is strictly more powerful than full
synchrony: ASYNCO(1)

1 >FSYNC.
These results, summarized in Figure 1, demonstrate

the power of using lights i.e. visible external memory
for distributed computation with autonomous robots.
In particular, they show that asynchrony can be over-
come with the power of lights.

C. Related work

The main effort in the study of autonomous mobile
robots has been to understand their limitations and
their power for solving basic coordination tasks. In
a seminal work [24], the authors have compiled a
comprehensive study of the computational capabilities
of oblivious robots in FSYNC and in SSYNC, char-
acterizing theArbitrary Pattern Formation Problem,
where the robots are required to form a given pattern.
This problem has been also studied in the ASYNC
model, introduced in [15]; in particular, in [17] the
solvability of the problem has been characterized
based on the various levels of agreement on a common
coordinate system; another interesting study on pattern
formation in the semi-synchronous model can be
found in [25], which shows that oblivious robots can
form any pattern that non-oblivious robots can form.
A number of studies have been devoted to the analysis
of a particular pattern formation problem, thecircle;
here, the robots are required to place themselves
uniformly on the border of a circle (e.g., [10], [11]).

Another basic coordination problems that has been
studied in the literature in all models is thegathering,
where the robots are required to meet in a point of
the plane not fixed in advance. In particular, in [24]
the problem has been tackled in the semi-synchronous
model, with oblivious robots having unlimited visibil-
ity; in the same model, a study with limited visibility
has been presented in [2]. The gathering problem
has also been studied in the asynchronous model, in
both the unlimited ([7]) and limited visibility setting
([16]). One interesting result is that, in both the semi-
synchronous and asynchronous model, the problem



is not solvable whenn = 2 (if we assume that the
robots cannotbumpinto each other), as shown in [24].
Also, in all the available solutions, an implicit neces-
sary condition as that the robots have the ability of
multiplicity detection, that is a robot can dustinguish
whether a given position on the plane is occupied by
one or more than one robot. In [6] the problem is
solved dropping this condition; however, the solution
requires an unbounded amount of memory available
to each robot.

Other important problems studied for these teams
of robots includescattering (e.g., [3], [13]), where the
robots are required to scatter on the plane where they
operate; leader election, where the robots have to elect
one of them as the leader of the team (e.g., [12]); and
flocking, where the robots have to follow one of the
robots while keeping a formation, like a flock of birds
(e.g., [5], [18]). Also studied has been the problem
of communicating the local coordinate systems (e.g.,
[4]). Finally, studies have also been conducted on the
fault-tolerance of a distributed system composed by a
set of autonomous mobile robots, such as in [1], [9],
[19], [20], [23].

As mentioned earlier, the use of external signals
or lights to enhance the capabilities of mobile robots
was first suggested by Peleg [21]. The use of visible
identities has been investigated in [8]. The use of
visible lights for signaling has been proposed in [14]
in the context of partitioning a swarm of anonymous
mobile robots.

II. T HE MODEL

The system is composed of a team of mobile enti-
ties, calledrobots, each modelled as a computational
unit provided with its own local memory and capable
of performing local computations.

The robots are placed in a spatial universe, here
assumed to beR2, and they are viewed as points in
R

2. Each robot has its own local coordinate system;
however, the local coordinate systems of the robots
might not be consistent with each other. A robot is
endowed with sensorial capabilities and it observes
the world by activating its sensors, which return a
snapshot of the positions of all other robots with
respect to its local coordinate system.

The robots areidentical: they are indistinguishable
by their appearance and they execute the same pro-
tocol. The robots areautonomous, without a central
control. The robots aresilent, in the sense that they
have no means of direct communication (e.g., wire-
less) of information to other robots.

Each robot is endowed with motorial capabilities,
and can freely move in the plane. A move may end
before the robot reaches its destination, e.g. because of

limits to its motion energy. The distance traveled in a
move is neither infinite nor infinitesimally small. More
precisely, there exists an (arbitrarily small) constant
δ > 0 such that if the destination point is closer thanδ,
the robot will reach it; otherwise, it will move towards
it a distance of at leastδ. Note that, without this
assumption, an adversary would make it impossible
for any robot to ever reach its destination, following
a classical Zenonian argument. The quantityδ might
not be known to the robots.

At any point in time, a robot is eitheractive or
inactive. When active, a robot r executes aLook-
Compute-Move(LCM) cycle performing the following
three operations, each in a different state:

(i) Look: The robot observes the world by activat-
ing its sensor, which returns a snapshot of the
positions of all robots with respect to its own
coordinate system (since robots are viewed as
points, their positions in the plane are just the
set of their coordinates).

(ii) Compute: The robot executes its algorithm,
using the snapshot as input. The result of the
computation is a destination point.

(iii) Move: The robot moves towards the computed
destination; if the destination is the current
location, the robot stays still (performs anull
movement).

When inactive, a robot is idle. All robots are initially
inactive. The amount of time to complete a cycle is
assumed to be finite, and theLook is assumed to be
instantaneous.

The robots may or may not have distinct identities;
if they are without identifiers that can be used during
the computation they are said to beanonymous. The
robots may or may not have a finite butpersistent
memory, that is memory whose content is preserved
from one cycle to the next; they are said to be
obliviousif they do not, in which case they start each
cycle without any information on the past.

We denote byR the set of all teams of robots sat-
isfying the above assumptions (i.e., they are identical,
silent, autonomous, and operate in LCM cycles), and
denote byR ∈ R a team of robots having identical
capabilities (e.g., persistent storage, anonymity, etc.).
We will specifically denote byRo ⊂ R the set of all
teams of oblivious robots.

With respect to the activation schedule of the
robots and theirLook-Compute-Movecycle, the most
commonmodelsare the fully-synchronous, the semi-
synchronous, and the asynchronous. In theasyn-
chronous(ASYNC) model, the robots are activated
independently, and the duration of eachCompute,
Move and inactivity is finite but unpredictable. As a
result, the robots do not have a common notion of



time, robots can be seen while moving, and compu-
tations can be made based on obsolete observations.
On the opposite side of the spectrum, in thefully-
synchronous(FSYNC) model, the activations of all
robots can be logically divided into global rounds;
in each round, the robots are all activated, obtain
the same snapshot, compute and perform their move.
Note that this is computationally equivalent to a fully
synchronized system in which all robots are activated
simultaneously and all operations are instantaneous.
The semi-synchronous(SSYNC) model is like the
fully-synchronous model where however not all robots
are necessarily activated in each round. Based on the
fairness of the activation scheduler, sub-models can be
obviously defined.

Given a modelX and a team of robotsR ∈ R, let
Task(X,R) denote the set of problems solvable by
R in X . Given two modelsX andY , we say thatX
is computationally not less powerful thanY , denoted
by X ≥ Y if ∀R ∈ R, T ask(Y,R) ⊆ Task(X,R). If
X ≥ Y and∃R ∈ R, T ask(X,R) \Task(Y,R) 6= ∅,
we say thatX is computationally more powerful than
Y , denoted byX > Y . If X ≥ Y and Y ≥ X ,
X and Y are said to be computationally equivalent,
denoted byX ≡ Y . For simplicity of notation, let
A(R), S (R), andF (R) denoteTask(ASYNC, R),
Task(SSYNC, R), and Task(FSYNC, R), respec-
tively. Trivially we have:

FSYNC≥ SSYNC≥ ASYNC. (1)

There are problems that are solvable in SSYNC but
not in ASYNC (e.g. [22]); that is,

∃R ∈ R,S(R) \ A(R) 6= ∅ (2)

Similarly, there are problems that are solvable in
FSYNC but not in SSYNC (e.g. [24]); that is,

∃R ∈ R,F(R) \ S(R) 6= ∅ (3)

Thus, from (1), (2) and (3), we have the following
relationship between the computational power of the
three basic models:

FSYNC> SSYNC> ASYNC. (4)

In this paper we augment the ASYNC model by
providing some additional capabilities to the robots.
Each robot in addition to its capabilities, has a light
bulb that is visible to all the robots when they perform
their Look operation. The light associated with a
robot can assume different colors (from a finite set)
and can be updated by a robot during theCompute
operation. The light is persistent; i.e., while the robots
might be oblivious forgetting all other information

from previous cycles, their lights are not automatically
turned off at the end of a cycle. Thus, it constitutes a
form of external persistent memory.

The second capability we consider is the ability to
remember a constant number of snapshots from previ-
ous cycles. More precisely, for some integer constant
j > 0, the robot is allowed to store in its internal
memory at mostj snapshots from previousLook
operations (the robot may choose which snapshots it
stores).

We denote these two additional abilities using a
subscript and a superscript representing the number of
snapshots and the number of external colors respec-
tively; that is, ASYNCij denotes the ASYNC model
when each robot is augmented by a visible light with
i > 0 colors and by a persistent memory ofj > 0 past
snapshots, andAj

i (R) denotes the class of problems
solvable in this model byR ∈ R.

III. A SYNCHRONY WITH V ISIBLE L IGHTS VERSUS

SEMI-SYNCHRONY

A. ASYNCO(1) is at least as powerful asSSYNC

In this section we show that asychronous systems
equipped with a light colorable withO(1) colors
are at least as powerful as semi-synchronous systems
without lights. More precisely, we have:

Theorem III.1. ∀R ∈ R, S (R) ⊆ A6(R).

The proof is constructive: we present a ASYNC6

protocol SIM that produces a semi-synchronous exe-
cution of any SSYNC protocolP .

The lights used by SIM can have six colors:
T(rying), M(oving), S(topped), F(inished), W(aiting),
N(ext). At the beginning, all lights are set toT. The
protocol is a sequence of Mega-Cycles, each of which
starts with all robots trying to execute protocolP
(color T) and ends with all robots finishing the Mega-
Cycle having executedP once (colorF). All robots
with light F then eventually turn their lights toT; when
this process is completed, a new Mega-Cycle starts.

During a Mega-Cycle every robot executesP once.
Each Mega-Cycle is composed of a sequence of
stages: at each stage, some robots are allowed to ex-
ecuteP , and protocol SIM ensures that they have the
sameview of the world (i.e., they observed the same
snapshot). Each stage starts when a robot observes all
the other robots with their light eitherT or S (and starts
the execution ofP eventually turning their lightM),
and it ends when at least a robot has changed light
from M to S and all other robots are again inT or
S. In particular, at the beginning, all the robots that
during theirLook phase see only robots with lightT
are allowed to enter the first stage by turning their own
light to M before executingP . Any other robot with



State Look
Take the snapshot of the positions of the robots, that
returns for all robotsr ∈ R:

– Pos[r], the position on the plane of robotr
(according to my coordinate system);

– Light[r], the color of the light of robotr.
(Note: I am robotx)

State Compute
p := Pos[x].
CaseLight[x]:

• T

If ∀r 6= x, Light[r] ∈ {T, S} Then
ExecuteP .
p := computed destination.
Light[x] := M.

If (∃r 6= x| Light[r] ∈ {M}) Then
Light[x] := W.

• M

If ∀r 6= x, Light[r] ∈ {M, W, S} Then
Light[x] = S.

• S

If ∀r 6= x, Light[r] ∈ {S, F} Then
Light[x] = F.

• F

If ∀r 6= x, Light[r] ∈ {F, T} Then
Light[x] = T.

• W

If ∀r 6= x, Light[r] ∈ {W, N, S} Then
Light[x] = N.

• N

If ∀r 6= x, Light[r] ∈ {S, N, T} Then
Light[x] = T.

State Move
Move(p).

Figure 2. Protocol SIM

light T that perform itsLook operation when some
robots’ lights areM (and thus the robots are potentially
moving), will be prevented from entering the current
stage, loses its turn changes color toW and waits for
another turn. The robots with lightM, after executing
P , will turn their own lights toS.

Only after all robots that entered the current stage
turn their light toS, the robots waiting for their turn,
i.e., with light W, will be given a chance to enter the
next stage. In particular, they will turn their lights to
N and eventually toT to try to executeP .

Essentially, the transition of lights fromT to W, to
N, and back toT corresponds to a queue where robots
that failed to enter the current stage wait for their turn.

In the following, we will prove that Protocol SIM
provides a fair and correct execution of any semi-
synchronous protocolP .

Compute

S FM
∀T, S ∀M, W, S ∀S, F

∀F, T

W

N

∃M

∀W,
N, S

∀
T
,
N
,
S

T

Figure 3. The transition diagram of the SIM protocol. The label in
the nodes represent the value of the light of the executing robot (i.e.
Light[x]). The label of an edge expresses a condition that must be
satisfied on the light of all the other robots.

Lemma III.1. In each Mega-Cycle, each robot ex-
ecutesP exactly once; in each stage, all robots
executingP have the same snapshot.

Proof: (Sketch)First observe that a robot can
perform a non-null move in theMovephase only if it
executedP in the Computephase.

Let t be any time instant such that all robots are
coloredT, and lett0 be the latest timet0 ≤ t when
they all became coloredT. Let us call a robotactive
when it is not inS. By definition the configuration at
time t0 is the same as the one at timet.

By construction, it is easy to observe the following
facts:

1) From timet0, at least one robot in phaseLook
observes all other robots with lightT, and thus
executesP and turns its light toM.

2) Let t1 ≥ t0 be the first time since (and includ-
ing) t0 when a robot turns its own light toM.
That is all robots thatLook from (and including)
time t0 to (and excluding)t1 eventually turn
their lights to M. Since a robot can perform a
non-null move only after changing its own light
to M, all robots with lightM have observed the
same configuration in theirLook.

3) All robots with light set toM do not change color
as long as some robots’ light isT.

4) The robots thatLook after time t1 (inclusive)
change color toW and keep that color until no
robot has light coloredT or M. That is, there is
a time instant when all active robots have light
eitherM or W, and at least one robot’s light isM
(see case 1 above).

5) Since all robots with lightW did not executeP
and thus did not move, and all robots with light
M have observed the same configuration (the one
at time t1), then their movements are based on
the configuration at timet1.



RED

Compute
to other]

BL
UE

OFF
[MOVE

[MOVE to half]

GREEN, OFF

BLUE, GREEN

BLUE GREENOFF

Figure 4. The transition diagram of the TWOGATHERL IGHT

protocol.

6) All robots with light M eventually change their
color to S (CaseLight[x] = M in SIM ). The
robots with lightW can turn their lights toN only
after all robots inM have turned their lights to
S. Eventually, they will all have lightT. Note
that the number of these robots is smaller than
the robots that were inT at t1.

From the above observations, we have that all
robots will have lightS at some time aftert0. Once
all robot’s lights areS, by construction, all robots turn
their lights toF, and then eventually toT. Thus the
next Mega-Cycle safely starts (with all lights being
T). We also observe that, by construction, all robots
can change light toM exactly once in a Mega-Cycle;
this implies that every robot executeP exactly once.

From Lemma III.1, it follows that protocol SIM pro-
duces a semi-synchronous execution of any SSYNC
input protocolP . This, in turn, provides the proof of
Theorem III.1.

B. ASYNCO(1) is more powerful thanSSYNC

In the previous section we have shown that
ASYNCO(1) ≥ SSY NC; that is, asynchronous
robots, if endowed withO(1) visible lights, are at
least as powerful as if they were semi-synchronous.

In this section we show that there are problems that
robots cannot solve without visible bits, even if they
are semi-synchronous, but can be solved withO(1)
visible bits even if the robots are asynchronous; in
particular, we show that for any teamR ∈ Ro of
oblivious robotsAO(1)(R) \ S (R) 6= ∅.

Consider the extensively investigatedgatheringor
rendezvousproblem GATHERING{K} of having k
oblivious robots terminally gather in the same lo-
cation, not previously known in advance. It is well
known that the gathering of two oblivious robots
cannot be guaranteed:

Lemma III.2 ([24]). ∀R ∈ Ro, GATHERING{2} /∈
S (R).

We now prove that two oblivious robots can gather,
even if they are asynchronous when enabled withO(1)
visible lights; more precisely:

State Look
Let y be the other robot, andx be me;
Pos[x] :=my current position;
Pos[y] := position of the other robot;
Light[x] := Value of my light;
Light[y] := Value of the light of the other robot.

State Compute
If GatherThen STOP.
p := Pos[x].
CaseLight[x]:

• OFF

If Light[y] = OFF Then
p := Half point between me and the other robot;
Light[x] := RED.

Else If Light[y] = BLUE Then
p := Position of the other robot;
Light[x] := RED.

• RED

Light[x] := BLUE.
• BLUE

If Light[y] ∈ {BLUE, GREEN} Then
Light[x] := GREEN.

• GREEN

If Light[y] ∈ {GREEN, OFF} Then
Light[x] := OFF.

State Move
Move(p).

Figure 5. TWOGATHERL IGHT, a protocol for gathering two robots
in ASYNC4.

Theorem III.2. ∀R ∈ R, GATHERING{2} ∈ A4(R).

We prove the theorem constructively. Consider the
protocol TWOGATHERL IGHT shown in Figure 5; let
x and y be the two robots. The protocol uses four
colors:OFF, RED, GREEN, andBLUE; initially the light
of both x andy are set toOFF. The idea behind the
protocol is as follows. If, after the beginning of the
execution, both robots observeOFF as the color of the
other robots’ light, then they both try to reach the point
halfway between the two robots. On the other hand if
one robot begins execution earlier than the other it
will move towards the midpoint, turning its lightRED
before moving. If the second robot now performs a
Lookoperation, it will see theRED light and know that
the other robot is potentially moving. In this case the
second robot waits for the first robot to change colors
from RED to BLUE. When the robot sees theBLUE light
on the other robot it will try to move directly towards
it. A robot with BLUE light waits until the second robot
has also turned its light toBLUE. When both robots
haveBLUE lights, they turn their lights toGREEN to
signal the end of one round of the algorithm (i.e. the



robots synchronize with each-other at the end of each
round). Now the robots turn their lights toOFF to start
the next round. As before we will use the term Mega-
Cycle to refer to the time period during which the
robot has its light exactly once in each color starting
from OFF to RED, BLUE, GREEN and just before turning
to OFF again.

Based on the rules of the algorithm TWOGATH-
ERL IGHT, the following properties can be shown:

Lemma III.3. In the execution of Algorithm
TWOGATHERL IGHT:

(i) Unless the robots are already gathered, each
Mega-Cycle completes in finite time. (i.e. there
are no deadlocks)

(ii) If the distance between the robots,dist(x, y) >
2δ, then after each complete Mega-Cycle this
distance decreases by at least2δ and the robots
never cross each-other.

(iii) If dist(x, y) ≤ 2δ, then the robots gather during
the next Mega-Cycle.

Proof:

(i) An activated robotx stays in its current state if
Light[x] is OFF andLight[y] is RED or GREEN,
or if Light[x] is BLUE andLight[y] is RED or
OFF. Note that none of this two conditions can
hold for more than one activation cycle for each
robot. Thus, there could be no deadlock.

(ii) It is easy to see that during a complete Mega-
Cycle, each robot is guaranteed to move. Let
robotx be the first robot to start moving during
this Mega-Cycle. Letd be the distance between
the robots at this time. The robotx may move
only if Light[y] is OFF or BLUE during the
Lookoperation. IfLight[y] is BLUE, then robot
y has already moved during this Mega-Cycle
contradicting the assumption. Thus,Light[y] is
OFF. Thus, robotx moves towards roboty by
at least distanceδ and at most a distanced/2
during this Mega-Cycle. The distance moved by
robot y depends on what roboty sees during
the Look operation performed when its light is
OFF. If Light[x] wasOFF at that time the robot
y moves at most byd/2 towards robotx (so
they do not cross). Otherwise ifLight[x] was
BLUE, then robotx has already finished moving
and roboty moves a distance ofd′ which is at
most the current distance between the robots.
Thus, the robots do not cross. In both cases,
the distance between the robots after the Mega-
Cycle is at mostd− 2δ.

(iii) Let d ≤ 2δ be the distance between the two
robots and letp be the midpoint between the two
locations. Without loss of generality, letx be the

first robot to performLookoperation in the next
Mega-Cycle. Robotx would decide to the move
a distanced/2 ≤ δ and thus it would eventually
arrive at the locationp. If robot y sees robots
x whenLight[x] is OFF, then robotx has not
moved yet and the distance between the robots
is still d. Thus the roboty will also decide to
move a distanced/2 and will eventually reachp.
The only other case is when roboty sees robot
x when Light[x] is BLUE. In this case, robot
x has already arrived atp. During theCompute
operation, roboty will decide to move directly
to the other robot and it will also reach location
p. Hence in all cases, the robots will gather at
p during this Mega-Cycle.

We have shown that algorithm TWOGATHERL IGHT

correctly solves the problem of gathering two robots
when provided with a light of 4 colors. This completes
the proof of Theorem III.2.

By Theorem III.1, Lemma III.2, and Theorem III.2
it follows that ASYNCO(1) ≥ SSYNC and∃R ∈ R,
AO(1)(R) \ S (R) 6= ∅; that is,

Theorem III.3. ASYNCO(1) > SSYNC.

C. ASYNCO(1) is as powerful asSSYNCO(1)

To complete this section we now prove that, when
enhanced with a constant number of visible bits,
semi-synchronous robots are not more powerful than
asynchronous ones with the same capability. More
precisely we show the following:

Theorem III.4. ∀R ∈ R, SO(1)(R) ≡ AO(1)(R).

Proof: First, let us show thatSO(1)(R) ⊆
AO(1)(R); in particular, we will show thatSk(R)
⊆ A6k(R), ∀k > 1. Let P be a protocol designed
for the SSYNCk model. We show how to extend the
simulation algorithm SIM to executeP in ASYNC6k.
Suppose we equip the robots with a second light bulb
of k colors. The second light bulb would initially be
set to the same color as the robots executingP in
SSYNCk. During theComputestep of the simulation
whenever the robots compute a new destination, they
also comupte the new color of the light bulb according
to P and set the color of the second light bulb
accordingly. All other steps of the algorithm are same
as in SIM . From the correctness of SIM protocol
it follows that the above algorithm would correctly
simulate any protocol for semi-synchronous robots
with k lights. Notice that we can replace the two
light bulbs in the above simulation with a single light
bulb having 6k colors. The other inclusion, hence
the theorem, follows from the obvious relationship
SSYNCO(1) ≥ ASYNCO(1).



Thus, we have shown that: ASYNCO(1) ≡
SSYNCO(1). In other words, when enhanced with
visible lights, the difference between asynchrony and
semi-synchrony disappears. This result must be con-
trasted with the strict dominance between the models
without lights.

D. A Note on Self-stabilization

Note that protocol TWOGATHERL IGHT is self-
stabilizing in the sense that it works even when
initially the lights have arbitrary colors. Protocol SIM ,
which is not self-stabilizing as described, can be easily
modified to have this property. In fact, it is easy to
characterize the “illegal” configurations; we can then
add to SIM the rule that, if the result of a robotLook
is an illegal configuration, then the robot turns its light
to S, and waits until all lights becomeS. From that
moment on, the protocol behaves correctly.

IV. A SYNCHRONY WITH V ISIBLE L IGHTS VERSUS

FULL SYNCHRONY

In this section we address the relationship between
full synchronyand ASYNC when the latter is en-
hanced with both visible bits and persistent internal
memory. We show that asynchronous robots if em-
powered with both a constant number of lights and the
ability to remember a single snapshot from the past,
become at least as powerful as synchronous robots.

A. ASYNCO(1)
O(1) is at least as powerful asFSYNC

We now present a protocol for ASYNC robots,
which uses 3 colors, one past snapshot, and simulates
FSYNC. In other words, we show that any problem
solvable in FSYNC is solvable also in ASYNC31.

Protocol SYNCSIM , whose rules are shown in
Figure 6, uses three colors:OFF, GREEN, and RED;
initially, all lights areOFF. Similarly to Protocol SIM ,
protocol SYNCSIM enforces a sequence of Mega-
Cyclesmc0,mc1, . . .: the difference here is thatall
robots executeP in each Mega-Cycle based on the
same snapshot (we are simulating FSYNC). Each
mega-cyclemci starts with all robots beingOFF;
within finite time, allOFF robots becomeGREEN; when
a robot becomesGREEN in a Mega-Cycle, it stores
in a local arrayPerm[] the configuration it just
observed: this is necessary to ensure that all robots
will compute on the same configuration in this Mega-
Cycle. After all robots becomeGREEN, the destination
point is computed, using as configuration the one
locally stored in Perm[] and the robot starts to
perform theMoveoperation, turning its light toRED.
After a robot has completed theMove, it changes its
light to OFF. When the lights of all robots areOFF,
the current Mega-Cycle ends and the next one begins.

Theorem IV.1. ∀R ∈ R, F (R) ⊆ A3
1(R).

Sketch: The proof is by construction. We show
that Protocol SYNCSIM correctly simulates a fully
synchronous execution of any protocolP .

Initially all robots areOFF. By construction, anOFF
robot becomesGREEN, storing the current snapshot,
but does not executeP . As a consequence, all robots
that becomeGREEN for the first time have stored the
same snapshot. By construction, aGREEN robot does
not executeP as long as it sees someOFF robot; on
the other end, it does executeP on the stored snapshot
if all the other robots are eitherGREEN or RED, and
in this case it itself becomesRED. This means that all
robots that becomeGREEN for the first time eventually
executeP on the same snapshot and then becomeRED.

By construction, aRED robot always turns its light
to OFF in the next activation cycle (i.e. after perform-
ing the Move). So, eventually all robots will beOFF
again. At this point, each robot has executed oneLook-
Compute-Movecycle according to the protocolP . We
are now in the same conditions as before and the
argument applies for the next cycle of activities.

The above result proves that: ASYNC3
1 ≥

FSYNC.

B. ASYNC3
1 is more powerful thanFSYNC

We proved that ASYNC31 is at least as powerful as
FSYNC. We now show that there are problems that
can be solved in ASYNC31 but are not solvable in
FSYNC. Consider the BLINKING problem defined
as follows:

Definition IV.1 (BLINKING ). The BLINKING problem
requiresn > 2 robots to perform subtasks T1 and T2
repeatedly in alternation. In T1, the robots must form
a circle, i.e. each robot lies on a distinct point on the
same circleC of radius rC > 0; While in T2, the
robots must gather at a single point.

Observe that, oncen robots are gathered at a single
point, it is not possible to separate these robots using
any deterministic algorithm, even in the synchronous
model. Thus,

Lemma IV.1. ∀R ∈ Ro, BLINKING /∈ F (R).

We will now show that

Lemma IV.2. ∀R ∈ R; BLINKING ∈ A3
1(R).

Proof: We will prove the above result by pro-
viding an algorithm for solving BLINKING . Starting
from any initial configuration with robots in distinct
locations, the robots simply move to the smallest
enclosing circle (SEC) without creating multiplicity.
Note that during this operation, the SEC remains
invariant. Once a robot arrives at the SEC, it turn



State Look
Take the snapshot of the positions of the robots, that
returns for all robotsr ∈ R:

– Pos[r], the position on the plane of robotr
(according to my coordinate system);

– Light[r], the color of the light of robotr.
(Note: I am robotx)

State Compute
p := Pos[x].
CaseLight[x]

• OFF

If ∀r 6= x, Light[r] = OFF ∨ Light[r] = GREEN,
Then

Store the current snapshot into thenon-volatile
arrayPerm[].
Light[x] := GREEN.

• GREEN

If ∀r 6= x, Light[r] = GREEN ∨ Light[r] = RED

Then
ExecuteP using the snapshot inPerm[].
p := computed destination.
Light[x] := RED.

• RED

Light[x] := OFF.

State Move
Move(p).

Figure 6. Protocol SYNCSIM , that simulates FSYNC protocols
in ASYNC3

1
.

its light RED. When a robot sees that all robots have
their lightsRED, the robot stores a snapshot and then
turns its light toGREEN and waits for the other robots
to turn their lights toGREEN. Note that each robot
will store the same snapshot but oriented according
to its local coordinate system. When a robot sees
all other robots haveGREEN light, the robot executes
any standard gathering algorithm without changing the
light. Once all robots have gathered at a point, each
robot turns its light toOFF. When a robot sees all
other lights are turnedOFF, it moves back towards its
previous location on the circleC which is the SEC
of the robot’s locations in the snapshot. Note that in
the snapshot each robot knows its own location and
can compute the vector from this point to the center
of the circleC. The robot then simply moves along
the inverse of this vector. The robot may not reach the
circle, but once each robot has executed at least one
cycle, all the robots will be in distinct locations and
the robots can re-execute the same algorithm.

Using the above algorithm the robots in the
ASYNC3

1 model can solve the BLINKING problem.

Compute

REDGREENOFF STORE
∀OFF, GREEN ∀GREEN, RED

Figure 7. The transition diagram of the SYNCSIM protocol.

The above results show that:∃R ∈ R, A3
1(R) \

F (R) 6= ∅. This combined with the results of the
previous section imply the following:

Theorem IV.2. ASYNC3
1 > FSYNC.

Thus, we have shown that the capability of using
external lights and remembering a single snapshot
allows ASYNC robots to become more powerful
than FSYNC robots. In constrast, without the use of
external lights, remembering any number of snapshots
does not allow ASYNC robots to achieve the power
of even the SSYNC model [22].

V. CONCLUSIONS

The results of this paper show the power of using
lights, i.e. visible external memory, for distributed
computations with autonomous robots. In fact, we
have shown that using only a few bits of visible
memory asynchronous robots can perform tasks which
cannot be performed even with unbounded amount of
internal memory. Moreover a team of robots empow-
ered with lights (without or with snapshot-memory)
is more powerful than an otherwise similar team
of semi-synchronous robots (or, fully- synchronous
robots respectively). In other words, asynchrony can
be overcome with the power of lights.

REFERENCES

[1] N. Agmon and D. Peleg, “Fault-tolerant gathering
algorithms for autonomous mobile robots,”SIAM Jour-
nal on Computing, vol. 36, pp. 56–82, 2006.

[2] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita, “A
distributed memoryless point convergence algorithm
for mobile robots with limited visibility,”IEEE Trans-
action on Robotics and Automation, vol. 15, no. 5, pp.
818–828, 1999.

[3] L. Barrière, P. Flocchini, E. Mesa-Barrameda, and
N. Santoro, “Uniform scattering of autonomous mobile
robots in a grid,”International Journal on Foundation
of Computer Science, vol. 22, no. 3, pp. 679–697,
2011.

[4] Z. Bouzid, S. Dolev, M. Potop-Butucaru, and
S. Tixeuil, “Robocast: Asynchronous communication
in robot networks,” in114th International Conference
on Principles of Distributed Systems (OPODIS), ser.
LNCS 6490, 2010, pp. 16–31.



[5] D. Canepa and M. G. Potop-Butucaru, “Stabilizing
flocking via leader election in robot networks,” in9h
International Conference on Stabilization, Safety, and
Security of Distributed Systems (SSS), ser. LNCS 4838,
2007, pp. 52–66.

[6] M. Cieliebak, “Gathering non-oblivious mobile
robots,” in 6th Latin American Conference on
Theoretical Informatics (LATIN), ser. LNCS 2976,
2004, pp. 577–588.

[7] M. Cieliebak, P. Flocchini, G. Prencipe, and N. San-
toro, “Solving the robots gathering problem,” in30th
International Colloquium on Automata, Languages
and Programming (ICALP), ser. LNCS 2719, 2003,
pp. 1181–1196.

[8] S. Das, P. Flocchini, N. Santoro, and M. Yamashita,
“On the computational power of oblivious robots:
forming a series of geometric patterns,” in29th Annual
ACM Symposium on Principles of Distributed Comput-
ing (PODC), 2010, pp. 267–276.

[9] X. Défago, M. Gradinariu, S. Messika, and P. Raipin-
Parvédy, “Fault-tolerant and self-stabilizing mobile
robots gathering,” in20th International Symposium
on Distributed Computing (DISC), ser. LNCS 4167,
September 2006, pp. 46–60.

[10] X. Défago and S. Souissi, “Non-uniform circle for-
mation algorithm for oblivious mobile robots with
convergence toward uniformity,”Theoretical Computer
Science, vol. 396, no. 1-3, pp. 97–112, 2008.

[11] Y. Dieudonné, O. Labbani-Igbida, and F. Petit, “Circle
formation of weak mobile robots,”ACM Transactions
on Autonomous and Adaptive Systems, vol. 3, no. 4,
2008.

[12] Y. Dieudonné, F. Petit, and V. Villain, “Leader election
problem versus pattern formation problem,” inInterna-
tional Symposium on Distributed Computing (DISC),
ser. LNCS 6343, 2010, pp. 267–281.

[13] Y. Dieudonné and F. Petit, “Scatter of robots,”Parallel
Processing Letters, vol. 19, no. 1, pp. 175–184, 2009.

[14] A. Efrima and D. Peleg, “Distributed models and algo-
rithms for mobile robot systems,” in33rd International
Conference on Current Trends in Theory and Practice
of Computer Science (SOFSEM), ser. LNCS 4362,
2007, pp. 70–87.

[15] P. Flocchini, G. Prencipe, N. Santoro, and P. Wid-
mayer, “Hard Tasks for Weak Robots,” in10th Annual
International Symposium on Algorithms and Compu-
tation (ISAAC), ser. LNCS 1741, 1999, pp. 93–102.

[16] ——, “Gathering of robots with limited visibility,”
Theoretical Computer Science, vol. 337, no. 1-3, pp.
147–168, 2005.

[17] ——, “Arbitrary pattern formation by asynchronous
oblivious robots,”Theoretical Computer Science, vol.
407, pp. 412–447, 2008.

[18] V. Gervasi and G. Prencipe, “Coordination without
communication: the case of the flocking problem,”
Discrete Applied Mathematics, vol. 144, no. 3, pp.
324–344, 2004.

[19] T. Izumi, Z. Bouzid, S. Tixeuil, and K. Wada, “Brief
announcement: The BG-simulation for byzantine mo-
bile robots,” in25th International Symposium on Dis-
tributed Computing (DISC), 2011, pp. 330–331.

[20] Y. Katayama, Y. Tomida, H. Imazu, N. Inuzuka, and
K. Wada, “Dynamic compass models and gathering
algorithms for autonomous mobile robots,” in14th
Colloquium on Structural Information and Communi-
cation Complexity (SIROCCO), ser. LNCS 4474, 2007.

[21] D. Peleg, “Distributed coordination algorithms for mo-
bile robot swarms: New directions and challenges,” in
7th International Workshop on Distributed Computing
(IWDC), ser. LNCS 3741, 2005, pp. 1–12.

[22] G. Prencipe, “The effect of synchronicity on the be-
havior of autonomous mobile robots,”Theory Comput.
Syst., vol. 38, no. 5, pp. 539–558, 2005.

[23] S. Souissi, X. Défago, and M. Yamashita, “Using
eventually consistent compasses to gather memory-less
mobile robots with limited visibility,”ACM Transac-
tions on Autonomous and Adaptive Systems, vol. 4,
no. 1, pp. 1–27, 2009.

[24] I. Suzuki and M. Yamashita, “Distributed anonymous
mobile robots: formation of geometric patterns,”Siam
Journal on Computing, vol. 28, no. 4, pp. 1347–1363,
1999.

[25] M. Yamashita and I. Suzuki, “Characterizing geomet-
ric patterns formable by oblivious anonymous mobile
robots,” Theoretical Computer Science, vol. 411, no.
26-28, 2010.


