
1

Efficient, decentralized computation of the topology
of spatial regions

Matt Duckham, Doron Nussbaum, Jörg-Rüdiger Sack, Nicola Santoro

Abstract—The capability to query the topology of spatial
regions is fundamental to today’s centralized spatial computing
systems, like spatial databases and GIS. By contrast, this paper
explores decentralized algorithms for computing the topology of
spatial regions in wireless sensor networks. The approach gener-
ates global topological information about regions, using only the
local knowledge of nodes and their immediate network neighbors
aggregated up through spatial boundary structures. Using three
basic boundary structures (boundary nodes, boundary cycles,
and boundary orientation), a family of decentralized algorithms is
defined that can respond efficiently to snapshot queries about the
topology of spatial regions, including containment and adjacency
queries. The communication complexity of the algorithm is O(n)
for realistic inputs. Empirical investigation of the performance
of the approach, using simulation, also confirms the efficiency,
scalability, and robustness of this approach.

Index Terms—qualitative spatial reasoning, containment, ad-
jacency, decentralized spatial computing, geosensor networks,
wireless sensor networks

I. INTRODUCTION

Computation in distributed systems increasingly occurs
somewhere, with that location being integral to the compu-
tational process itself. For example, geographical wireless
sensor networks (sometimes called geosensor networks [1])
are increasingly being tasked to respond to queries not only
about point locations, but patterns and events with spatial and
temporal extents. Many of the existing approaches to complex
spatial queries in geosensor networks adopt a centralized
approach to computation, where global spatial data is collated
by the network but processed by a conventional information
system, like a spatial database or GIS.

By contrast, this paper is concerned with problems of
decentralized spatial computing (DeSC), where local spatial
data is processed in the network itself, with no centralized or
global control. Decentralization can help to improve the scal-
ability of geosensor networks, for example increasing network
longevity—a vital consideration in applications like long-
term environmental monitoring (e.g., [2]). Specifically, this
paper explores the design of efficient decentralized algorithms
for responding to “snapshot” queries about the topological
relationships between spatial regions, such as whether two
regions are connected, adjacent, or contain one another. The
regions are assumed to be derived from sensing of underlying

M. Duckham is with the Department of Geomatics, University of Mel-
bourne, Victoria 3010, Australia. E-mail: see http://www.duckham.org

D. Nussbaum, J-R Sack, and N. Santoro are with the Department of
Computer Science, Carleton University, Ottawa K1S 5B6, Canada

environmental phenomena, like “hot spots,” “wet regions,”
“contours,” or “pollution clouds.”

In any decentralized computing system, no one system
component has access to the entire system state [3]. In a
DeSC system, the location of nodes places additional spatial
constraints on the generation and movement of information.
For example, nodes in a geosensor network typically sense
information only about their immediate spatial environment,
and the energy required to communicate between nodes in-
creases with spatial/network distance.

Queries about objects with spatial extents (like regions) are
especially challenging because of these spatial constraints; sat-
isfying complex spatial queries typically requires the combina-
tion of information captured and stored at distal locations. On
the other hand, spatial information is inherently autocorrelated
(“nearby things are more related,” Tobler’s so-called first law
of geography). Thus, opportunities for efficient decentralized
algorithms may exist because proximal nodes are more likely
to be more relevant in answering spatial queries.

The central innovation in this paper is the definition of
decentralized region boundary structures, which form the basis
for efficient in-network spatial data aggregation. Section III
formally defines the three levels of boundary structure required
for topological queries: boundary nodes, boundary cycles, and
boundary orientation. Section IV presents decentralized algo-
rithms for constructing these boundary structures. Section V
shows how these basic algorithms can be combined to respond
to common topological queries, in particular containment
and adjacency of regions. Section VI presents an empirical
analysis of the performance of the algorithms using simulation,
focusing on the efficiency, scalability, and robustness of the
algorithms, before section VII concludes the paper.

II. BACKGROUND

Research into the application of decentralized algorithms to
wireless sensor networks is already well advanced, including
studies of in-network data aggregation (e.g., [4]–[8]); network
connectivity and coverage (e.g., [9], [10]); scheduling (e.g.,
[11]); clustering (e.g., [12]); and data storage and query
processing [13]–[16]. Interest in supporting spatial queries
using decentralized algorithms and data structures has also
begun to grow rapidly, for example in the development of
spatial indexes for geosensor networks (e.g., [17]–[21]).

Some spatial operations, like computing the relative neigh-
borhood graph (RNG) or the Gabriel graph (GG), are straight-
forward to decentralize because they depend, by definition,
only on a node’s location and that of its one-hop neigh-
bors [22]. More complex spatial queries concern the spatial

Digital Object Indentifier 10.1109/TC.2010.177 0018-9340/10/$26.00 © 2010 IEEE

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

characteristics and relationships between spatially extended
objects, like lines, boundaries, regions, or areas. These queries
are not so straightforward to decentralize, because the spatial
extents of such objects demand coordination amongst spatially
dispersed nodes across the network. Existing techniques for
satisfying such queries usually aim to take advantage of spatial
structures, like Voronoi cells [23], lines [24], boundaries [25]–
[27], or the inherent autocorrelation in spatial data [28]–[30].

In this paper, we are directly concerned with queries
about the topology of spatial regions, such as “Is region x
(topologically) connected?” or “What regions are contained
within/adjacent to x?” Recent research has focused on the
efficient generation of the geometries of spatial regions, in
particular contours or isolines [31]–[34]. However, to date
relatively few algorithms have addressed the problem of com-
puting the topology of spatial regions directly (rather than
indirectly as a by-product of geometries [35]).

This paper focuses on queries about the current state of
the region topology (e.g., whether region a contains region
b), as opposed to topological events (e.g., whether regions a
and b “merge” or “split”). Most existing research into DeSC
can be classified into either queries about state of the world
(e.g., [23], [24], [29], [30]) or queries about geographic events
that happen in the world (e.g., [27], [36]–[38]). Events and
states are closely related—events can often be inferred from
a sequence of states, and the state after (or before) an event
can be inferred from the event plus the state before (or after)
the event.

Related research has already begun to develop decentralized
algorithms for identifying topological events, like the appear-
ance, disappearance, merging, and splitting of regions [38]–
[40]. However, this previous work does not deal with querying
topological states, and indeed often requires initialization with
information about the starting topological state (e.g., [38],
[41]). Thus, the algorithms in this paper fill a gap in the current
research literature, suited to infrequent long-running (queries
resident in the network, proactively responding to predefined
triggers [42]) or one-off snapshot queries about region topol-
ogy. Further, even where topological changes are expected to
occur more frequently (and so event-oriented queries may be
more appropriate than our approach) our algorithms still fulfill
an important role as an efficient initialization step for long-
running queries about topological events.

III. DEFINING BOUNDARY STRUCTURES

Boundary is a fundamental topological construct in spatial
information processing (see for example, the influential “4-
intersection model” [43]). This section defines three basic
boundary constructs (boundary nodes, boundary cycles, and
boundary orientation) in the context of sensor networks.

Wireless sensor networks are conventionally represented as
a set of nodes V , connected by a communication network
represented as a connected (undirected) graph, G = (V,E).
The neighbors of a node v ∈ V are denoted nbr(v), where
nbr(v) = {v′|{v, v′} ∈ E}. In a geosensor network, the nodes
of G are also distributed in space. The (planar) location of the
node in geographical space can be represented using a locator
function, l : V → R

2.

Each node in a geosensor network can sense information
about its immediate (geographical) environment. Formally, we
assume a sensor function s : V → X , where X is a finite
set representing some salient, pairwise disjoint categorization
of sensed values (e.g., X = {‘hot’, ‘warm’, ‘cold’}). Such
categories be derived from thresholding scalar fields (e.g., all
locations above a certain humidity) or from true binary sensors
(e.g., presence or absence of an environmental pollutant). In
the simplest case, X = {0, 1}, a node can sense whether it is
“out” or “in” a spatial region.

A natural definition of a boundary node in such a system is
as follows (cf. [27], [38]):

Definition 1: A boundary node is a node v ∈ V such that
there exists a neighbor v′ ∈ nbr(v) where s(v) �= s(v′).

In other words, a boundary node is a node v that has
an immediate 1 hop neighbor v′ which senses a different
category from v. A “region component” of a network is a
connected subgraph where nodes in the subgraph all sense the
same category, and neighbors of the region component sense
a different category. Formally:

Definition 2: A piece of graph G = (V,E) is a set of nodes
V ′ ⊆ V such that for any v′ ∈ V ′ and v ∈ nbr(v′) then
s(v′) = s(v) if and only if v ∈ V ′. The subgraph G′ ⊆ G
induced by a piece V ′ is called a region component if a) G′

is connected and b) |V ′| > 2.
Representing the boundary of region components requires

the addition of further restrictions on the graph structure.
Specifically, assuming the graph G is plane (i.e., is planar
along with its planar embedding) it is possible to define the
“boundary cycle” of a region component as follows:

Definition 3: A boundary cycle of plane region component
G′ = (V ′, E′) is a simple cycle of a face f of G′ such that
there exists at least one vertex v ∈ V −V ′ that is geometrically
contained inside f .

In general, plane graphs may not possess simple cycles for
all faces. However, it is a well-known property of 2-connected
plane graphs that every face is bounded by a simple cycle
[44]. Thus, every 2-connected region component must possess
at least one (possibly exterior) boundary cycle.

Figure 1 summarizes diagrammatically the three boundary
constructs. In the special case where G is maximally connected
(a triangulation), all nodes in the boundary cycle are also
boundary nodes. In general plane graphs, every boundary cycle
must contain at least one boundary node, but some nodes in
the boundary cycle may not be boundary nodes (as illustrated
Figure 1c where several non-boundary nodes are part of the
boundary cycles).

A. Assumptions

The decentralized computation of boundary structures dis-
cussed in the following section relies on four basic assump-
tions about the graph G and its region components:

1) the graph G is plane;
2) all region components of G are 2-connected;
3) the set of all region component boundary cycles is

disjoint, such that any node v ∈ V can belong to at
most one boundary cycle; and

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

3

a. Boundary nodes (squares) b. Region components (subgraphs) c. Boundary cycles

Fig. 1. Boundary structures for a graph G with two region components (white and black nodes)

4) all nodes v ∈ V know their coordinate location.
The first assumption is common for sensor networks, and is

fundamental to the definition of the boundary of region compo-
nents. Many decentralized techniques for constructing planar
graphs in a geosensor network have already been devised (e.g.,
relative neighborhood graph, Gabriel graph, and Delaunay
triangulation [22], [45]). The second and third assumptions
are required for region components to have simple, non-
intersecting boundaries, and have direct analogy to common
restrictions in spatial databases and GIS, where polygons are
often required to be simple (Jordan) and pairwise disjoint. It
is possible to extend our approach to relax assumptions 2 and
3. However, in the interests of clarity and space we treat such
extensions as beyond the scope of this paper (but see section
VII).

The fourth assumption can potentially be satisfied using
conventional positioning systems, like GPS, WiFi, or ultra-
sonic triangulation. However, in many cases coordinate loca-
tion provides more information than is strictly required for
topological queries. Later sections explore relaxations of this
requirement as well as robustness in the face of uncertainty in
coordinate location (section VI-D).

IV. COMPUTING BOUNDARY STRUCTURES

Based on the definitions in the previous section, the topo-
logical queries explored in the following sections rely on
decentralized computation of the three levels of boundary
information:

1) Boundary node detection: each node locally determines
whether it is a boundary node.

2) Boundary cycle construction: boundary nodes in a
boundary cycle elect a leader to aggregate information
about that region component.

3) Boundary orientation: the leader for a boundary cycle
initiates computation of the orientation of the boundary
cycle, representing the polygonal boundary of a region
component.

Each level of boundary information requires the construc-
tion of the lower level structure (i.e., boundary orientation
requires boundary cycle construction, which in turn requires
boundary node detection). Depending on the specific topo-
logical query, the top level of boundary structure (boundary

orientation) may not be required. Adjacency and connectivity
queries, for example, can be answered using level 2 boundary
cycle information alone (and by implication level 1 bound-
ary node detection). Determining containment relationships
between region components requires all three levels.

A. Stage 1: Boundary node detection

Boundary node detection is a straightforward local op-
eration. A node can communicate its sensed value to its
immediate 1-hop neighbors, and then compare neighbors’
sensed values with its own. A node that detects at least one
neighbor with a different sensed value is a boundary node (by
definition III).

Boundary node detection requires a total of O(|V |) mes-
sages to be sent, and O(2|E|) messages to be received. Note
that by Euler’s formula, |E| is linearly related to |V | in a
plane graph, |E| ≤ 3|V | − 6. Further, such messages would
be normally required by any ad hoc distributed system where
nodes need to discover their neighborhood. Since no routing
of information is required for boundary node detection (nodes
simply broadcast to neighbors), the costs of detecting boundary
nodes can arguably be amortized as part of the basic network
initialization and infrastructure of a distributed system.

B. Stage 2: Boundary cycle construction

Boundary cycle construction requires nodes to coordinate
around the boundary. Intuitively we may construct the bound-
ary cycle using a “boundary tracing” algorithm, that winds
around the boundary. In essence, the winding procedure is an
adaptation of face routing commonly used in wireless sensor
networks (e.g., [46], [47]). The key difference is that the
“faces” are not (necessarily) faces of the communication graph
G; rather they are the faces induced by region components,
and reflect the geographic distribution of the underlying sensed
values.

Winding around the boundary requires that each node v
locally possesses knowledge of the counterclockwise cyclic
ordering of its neighbors, represented as the function cv :
nbr(v) → nbr(v). The cyclic ordering may be computed lo-
cally by each node using basic geometry and knowledge of the
coordinate location of neighbors (for example communicated
along with their sensed values during stage 1).

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4

For a node v ∈ V to locally determine the next node in the
boundary cycle, it is necessary to consider two cases.

1) if v is a boundary node then windv() �→ cv(v
′) where

s(v′) �= s(v) and s(cv(v
′)) = s(v)

2) otherwise, windv() �→ cv(v
′) where v′ is the previous

node in the cycle.

Winding around the region component, nodes can route
information around the boundary cycle based purely on local
information about the sensed values and cyclic ordering of
neighbors. Given a local method for routing information
around a boundary cycle, constructing the boundary cycle is
essentially the well-studied problem of electing a leader in
a ring. Many ingenious algorithms for leader election in a
ring have been devised (see [48]). In general, leader election
problems require that each node possesses a unique identifier.
To abstract away from the specific details of the identifier
used (for example, possibly using its geographic location),
we simply assume each node is able to generate a unique
identifier, represented as the function id : V → R.

The most efficient algorithms for leader election in a ring
are O(n log n), where n is the number of nodes in the ring (the
constant hidden by the “big-oh” notation for leader election
is small, e.g. 1.44 for bidirectional rings [49]). In the worst
case, the number of nodes in the ring (length of the boundary
cycle) might approach |V |, the number of nodes in the network
potentially leading to an overall complexity for leader election
of O(|V | log |V |).

However, the fractal properties of geographic regions mean
that the length of region component boundaries is not expected
to scale linearly with number of nodes. Instead, the length
of the boundary cycle for a region component is expected
to scale in proportion to |V |0.5∗D , where D ∈ [1, 2) is the
fractal dimension of the boundary of the region component.
For simple Euclidean curves, like the boundaries of rectangles
and ellipses, the fractal dimension D = 1. Even for more
complex geographic features, like lakes and coastlines, the
fractal dimension D is typically in the interval D = 1.2−−1.3
[50]. Since for any D < 2, |V |0.5∗D = O(|V |

log |V |), it follows
that leader election is in practice linear in the number of nodes
in the network, O(|V |).

C. Stage 3: Boundary orientation

Boundary orientation is a commonly used structure in spa-
tial databases and GIS (for example, as defined in ISO 19107,
[51]). A consistent boundary orientation can be deduced by
computing the area of the boundary cycle. The area of a
polygon is given by the familiar summation 1

2

∑n

i=1 xiyi+1−
xi+1yi, where the sequence of coordinates in the polygon
is 〈(x1, y1), (x2, y2), ..., (xn, yn)〉 and (x1, y1) = (xn, yn).
Since at each step the area function only requires information
about the coordinate location of pairs of neighboring nodes,
area is straightforward to compute in decentralized way in
the boundary cycle. Beginning with leader of the boundary
cycle, elected in stage 2 above, the partial sum can be passed
around the cycle, each node computing the next term in the
summation, until it arrives back at the leader [52].

x

b

a

c

e

f

d
g

h

i

x

ba c

e fd

g h

i

(a) (b)

Fig. 2. Areal object (a) and corresponding topology represented as a
containment tree (b) after [53]

Following leader election, operations requiring coordination
around the boundary will be linearly related to the boundary
length, |V |0.5∗D. Computing boundary orientation involves
two complete traversals of boundary cycles (one to compute
area, one to inform all boundary nodes of the orientation),
leading to a complexity of O(|V |0.5∗D).

D. Overall communication complexity

It follows from the discussion above that the communication
complexity of an optimal algorithm to construct all three levels
of boundary structure is linear in the number of nodes in
the network, O(|V |), since all the stages (boundary node
detection, leader election, boundary cycle construction, and
boundary orientation detection) have at worst linear commu-
nication complexity.

V. DECENTRALIZED ALGORITHMS FOR TOPOLOGICAL

QUERIES

The boundary structures described above form the basis
for a range of more sophisticated topological queries. This
section presents a family of decentralized algorithms (called
IN-TORQUE, In-Network TOpological Region QUEries) that
demonstrates how the basic boundary structures can be used
to respond to fundamental topological queries, including con-
tainment and adjacency queries.

A. Containment queries: Topology of areal objects

The first variant of the IN-TORQUE algorithm determines the
topology of a complex areal object, comprising a finite number
of regions (including holes and islands). The topology of an
areal object can be described as a tree, with its regions ordered
by containment, after [53]. Figure 2 shows an example of an
areal object comprising many regions (and holes and islands),
and the corresponding containment tree representation of the
topology of the areal object.

The objective of the first variant of the IN-TORQUE al-
gorithm given in Algorithm 1 is to generate in the network
the containment tree for a complex areal object, ultimately
reported back to some known sink node. Algorithms 1 and 2
adopt the analysis and presentation style of [48], with nodes
transitioning between four states {INIT, IDLE, BNDY, LEAD} as
summarized in Figure 3.

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

5

INIT

Boundary
node Elected

Broadcast
data

IDLE BNDY LEAD

Fig. 3. States and transitions for Algorithms 1 and 2

For the purposes of this example, it is assumed that 1) there
exists one sink node contained in the exterior face of the
areal object (i.e., in the root component of the containment
tree), and that 2) all network nodes can route information to
this sink (for example using geographic routing, e.g., [46]).
To abstract away from the details of the protocol used to
route information back to the sink, Algorithm 1 assumes the
existence of a local function rtev : V → nbr(v), such that
for a source node v ∈ V routing a message to a sink node
sid ∈ V , the next node on the path is given by rtev(sid). It is
straightforward to extend the algorithm to more sophisticated
reporting scenarios, such as reporting to multiple different sink
nodes, retaining the generated topological information within
the network at the region component boundaries, or where
nodes do not possess knowledge of an exterior sink node,
although these possibilities are not considered further here.

The IN-TORQUE areal protocol (Algorithm 1) is in effect a
decentralized version of the well-known semi-line algorithm,
commonly used for point-in-polygon tests in GIS and spatial
databases [54]. The centralized semi-line algorithm determines
containment using computational geometry to count the num-
ber of intersections of a semi-line with polygon boundary. By
contrast, the decentralized IN-TORQUE areal algorithm routes
a message from each boundary cycle leader to the exterior,
updating the message at each boundary node encountered with
information about the boundary cycle crossed.

Algorithm 1 operates by first constructing all three levels
of boundary structure, boundary nodes, cycles, and orienta-
tion. Boundary orientation (section IV-C) is required for this
computation in order to distinguish an outer boundary (of a
region) or an inner boundary (of a hole). In Algorithm 1, the
local variable hol is used to store the information generated
about boundary orientation. Since messages are routed from
a leader to the first boundary cycle node anticlockwise from
the exterior, hol=0 indicates a positive area for the region, and
so a outer boundary of a region; conversely hol=1 indicates
a negative area for the region, and so an inner boundary of a
hole (see Figure 4a).

A message is then routed from the elected leader for each
region component to the sink. The leader for each boundary
cycle creates a “report” message containing the leader id and
an initial “score” for the message. The initial score depends
on the boundary orientation and on the state of the node
receiving the first hop. A message where the first hop takes it
from an inner (hole) boundary into the hole, or from an outer
(region) boundary into the region, are initialized with score -2;
otherwise messages are initialized with score -1 (Figure 4b).

The report message is then forwarded toward the sink. A
message crossing into an inner (hole) boundary or out of an
outer (region) boundary will have its score incremented by 1.
Conversely, crossing out of an inner (hole) boundary or into

x
a b

c

e f gh

d

x

a b

c

e f gh

d

(a) (b)

Fig. 5. Set of geographic region boundaries (a), along with adjacency graph
for regions (b)

an outer (region) boundary causes the message score to be
decremented by one. When the score is incremented to zero,
the containing boundary has been detected (Figure 4c). At this
point the identity of the containing boundary cycle is added
to the message, and the message is subsequently forwarded
unaltered to the sink. When the sink has received messages
from all boundary cycles, the entire topology tree can be
computed from the partial order induced by all containment
relations (with the addition of the exterior as the parent of any
messages that have encountered no containing regions).

In addition to the basic O(|V |) communication complexity
of the IN-TORQUE algorithm discussed in section IV-D, the
IN-TORQUE areal protocol requires additional O(m) time to
complete, where m is the length (number of nodes) in the
paths from each boundary cycle leader to the sink node. This
length will depend on both the number of boundary cycles and
the routing protocol used. However, for a non-fractal Jordan
path through the network, this is expected to scale O(

√
|V |),

as discussed previously.

B. Adjacency queries: Topology of sets of region components

A second fundamental query for centralized spatial com-
puting is determining adjacency between different regions.
Adjacency here is taken to mean any two boundaries that
directly abut one another (whether or not one is the boundary
of a containing region). Figure 5 shows an example of a set
of region boundaries and their adjacency relationships.

Computing adjacency in the network requires only levels
1 and 2 boundary structures (nodes and cycles). Algorithm 2
presents the adjacency variant of the IN-TORQUE algorithm.
As expected, much of the algorithm is common to Algorithm
1, specifically the construction of boundary nodes and bound-
ary cycles.

In Algorithm 2 during the construction of the boundary,
each boundary node stores information about which neighbors
are also boundary nodes, represented for each node v as the
function bidsv : ∅ → 2Z. As nodes construct a boundary cycle,
the identity of the boundary cycle leader is communicated to
and stored by boundary node neighbors, represented for each
node v as the function bnbrv : ∅ → 2nbr(v).

After boundary cycle construction, a message passed around
the boundary cycle by the region component leader is used to
collect the identities of all adjacency boundary cycles. This
information can be efficiently collated without duplication by

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6

d
a

b

c

s

hol = 0

hol = 0

hol = 1

hol = 1 d
a

b

c

score=-1

score=-2 score=-1

score=-2

s

d
a

b

c

s

-2

-1

-2

-1
0

-2

-1

0

-1

0

-1

d cin

b ain

c ain a xin

a. Boundary orientation b. Initial score c. Updating scores

Fig. 4. Report message scoring for boundary cycles a, b, c, and d, with leaders (black nodes) reporting to sink s

each region component leader by simply comparing boundary
cycle identities (e.g., only report smaller boundary identities),
and subsequently forwarding this information to the sink. As
for the IN-TORQUE areal protocol, once at the sink the combi-
nation of this qualitative adjacency information constitutes the
adjacency map for the entire sensed area.

As for the IN-TORQUE areal protocol, the overall communica-
tion complexity of the IN-TORQUE adjacency protocol is O(|V |).

C. Further queries

Containment and adjacency represent basic topological
queries common to any spatial computing system. However, a
range of other queries may be similarly satisfied. For example,
while containment and adjacency have been presented here as
separate algorithms, both rely on the same basic boundary
structures and can easily be combined into a single O(|V |)
protocol. A combined algorithm can determine containment
and adjacency at the same time, effectively constructing a
“topological map” for the areal object.

Connectivity queries (such as “Is the bushfire front con-
nected?”), are also simple to satisfy using any of the structures
already discussed. Modifying either of the algorithms above
slightly to additionally communicate the sensed values (and
not simply the region identity) back to the sink, would allow
the sink to search through the region identity–sensed value
pairs. The area covered by a particular sensed value will be
disconnected if and only if that sensed value that appears more
than once with two different region identities.

Extending the scenario slightly further to allow nodes to
sense environmental variables from more than one domain
enables further queries to be satisfied using the same boundary
approach. In this category, overlay is another basic function
of any GIS or spatial database which constructs all the non-
empty intersections of two or more sets of polygonal regions.
Modifying the algorithms above to compute the overlay of
more than one sensed data domain is trivial. For example, as-
suming n sensed data domains and associated sensor functions,
s1 : V → X1, s2 : V → X2, ..., sn : V → Xn, the topological
map for the overlay of the sensed domains X1, ..., Xn can be
computed by replacing the function s : V → X in Algorithms
1 or 2 with a combined function s : V → X1×X2× ...×Xn

such that s(v) �→ (s1(v), s2(v), ..., sn(v)).

VI. EMPIRICAL ANALYSIS

In addition to the computational analysis in previous sec-
tions, the performance of the IN-TORQUE algorithm was tested
experimentally using simulation. The experiments empirically
investigated four key features of the algorithm: scalability,
load balancing, latency, and robustness. The experiments were
conducted on the IN-TORQUE areal algorithm, as this was
the most sophisticated algorithm requiring all three levels of
boundary information (section IV).

A. Scalability

A scalability experiment was conducted on simulated net-
works varying in size from 1000 to 20000 nodes. Node
location in the networks was randomized. The UDG (unit
distance graph) was generated for each network (i.e., all
nodes closer than a communication distance c were connected
by one-hop communication). To ensure comparable levels of
connectivity for all networks across the range of different
network sizes, the communication distance was set relative to
the node density, A

|N | . Specifically, the distance c was chosen

to be
√
4 A

|N | , where N is the set of nodes in the network and A

is the area over which these nodes were randomly distributed.
This communication distance was chosen to be large enough
to ensure that the network was connected, and small enough
to ensure a reasonably sparse communication graph (to model
a network distributed over geographic space).

As a control, a brute force (“sense-and-transmit”) algorithm
was used to forward each node’s data along the shortest paths
tree [4] to a sink node located at the center of the network
(the best case in terms of total paths length) for subsequent
centralized processing. For the decentralized IN-TORQUE al-
gorithm, the network was structured as a locally computed
planar subgraph of the UDG (the relative neighborhood graph
[55]), with messages georouted to the sink [46]. To guarantee
that the sink was in the exterior of the monitored areal object
(cf. section V-A), the sink was located at one extreme of the
network for experiments on the IN-TORQUE algorithm (the
worst case in terms of total paths length).

Figure 6 compares the results of the experiments on the
scalability of the IN-TORQUE areal and brute force “sense-and-
transmit” algorithms. The experiments were conducted on a

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

7

Algorithm 1 IN-TORQUE areal protocol for node v

States: S = {INIT, IDLE, BNDY, LEAD}
Local variables: rid, hol
Local knowledge: sid (sink id)

INIT
Spontaneously

Broadcast(‘INIT’, l(v), s(v)) to nbr(v)
Become IDLE

IDLE
Receiving(‘INIT’,l′,s′) from v′

Store l(v′) �→ l′ and s(v′) �→ s′

Construct cv : nbr(v)→ nbr(v)
if s′ �= s(v) then

Become BNDY
Send(‘LEAD’, id(v)) to windv()

Receiving(‘LEAD’, i) from v′

Send(‘LEAD’, i) to cv(v
′)

Receiving(‘AREA’, a) from v′

a← a+ l(v).x ∗ l(v′).y − l(v).y ∗ l(v′).x
Send(‘AREA’, a) to cv(v

′)
Receiving(‘RING’, i, s) from v′

Send(‘RING’, i, s) to cv(v
′)

Receiving(‘RPRT’, c, i, s) from v′

Send(‘RPRT’, c, i, s) to rtev(s)

BNDY
Receiving(‘LEAD’, i) from v′

if i = id(v) then
Become LEAD
Send(‘AREA’, 0) to windv()

else
if 〈election condition met〉 then

Send(‘LEAD’, i) to windv()
Receiving(‘AREA’, a) from v′

a← a+ l(v).x ∗ l(v′).y − l(v).y ∗ l(v′).x
Send(‘AREA’, a) to windv()

Receiving(‘RING’, i, s) from v′

Store hol← s
Store rid← i
Send(‘RING’, i, s) to windv()

LEAD
Receiving(‘AREA’, a) from v′

a← a+ l(v).x ∗ l(v′).y − l(v).y ∗ l(v′).x
Store hol← 0
if sign(a) is +ve then

Store hol← 1
Store rid← i
Send(‘RING’, id(v), hol) to windv()

Receiving(‘RING’, i, s) from v′

if hol = s(rtev(sid)) then
Send(‘RPRT’, -1, rid) to rtev(sid)

else
Send(‘RPRT’, -2, rid) to rtev(sid)

BNDY, LEAD
Receiving(‘RPRT’, c, i) from v′

Wait until rid is set
if s(v′) �= s(v) then

c← c− 1 + 2 ∗ hol
if s(rtev(sid)) �= s(v) then

c← c+ 1− 2 ∗ hol
if c = 0 then

Send(‘DONE’, i, rid) to rtev(sid)
else

Send(‘RPRT’, c, i) to rtev(sid)

ANY
Receiving(‘DONE’, i1, i2) from v′

Send(‘DONE’, i1, i2) to rtev(sid)

Algorithm 2 IN-TORQUE adjacency protocol for node v

States: S = {INIT, IDLE, BNDY, LEAD}
Local variables: rid
Local knowledge: sid

INIT
Spontaneously

Broadcast(‘INIT’, l(v), s(v)) to nbr(v)
Become IDLE

IDLE
Receiving(‘INIT’, l′, s′) from v′

Store s(v′) �→ s′

Construct cv : nbr(v)→ nbr(v)
if s′ �= s(v) then

Become BNDY
Store bnbrv() �→ bnbrv() ∪ {v′}
Send(‘LEAD’,id(v)) to windv()

Receiving(‘LEAD’, i) from v′

Send(‘LEAD’, i) to cv(v
′)

Receiving(‘RING’, i) from v′

Send(‘RING’, i) to cv(v
′)

Receiving(‘ADJY’, I) from v′

Send(‘ADJY’, I) to cv(v
′)

BNDY
Receiving(‘LEAD’, i) from v′

if i = id(v) then
Become LEAD
Broadcast(‘BIDS’, i) to nbr(v)
Send(‘RING’, i) to windv()

if 〈election condition met〉 then
Send(‘LEAD’,i) to windv()

Receiving(‘RING’, i, s) from v′

Store rid← i
Broadcast(‘BIDS’, i) to nbr(v)
Send(‘RING’, i) to windv()

Receiving(‘ADJY’, I) from v′

Wait until ‘BIDS’ message received from all nodes in bnbrv()
Send(‘ADJY’, I ∪ bidsv())

LEAD
Receiving(‘RING’, i, s) from v′

Wait until ‘BIDS’ message received from all nodes in bnbrv()
Send(‘ADJY’, bidsv()) to windv()

Receiving(‘BIDS’, I) from v′

if I �= ∅ then
Send(‘DONE’,i,I ,s) to rtev(s)

BNDY, LEAD
Receiving(‘BIDS’, i) from v′

if i < rid then
Store bidsv() �→ bidsv() ∪ {i}

ANY
Receiving(‘DONE’, i, I) from v′

Send(‘DONE’, i, I) to rtev(s)

simple, arbitrarily generated areal object, containing one outer
region, two holes, one of which contained two island regions.
Using the same areal object across all experiments ensured
comparability between experiment sets. Further, experimenting
on a relatively simple areal object was necessary to ensure the
topological relationships could be discerned at all the spatial
granularities tested (i.e., even at networks with just 1000
nodes). However, the algorithm was also verified to operate
correctly with a wide variety of areal objects of arbitrary
complexity at a range of different spatial granularities.

Scalability was measured in terms of number of messages

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8

Process Factor a Power b R2

Total “sense-and-transmit” 0.274 1.486 1.000
Total IN-TORQUE areal 9.911 0.807 0.999
LEAD 14.11 0.628 0.999
INIT 1 1 1.000
RING 7.342 0.519 0.999
AREA 7.371 0.519 0.999
RPRT/DONE 2.511 0.534 0.995

TABLE I
RESULTS OF POWER REGRESSION ANALYSIS (y = a.xb) FOR RESPONSE

CURVES IN FIGURE 6

(sent) across the range of network sizes. Figure 6 shows
the total number of messages required for each algorithm
averaged over 25 randomized simulations. The figure also
shows the component messages required for each stage of
the IN-TORQUE algorithm (associated with LEAD, INIT, RING,
AREA, and RPRT/DONE messages). Figure 6 is presented as a
log-log graph, since the numbers messages and nodes vary
over several orders of magnitude (from tens to millions of
messages, from thousands to tens of thousands of nodes).

As expected, the INIT (boundary node detection) stage
exhibits linear communication complexity with increasing net-
work size. The LEAD stage (leader election) uses the MinMax
algorithm for leader election in a unidirectional ring [48]. This
algorithm has 1.44n logn+O(n) complexity, where n is the
length of the region boundary (hence, as discussed above n
scales as a function of

√
|V |). Also as expected, the AREA

(compute area), RING (store orientation), and RPRT/DONE

(report to sink) message components, which are approximately
linear in the length of boundary cycle, make up a relatively
small components of the overall communication cost.

The results of a regression analysis for the different response
curves in figure 6 are shown in Table I. A power regression
was used, fitting a curve of the form y = a.xb to each of the
response curves in Figure 6. All the regression curves achieved
very high goodness of fit (varying from R2 values of 0.995 to
1.000). The most notable feature of these results is that they
support the intuitive interpretation of the results above, with
the INIT being of order O(|V |), and with LEAD, RING, AREA,
and RPRT/DONE components being of order O(|V |b) where
0.5 < b < 0.63. Overall, the total IN-TORQUE areal scalability
improves on the theoretical worst case O(|V |) (approximately
O(|V |0.81)). By contrast, the centralized sense-and-transmit
approach is significantly less scalable, exhibiting scalability
of O(|V |1.49), albeit with a small constant factor (≈ 0.3).

By making some assumptions about the length of messages
sent, it is also possible to compare the total amount of data
transmitted using the two approaches. For the IN-TORQUE areal

algorithm, we require: 33 bits for INIT messages (2 × 16
bit x and y coordinates plus 1 bit sensed value, in or out of
the region); 16 bits for LEAD messages (16 bit unique leader
id); 48 bits for AREA messages (32 bit x, y coordinate plus
16 bit partial area sum); 1 bit for RING messages (clockwise
or anticlockwise boundary orientation); and up to 32 bits for
RPRT/DONE messages (2 × 16 bit leader ids for contained and
containing regions).

For the brute force approach, each node must send 33

0.0E+00

5.0E+06

1.0E+07

1.5E+07

2.0E+07

2.5E+07

1000 3000 5000 7000 9000 11000 13000 15000 17000 19000

Network size (number of nodes)

B
it

s
s

e
n

t

Brute force "sense-
and-transmit"

Total IN-TORQUE

y = 8.7396x
1.487

R
2

= 1

y = 168.79x
0.8592

R
2

= 0.9995

Fig. 7. Scalability of IN-TORQUE areal versus centralized “sense-and-transmit”
algorithms, in terms of numbers of bits sent

bits to the sink (32 bit x, y coordinate and 1 bit sensed
value). The brute force approach might additionally send
each 16 bit unique node id to the sink, but we assume for
efficiency the x, y coordinate can also provide a unique id
(and is required anyway for centralized computation of region
boundary and topology). Potentially, the sensed value may be
aggregated in the network. Again for the most stringent test,
we assume the optimal (but highly unlikely) case of perfect
aggregation, where the sensed value accounts for only |V | bits
total transmission (i.e., where effectively each sensed value
is transmitted once, and then aggregated at the parent node
in the shortest path tree). However, each x, y coordinate is
unique. Even the location of a single node can potentially
influence the centralized computation of containment relation-
ships. Consequently, no data aggregation is possible for the
coordinates; each must be retransmitted in full through to the
sink for topological queries to be reliably satisfied.

Figure 7 compares the scalability in terms of bits transmitted
for the two algorithms. In addition to the response curves,
Figure 7 also shows the results of a regression analysis
similar to that in Table I. For message length, the IN-
TORQUE areal exhibiting scalability of order O(|V |0.86), again
comparing well with the brute force centralized algorithm,
order O(|V |1.49). In cases where the initialization costs can
be treated as preprocessing required for the establishment of
network services, the scalability of bits transmitted for the IN-
TORQUE areal improved even further, to O(|V |0.6).

Discussion: The experiments provide strong evidence that
the decentralized IN-TORQUE algorithm is highly scalable in
terms of both total numbers of messages and bits transmitted.
On average, our algorithm required approximately 2.5 mes-
sages per node for the smallest network, scaling to about 1.5
messages per node for the largest network. By comparison, the
brute-force “sense-and-transmit” approach required an average
of more than 8 messages per node for the smallest network,
rising to 33 messages per node for the largest network.

As might be expected, in our experiments the scalability of
the algorithm significantly improves on the theoretical worst
case O(|V |). The INIT component dominates this overall scal-
ability. As argued previously, algorithm initialization, where
every node broadcasts its sensed value to its immediate 1-

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

9

10

100

1000

10000

100000

1000000

1000 10000 100000

M
e
s
s
a
g

e
s
 s

e
n

t
(l

o
g

 s
c
a
le

)

Network size (number of nodes, log scale)

Total IN-TORQUE

LEAD

INIT

RING

AREA

RPRT/DONE

Brute force "sense-and-
transmit"

Fig. 6. Scalability of IN-TORQUE areal versus centralized “sense-and-transmit” algorithms, in terms of numbers of messages sent

hop neighbors, could potentially be amortized in the costs of
standard network initialization. In our experiments, the algo-
rithm achieved O(|V |0.6) scalability for both total number of
messages and total bits transmitted if initialization costs were
removed. Indeed, while we have included the initialization
costs in our evaluation of the IN-TORQUE algorithm in the
previous section, we have ignored similar initialization costs
required by the brute force centralized approach in setting
up the shortest paths routing tree. Were these costs included
it would further increase the gap in efficiency between the
centralized approach and the IN-TORQUE algorithm.

B. Load balancing

Arguably more important than the overall scalability is the
load balancing characteristics of the IN-TORQUE algorithm.
Poor load balancing will lead to more rapid depletion of energy
resources at some nodes, potentially resulting in disconnected
networks and low suitability for long-term monitoring. Figure
8 compares the load balance of the IN-TORQUE areal algorithm
with a sense-and-transmit approach (for a specific medium-
sized simulation of 4900 nodes). The figure shows a typical
histogram of the number of messages per “edge” (i.e., between
two neighboring nodes). The IN-TORQUE areal algorithm in
Figure 8a exhibits dramatic improvements in load balancing
over the simulations of the same scenario using the sense-
and-transmit approach in Figure 8b. Using the IN-TORQUE

areal algorithm the load on most transmission links is just
two messages, with no pair of nodes exchanging more than
22 messages (i.e., within the 16–32 messages class in the
histogram in Figure 8a). While the modal number of messages
per edge using the sense-and-transmit approach is just 1, most
pairs of nodes exchange many more messages. More than 150
edges (approximately 3% of the node pairs in the network)
bear loads of above 100 messages, with a handful of nodes

exchanging almost 1000 messages.
Discussion: The experimental results strongly indicate the

relative efficiency gains of the IN-TORQUE when compared
with a centralized sense-and-transmit algorithm. In the case
of the network in Figure 8, some nodes transmit almost 50
times more messages using the centralized approach when
compared with the IN-TORQUE algorithm. Larger networks
are only expected to increase this substantial load imbalance.

C. Latency

A third important computational characteristic to consider is
message latency, for example measured as the largest number
of hops of any message required by the algorithm. In the case
of the brute force sense-and-transmit approach, the maximum
number of hops of any message is expected to equal the
diameter of the network (assuming the worst case, where the
sink is at an extreme edge of the network). For a network of
|N | nodes randomly located in the plane, diameter is expected
to scale O(

√
|N |).

By contrast, the maximum length of any sequence of
messages in the IN-TORQUE algorithm is expected to depend
on the length of the region boundary, and distance from
boundary leader to the sink node. In general, the largest
number of hops for the the IN-TORQUE algorithm will result
from: 1 hop (INIT message), plus 3m hops (LEAD, RING,
and AREA messages, where m is the length of the boundary
of the region), plus n hops (RPRT/DONE message, where n
is the length of the path from the boundary leader to the
sink). As already discussed, the number of hops of cycles
around the boundary and paths to the sink are expected to
scale approximately O(

√
|N |). Thus as for the brute-force

approach, the latency of the IN-TORQUE algorithm is exhibit
comparable scalability, approximately O(

√
|N |).

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10

1

10

100

1000

10000

100000

1 2 4 8 16 32 64 128 256 512 1024 2048

Load (number of messages per link, log scale)

F
re

q
u

e
n

c
y

o
f

lo
a

d
(l

o
g

s
c

a
le

) a. IN-TORQUE algorithm

1

10

100

1000

10000

100000

1 2 4 8 16 32 64 128 256 512 1024 2048

Load (number of messages per link, log scale)

F
re

q
u

e
n

c
y

o
f

lo
a

d
(l

o
g

s
c

a
le

) b. Brute force algorithm

Fig. 8. Load balancing in terms of number of messages per edge for (a)
IN-TORQUE areal algorithm; and (b) brute force sense-and-transmit algorithm
(for medium-sized network, 4900 nodes)

A series of further experiments, which measured the length
of the longest sequence of messages across different network
sizes, investigated these expectations. Figure 9 summarizes the
results. The experiments confirmed that the latency of the IN-
TORQUE algorithm has approximately O(

√
|N |) scalability,

with a constant factor that depends strongly dependent on the
size of the region component being monitored. For example,
a power regression on the message lengths associated with
the smallest region from the earlier experiments indicated a
latency of 2.031|N |0.581 (R2 = 0.998) across all the network
sizes tested (i.e., from |N |=1000 to 20000 nodes). A similar
regression on latency of messages associated with the largest
region used in the earlier experiments revealed a scalability of
17.3|N |0.517 (R2 = 0.999).

By contrast, the latency for the brute force sense-and-
transmit approach exhibited comparable order of scalability
to the IN-TORQUE algorithm, but with lower constant factors.
A power regression on the longest messages resulting from
the sense and transmit approach yielded a scalability of
0.843|N |0.504 (R2 = 0.999, see Figure 9).

Discussion: It is entirely possible for a small enough region,
close enough to the sink, to result in a lower latency using the
IN-TORQUE algorithm when compared with the brute force
approach. For example, a small region with 20 nodes in the

y = 17.30x0.517

R = 0.999

y = 2.031x0.581

R = 0.998

y = 0.843x0.504

R = 0.999

10

100

1000

10000

1000 10000 100000

L
a
te

n
c
y
 (

le
n

g
th

 o
f

lo
n

g
e
s
t

m
e
s
s
a
g

e
,

lo
g

 s
c
a
le

)

Network size (number of nodes, log scale)

"IN-TORQUE

(large region)"

IN-TORQUE

(small region)

Sense-and-

transmit

Fig. 9. Latency (in terms of maximum length of any sequence of messages)
for NONAMEareal algorithm and brute force sense-and-transmit algorithm

boundary cycle, and a leader 5 hops from the sink will result in
a longest message length for the IN-TORQUE of 1+3×20+5=66
hops. If this region occurs in a large network (for example
the largest networks used in our experiments with 20,000
nodes and diameter of around 120 nodes) then the IN-TORQUE

algorithm is expected to exhibit lower latencies than the sense
and transmit approach.

However, in the example of our experiments, the IN-
TORQUE algorithm exhibited higher latencies than the sense-
and-transmit approach. The latency associated with the IN-
TORQUE algorithm is strongly dependent on the size of the
largest region being monitored, as well as the location of
the sink relative to the region. Thus, in general, it is to be
expected that the IN-TORQUE algorithm will be associated
with higher latencies than a brute force, sense-and-transmit
approach, except in exceptional cases of monitoring only
small regions. Although this increased latency is a cost of
using the IN-TORQUE algorithm, the latencies associated with
the IN-TORQUE algorithm remain of comparable orders of
scalability to the sense-and-transmit approach (i.e., approxi-
mately O(

√
|N |)), differing only by a constant factor (in our

experiments between about 2 and 20 times greater latencies
for the IN-TORQUE algorithm).

D. Robustness

Finally, the experiments also investigated the robustness of
the IN-TORQUE areal algorithm, in terms of its tolerance of un-
certainty of location. Thus far, simulations have assumed that
nodes have access to precise and accurate information about
their own location. In actuality, such information is likely
to be highly resource-intensive or even impossible to obtain.
Tolerance to imperfect location information is one of the key
motivations for monitoring the qualitative spatial properties of
phenomena, like the topological properties of complex areal
objects, rather than the quantitative characteristics, like the
geometry of the boundaries of areal objects.

Figure 10 presents the results of experiments on the robust-
ness to positional inaccuracy of the IN-TORQUE areal algorithm.

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

11

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3 3.5

Level of Inaccuracy (ratio of perturbations to internode distance)

%
S

im
u

la
ti

o
n

R
u

n
s

C
o

n
ta

in
in

g
E

rr
o

rs

Gaussian positional
inaccuracy only

Gaussian positional and
orientation inaccuracy

Uniform positional
inaccuracy only

Uniform positional and
orientation inaccuracy

Fig. 10. Robustness of IN-TORQUE areal algorithm to positional and orientation inaccuracy

The experiments were based on simulations where every
node’s knowledge of their location was randomly perturbed
in the x and y directions. Perturbations were selected first
from a uniform random probability distribution with maximum
perturbation p, and then repeated for perturbations drawn from
a Gaussian probability distribution, with standard deviation σ.
Unlike previous experiments, the robustness simulations were
conducted using a regular, grid-based network, to avoid ran-
domly perturbing an already randomized network. To enable
comparison between results, the overall level of inaccuracy
is measured as the ratio between the maximum perturbation
p (uniform probability distribution) or standard deviation σ
(Gaussian distribution) and the internode distance d (distance
between a node and its one-hop neighbors). The internode
distance d is fixed by the use of a regular grid of nodes,
connected using a “rook’s case” network. For example, for
a network with an internode distance of d=20 units and
maximum perturbation p=15 units (uniform distribution) or
standard deviation σ=15 units (Gaussian distribution), the
level of inaccuracy would be 15/20=0.75. Increasing node
perturbation increases the measure of node inaccuracy (e.g., p
or σ=30 units, d=20 units then the level of inaccuracy would
be p/d=σ/d=30/20=1.5).

The robustness of the algorithm was measured as the
percentage of simulations out of 20 repetitions (for each
inaccuracy level) that resulted in anything other than a perfect
detection of the topology of complex areal object. The magni-
tude of the perturbation, shown along the x axis of Figure 10,
was varied across a series of experiments, with the resulting
percentage robustness measured and displayed on the y axis
of Figure 10.

Further, Figure 10 shows the results of two different sets of
simulations. In the first experiment, perturbations were used
to alter the node’s knowledge of its coordinate location, but
the qualitative orientation of neighbors around the node was

assumed to be accurate. These experiments model the situation
in networks where qualitative orientation is found indepen-
dently of node location (for example, using ultrasound or
RF direction-finding sensors). In the second experiment, node
orientation was derived from node position, so increasing posi-
tional inaccuracy also led to increasingly inaccurate knowledge
of the relative cyclic ordering of the neighbors around each
node. These experiments model the situation where qualitative
orientation is derived from quantitative positioning systems
(like RF triangulation or GPS).

Overall, the IN-TORQUE algorithm exhibits relatively high
levels of robustness to inaccuracy. For example, below a node
inaccuracy level of 0.75, the algorithm still correctly identifies
the topological structure of the complex areal object in all
cases. For a uniform distribution above a node inaccuracy level
of 1.0 (i.e., where the maximum perturbation is comparable
to or greater than the internode distance) the algorithm does
begin break down, becoming unreliable. Using a Gaussian
distribution, the algorithm performs even more robustly, and
in the case of no orientation inaccuracy, the algorithm still
performs perfectly up to a level of inaccuracy of 1.75 (i.e.,
where the standard deviation of perturbations is 1.75 times
the internode distance). In general, experiments using Gaus-
sian perturbation outperform those drawn from a uniform
distribution. This result can be interpreted as indicating the
algorithm’s robustness to infrequent, large outliers: in the
Gaussian distribution a minority (32%) of the perturbations
will be larger than the maximum possible perturbation using a
uniform distribution. Conversely, in the Gaussian distribution,
a larger proportion of perturbations will be closer to the mean
than in the uniform distribution. As might be expected, for
simulations where inaccuracy affects only node position, much
lower levels of unreliability result than for simulations where
inaccuracy in both position and orientation are modeled.

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

12

Discussion: Inaccuracy and imprecision are endemic fea-
tures of any positioning system, especially in resource-limited
geosensor networks. The experiments demonstrate that the IN-
TORQUE algorithm can tolerate considerable positional inac-
curacy in nodes. Such robustness is an important advantage of
using qualitative algorithms for computing with spatial infor-
mation. The errors observed in the simulations of positional
inaccuracy only were all topological, where the topological
relationship for one or more regions of the complex areal
object were incorrectly detected. These errors arose where
the magnitude of perturbations increases to such an extent
that the sign of the area was inverted, and so the topological
relationship between regions was incorrect. Simulations that
included both positional and orientation accuracy also result
in algorithm failure, primarily caused by the failure of the
underlying face-routing in the presence of very high positional
inaccuracy.

VII. CONCLUSIONS

This paper has demonstrated how spatial queries about the
topology of spatial regions, monitored by a wireless sen-
sor network, can be satisfied using in-network, decentralized
algorithms. The approach is founded on the decentralized
construction of fundamental boundary structures: boundary
nodes, boundary cycles, and boundary orientation. The family
of IN-TORQUE algorithms can detect containment and ad-
jacency between regions, as well as providing a basis for
other topological queries such as connectivity and overlay.
The approach is shown both analytically and empirically to be
efficient, scalable, and robust, although at the cost of somewhat
increased message latency. As such, this research contributes
to broader efforts to construct the foundations of decentralized
spatial algorithms, for use in distributed systems like geosensor
networks.

The IN-TORQUE algorithm family relies on two simplify-
ing assumptions that might be relaxed in further work. The
assumptions of 2-connected region components and of non-
intersecting boundaries are both used to aid routing messages
around the region component boundary. In practice, such
assumptions will often not hold for real geosensor networks.
However, both assumptions might be relaxed by the addition of
more sophisticated protocols to ensure a message can traverse
(self) intersecting boundaries. Specifically, nodes at a (self)
intersection would be required to forward the boundary mes-
sages to different destinations dependent on certain boundary
and message conditions.

Finally, further work is also required on moving beyond
formal models and simulations to testing the IN-TORQUE

algorithm family in practical wireless sensor networks and
applications. Work on such implementations has begun. Today,
the availability and cost of networks with the required level
of spatial granularity (i.e., at least thousands of nodes) places
severe constraints on current spatial applications of sensor net-
works. However, it seems certain that technological advances
in the near future will enable much larger networks. Indeed
preparing for the spatial detail that will be revealed by such
networks is one of the central motivations behind the emerging
research area of decentralized spatial computing.

ACKNOWLEDGMENTS

The authors would like to acknowledge the thorough and
constructive comments of three anonymous reviewers, who
helped to refine the experimentation and presentation of this
paper. We would also like to thank David Bissessar for
assisting with some of the data analysis. Matt Duckham’s
research is funded under an Australian Research Council
Future Fellowship (project number FT0990531).

REFERENCES

[1] S. Nittel, A. Stefanidis, I. Cruz, M. Egenhofer, D. Goldin, A. Howard,
A. Labrinidis, S. Madden, A. Voisard, and M. Worboys, “Report from
the First Workshop on Geo Sensor Networks,” ACM SIGMOD Record,
vol. 33, no. 1, pp. 141–144, 2004.

[2] Y.-C. Wang, Y.-Y. Hsieh, and Y.-C. Tseng, “Multiresolution spatial and
temporal coding in a wireless sensor network for long-term monitoring
applications,” IEEE Transactions on Computers, vol. 58, pp. 827–838,
2009.

[3] N. Lynch, Distributed Algorithms. San Mateo, CA: Morgan Kaufmann,
1996.

[4] B. Krishnamachari, D. Estrin, and S. B. Wicker, “The impact of data
aggregation in wireless sensor networks,” in Proc. 22nd International
Conference on Distributed Computing Systems (ICDCS). IEEE, 2002,
pp. 575–578.

[5] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TAG:
A tiny aggregation service for ad-hoc sensor networks,” in Proc. 5th
Symposium on Operating System Design and Implementation (OSDI),
2002, pp. 131–146.

[6] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri, “Medians and
beyond: New aggregation techniques for sensor networks,” in Proc.
2nd International Conference on Embedded Networked Sensor Systems
(SenSys). New York: ACM, 2004, pp. 239–249.

[7] M. B. Greenwald and S. Khanna, “Power-conserving computation of
order-statistics over sensor networks,” in Proc 23rd ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems
(PODS). New York: ACM, 2004, pp. 275–285.

[8] R. Zheng and R. Barton, “Toward optimal data aggregation in random
wireless sensor networks,” in Proc. 26th IEEE International Conference
on Computer Communications (INFOCOM). Washington, DC: IEEE,
2007, pp. 249–257.

[9] H. Zhang and J. C. Hou, “Maintaining sensing coverage and connectivity
in large sensor networks,” Ad Hoc and Sensor Wireless Networks, vol. 1,
pp. 89–124, 2005.

[10] B. Cărbunar, A. Grama, J. Vitek, and O. Cărbunar, “Redundancy and
coverage detection in sensor networks,” ACM Transactions on Sensor
Networks, vol. 2, no. 1, pp. 94–128, 2006.

[11] D. Tian and N. D. Georganas, “A coverage-preserving node scheduling
scheme for large wireless sensor networks,” in Proc 1st ACM Interna-
tional Workshop on Wireless Sensor Networks and Applications (WSNA).
New York: ACM, 2002, pp. 32–41.

[12] C. Wen and W. A. Sethares, “Automatic decentralized clustering for
wireless sensor networks,” EURASIP Journal on Wireless Communica-
tions and Networking, vol. 5, pp. 686–697, 2005.

[13] J. M. Hellerstein, W. Hong, S. Madden, and K. Stanek, “Beyond aver-
age: Towards sophisticated sensing with queries,” in Proc. Information
Processing in Sensor Networks (IPSN), ser. Lecture Notes in Computer
Science, vol. 2634. Berlin: Springer, 2003, pp. 63–79.

[14] R. Gummadi, X. Li, R. Govindan, C. Shahabi, and W. Hong, “Energy-
efficient data organization and query processing in sensor networks,”
SIGBED Review, vol. 2, no. 1, pp. 7–12, 2005.

[15] S. Chen, P. B. Gibbons, and S. Nath, “Database-centric programming for
wide-area sensor systems,” in Proc. 1st IEEE International Conference
Distributed Computing in Sensor Systems (DCOSS), ser. Lecture Notes
in Computer Science, V. K. Prasanna, S. S. Iyengar, P. G. Spirakis, and
M. Welsh, Eds., vol. 3560. Berlin: Springer, 2005, pp. 89–108.

[16] Y. Kotidis, “Processing proximity queries in sensor networks,” in Proc.
3rd Workshop on Data Management for Sensor Networks (DMSN). New
York: ACM, 2006, pp. 1–6.

[17] M. Demirbas and H. Ferhatosmanoglu, “Peer-to-peer spatial queries in
sensor networks,” in Proc. 3rd International Conference on Peer-to-Peer
Computing (P2P). Washington, DC: IEEE, 2003, pp. 32–39.

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

13

[18] D. Goldin, M. Song, A. Kutlu, H. Gao, and H. Dave, “Georouting
and delta-gathering: Efficient data propagation techniques for geosensor
networks,” in GeoSensor Networks, A. Stefanidis and S. Nittel, Eds.
Boca Raton, FL: CRC Press, 2004, pp. 73–95.

[19] V. Dyo and C. Mascolo, “Adaptive distributed indexing for spatial
queries in sensor networks,” in Proc. 16th International Workshop on
Database and Expert Systems Applications (DEXA), 2005, pp. 1103–
1107.

[20] A. Soheili, V. Kalogeraki, and D. Gunopulos, “Spatial queries in sensor
networks,” in Proc. 13th ACM International Workshop on Geographic
Information Systems (ACMGIS). New York: ACM, 2005, pp. 61–70.

[21] K. Park, B. Lee, and R. Elmasri, “Energy efficient spatial query
processing in wireless sensor networks,” in Proc. 21st International
Conference on Advanced Information Networking and Applications
Workshops (IEEE AINAW). Washington, DC: IEEE Computer Society,
2007, pp. 719–724.

[22] F. Zhao and L. J. Guibas, Wireless Sensor Networks—An Information
Processing Approach. San Francisco, CA: Morgan Kaufmann Publish-
ers, 2004.

[23] M. Sharifzadeh and C. Shahabi, “Utilizing Voronoi cells of location
data streams for accurate computation of aggregate functions in sensor
networks,” Geoinformatica, vol. 10, no. 1, pp. 9–36, 2005.

[24] P. Skraba, Q. Fang, A. Nguyen, and L. Guibas, “Sweeps over wireless
sensor networks,” in 5th Int’l Conference on Information Processing in
Sensor Networks (IPSN), 2006, pp. 143–151.

[25] A. Kröller, S. P. Fekete, D. Pfisterer, and S. Fischer, “Deterministic
boundary recognition and topology extraction for large sensor networks,”
in Proc. 17th Annual ACM-SIAM Symposium on Discrete Algorithm
(SODA). New York, NY: ACM, 2006, pp. 1000–1009.

[26] Y. Wang, J. Gao, and J. S. Mitchell, “Boundary recognition in sensor
networks by topological methods,” in Proc. 12th Annual international
Conference on Mobile Computing and Networking (MobiCom). New
York, NY: ACM, 2006, pp. 122–133.

[27] J. Lian, L. Chen, K. N. abd Yunhao Liu, and G. B. Agnew, “Gradient
boundary detection for time series snapshot construction in sensor
networks,” IEEE Transactions on Parallel and Distributed Systems,
vol. 18, no. 10, pp. 1462–1475, 2007.

[28] A. Jindal and K. Psounis, “Modeling spatially-correlated sensor network
data,” in Proc. 1st IEEE Conference on Sensor and Ad Hoc Communi-
cations and Networks (IEEE SECON), 2004, pp. 162–171.

[29] G. Jin and S. Nittel, “Towards spatial window queries over continuous
phenomena in sensor networks,” IEEE Transactions on Parallel and
Distributed Systems, vol. 19, no. 4, pp. 559–571, 2008.

[30] M. Umer, L. Kulik, and E. Tanin, “Kriging for localized spatial inter-
polation in sensor networks,” in Proc. 20th International Conference on
Scientific and Statistical Database Management (SSDBM), ser. Lecture
Notes in Computer Science, B. Ludäscher and N. Mamoulis, Eds., vol.
5069. Berlin: Springer, 2008, pp. 525–532.

[31] X. Meng, T. Nandagopal, L. Li, and S. Lu, “Contour maps: Monitoring
and diagnosis in sensor networks,” Journal of Computer Networks,
vol. 50, no. 15, pp. 2820–2838, 2006.

[32] R. Nowak and U. Mitra, “Boundary estimation in sensor networks:
Theory and methods,” in Information Processing in Sensor Networks,
ser. Lecture Notes in Computer Science, vol. 2634. Berlin: Springer,
2003.

[33] R. Sarkar, X. Zhu, J. Gao, L. J. Guibas, and J. S. B. Mitchell, “Iso-
contour queries and gradient descent with guaranteed delivery in sensor
networks,” in Proc. 27th IEEE Conference on Computer Communica-
tions (INFOCOM), 2008, pp. 960–967.

[34] I. Solis and K. Obraczka, “Effcient continuous mapping in sensor
networks using isolines,” in Proc. 2nd International Conference on
Mobile and Ubiquitous Systems (MOBIQUITOUS). Washington, DC:
IEEE, 2005, pp. 325–332.

[35] S. Gandhi, J. Hershberger, and S. Suri, “Approximate isocontours and
spatial summaries for sensor networks,” in Proc. 6th International
Conference on Information Processing in Sensor Networks (IPSN). New
York: ACM, 2007, pp. 400–409.

[36] Y. Xu and W. Lee, “Window query processing in highly dynamic
geosensor networks: Issues and solutions,” in GeoSensor Networks,
A. Stefanidis and S. Nittel, Eds. Boca Raton, FL: CRC Press, 2004,
pp. 31–52.

[37] M. Duckham, S. Nittel, and M. F. Worboys, “Monitoring dynamic spatial
fields using responsive geosensor networks,” in Proc. 13th annual ACM
international workshop on Geographic information systems (ACMGIS),
C. Shahabi and O. Boucelma, Eds. New York: ACM Press, 2005, pp.
51–60.

[38] M. F. Worboys and M. Duckham, “Monitoring qualitative spatiotemporal
change for geosensor networks,” International Journal of Geographical
Information Science, vol. 20, no. 10, pp. 1087–1108, 2006.

[39] J. Jiang and M. Worboys, “Detecting basic topological changes in
sensor networks by local aggregation,” in Proc. 16th ACM International
Conference on Advances in Geographic Information Systems (ACMGIS).
New York: ACM, 2008, pp. 1–10.

[40] M. J. Sadeq and M. Duckham, “Effect of neighborhood on in-network
processing in sensor networks,” in Geographic Information Science, ser.
Lecture Notes in Computer Science, T. Cova, K. Beard, M. Goodchild,
and A. U. Frank, Eds. Berlin: Springer, 2008, no. 5266, pp. 133–150.

[41] M. J. Sadeq, “In network detection of topological change of regions with
a wireless sensor network,” Ph.D. dissertation, University of Melbourne,
2009.

[42] P. Bonnet, J. Gehrke, and P. Seshadri, “Querying the physical world,”
IEEE Personal Communications, vol. 7, no. 5, pp. 10–15, 2000.

[43] M. Egenhofer and R. Fransoza, “Point-set topological spatial relations,”
International Journal of Geographical Information Science, vol. 5, no. 2,
pp. 161–174, 1991.

[44] R. Diestel, Graph Theory. Berlin: Springer, 2005.
[45] X.-Y. Li, G. Calinescu, P.-J. Wan, and Y. Wang, “Localized Delaunay

triangulation with application in ad hoc wireless networks,” IEEE
Transactions on Parallel and Distributed Systems, vol. 14, pp. 1035–
1047, 2003.

[46] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia, “Routing with guar-
anteed delivery in ad hoc wireless networks,” in Proc. 3rd International
Workshop on Discrete Algorithms and Methods for Mobile Computing
and Communications, 1999, pp. 48–55.

[47] B. Karp and H. T. Kung, “GPSR: Greedy perimeter stateless routing
for wireless networks,” in Proc. 6th annual international conference on
Mobile computing and networking (ACM/IEEE MobiCom). Boston,
MA: ACM, 2000, pp. 243–254.

[48] N. Santoro, Design and Analysis of Distributed Algorithms. New Jersey:
Wiley, 2007.

[49] J. van Leeuwen and R. B. Tan, “An improved upperbound for distributed
election in bidirectional rings of processors,” Distributed Computing,
vol. 2, no. 3, pp. 149–160, 1987.

[50] B. Mandelbrot, Fractals, Form, Chance and Dimension. San Francisco:
Freeman, 1977.

[51] ISO, “ISO/TC 211/WG 2, ISO/CD 19107, geographic information—
spatial schema,” International Standards Organization, Tech. Rep., 2003.

[52] M. J. Sadeq and M. Duckham, “Decentralized area computation for spa-
tial regions,” in Proc. 17th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems (ACMGIS). New York:
ACM, 2009, pp. 432–435.

[53] M. F. Worboys and P. Bofakos, “A canonical model for a class of areal
spatial objects,” in Proc. Third International Symposium on Advances
in Spatial Databases (SSD’93). Berlin: Springer, 1993, pp. 36–52.

[54] M. Worboys and M. Duckham, GIS: A Computing Perspective,
2nd ed. Boca Raton, FL: CRC Press, 2004. [Online]. Available:
http://www.amazon.com/exec/obidos/ISBN=0415283752

[55] G. T. Toussaint, “The relative neighborhood graph of a finite planar set,”
Pattern Recognition, vol. 12, pp. 261–268, 1980.

PLACE
PHOTO
HERE

Matt Duckham Matt Duckham is an Australian
Research Council (ARC) Fellow and senior lecturer
in Geographic Information Science at the Depart-
ment of Geomatics, University of Melbourne. Before
moving to Melbourne in 2006, he worked at the
National Center for Geographic Information and
Analysis (NCGIA) at the University of Maine, USA.
His research centers on distributed and decentralized
computing with uncertain geographic information, in
particular with applications to geosensor networks
and ambient spatial intelligence. He is a founding

editor of the no-fee, open access journal, the Journal of Spatial Information
Science (JOSIS) and co author with Mike Worboys of the GIScience text book
”GIS: A Computing Perspective”.

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

14

PLACE
PHOTO
HERE

Doron Nussbaum Doron Nussbaum received his
B.Sc. degree in mathematics and computer science
from the University of Tel-Aviv, Israel in 1985,
and the M.C.S. and Ph.D. degrees in computer
science from Carleton University, Ottawa, Canada
in 1988 and 2001, respectively. From 1988 to 1991
he worked for Tydac Technologies as Manager Re-
search and Development. His work at Tydac focused
on the development of a geographical information
system. From 1991 to 1994, he worked for Ther-
atronics as senior software consultant where he

worked on the companys cancer treatment planning software (Theraplan).
From 1998-2001 he worked for SHL Systemshouse as a senior technical
architect. In 2001 he joined the School of Computer Science at Carleton
University as an Assistant Professor. Dr. Nussbaums main research interests
are algorithms design, computational geometry, computer gaming, robotics
and medical computing.

PLACE
PHOTO
HERE

Jörg-Rüdiger Sack Dr. Sack received a M.C.S.
(”Diplom”) degree from the University of Bonn,
Germany, and a Ph.D. from McGill University,
Montral, in 1979 and 1984 respectively. His re-
search interests include algorithms, data structures,
distributed and parallel computing, geographic infor-
mation systems and foremost computational geome-
try.He is co-editor in-chief of the journals Computa-
tional Geometry: Theory and Applications, Journal
of Spatial Information Science and editor of The
Journal of Visualization and Computer Animation.

He was awarded an NSERC university-industry Chair in Applied Parallel
Computing with a focus on spatial modeling. Most recently, he has been
appointed a SUN-HPCVL Chair. He is a founding member of and Carleton’s
leading scientist in the High Performance Computing Virtual Laboratory and
a member of NSERC’s Committee on Grants and Scholarship where he is
Group Chair for Canada’s Computing and Information Sciences. He is also
serving on the joint committee at the DFG (German Research Council) for the
Excellence Initiative and is a member of the G8 Research Councils Initiative
on Multilateral Research Funding: Exascale Computing .

PLACE
PHOTO
HERE

Nicola Santoro Nicola Santoro is Professor of
Computer Science at Carleton University. He has
been involved in distributed computing from the
beginning of the field, contributing extensively on
the algorithmic aspects. He is a founder of the main
theoretical conferences in the field (PODC, DISC,
SIROCCO). He has authored the book ”Design and
Analysis of Distributed Algorithms” (Wiley 2007)
and he is recipient of the 2010 ”Prize for Innovation
in Distributed Computing”. His current research is
on distributed algorithms for mobile agents, au-

tonomous mobile robots, and mobile sensor systems.

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

