
1

Measuring Temporal Lags in Delay-Tolerant Networks
Arnaud Casteigts∗, Paola Flocchini∗, Bernard Mans† and Nicola Santoro‡

∗ University of Ottawa, Canada,
{casteig,flocchin}@site.uottawa.ca
† Macquarie University, Sydney, Australia,

bernard.mans@mq.edu.au
‡ Carleton University, Ottawa, Canada,

santoro@scs.carleton.ca

Abstract—Delay-tolerant networks (DTNs) are characterized
by a possible absence of end-to-end communication routes at any
instant. Yet, connectivity can be achieved over time and space,
leading to evaluate a given route both in terms of topological
length or temporal length. The problem of measuring temporal
distances in a social network was recently addressed through
post-processing contact traces like email datasets, in which all
contacts are punctual in time (i.e., they have no duration). We
focus on the distributed version of this problem and address the
more general case that contacts can have arbitrary durations
(i.e., be non-punctual). Precisely, we ask whether each node in
a network can track in real-time how “out-of-date” it is with
respect to every other. Although relatively straightforward with
punctual contacts, this problem is substantially more complex
with arbitrariry long contacts: consecutive hops of an optimal
route may either be disconnected (intermittent connectedness of
DTNs) or connected (i.e., the presence of links overlap in time,
implying a continuum of path opportunities). The problem is
further complicated (and yet, more realistic) by the fact that
we address continuous-time systems and non-negligible message
latencies (time to propagate a single message over a single
link), however this latency is assumed fixed and known. We
demonstrate the problem is solvable in this general context by
generalizing a time-measurement vector clock construct to the
case of “non-punctual” causality, which results in a tool we call T-
CLOCKS, of independent interest. The rest of the paper shows how
T-CLOCKS can be leveraged to solve concrete problems such as
learning foremost broadcast trees, network backbones, or fastest
broadcast trees in periodic DTNs.

Index Terms—C.2.1.d Distributed networks; C.2.1.j Store and
forward networks; C.2.8 Mobile Computing.

I. INTRODUCTION

Highly-dynamic networks, and in particular delay-tolerant
networks (DTNs), are characterized by a possible absence of
contemporaneous end-to-end communication routes (routes in
which every next hop follows on directly, also called direct
journeys). In most cases, however, communication can still
be achieved over time and space through disconnected routes
(indirect journeys) using store-carry-forward-like mechanisms.
This particularity led researchers to develop a number of rout-
ing techniques based for example on proactive knowledge on
the network schedule [5, 23], probabilistic [29] or encounter-
based strategies [11, 17, 24]. A taxonomy is presented in [34].

On the analytical side, the time-dimension has had a strong
impact on research that focused mainly on extending usual
graph concepts to a temporal version, e.g, paths and reachabil-
ity [2, 25], distance [5, 21], diameter [10], connectivity [1, 4],

or necessary conditions [6]. Of particular interest in this paper
are the concepts of journey and temporal distance (terminol-
ogy from [5]), which appeared independently in several fields
under various other names, e.g. schedule-conforming path [2],
time-respecting path [18, 25], or temporal path [10] for the
concept of journey, and reachability time [18], information
latency [27], or temporal proximity [28] for that of temporal
distance. In this context, the duration of a given route no
more depends on the sole number of hops separating nodes.
Questions that immediately arise are how far apart in time the
nodes can be? Such a value is obviously itself time-dependent:
it varies depending on the date considered. Can this temporal
distance be measured, for every node, in each point in time?

This type of question was recently addressed in a number of
works from the field of social network analysis [18, 27, 28].
Indeed, social networks are in essence very similar to DTNs,
and unlike these latter, often generate analizable datasets.
In [27], Kossinets et al. ask how out-of-date each node could
be with respect to every other node. They provide a centralized
algorithm to process a known sequence of contact history and
measure these lags based on an adaptation of vector clocks.

Besides looking at the question from a centralized point of
view, these studies assumed that contacts between nodes are
punctual in time (i.e., they have no duration), and generally
given as triplets (u, v, t) where u and v are two entities (nodes)
and t a date of contact between them. This assumption was
due to datasets where interactions are punctual in time, such
as email exchanges or message posts on community websites.
The situation in DTNs is typically different, because contacts
between nodes can have arbitrarily durations and possibly
overlap in time with each other. This aspect renders com-
putation of exact temporal distances more complex because
it implies the possible co-existence of indirect routes on the
one hand, and continuums of direct routes on the other hand.
Typical DTNs exhibit a mixture of both in various proportions.

In such a context, we look at the distributed version of
the problem and ask: is it possible for a node to know
precisely, and in real time, how out-of-date it is with respect
to every other node? At first sight this problem bears some
resemblance with that of clock synchronization in distributed
networks (see e.g. [9, 20, 32]), however it is different in
essence since we do not require (nor aim to achieve) a common
time referential. In fact clock synchronization in our case
would be straightforward to achieve using the assumption of

2

fixed latency for message propagation over any link (i.e., time
required to propagate a single message over a single link).
In this paper, we answer positively to the above questions in
the case that contacts have arbitrary durations that take place
over the continuous time domain. Feasibility is demonstrated
through an algorithm that extends the one from [27] to a
distributed setting and generalizes it to non-punctual contacts
(and non-negligible, but fixed latencies). Doing this we design
an abstraction tool called T-CLOCKS (for Temporal-lags Vector
Clocks), of independent interest.

The second part of our work is dedicated to illustrating
how the knowledge of temporal lags could be used as a
building block to solve more concrete problems, such as
distributed learning of temporally optimal broadcast trees
(BTs) in periodically-varying networks (following a line of
work initiated in [7]), of particular relevance in the field of
satellites communication (e.g. to build delay-tolerant spanning
structures) or public transportation (e.g. to propagate emer-
gency messages or schedule updates in a temporally efficient
way). In particular, we provide algorithms to learn foremost
BTs: a set of broadcast trees that vary with the emitter and the
emission date (modulo the period), guaranteeing the earliest
possible delivery time at all nodes; and fastest BTs: a set of
broadcast trees that vary with the emitter and guarantee that the
time spent between first message emission and last message
reception is minimum, even if it means waiting before the
first emission. Both algorithms exploit a network abstraction
provided by T-CLOCKS, each in a different way. Interestingly,
the union of all foremost BTs for a given emission date also
corresponds to what the authors of [27] refer to as a network
backbone. Our foremost broadcast algorithm therefore com-
putes all network backbones (i.e., backbones for all emission
dates) as a straight by-product.

Throughout the paper, we use the time-varying graph (TVG)
formalism proposed in [8] to describe the environment and
interaction between entities (nodes), as well as to analyze the
protocol correctness. This formalism, which is semantically
equivalent to that of evolving graphs [12], offers in comparison
an interaction-centric perspective that proves more convenient
to express and manipulate temporal aspects this work requires,
e.g. focusing on the evolution of an edge independently from
that of the entire graph (which proves convenient for various
problems ranging from broadcast [7] to failure detectors [16]).

The paper is organized as follows: in Section II, we describe
the model and terminology. Section III discusses the problem
of measuring temporal lags in the general case of arbitrary
long contacts in continuous time, assuming a fixed latency on
each edge. We show the problem solvable by providing an
algorithm called T-CLOCKS. Section IV shows how T-CLOCKS

could be turned into a building block to solve more complex
problems, and provides some guidance regarding its (object-
oriented) suggested implementation. Finally, Section V illus-
trates a concrete use of T-CLOCKS to solve complex problems
in periodic DTNs, namely the construction of foremost BTs
(V-B), network backbones (V-C), and fastest BTs (V-D).

II. MODEL AND TERMINOLOGY

Consider a set V of nodes, making contacts with each other
over a (possibly infinite) time interval T ⊆ T, called lifetime
of the network; the temporal domain T corresponds here to
R+ (continuous-time). Let the contacts between nodes define
a set of intermittently available undirected edges E ⊆ V 2 such
that (x, y) ∈ E ⇔ x and y interact at least once in T .

Following [8], we represent the network as a time-varying
graph (TVG, for short) G = (V,E, T , ρ, ζ), where ρ : E ×
T → {0, 1}, called presence function, indicates whether a
given edge is available at a given time, and ζ : E × T → T,
called latency function, indicates the time it takes to propagate
a message over a given edge at a given date. In this work,
we assume the latency function to be fixed for all edges and
presence times, and thus denote it as a constant value ζ. If a
message is sent less than ζ time before the disappearance of an
edge, it is lost. The duration of an edge presence, on the other
hand, can be arbitrarily long and possibly vary among several
appearances of the same edge (i.e., arbitrary long contacts
between nodes). Given an edge e, we allow the notation
ρ[t1,t2)(e) = 1 to signify that ∀t ∈ [t1, t2), ρ(e, t) = 1.

Given a TVG G = (V,E, T , ρ, ζ), we denote by G =
(V,E) its underlying graph, that is, in a sense, the static
counterpart of G (one might think of it as its “footprint”).
A sequence of couples J = ((e1, t1), (e2, t2) . . . , (ek, tk)),
where e1, e2, ..., ek is a walk in G and ti + ζ ≤ ti+1 for
1 ≤ i < k, is a journey in G iff ρ[ti,ti+ζ)(ei) = 1. We
denote by departure(J), and arrival(J), the starting date
t1 and last date tk + ζ of J , respectively. Journeys can be
thought of as paths over time from a source to a destination
and thus have both a topological and a temporal lengths.
The topological length of J is the number |J |h = k of
couples in J (i.e., number of hops), and its temporal length (or
duration) is |J |t = arrival(J)−departure(J) = tk−t1+ζ.
For example the journey (ac, 2), (cd, 5) in Figure 1 has a
topological length of 2, and a duration of 3+ ζ units of time.

Let us denote by J ∗G the set of all journeys in TVG G, and
by J ∗(u,v) ⊆ J

∗
G those journeys starting at node u and ending

at node v. Clearly, the concept of journey is not symmetrical:
the existence of a journey from u to v does not imply the
existence of a journey from v to u; this holds regardless of
whether the edges are directed or not, because the time creates
its own level of direction. For example, in the TVG of Figure 1,
there are several journeys from a to d whereas J ∗(d,a) = ∅.

a

b

c d[1, 3)

[2, 5)

[0, 4)

[5, 6)

Figure 1. A TVG G; the labels on the edges indicate the time intervals in
which those edges are present. The edge latency is ζ ≤ 1.

We say that a journey is direct if the presence of consecutive
edges overlap in time and their use follow on directly (i.e.,
intermediate nodes do not wait to forward the message); it is
said indirect otherwise (at least one intermediate node needs

3

to buffer the message for some time). An example of direct
journey in the graph of Figure 1 is J1 = {(ab, 2), (bc, 2+ζ)}.
Examples of indirect ones include J2 = {(ac, 2), (cd, 5)}, and
J3 = {(ab, 2), (bc, 2 + ζ), (cd, 5)}.

Nodes can detect the appearance or disappearance of an
incident edge instantly and react to them by dedicated opera-
tions. Since the presence intervals are by convention right-
open, we assume that disappearances are always handled
before appearances at a given time, which is consistent with
looking at journeys whose presence intervals strictly follow as
indirect ones (e.g. J(a,d) = {(ac, 5−ζ), (cd, 5)} in the above
example). Processing times are neglected. We assume that the
fixed latency ζ is known to the nodes, i.e., they know how
long it takes to propagate a single message over a single edge.
Nodes need not share the same global time, but their clocks
advance at a same rate. The network schedule ρ is not known
and is arbitrary (except for Section V where it is periodic).
Finally, nodes have unique identifiers.

III. MEASURING TEMPORAL LAGS

This section is concerned with making nodes aware, at
any time, of how out-of-date they are with respect to each
others. A relevant concept is that of temporal view, introduced
in [27] for social network analysis. (This concept was simply
called “view”, but we added the “temporal” adjective to avoid
confusion since “view” has a different meaning in distributed
computing, e.g. [33].) The temporal view a node v has of a
node u at time t, denoted φv,t(u), is the latest (i.e., largest)
t′ ≤ t at which a message received by time t at v could have
been emitted at u; that is, in our formalism,

φv,t(u) = Max{departure(J) : J ∈ J ∗(u,v) ∧ arrival(J) ≤ t}.

By convention, φv,t(v) = t for any node v and time t, and
φv,t(u) = −∞ if no such journey existed before. Whenever
the date or the local node are implicit, we omit the correspond-
ing element in the subscript. The table on Figure 2 summarizes
the key concepts and notations seen so far.

Notation Concept Meaning
ρ(e, t) presence function indicates whether edge e exists at time t
ζ(e, t) latency function indicates the latency of edge e at time t
J(u,v) journey path over time from node u to node v
|J |h topolog. length for a journey J : its number of hops
|J |t temporal length for a journey J : its overall duration

φv,t(u) temporal view
that a node v has of a node u at time t:

lastest departure at u to reach v by t
d̂u,t(v) temporal distance min time to reach v from u starting at t

Figure 2. Summary of key concepts and associated notations.

A. Punctual contacts

The question under investigation is: can the nodes know
their temporal views in real time? That is, can a node v know
the exact value of φv,t(u) at any time t for any node u? The
problem has a known solution if contacts between nodes are
punctual (have no duration), which was the case examined

by Kossinets, Kleinberg, and Watts [27]. The solution relies
on a “temporal” adaptation of the vector clock mechanism.
Vector clocks were introduced independently by Fidge [13]
and Mattern [31] to track causality relations between events
in a distributed system, when no assumption are made with
respect to the nodes clocks; they establish a type of logical
time that ensures a complete causal ordering of the events in
the system. As shown in [27], the same mechanism can be
used to measure temporal lags between nodes. We provide
in Algorithm 1 a distributed formulation of the solution
from [27]. Assume for simplicity that all the local clocks share
a same global time (this assumption can be easily removed,
as explained at the end of the section). Informally, every
node v maintains a vector of all its current temporal views
φv,t = (φv,t(u) : u ∈ V), where t is the local current
time (also referred to as now() in the algorithm). The local
vector of a node is called its vector clock. Initially the vector
contains only its own reflexive temporal view. Whenever a
contact occurs between two nodes, they exchange their vectors;
each node then operates a nodewise maximum between both
temporal views (new views are inserted by copy); the resulting
vector is considered as the new local vector on both sides.

Algorithm 1 Measuring temporal lags with instantaneous
contacts.

1: V ectorClock vec← ∅

2: onContact with a neighbor ng:
3: vec[myself]← now()
4: send(vec) to ng

5: onReception of a vector clock vecng:
6: for all u ∈ vecng.nodes() do
7: if u /∈ vec.nodes() or vecng[u] > vec[u] then
8: vec[u]← vecng[u]

9: getView(Node u):
10: return vec[u]

In this code, now() returns the current local time; nodes() called
on a given vector clock returns the list of nodes within (without the
associated views); myself stands for the underlying node.

It is easy to see that the value returned by getV iew() called
with parameter u at node v and time t is indeed equal to
φv,t(u) in this simple setting.

B. Impact of arbitrary long contacts on the temporal views

The general case of arbitrary long contacts (and non-
negligible latencies) is clearly more complex and, until now,
no solution exists. Indeed, the existence of arbitrary long
contacts between nodes makes it possible for adjacent contacts
to overlap in time, thereby producing complex patterns of time
lag between nodes. Consider the plots in Figure 3, showing an
example of evolution of the temporal view that c has of a in a
very simple TVG. Contrary to the case with punctual contacts
– where evolution occurs only in discrete steps – there is here
a mixture of discrete and continuous evolution. (The reader is

4

encouraged to spend a few minutes on this example as these
concepts are essential in what follows.)

a b c
[0, 4) [1, 3) ∪ [5, 6)

0

1−ζ

3−2ζ

4−ζ

1+ζ 3 5

φc,t(a)

t

Figure 3. Temporal view that c has of a, as a function of time (with ζ � 1).

Direct journeys are often faster than indirect ones, but this
is not necessarily the case (imagine a very long direct journey,
versus a short indirect one whose edges traversals follow
closely). As a result, the temporal view φ at anytime could
be caused by either types of journey. Let us call direct view
and indirect view the views resulting from the best direct and
indirect journeys at any given time (keeping in mind that φ is
always the max between both).

Both types of views are different in nature. Unlike indirect
journeys, which produce discrete increases of the view, direct
journeys in general belong to a continuum of several such
journeys, thus producing continuous increases of the view.
Looking again at Figure 3, the (direct) view c has of a during
[1+ζ, 3) only depends on the topological length (i.e., number
of hops) of the corresponding journey, here 2 (node c can
receive any message emitted by a between times 1 − ζ and
3 − 2ζ after a lag of exactly 2ζ time). Since the duration
of a direct journey depends only on the number of hops, it is
sufficient for a node v to know the length of the (topologically)
shortest direct journey currently arriving to it from another
node u, called the level of v with respect to u, to deduce the
corresponding direct view in real time. This particular way of
defining a level can be formalized as follows:

levelv,t(v) =
Min{|J |h : J ∈ J ∗(u,v) ∧ isDirect(J) ∧ arrival(J) = t},

where isDirect(J) is true iff J is a direct journey. By
convention, levelv,t(u) is considered to be −∞ if no direct
journey from u is arriving to v at time t. Let us stress that
our notion of level is relative to the reception side, and is not
concerned for example with the fact that some edges of the
journey may have disappeared by reception time. What matters
is to know whether messages could still be currently arriving
from a given remote node through a given number of hops.

C. The algorithm

The proposed algorithm tracks evolution of both direct
views and indirect views independently, with the resulting
temporal view corresponding to their maximum. While indi-
rect views are stored as classical variables, being maintained
using a similar technique as in Algorithm 1 (i.e., nodewise
maximums upon edge appearances), direct views are deduced
when needed from the current time and corresponding levels.

Thus, the algorithm consists in maintaining up-to-date in-
formation about two kinds of variables: the level of the local

node with respect to every other node (for direct views), and
the largest date at which a message carried to the local node
through a indirect journey could have been emitted at every
other node (indirect views). The corresponding vector clock
therefore associates to each remote node both a level and
a date value. Assume again for simplicity that all the local
clocks share the same global time; this assumption will be
relaxed at the end of the section. The detailed description of
the algorithm is in Algorithm 2.

D. Correctness.

In the following, levelv,t(u) and datev,t(u) denote the
values of variables vec[u].level and vec[u].date, respectively,
read at node v at time t. The notation getV iewv,t(u) similarly
stands for the result of the function getV iew() called on v at
time t with parameter u. Let us start with a few observations:

Property 1: Whenever an edge appears, the local vector is
immediately sent on it (see onAppearance()).

Property 2: Whenever the local vector is modified, it is
immediately sent to all the current neighbors.
This is true initially; then, the vector can only be modified
in updateV ector(), at the beginning of which the vector is
copied and end of which it is sent if different from the copy.

The correctness of our algorithm is proven through a
sequence of lemmas. Although the intuition behind the algo-
rithm is clear and its formulation relatively compact, proving
formally that the temporal view is exactly assessed by the
nodes at any point in time is complex. Here is how the proof
is organized. Lemmas 3 and 4 are intermediate properties that
are used in the proofs of Lemmas 5 and 6, respectively, which
in turn are used in that of Lemma 7 (stating that the computed
view is always larger or equal to φ). Similarly, Lemma 8
is an intermediate property used in the proof of Lemma 9
(the computed view is always lower or equal to φ). The final
theorem concludes equality based on Lemmas 7 and 9.

Lemma 3: For any two nodes v1, v2 and time t, if edge
(v1, v2) is always present during a period [t, t + ζ), then
levelv2,t+ζ(u) ≤ levelv1,t(u) + 1 for any u. (Informally, the
level of a node cannot be more than that of any of its neighbors
plus 1 after any ζ span of existence of the corresponding edge.)

Proof: Two possibilities must be considered, depend-
ing on whether the edge (v1, v2) appeared before or after
levelv1(u) took the value that it has at time t. If it appeared
before, Property 1 guarantees that v2 has received it by time
t+ ζ; otherwise Property 2 guarantees the same. Every time a
vector is received, the function updateV ector() is executed.
This function goes through all entries of the received vector
(among others) and guarantees the property by line 22.

Lemma 4: For any two nodes v1, v2 and time t, if the edge
(v1, v2) is always present during a period [t, t + ζ), then
datev2,t+ζ(u) ≥ datev1,t(u) for any u.

Proof: Same ideas as for Lemma 3, but considering
line 24 instead of line 22.

In the following, the term “communication message” (or
simply “message”) does not refer to the ”control messages”
generated by Algorithm 2; it denotes instead any message that
could be exchanged by an application running in the network.

5

Algorithm 2 Measuring temporal lags in the case of lasting contacts – The T-CLOCKS algorithm.

1: V ectorClock vec← ∅
2: Map<Node, V ectorClock> neighborsV Cs← ∅ B the vector clocks of all neighbors are locally memorized.

3: initialization:
4: vec[myself].level← 0
5: send(vec) to Nnow() B sends the vector to all the current neighbors

6: onAppearance of a common edge with neighbor ng:
7: send(vec) to ng

8: onDisappearance of an edge to neighbor ng:
9: neighborsV Cs[ng]← ∅

10: updateV ector()

11: onReception of a vector clock vecng from a neighbor ng:
12: neighborsV Cs[ng]← vecng

13: updateV ector()

14: updateVector():
15: updateDatesBasedOnLevels()
16: V ectorClock vec′ ← vec B copies the vector for subsequent change detection.
17: for all v ∈ vec.nodes() do
18: vec[v].level← +∞ B resets all levels.
19: for all vecng ∈ neighborsV Cs do
20: B go across all entries of all neighbors vectors, and for each source node,20: for all v ∈ vecng.nodes() do
21: if vecng[v].level < vec[v].level − 1 then
22: vec[v].level← vecng[v].level + 1 B update the underlying level whenever a smaller level is detected.
23: if vecng[v].date > vec[v].date then
24: vec[v].date← vecng[v].date B update the underlying date whenever a larger date is detected.
25: if vec 6= vec′ then
26: send(vec) to Nnow() B if the vector has changed, send it to the current neighbors.

27: updateDatesBasedOnLevels():
28: for all v ∈ vec.nodes() do
29: if now()− vec[v].level × ζ > vec[v].date then
30: vec[v].date← now()− vec[v].level × ζ

31: getView(Node v):
32: return max(vec[v].date, now()− vec[v].level × ζ)

Lemma 5: No communication message could be received
by a node v at time t through a direct journey J ∈ J ∗(u,v)
unless levelv,t(u) ≤ |J |h. (Informally, the purpose is to prove
that the computed level is never larger that the real level.)

Proof: Let J = {(e1, t1), (e2, t2) . . . , (ek, tk)} ∈ J ∗(u,v)
where ei = (vi, vi+1), 1 ≤ i ≤ k, with v1 = u and
vk+1 = v. By Lemma 3, levelvi+1,ti+ζ(u) ≤ levelvi,ti(u)+1
(1 ≤ i ≤ k); since the journey is direct, ti + ζ = ti+1. Thus
levelv,tk+1

(u) = levelvk+1,tk+1
(u) ≤ levelv1,t1(u) + k. Since

v1 = u and levelu,t1(u) = 0, the Lemma holds.
Lemma 6: No communication message could be received

by a node v at time t through an indirect journey J ∈ J ∗(u,v)
unless datev,t(u) ≥ departure(J).

Proof: Let J = {(e1, t1), (e2, t2) . . . , (ek, tk)} ∈ J ∗(u,v)
where ei = (vi, vi+1), 1 ≤ i ≤ k + 1, with v1 = u and
vk+1 = v. The proof follows a similar inspiration as that
of Lemma 5, but requires an additional intermediate step
because in general, dateu,departure(J)(u) 6= departure(J).
The intermediate step is as follows. Because J is indirect,
then there exists at least one intermediate node vj that has
lost the edge from vj−1 before the appearance of the edge to
vj+1 (that is, vj is the last node such that J(u,vj) ⊆ J is a

direct journey). This has caused the function updateV ector()
to execute on vj , and thus vj to convert its level w.r.t. u into
a date (line 15), which by Lemma 5 is necessarily larger or
equal to departure(J). Now, from Lemma 4 we have that
datevi+1,ti+ζ(u) ≥ datevi,ti(u). By applying this inequality
on the remaining edges (sequentially from vj to vk+1), we can
conclude that datev,t(u) ≥ departure(J).

Lemma 7: For any pair of nodes u, v and time t,
getV iewv,t(u) ≥ φv,t(u). (Informally, the computed view is
at least as large as the real view.)

Proof: By contradiction, let there exist a pair u, v and
a time t such that getV iewv,t(u) < φv,t(u). This means,
by definition, that a message emitted at u at some time
t′ ≤ t could have arrived at v at some time t′′ although
getV iewv,t′′(u) < t′. From the way getV iew() is computed,
this implies both t′′− levelv,t′′(u)×ζ < t′ and datev,t′′(u) <
t′. Consider now the journey described by such a message. If
the journey is direct, then the first inequality is contradicted
by Lemma 5; if the journey is indirect, the second inequality
is contradicted by Lemma 6.

Lemma 8: For any pair of nodes u, v and time t, φv,t(u) ≥
t− levelv,t(u)× ζ.

6

Proof: Let us examine separately the cases that
levelv,t(u) is +∞, 0, or an integer n > 0.
• If levelv,t(u) = +∞, then t − levelv,t(u) × ζ = −∞,
which is either equal to φv,t(u) when the latter is undefined
(by convention), or less otherwise.
• If levelv,t(u) = 0, then v must be the same node as u

(since levels w.r.t. other nodes can only be modified through
incrementing the value of a neighbor). Thus, t−levelv,t(v)×
ζ = t, which is, by definition, the value of φv,t(v).
• Let levelv,t(u) = k for some integer k > 0. Let us first

observe that this implies the existence of another node v′ such
that levelv′,t−ζ(u) = k−1 and ρ[t−ζ,t](v, v′) = 1 (otherwise
the local level would have been decreased by the function
updateV ector() after the loss of the neighbor causing level
to be k). Knowing that levelu,t(u) = 0 implies, by simple
induction, that there is a direct journey J ∈ J ∗(u,v) such
that arrival(J) = t and |J |h = levelv,t(u), which in turn
implies that a message emitted at u at time t−levelv,t(u)×ζ
would be received at v at time t.
Lemma 9: For any pair of nodes u, v and time t,

getV iewv,t(u) ≤ φv,t(u). (Informally, the computed view is
at most as large as the real view.)

Proof: By contradiction, assume there exist a pair u, v
and a time t such that getV iewv,t(u) > φv,t(u). From the
way getV iew() is defined, getV iewv,t(u) > φv,t(u) implies
that either t − levelv,t(u) × ζ > φv,t(u) or datev,t(u) >
φv,t(u). The first inequality is contradicted by Lemma 8. As
for the second, according to the algorithm, a date variable can
only be increased by means of two actions: copying the date
variable from a neighbors’ vector, or converting the current
level into a date. The copy cannot generate unappropriate
increase of the value because if two nodes are able to exchange
their vectors, then they could also exchange the messages they
have received so far (such a copy is necessarily consistent).
The second action cannot generate a larger date than φv,t(u)
without contradicting Lemma 8.

Correctness now follows from Lemmas 7 and 9:
Theorem 10: For any pair of nodes u, v and time t,

getV iewv,t(u) = φv,t(u).
Finally, observe that the simplifying assumption that clocks

share the same global value is not necessary. Indeed, if the
nodes keep track of when each date was locally received,
they can easily add information about how long the date was
locally stored when they transmit it further. Combining this
information with the edge latency ζ (which is known) allows
to convert any received date into the local referential.

IV. USING T-CLOCKS AS A NETWORK ABSTRACTION

Knowledge of temporal lags, by means of both direct and
indirect views, can be instrumental to solve concrete problems
in DTNs (as shown in the examples of Section V). We suggest
in this section a possible architecture to build on top of T-
CLOCKS, and provide guidance relative to its implementation.

Building on top of T-CLOCKS

One way of using T-CLOCKS is to consider them as an
abstraction providing high-level information on the temporal

views – in our case, information to track both direct and
indirect views, which proves sufficient to solve problems like
learning foremost broadcast trees, network backbones, and
fastest broadcast trees in periodically-varying DTNs. Techni-
cally, the abstraction consists of an intermediate layer between
the network and some higher application (see Figure 4), which
it informs by means of generating the two following events:
levelChanged(), reflecting the evolution of a direct view,
and dateImproved(), reflecting that of an indirect view.

Network

T-CLOCKS

Higher-Level Application
levelChanged()

global
dateImproved()

onEdgeAppearance() local onEdgeDisappearance()

Figure 4. T-CLOCKS as an abstraction to track temporal views.

Whenever one of these events occurs, the higher algorithm
should be able to identify which local neighbor is responsible
for making the view evolve (from a practical point of view, this
information is crucial to learn routing paths in the network).
Both this feature and that of notifying higher algorithms
require adaptations of the T-CLOCKS algorithm from Section III
(Algorithm 2), which we now describe.

a) Tracking the best proxies: The current version of
Algorithm 2 does not identify which neighbors are responsible
for current views. Instead, only the value of the best levels
(direct views) or dates (indirect views) are determined in
updateV ector() (see line 19 and subsequent). Identifying
these particular neighbors – or proxies – can be done by
adding and maintaining two additional variables in the vector
clocks, which account respectively for the best “level proxy”
(direct view), and the best “date proxy” (indirect view).
These variables should be updated whenever the corresponding
values change, i.e., when lines 22 or 24 execute.

b) Notifying higher algorithms: The notifications are
to be raised whenever either type of view has changed.
The corresponding test is already performed at the end of
updateV ector(). Note that the two vectors compared on
line 23 should be considered as different not only when a
level or a date has been updated, but also when a proxy has
changed (which may occur without any change of the level,
e.g. when two local neighbors are providing the same direct
view relative to a given remote node, and one of them disap-
pears). We envision notifications in the spirit of the observer-
observable design pattern between two objects, namely the
T-CLOCKS algorithm (observable) and the higher algorithm
(observer). Concretely, this means that the higher algorithm
subscribes (typically upon initialization) to the events of the
T-CLOCKS algorithm by calling a register() function (so
that the T-CLOCKS algorithm becomes aware this particular
entity must be notified). Then, whenever events occur, the T-
CLOCKS algorithm calls the corresponding dedicated functions

7

on the higher algorithm side (in our case, levelChanged()
and dateImproved()), in which the desired response to the
event is encapsulated. (If unclear, this mechanism shall be-
come clearer by looking at the examples in Section V.) The
notifications are to be raised as follows:
• levelChanged(Node src, Integer level, Node proxy):

called whenever the level value or the level proxy with re-
spect to a remote node (also called the emitter or the source)
has changed during updateV ector(). The corresponding
source, level, and proxy are transmitted as parameters.
• dateImproved(Node src, Integer date, Node proxy),

called whenever the date value relative to an emitter (src)
has increased during the loop, iff this date is larger than the
direct view (that is, larger than now()− level(src)× ζ).

Ideally, the T-CLOCKS algorithm should be able to run
independently from higher algorithms, and tolerate several
observers simultaneously. To enable registration on top of
an already running instance of T-CLOCKS, we consider the
following extra argument of the register() function.

Property 11: The call to register(boolean param) causes
T-CLOCKS to call immediately levelChanged() on the higher
algorithm for every source with respect to which the current
level is not +∞, if param = true. This extra notification
does not occur if param = false.

Complexity

Clearly, using T-CLOCKS does hide a substantial amount of
complexity to higher applications. Our purpose in this paper
was to demonstrate theoretical feasibility of the problem and
its relevance to other concrete problems. As such, we did
not focus on improving its complexity. Trivial improvements
include avoiding to send the complete vector every time a
change occur or an edge appears (cf. Algorithm 2), by means
of sending only the differences with previously sent vectors.

V. APPLICATIONS – LEARNING FOREMOST BROADCAST
TREES, NETWORK BACKBONES, AND FASTEST BROADCAST

TREES IN PERIODIC DTNS

This section illustrates how temporal lags can be lever-
aged to solve concrete problems such as the construction
of foremost broadcast trees, network backbones, and fastest
broadcast trees in TVGs whose schedule (presence function ρ)
is periodic. We first define the problems in general terms, then
motivate the assumption of periodicity based on known neg-
ative results. Then we provide algorithms that solve them by
exploiting the T-CLOCKS abstraction discussed in Section IV.

A. Definitions and background

As mentioned in Section II, the length of a journey can be
measured both in terms of hops or time. This gives rise to two
distinct definitions of distance in a graph G:
• The topological distance from u to v at time t, noted du,t(v),

is defined as Min{|J |h : J ∈ J ∗(u,v) ∧ departure(J) ≥ t}.
Given a date t, a journey whose departure is t′ ≥ t and
topological length is du,t(v) is called shortest ;

• The temporal distance from u to v at time t, noted
d̂u,t(v) is defined as Min{arrival(J) : J ∈ J ∗(u,v) ∧
departure(J) ≥ t} − t. Given a date t, a journey whose
departure is t′ ≥ t and arrival is t+d̂u,t(v) is called foremost;
one whose temporal length is Min{d̂u,t′(v) : t′ ∈ T[t,+∞)}
is called fastest.

Informally, a shortest journey is one that minimizes the
number of hops; a foremost journey minimizes the arrival date;
and a fastest journey minimizes the time spent between depar-
ture and arrival (however late the departure is). The problem
of computing shortest, fastest, and foremost journeys in DTNs
was solved in [5] as a centralized (i.e., combinatorics) problem,
given complete knowledge of G. Precisely, the corresponding
algorithms build the optimal set of journeys from the emitter
to every other nodes (one algorithm for each metric).

The distributed problems of performing shortest, fastest, or
foremost broadcasts without knowing the network schedule
was recently investigated in [7], with following definitions:

• Foremost broadcast: every node must receive the message
at the earliest possible date following broadcast initiation.
• Shortest broadcast: every node must receive the message by

means of a minimum number of hops.
• Fastest broadcast: the overall time between first emission
(at the initial emitter) and last message reception (anywhere
in the network) must be minimized.

We require the emitter to detect termination of the broadcast
(i.e., all the nodes received the message), although this termi-
nation needs not be itself foremost, shortest, or fastest. In [7],
the authors study the feasibility of these three metrics depend-
ing on various assumptions and knowledge on G. Three cases
are considered: (i) no assumption is made on the schedule;
(ii) edges are recurrent, that is, if they appear at some time,
then they will re-appear at some unknown future date; and
(iii) the re-appearance is bounded by some known duration.
The feasibility and complexity of each metric with respect
to these assumptions varies. In particular, foremost broadcast
becomes feasible in (ii), but the corresponding trees change
constantly and therefore cannot be learnt for later use even in
(iii). Shortest broadcast turns out to become both feasible and
learnable at once in (iii). As for fastest broadcast, it remains
unfeasible even in (iii) (and a fortiori not learnable). This
motivates to consider a stronger assumption on the schedule
of G, such as that of periodicity, which makes foremost BTs
learnable and fastest BTs both feasible and learnable, thereby
completing the results of [7].

The following sections address the problems of learning
foremost BTs and fastest BTs in TVGs whose schedule
is periodic with known period p, that is, graphs such that
∀e ∈ E,∀t ∈ T , ρ(e, t) = ρ(e, t + kp) for all integer k. The
periodic assumption holds in networks whose entities have
periodic movements (e.g., satellites, subways, guards tour) or
sleeping schedule (sensors). Other works in periodic DTNs
include exploration by mobile agents [3, 14, 15, 22] or scalable
routing [26, 30]. This assumption is also made in part of [27].

8

B. Application 1 – Foremost broadcast trees

Among all metrics, “foremost” is probably the one whose
interest is most obvious. It is natural to ask what set of jour-
neys a message emitted at a given source (or emitter) should
follow to reach all nodes the earliest. Clearly, this choice
depends on which date the broadcast is initiated at (initiation
date), and even then, several options may exist. A nice property
of the foremost metric is that among all the possible foremost
journeys, there is (at least) one whose prefixes are themselves
foremost journeys, i.e., every intermediary node is reached in a
foremost fashion. (This property may seem obvious, but it does
not hold for fastest journeys, as we will see in Section V-D.)
This allows to consider, for a given initiation date, a tree of
foremost journeys that we refer to as a foremost broadcast tree
(foremost BT, for short) for that particular date.

As an example, the foremost BTs corresponding to the graph
of Figure 5 for emitter a are shown in Figure 6 as a function
of the initiation date. These trees do not indicate, strictly

a

cb

[0, 30) [20, 60)

[10, 40) ∪ [70, 80)

Figure 5. Example of periodic TVG (with period 100 and latency ζ = 1).

speaking, what journeys to follow (i.e., paths together with
crossing dates), but only what are the underlying paths, which
is enough (every edge being used as early as possible). For
example, the foremost tree corresponding to initiation date 50
goes through b, so a forwards the message to b at date 50,
then b knows it must forward to c, which occurs at 70 when
the corresponding edge appears.

[0, 19) [19, 29) [29, 59) [59, 100)
a

b

c

a

b c

a

c

b

a

b

c

Figure 6. Foremost BTs corresponding to the graph of Figure 5, for emitter
a and initiation dates modulo 100.

The assumption of periodicity is not strictly needed to
perform a foremost broadcast (as shown in [7]), but it allows
for the trees to be learnt (and reused at lower cost) because
the optimality of journeys holds modulo p. Here, for example,
the first tree is optimal for any initiation date in [0, 19), or
[100, 119), or [900, 919), etc. It is thus sufficient to build all
foremost BTs relative to one period, then use them forever.

It is important to keep in mind that forwarding choices are
relative to the initiation date. Take for instance initiation date
58.5, where a forwards the message to c who receives it at
59.5 (ζ = 1 in this example). The date c must consider to
make forwarding choices is not 59.5, but well and truly 58.5
(inducing decision to forward to b). Another fact is that a node

needs not knowing the whole tree to make local choices. It
only needs to know what neighbors it must forward a message
to, based on the source and initiation date. The corresponding
information relative to source a is shown in the table of 7.

on a Initiation date [0, 19) [19, 29) [29, 59) [59, 100)
Children {b} {b, c} {c} {b}

on b Initiation date [0, 19) [19, 59) [59, 100)
Children {c} ∅ {c}

on c Initiation date [0, 29) [29, 59) [59, 100)
Children ∅ {b} ∅

Figure 7. Set of children relative to emitter a.

Learning children tables for all potential emitters in the
network is the purpose of our algorithm, whose informal
strategy is as follows.

1) High-level informal strategy: The algorithm actually
starts the other way around, with nodes determining their
set of optimal parents in the trees, relative to one complete
period of initiation dates and all sources. This is done based
on information provided by the T-CLOCKS abstraction de-
scribed in Section IV. The resulting information is stored in
a structure equivalent to the table on Figure 8. Once a node

on b Initiation date [0, 29) [29, 59) [59, 100)
Parent a c a

on c Initiation date [0, 19) [19, 59) [59, 100)
Parent b a b

Figure 8. Set of parents relative to emitter a.

has determined its set of parents with respect to a complete
period of initiation dates, it notifies each parent by sending the
corresponding intervals. Since the network is periodic, these
notifications cannot, locally to a notifying node, last more than
one period. On the parent side, the intervals are processed upon
reception to fill in their children table. The way the intervals
can be sent and processed is straightforward. Thus, we focus
on explaining how the tables of parents are built.

2) Detailed strategy: There is a clear connexion between
the problem of determining which parent is best to obtain a
message in a foremost fashion, and the concept of temporal
view discussed in Section III. In fact, the relation is clear: for
a given source s and initiation date t, the parent that a node
should select is precisely the first of its neighbors to provide a
temporal view φ(s) ≥ t. The T-CLOCKS abstraction described
in Section IV allows precisely to track this information. The
detailed process is described in Algorithm 3. Its basic principle
consists in monitoring the evolution of both direct and indirect
views, and record the corresponding neighbors as parents as
follows. Whenever the temporal view is improved by means
of an indirect journey (dateImproved()), the corresponding
neighbor is associated with the provided initiation date. More
precisely, it is stored in a table that associates it with this
date, which corresponds in fact to the end of the interval this
parent covers (the beginning of the interval being the end of
the previous one, circularly). This strategy relies on the fact
that if a node can provide a message initiated at t, then it can

9

also provide any message initiated before t. As for the im-
provement of the temporal view by means of direct journeys,
the algorithm maintains a dedicated variable to remember the
current levels (table level) and the corresponding neighbors
(table directProxy). Whenever a notification occurs, whether
related to a change in date or level, this variable can be used
in updateRecord() to determine what largest initiation date
t could have already been covered by these direct journeys.
If the date constitute an improvement, it is stored in the
parent table together with the corresponding neighbor. A few

Algorithm 3 Learning Foremost BTs (as table of parents)

1: Map <Node,<Date,Node>> parents← ∅
2: Map <Node,Node> directProxy ← nil
3: Map <Node, Integer> level← nil
4: Date startD ← nil

5: init():
6: startD ← now()
7: TClocks.register(true) B register to T-CLOCKS with immediate

notification of the current level (if any)

8: dateImproved(Node src, Integer date, Node proxy):
9: updateRecord(src)

10: parents[src].add(date, proxy)

11: levelChanged(Node src, Integer level, Node proxy):
12: updateRecord(src)
13: if level 6= +∞ then
14: directProxy[src]← proxy
15: level[src]← level B keeps a local copy of the levels.

16: currentDirectView(Node src):
17: return now()− level[src]× ζ B based on the local copy.

18: updateRecord(Node src):
19: if directProxy[src] 6= nil then
20: if currentDirectV iew() > parents[src].lastDate() then
21: parents[src].add(currentDirectV iew(),

directProxy[src])

22: when now() == startD + p:
23: terminate.

additional remarks:
• In some cases, the algorithm may lead to record consecu-

tively a same parent; if so, intervals can simply be merged.
• Last but not least, the process can be started independently

on each node, as long as Algorithm 2 is assumed to have
already run on all the nodes for at least a duration of
max(|J |t : J ∈ J ∗G), that is, the temporal diameter of
the network. This is to ensure that all the nodes know their
respective temporal views.
3) Correctness: The correctness of Algorithm 3 essentially

follows from periodicity and the correctness of Algorithm 2.
Theorem 12: The execution of Algorithm 3 in a

periodically-varying graph G with known period p results in
all nodes selecting the correct set of parents with respect to
all Foremost BTs in O(p) time.

Proof: The idea is to prove that the recorded parent
for any initiation date t and source s is indeed (any of)
the first neighbor to provide a temporal view of s that is
greater or equal to t. For any t, this view is either direct
or indirect. The information relative to the direct view –
level and corresponding neighbor – is locally stored through

lines 14 and 15 whenever it changes (as per Algorithm 2).
This allows currentDirectV iew() to indicate, at any time
instant (thanks to Property 11), the corresponding direct view.
As for the indirect view, the desired property follows from the
way parents are recorded in the parents table: when an higher
indirect view is provided (dateImproved()), first the neighbor
responsible for the current direct view is stored for all initiation
dates that it has already been able to cover (updateRecord()),
then the one responsible for the new indirect view is stored
in turn. The same update operation is executed when the
level changes, but instead of being stored in turn, the new
level proxy replaces the previous one. Due to the periodicity,
the algorithm necessarily terminates in O(p) time (in fact, in
exactly one period p) because the first parent reappears and
can deliver the same initiation dates as before, plus p.

4) Example traces: The tables below show some execution
traces based on the example graph of Figure 5 (with respect
to emitter a). These traces consider that c starts at time 50
(modulo 100), and b at time 65 (modulo 100). These dates are
chosen to reflect a variety of initial conditions and behaviors.
The traces include the list of dated notifications and modifica-
tions of the parents table for both nodes (Figures 9 and 10),
and the resulting tables of parents, using both their original
and interval-based representations (Figures 11 and 12).

Date Event Parents table for source a
71 dateImproved(a, 59, c) parents[a].add(59, c)
1 levelChanged(a, 1, a)
30 levelChanged(a, 2, c) parents[a].add(29, a)
40 levelChanged(a,+∞, nil) parents[a].add(38, c)
165 end of the period

Figure 9. Relevant traces with respect to node b and emitter a.

Date Event Parents table for source a
50 levelChanged(a, 1, a)
60 levelChanged(a,+∞, nil) parents[a].add(59, a)
11 levelChanged(a, 2, b)
21 levelChanged(a, 1, a) parents[a].add(19, b)
50 end of the period

Figure 10. Relevant traces with respect to node c and emitter a.

Initiation date → 59 → 29 → 38
Parent c a c

Initiation date [0, 29) [29, 38) [38, 59) [59, 100)
Parent a c c a

Figure 11. Resulting table of parents for node b.

Initiation date → 59 → 19
Parent a b

Initiation date [0, 19) [19, 59) [59, 100)
Parent b a b

Figure 12. Resulting table of parents for node c.

C. Application 2 – Network backbones
A translation of the concept of network backbone in dy-

namic networks was proposed in [27] as the “subgraph con-
sisting of edges on which information has the potential to flow

10

the quickest”. This concept is time-dependent – the backbone
varies depending on the emission date that is considered.
Precisely, an edge belongs to the backbone relative to time
t (denoted Ht), if and only if it is essential (“lies on the
minimum-delay path between some pair of nodes x and y”)
relative to time t. Rephrased in our context, an edge is essential
with respect to time t iff it is used by a foremost journey
starting at time t. It follows that

Theorem 13: The union of all foremost BTs relative to
emission date t is a network backbone with respect to t.

As a result, the algorithm presented in Section V-B com-
putes at once, and as a by-product, the backbones relative to
all possible dates. Furthermore, these backbones are general-
izations of those of [27] in the sense that our context addresses
arbitrary long contacts and non-negligible latencies.

D. Application 3 – Fastest broadcast trees

The difference between foremost and fastest broadcast
seems not obvious at first sight, due to the fact that both
relate to time. While foremost refers to minimizing the arrival
date, fastest refers to minimizing the overall time spent in the
system. As such, one might be willing to delay the effective
starting date of a broadcast in the purpose of making it faster
(which makes sense e.g. in communication networks whose
medium is shared exclusively or to minimize a trip duration
in the context of transportation networks).

A fundamental difference between fastest and foremost
journeys is that finding fastest journeys whose prefixes are
themselves fastest may not always be possible. Consider the
example in Figure 13, assuming node a is willing to broadcast
at time 0. Reaching d in a fastest way requires to send the first
message at 49− ε and then propagate the message from b to c
anywhere between 60 and 69, thereby implying a duration of
at least 12 from a to c. However, faster journeys of duration
2 could exist earlier from a to c. This observation is crucial
to formulate the problem of fastest broadcast. Attempting to
reach each node using fastest journeys may be relevant in the
case of point-to-point communication (and this objective was
the one considered in [5]); but it is clearly less relevant in a
context of broadcast for the aforementioned reason, since this
would imply a same message is sent several times over a same
edge (e.g. over (bc), once as part of the fastest journey to c,
another time as part of the fastest journey to d).

a b c d
[20, 30) ∪ [40, 50) [20, 30) ∪ [60, 70) [80, 90)

Figure 13. A simple TVG where fastest broadcast does not match fastest
journeys (edge latency ζ = 1).

Hence, we address the more natural problem of minimizing
the overall duration of the broadcast, that is, the time elapsed
between the first message emission and the last message
reception in the whole network. As such, a fastest broadcast
tree (or fastest BT) corresponds to a union of journeys which
may or may not be individually fastest. The main subproblem
here is to determine when the emitter has the potential to
reach all nodes the fastest, i.e., when the “longest” foremost

journey from the emitter to any other node (also called
its temporal eccentricity), is minimum. Note that learning
minimum temporal eccentricities in distributed networks is an
interesting problem in its own right, and may be used in other
purposes than broadcasting (e.g., electing leader nodes based
on their ability to reach all other nodes quickly).

Once the time of minimum eccentricity is known by the
emitter, fastest broadcast reduces to perform a foremost broad-
cast at this particular date (by definition, this is optimal).
This can be done using the outcomes of the foremost BT
algorithm in previous section, or by building a single foremost
BT for the selected date (for a single date, foremost BTs
can be built by means of a flooding whereby all the nodes
record which of their neighbor gave them the message first,
followed by local acknowledgments of these relations). In both
cases, broadcast itself does not bring original difficulty, we
thus focus on the mechanisms by which a node can learn
its temporal eccentricity in a periodic TVG. For clarity, we
solve the problem respective to a single emitter (contrary to
the foremost BT algorithm that dealt with all emitters at once).

1) Learning temporal eccentricities over one period: The
temporal eccentricity (or simply eccentricity below) of a node
u at date t is formally defined as

eccu(t) = max{d̂u,t(v) : v ∈ V }, (1)

that is, the maximum among all temporal distances (or simply
distances below) from u to all other nodes at time t, see
Section V-A for definition of the temporal distance and its
connection with temporal view.

There is a strong connection between temporal distances
and temporal views. Both actually refer to the same quantity
seen from different perspectives: the temporal distance is a
duration defined locally to an emitter at an emission date,
while the temporal view is a date defined locally to a receiver
at a reception date. In fact, we have

d̂u,te(v) = tr − φv,tr (u) (2)

where te is an emission date, and tr is the corresponding
earliest reception date.

2) High-level informal strategy: The algorithm consists of
inferring (and recording) temporal distances at every node
relative to a given emitter, based on the evolution of tem-
poral views monitored through T-CLOCKS and the equivalence
relation of Equation 2. Precisely, for a given emitter u, every
node v 6= u infers d̂u(v) from φv(u) over one period and
records it in a distance table. Since we deal with continuous-
time and possibly overlapping contacts, this information is
recorded as a set of intervals that correspond to the different
phases of evolution of the distance (discrete or continuous).
Once the distance tables are computed all over the network
with respect to emitter u, they are opportunistically aggregated
along a tree rooted in u (the aggregation tree may be arbitrary).
Aggregation of a children table consists of an segment-wise
maximum against the local distance table (segments are arti-
ficially split, if needed, to be aligned with each other). Once
the emitter has aggregated the table of its last child, the final
result corresponds to its eccentricity over time (Equation 1).

11

Any of the minimum values is finally selected and used as
initiation date for the broadcast. We now describe how tables
of distances are built on the receiver side using T-CLOCKS.

3) Detailed strategy for computing the distance: Let us
examine closer the relation between temporal view and tem-
poral distance, through three key properties established in
Lemmas 14, 15 and 16.

Lemma 14: Every discrete increase of φv(u) by k corre-
sponds to a continuous decrease of d̂u(v) during k time units.

Proof: A discrete increase of the view by k at time t
(that is, φv,t(u) = φv,t−ε(u) + k), implies the existence of a
journey J from u whose departure is φv,t(u) and arrival is
t. Switching to the emitter viewpoint, the considered increase
implies that no journey starting during [t1 = φv,t−ε(u), t2 =
φv,t(u)) could have arrived before t (otherwise such a journey
would imply an intermediate increase of the view by less than
k). Therefore, the temporal distance at any point in [t1, t2)
is fully determined by the arrival of J , and thus for all t′

in [t1, t2), we have d̂u,t′(v) = d̂u,t2(v) + (t2 − t′), which
corresponds to a continuous decrease of the distance during
t2 − t1 = k time units.

Lemma 15: Each continuous increase of φv(u) during k
time units corresponds to a stagnation of d̂u(v) during k time
units.

Proof: Continuous increases of the view are due to con-
tinuums of direct journeys of same level. Such increase during
some interval [t, t+k) thus implies a continuum of direct jour-
neys departing over [φv,t(u), φv,t(u)+k) (since ζ is constant).
We thus have ∀te ∈ [φv,t(u), φv,t(u)+k), d̂u,te(v) = level×ζ
(where level is the level of the considered journeys), which
corresponds to a constant during k time units.

Lemma 16: All initiation dates are covered either by a
discrete or a continuous increase of the view.

Proof: By nature of the view, which is past-inclusive, i.e.,
the fact that a message emitted at time te could have arrived
by some time tr implies that any message emitted before te
could have also arrived by tr. (In essence, there is no “gap”.)
Besides, an increase is necessarily discrete or continuous.

Combination of Lemmas 14, 15 and 16 allows us to state
the following general theorem on temporal distances (with
constant edge latency ζ).

Theorem 17: The evolution of d̂u(v) can be fully captured
by a sequence of segments of two possible types: flat segments
(stagnation of the value) and slope segments (continuous
decrease of the value). This sequence can be inferred at v by
associating every continuous (resp. discrete) increase of φv(u)
to a flat (resp. slope) segment of d̂u(v).

This strategy is the one considered by Algorithm 4, whose
underlying principle is to detect and record every transition
between two segments of distance by means of transitions
in the evolution of the temporal view, using T-CLOCKS. Each
transition is recorded as a triplet containing an emission date,
the corresponding distance, and the type of segment starting at
this emission date (flat or slope). An example of such sequence
is given on Figure 14, representing the distance from node a
to node c in the graph of Figure 5 (triangle TVG).

The subtlety here is that the value of the distance at the
beginning of a slope segment, as well as the duration of both

t d̂a,t(c) trend
9 2 flat

19 2 slope
20 1 flat
59 52 slope

(a) Sequence of triplets for d̂a,t(c)
0 20 40 60 80 100

0

10

20

30

40

50

(b) d̂a,t(c) as a function of t

Figure 14. Temporal distance from a to c, as a function of emission date.

Algorithm 4 Computing temporal distances at the receiver,
relative to a given emitter.

1: Map <Date,Distance> table← ∅
2: Integer currentLevel← +∞
3: Date startD ← nil
4: Date pendingED ← nil

5: init():
6: TClocks.register(false) B register to T-CLOCKS without

immediate notification of the current level

7: dateImproved (Node src, Date date, Node proxy):
8: if src = emitter then
9: update(date)

10: levelChanged (Node src, Level level, Node proxy):
11: if src = emitter then
12: update(now()− level× ζ)
13: currentLevel← level

14: update (Date newED):
15: if startD = nil then
16: startD ← now()
17: pendingED ← newED
18: else
19: updateF lat()
20: updateSlope(newED)
21: if now() = startD + p then
22: terminate

23: updateFlat ():
24: if currentLevel < +∞ then
25: Date bestED ← now()− currentLevel× ζ
26: if bestED > pendingED then
27: B A flat segment is detected
28: table.add(pendingED, currentLevel × ζ, ”flat”)
29: pendingED ← bestED

30: updateSlope (Date newED):
31: if newED > pendingED then
32: B A slope segment is detected
33: table.add(pendingED, now()− pendingED, ”slope”)
34: pendingED ← newED

types of segments, becomes known only at the end of the
corresponding temporal view segment; therefore, the algorithm
always records values relative to a previously pending emis-
sion date (pendingED). Precisely, whenever an event related
to the temporal view occurs, whether it be caused by the arrival
of a better indirect journey (dateImproved()) or a change in
the level (levelChanged()), the same update function is called
involving the following sub-routines:
• updateF lat(): If the current level (currentLevel) was

not infinite, then the corresponding continuum may have
delivered new emission dates (checked in lines 24 to 26). If
this is the case, then a flat segment is inserted for the pending
date using distance value currentLevel × ζ (see Proof 15).

12

• updateSlope(): If the new event implies a discrete improve-
ment of the view (line 31), then a slope segment must be cre-
ated, and only then the distance at the pending emission date
becomes known. The segment being a continuous decrease,
the value corresponds to the distance at the newly received
emission date plus the time elapsed between that date and
the pending date (see Proof 14), i.e., (now() − newED) +

(newED−pendingED) = now()−pendingED (c.f. line 33).
Observe that nothing prevents a same event from inducing

both a flat and a slope segments (e.g. when c’s level relative
to a changes at time 21 in the graph of Figure 5). Figure 15
shows a final example of execution trace corresponding to the
most relevant steps at node c corresponding to the values in
Figure 14. The beginning of execution at node c was arbitrarily
set anytime between date 21 and date 60 (modulo p = 100).

Date Event Action
60 levelChanged(+∞) startD ← 60

pendingED ← 59
currentLevel← +∞

111 levelChanged(2) updateF lat()
updateSlope(109)
table.add(59, 52, ”slope”)
pendingED ← 109
currentLevel← 2

121 levelChanged(1) updateF lat()
table.add(109, 2, ”flat”)
pendingED ← 119
currentLevel← 1
updateSlope(120)
table.add(119, 2, ”slope”)
pendingED ← 120
currentLevel← 1

160 levelChanged(+∞) updateF lat()
table.add(120, 1, ”flat”)
terminate

Figure 15. Relevant traces at node c relative to emitter a (assuming an
arbitrary start of execution between dates 21 and 60).

Theorem 18: The execution of Algorithm 4 in a
periodically-varying graph G with known period p, relative
to emitter u, results in every node v capturing correctly the
evolution of d̂u(v) over one complete period, in O(p).

Proof: The argument is based on the correctness of
T-CLOCKS combined with the strategy of Theorem 17 that
Algorithm 4 implements. Theorem 17 states that each segment
of evolution of the temporal distance corresponds to a segment
of evolution of the temporal view (the precise character-
ization of this correspondence being given by the proofs
of Lemmas 14 and 15). Correctness follows from detecting
all transitions in the evolution of the temporal view (events
levelChanged() and dateImproved()), guaranteed by T-
CLOCKS, and transposing the corresponding segments into
segments of the evolution of the temporal distance by means of
procedures updateF lat() and updateSlope() in Algorithm 4
(both of which are called for every such transition, and each
of which checks for the need to create the corresponding type
of segment according to Lemmas 14 and 15). One period
exactly after the first record is inserted, a last record completes
the distance table, then the algorithm terminates (lines 21
and 22). Because the dates are taken modulo p, this last record
completes the distance table relative to a complete period.

4) Aggregating distance tables back to the emitter: Dis-
tance tables relative to a given emitter are aggregated along
a tree rooted at that node. Such a tree may be arbitrary and
built, for instance, using the same strategy as mentioned above
for single foremost BTs (i.e., flooding a dedicated message
from the emitter and detecting from which neighbor this
message is first received at every node, followed by local
acknowledgments of the corresponding relations). Once a node
has computed its distance table and aggregated the tables of
all its children (if any), it sends the resulting table to its
parent. The aggregation of a children table (described below)
consists of a segment-wise maximum among both tables for all
emission dates (see Figure 16 for a visual illustration). Once

0 20 40 60 80 100

0

10

20

30

40

50

(a) d̂a(b)

0 20 40 60 80 100

0

10

20

30

40

50

(b) ecca(t) = max(d̂a,t(b), d̂a,t(c))

Figure 16. Aggregation of distances. The left curve (distance from a to b)
is combined to the curve of Figure 14(b)) (distance from a to c) in order to
yield the eccentricity of node a over one period.

the emitter has aggregated all its children tables within its own
table (initially consisting of a single flat segment of value 0),
the final result corresponds to the maximum distance in every
point in time among all nodes, and therefore (Equation 1)
represents the evolution of its eccentricity over one period.
Once this table known, it finally selects any of the dates
at which the eccentricity is minimum (relative to which the
foremost BT is to be built), then terminates. We now describe
the aggregation process in more detail.

The purpose of aggregation is to select the maximum value
among all distances in every point in time. Aggregating two
tables based on their segments would be relatively straight-
forward if the segments were horizontally aligned (i.e., if
the period was split into the same sequence of intervals in
both tables) and vertically non-crossing (i.e., given any pair
of aligned segments, one of them remains higher than or
equal to the other during the corresponding interval). In such
an ideal case, the maximum operation between two aligned
segments, say Si = (ti, d̂ti , trendi) and S ′i = (ti, d̂

′
ti , trend

′
i)

is straightforward; it may consist in selecting Si iff

(d̂ti > d̂t′i)∨ (d̂ti = d̂t′i ∧ trendi = flat); and S ′i otherwise.

Theorem 19: Given two segments whose intervals are
aligned and values are non-crossing, the above logic selects
the correct maximum segment.

Proof: Let us examine separately the cases that d̂ti > d̂t′i ,
d̂ti < d̂t′i , or d̂ti = d̂t′i . If d̂ti > d̂t′i Si is selected irrespective
of the trend (left clause). This condition is sufficient because
segments cannot cross. If d̂ti < d̂t′i the formula evaluates
to false, leading to select S ′i, which is correct for the same
reason. If d̂ti = d̂t′i then three cases are again possible: either

13

both segments are flat (and therefore equals, Si is arbitrarily
selected), or both segments are a slope (and therefore equals,
S ′i is arbitrarily selected), or Si is flat and S ′i is a slope (a flat
segment starting at the same high as a decreasing slope will
necessarily remain higher; Si is therefore selected), or Si is a
slope and S ′i is flat (symmetrical case, S ′i will be selected).

In reality, segments do cover intervals of various sizes, and
the distance values may also “cross” even if the intervals
are aligned (e.g. a slope segment starting at a slightly higher
value than a flat segment). Rather than complicating the above
logic of aggregation, we pre-process the two tables before
aggregation as follows:

1) Split the segments so as to align both tables: Splitting a seg-
ment (ti, d̂ti , trend) at date t′i comes to insert a subsequent
entry (t′i, d̂t′i , trend) such that d̂t′i = d̂ti if trend = flat and
d̂t′i = d̂ti − (t′i− ti) if trend = slope. Each table undergoes
such a split relative to every index date (t′is) that exists only
in the other table. An additional split relative to time 0 may
also be added for convenience (if not already present).

2) Split further to eliminate crossing values: Given two
aligned segments of size l, if one is flat and the other a slope,
say (t, d̂ft , f lat) and (t, d̂st , slope), and 0 < d̂st − d̂ft < l,
then both segments are split at t+ (d̂st − d̂ft) precisely.

Theorem 20: These pre-processing steps produce tables
whose segments are aligned and non-crossing.

Proof: First of all, the fact that a split preserves the
consistency of a table is clear from the formulas in step 1 (i.e.,
using the same distance value if the segment is flat; decreasing
it otherwise by an amount equal to the time elapsed since the
beginning of the segment). Since each table undergoes a split
with respect to every index date that exists only in the other
table, the resulting tables must contain the same index dates
(aligned segments). As for the crossing segments, let us first
observe that two flat segments cannot cross since their value is
a constant, neither can two slope segments because their value
decrease at a same rate (the rate of time). Therefore, crossings
may only occur between segments of different trends. Let
δ = d̂st − d̂ft be the difference of initial value between the
slope segment and the flat segment. The segments cannot cross
if the slope segment is already below the flat segment at the
beginning of the interval (a slope is always decreasing), neither
can they if δ is larger than l because the final value of the slope
segment will still be above that of the flat segment. Therefore,
crossings only occur if 0 < δ < l. Besides, both types of
segment trend being linear, two given segments cannot cross
more than once. It is therefore sufficient to split them with
respect to their crossing point t+ δ.
Figure 17 illustrates the aggregation of two distance tables that
relate again to the same example, i.e., d̂a,t(b) and d̂a,t(c) in
the triangle TVG of Figure 5. Note that no situation of crossing
segments had to be handled. Based on the final aggregation,
the emitter can decide when to initiate the intended fastest
broadcast (here, anytime between dates 20 and 29 modulo p).

Theorem 21: The strategy presented in this section cor-
rectly leads to the emitter learning the evolution of its temporal
eccentricity over one period.

Proof: Follows from the combination of Theorems 18, 19,

ED Dist Type
0 1 flat

29 2 flat
38 33 slope
59 42 slope

⊕
ED Dist Type
(0) (11) (slope)
9 2 flat

19 2 slope
20 1 flat
59 52 slope

=

ED Ecc Type
0 11 slope
9 2 flat

19 2 slope
20 1 flat
29 2 flat
38 33 slope
59 52 slope

Figure 17. Aggregation of two distance tables, corresponding to d̂a,t(b) and
d̂a,t(c) in the graph of Figure 5.

and 20. Each node in the network computes correctly the evo-
lution of the temporal distance from the emitter (Theorem 18);
then, whenever two tables of distance are aggregated (which
is done opportunistically along an arbitrary delay-tolerant tree
rooted at the emitter), they are pre-processed to make the seg-
ments of evolutions aligned and non-crossing (Theorem 20),
which property is exploited to compute their (segment-wise)
maximums (Theorem 19). Aggregation ultimately results in
the temporal eccentricity of the emitter (by Equation 1).

VI. CONCLUDING REMARKS AND OPEN PROBLEMS

This paper addressed the question of measuring temporal
lags in highly-dynamic networks. We formulated this problem
in a distributed setting, and solved it for the general case of
arbitrary long (and possibly overlapping) contacts, with non-
negligible (though fixed and known) latencies on the edges.
The paper also illustrated how temporal lags can be leveraged
to solve concrete network problems, such as the construction
of foremost and fastest broadcast trees in periodically-varying
graphs. Interestingly, the algorithm solving foremost broad-
cast also solved, as a by-product, the construction of time-
dependent backbones, a concept recently formulated in [27].
Feasibility of the main problem was demonstrated construc-
tively, with an algorithm that adapts vector clocks to the task
of measuring temporal lags in this general context where both
direct and indirect journeys can co-exist in the network. We
called this algorithm (or abstraction) T-CLOCKS.

The complexity of T-CLOCKS is presumed high, and imple-
menting it in practical scenario shall require further optimiza-
tion (same for [27] with punctual contacts). Characterizing and
improving the communication costs is all the more relevant if
T-CLOCKS is used as a building block for other algorithms.
Indeed, any improvement would have instant repercussions –
new upper bounds, typically – on all derivative problems and
algorithms. This raises interesting questions on the analysis of
algorithmic complexity in DTNs, which strongly depends on
the number of topological events during execution (in our case,
a majority of actions are triggered by such events). Complexity
of T-CLOCKS could also be assessed through simulations, based
on publicly available networks traces (see e.g. the Crawdad
project [19]). Another interesting question is whether some
assumptions could be relaxed such as having fixed latency,
which becomes less realistic as the network size increases (in
the current version, nodes exchange messages of O(n) size).

Finally, we believe T-CLOCKS could be used in various
delay-tolerant reformulations of classical distributed problems

14

such as election (e.g., electing a leader whose temporal eccen-
tricity is minimum) or compact routing (e.g., through assigning
names to the nodes based on their temporal properties).

ACKNOWLEDGMENTS

We would like to thank the anonymous referees for their
helpful comments which led to a clearer and more precise
presentation of our contributions. This work was supported
in part by the Natural Sciences and Engineering Research
Council of Canada (NSERC), the Australian Reearch Council
(ARC), and Prof. Flocchini’s University Research Chair.

REFERENCES

[1] B. Awerbuch and S. Even. “Efficient and reliable broadcast is achievable
in an eventually connected network,” in Proc. 3rd ACM symp. on
Principles of Distributed Computing (PODC’84), pp. 278–281, 1984.

[2] K. Berman, “Vulnerability of scheduled networks and a generalization
of Menger’s Theorem,” Networks, vol. 28, no. 3, pp. 125–134, 1996.

[3] B. Brejová, S. Dobrev, R. Královič, and T. Vinař, “Routing in carrier-
based mobile networks,” in Proc. 18th Intl. Conf. on Structural Informa-
tion and Communication Complexity (SIROCCO), pp. 222–233, 2011.

[4] S. Bhadra and A. Ferreira, “Complexity of connected components in
evolving graphs and the computation of multicast trees in dynamic
networks,” in Proc. 2nd Intl. Conference on Ad Hoc, Mobile and
Wireless Networks (ADHOCNOW), 2003, pp. 259–270.

[5] B. Bui-Xuan, A. Ferreira, and A. Jarry, “Computing shortest, fastest,
and foremost journeys in dynamic networks,” Intl. J. of Foundations of
Comp. Science, vol. 14, no. 2, pp. 267–285, April 2003.

[6] A. Casteigts, S. Chaumette, and A. Ferreira. Characterizing topological
assumptions of distributed algorithms in dynamic networks. In Proc.
16th Intl. Conf. on Structural Information and Communication Complex-
ity (SIROCCO), pp. 126–140, 2009. (Full version in arXiv:1102.5529.)

[7] A. Casteigts, P. Flocchini, B. Mans, and N. Santoro, “Deterministic
computations in time-varying graphs: Broadcasting under unstructured
mobility,” in Proc. 5th IFIP Conf. on Theoretical Computer Science
(TCS), pp. 111–124, 2010.

[8] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro, “Time-
varying graphs and dynamic networks,” Proc. 10th Intl. Conf. on Ad
Hoc, Mobile and Wireless Networks (ADHOCNOW), pp. 346–359, 2011.

[9] B. Choi, H. Liang, X. Shen, and W. Zhuang, “DCS: distributed asyn-
chronous clock synchronization in delay tolerant networks,” IEEE Trans.
Parallel and Distributed Systems, vol. 23, no. 3, pp. 491–504, 2011.

[10] A. Chaintreau, A. Mtibaa, L. Massoulie, and C. Diot, “The diameter of
opportunistic mobile networks,” Communications Surveys & Tutorials,
vol. 10, no. 3, pp. 74–88, 2008.

[11] H. Dubois-Ferriere, M. Grossglauser, and M. Vetterli, “Age matters:
efficient route discovery in mobile ad hoc networks using encounter
ages,” in Proceedings ACM International Symposium on Mobile Ad Hoc
Networking & Computing (MOBIHOC), pp. 257–266, 2003.

[12] A. Ferreira, “Building a reference combinatorial model for MANETs,”
IEEE Network, vol. 18, no. 5, pp. 24–29, 2004.

[13] C. Fidge, “Timestamps in message-passing systems that preserve the
partial ordering,” in Proceedings of the 11th Australian Computer
Science Conference, vol. 10, no. 1, 1988, pp. 56–66.

[14] P. Flocchini, M. Kellett, P. Mason, and N. Santoro, “Searching for black
holes in subways,” in Theory of Computing Systems, pp. 1–27, in press.

[15] P. Flocchini, B. Mans, and N. Santoro, “Exploration of periodically vary-
ing graphs,” in Proc. 20th Intl. Symp. on Algorithms and Computation
(ISAAC), 2009, pp. 534–543.

[16] F. Greve, L. Arantes, and P. Sens. What model and what conditions to
implement unreliable failure detectors in dynamic networks? In 3rd W.
on Theoretical Aspects of Dynamic Distributed Systems (TADDS), 2011.

[17] M. Grossglauser and M. Vetterli, “Locating nodes with EASE: Last
encounter routing in ad hoc networks through mobility diffusion,” in
Proc. 22nd Conference on Computer Communications (INFOCOM),
vol. 3, 2003, pp. 1954–1964.

[18] P. Holme, “Network reachability of real-world contact sequences,”
Physical Review E, vol. 71, no. 4, p. 46119, 2005.

[19] D. Kotz and T. Henderson, “Crawdad: A community resource for
archiving wireless data at dartmouth,” IEEE Pervasive Computing, vol. 4,
no. 4, pp. 12–14, 2005.

[20] F. Kuhn, T. Locher, and R. Oshman, “Gradient clock synchronization
in dynamic networks,” in Proc. of the 21st symp. on Parallelism in
Algorithms and Architectures (SPAA). ACM, 2009, pp. 270–279.

[21] P. Jacquet, B. Mans, and G. Rodolakis, “Information propagation speed
in mobile and delay tolerant networks,” in IEEE Transactions on
Information Theory, 56(1), pp. 5001–5015, Oct 2010.

[22] D. Ilcinkas and A.M. Wade, “On the power of waiting when exploring
public transportation systems.” in Proc. of 15th Intl. Conf. On Principles
Of Distributed Systems (OPODIS), Dec 2011.

[23] S. Jain, K. Fall, and R. Patra, “Routing in a delay tolerant network,” in
Proc. Conf. on Applications, Technologies, Architectures, and Protocols
for Comp. Comm. (SIGCOMM), 2004, pp. 145–158.

[24] E. Jones, L. Li, J. Schmidtke, and P. Ward, “Practical routing in delay-
tolerant networks,” IEEE Transactions on Mobile Computing, vol. 6,
no. 8, pp. 943–959, 2007.

[25] D. Kempe, J. Kleinberg, and A. Kumar, “Connectivity and inference
problems for temporal networks,” in Proceedings 32nd ACM Symposium
on Theory of Computing, 2000, p. 513.

[26] A. Keränen and J. Ott, “DTN over aerial carriers,” in Proceedings 4th
ACM Workshop on Challenged Networks, 2009, pp. 67–76.

[27] G. Kossinets, J. Kleinberg, and D. Watts, “The structure of information
pathways in a social communication network,” in Proc. 14th Intl. Conf.
on Knowledge Discovery and Data Mining (KDD), 2008, pp. 435–443.

[28] V. Kostakos, “Temporal graphs,” Physica A, vol. 388, no. 6, pp. 1007–
1023, 2009.

[29] A. Lindgren, A. Doria, and O. Schelén, “Probabilistic routing in inter-
mittently connected networks,” SIGMOBILE Mob. Comput. Commun.
Rev., vol. 7, no. 3, pp. 19–20, 2003.

[30] C. Liu and J. Wu, “Scalable routing in cyclic mobile networks,” IEEE
Trans. Parallel Distrib. Syst., vol. 20, no. 9, pp. 1325–1338, 2009.

[31] F. Mattern, “Virtual time and global states of distributed systems,” in
Proceedings of the International Workshop on Parallel and Distributed
Algorithms, 1989, pp. 215–226.

[32] B. Sundararaman, U. Buy, and A. Kshemkalyani, “Clock synchroniza-
tion for wireless sensor networks: a survey,” Ad Hoc Networks, vol. 3,
no. 3, pp. 281–323, 2005.

[33] M. Yamashita and T. Kameda, “Computing on anonymous networks:
Part I and II,” IEEE Trans. on Par. and Distributed Systems, vol. 7,
no. 1, pp. 69 – 96, 1996.

[34] Z. Zhang, “Routing in intermittently connected mobile ad hoc networks
and delay tolerant networks: Overview and challenges,” IEEE Commu-
nications Surveys & Tutorials, vol. 8, no. 1, pp. 24–37, 2006.

Arnaud Casteigts is Assistant Professor at the Uni-
versity of Bordeaux, France, where he joined after
a four-year postdoctoral stay at the University of
Ottawa, Canada. His research interests include dis-
tributed computing in static and dynamic networks,
private data analysis and visualization of algorithms.

Paola Flocchini is University Research Chair in Dis-
tributed Computing at the School of Electrical En-
gineering and Computer Science (University of Ot-
tawa). Her main research interests are in distributed
algorithms, distributed computing, algorithms for
mobile agents and autonomous robots, and cellular
automata.

Bernard Mans is Professor for the Department of
Computing at Macquarie University, Sydney, Aus-
tralia. His research interests centre on algorithms
and graphs for distributed and mobile computing. In
2003, he was the HITACHI Chair 2003 at INRIA,
France.

Nicola Santoro is Distinguished Research Professor
of Computer Science at Carleton University. He has
been involved in distributed computing from the be-
ginning of the field, authoring many seminal papers
and founding the main theoretical conferences in the
area. He is the author of the book “Design and Anal-
ysis of Distributed Algorithms” (Wiley 2007). His
main current research is on distributed algorithms
for mobile entities and dynamic networks.

