
Effective Elections for Anonymous Mobile
Agents

Shantanu Das1, Paola Flocchini1, Amiya Nayak1, and Nicola Santoro2

1 School of Information Technology and Engineering, University of Ottawa, Canada,
{shantdas,flocchin,anayak}@site.uottawa.ca,

2 School of Computer Science, Carleton University, Canada,
santoro@scs.carleton.ca

Abstract. We present distributed protocols for electing a leader among
k mobile agents that are dispersed among the n nodes of a graph. While
previous solutions for the agent election problem were restricted to spe-
cific topologies or under specific conditions, the protocols presented in
this paper face the problem in the most general case, i.e. for an arbi-
trary topology where the nodes of the graph may not be distinctly la-
belled and the agents might be all identical (and thus indistinguishable
from each other). In such cases, the agent election problem is often dif-
ficult, and sometimes impossible to solve using deterministic means. We
have designed protocols for solving the problem that—unlike previous
solutions—are effective, meaning that they always succeed in electing
a leader under any given setting if at all it is possible, and otherwise
detect the fact that election is impossible in that setting. We present
several election protocols, all effective. Starting with the straightforward
solution, that requires an exponential amount of edge-traversals by the
agents, we describe significantly more efficient algorithms; in the latter
the total number of edge-traversals made by the agents is always poly-
nomial, their difference is in the amount of bits of storage they required
at the nodes.

1 Introduction

1.1 The Framework

We consider the problem of leader election in distributed networked environ-
ments that support autonomous mobile agents. More specifically, there are k
identical mobile agents dispersed among the n nodes of a network (or simply an
undirected graph) and the agents can autonomously move from node to neigh-
boring node throughout the network. Communication between agents is done
using public whiteboards available at the nodes. An agent can communicate
with another by leaving a written message at some node, which can be read by
any agent visiting that node. The objective is to elect one of the agents as the
leader.

We are interested in systems where both the networks and the agents are
anonymous. The reason for this interest is because these systems provide the

(computationally) weakest environments; thus, they provide insights on the na-
ture and amount of computational power necessary for the solvability of tasks.
Furthermore, any solution protocol so designed would work without relaying
upon (and thus not requiring) the availability of name servers in the system.

First observe that, in these systems, the election problem is not always solv-
able using deterministic algorithms. Thus, an important line of research is the
investigation of under what conditions election is indeed possible, if at all, in
such systems. A connected line of research is to design efficient protocols for
electing a leader under specific conditions. A third related area of research is
the one of designing effective solution protocols; that is, protocols that in each
setting within finite time will elect a leader, if election is at all possible in that
setting, otherwise report that the problem is not solvable in that setting. The
focus of this paper is on the latter area.

The problem of leader election among mobile agents communicating by white-
boards, has been earlier studied by Barrière et al. [5] and Das et al. [9]. Both
these papers solve the problem under the constraint that n (the size of the graph)
and k (the number of agents) are co-prime to each-other. These solutions are
therefore, not effective according to our definition, since there are many settings
where election is possible even when n and k are not co-prime. In this paper, we
aim to improve upon these solutions by designing effective protocols for leader
election in the mobile agent model. We are also concerned about the efficiency
of the proposed solutions. The main cost measure of an algorithm in this model
is the number of moves performed by the agents during the execution; another
measure is the minimum size of the whiteboards required for the execution of
the algorithm.

1.2 Our Results

In this paper we first extend the characterization of the conditions for election in
anonymous message-passing systems as given by Yamashita and Kameda[17], to
the mobile agent model. Based on this characterization, we describe a straight-
forward technique for effective election (protocol Compare-View described in
Section 2.2), showing that effective protocols are indeed possible.

We then present a more efficient yet effective solution (algorithm Agent-
Elect described in Section 3), that achieves leader election using only O(m ·
k) agent moves for k agents in a graph with m edges. In Section 4, we give
two improvements to this algorithm which bring down its memory usage at
the cost of a slight increase in the total agent moves. Table 1 below shows the
comparison between the various algorithms based on the two cost measures.
(Here ∆ indicates the maximum degree of the graph.) In comparison with these
algorithms, the non-effective solutions presented in [5] and in [9] have cost of
O(k · n) and O(k · m) edge-traversals respectively and require O(log n) bits of
node memory.

Algorithm Cost Assumption
Edge-traversals Node-Storage

Agent-Elect O(k m) O(m log n) one of n
Agent-Elect-2 O(k m2) O(log n) or k
Agent-Elect-3 O(k n m2) O(log ∆) is known

Compare-View O(k ∆2n) O(1) n is known

Table 1. Comparison of the cost (moves vs storage) for the proposed election algo-
rithms

1.3 Related Work

In the message-passing distributed computing model, the characterization of conditions
for computability in general and election in particular has been object of extensive
investigations, starting from the pioneering work of Dana Angluin [2]. A complete
characterization has been eventually provided by Yamashita and Kameda [17], and
later refined by [8, 15]. The present work is based on the concept of the view of a
node, introduced in [17]. Norris [15] improved on some of these results while Boldi et
al. [8] gave a similar characterization for directed graphs using the notion of fibration.
Many other authors have focussed their investigations on the issue of computability in
anonymous networks having specific topologies, noticeably rings [3], hypercubes [14],
and tori [6]. For a recent survey see [13].

The leader election problem is also related to the problem of spanning tree con-
struction in a graph. Many distributed algorithms have been proposed for minimum
spanning tree construction in labelled graphs (i.e. where nodes are labelled with dis-
tinct identifiers), notably the one proposed by Gallager, Humblet and Spira [11]. For
anonymous networks, Sakamoto[16] gave an algorithm that builds a spanning forest of
the graph under a variety of initial conditions. Korach, Kutten and Moran [12] showed
that the complexity of solving leader election in any arbitrary graph depends on how
efficiently the graph can be traversed.

The traversal or exploration of anonymous graphs have also been studied exten-
sively, using different models for marking the nodes (e.g. [7, 10]). Another related prob-
lem in the mobile agent setting—that of gathering the agents (called the Rendezvous
problem)—has been studied mainly for agents having distinct labels [1].

The agent election problem has been specifically studied by Barrière et al. [5] and
Das et al. [9] but, as mentioned earlier, these solutions are not effective. Barrière et al.
[4] have studied the agent election problem for networks where nodes are anonymous
and edge/agent labels are distinct but incomparable.

2 Solving the Agent Election Problem

The Model: The network is modelled as an undirected graph G(V, E), where the
ordering or numbering on the nodes in V is unknown to the agents, i.e. the nodes are
anonymous. At each node of the graph, the edges incident to it are locally labelled,
so that an agent arriving at a node can distinguish among them. The edge labelling
of the graph G is given by λ = {λv : v ∈ V }, where for each vertex v of degree d,
λv : {e(v, u) : u ∈ V and e ∈ E} → {1, 2, ...d} is a bijection specifying the local
labelling at v.

Each agent is initially located in a distinct node of the graph, called its homebase.
For simplicity, we assume that no two agents have the same homebase. Those nodes
which are homebases are initially marked. Thus, the initial placement of agents in
the graph G is denoted by the bi-coloring b : V → {0, 1} on the set of vertices,
where those vertices that are colored 1(or, black) are the homebases of the agents.
The agents communicate by reading and writing information on public whiteboards
locally available at the nodes of the network. Access to the whiteboard is restricted by
fair mutual exclusion. The agents are identical (i.e. they do not have distinct names
or labels which can be used to distinguish among them) and each agent executes the
same protocol. They are asynchronous, in the sense that every action an agent performs
(computing, moving, etc.) takes a finite but otherwise unpredictable amount of time.
We define the leader election problem in mobile agent systems as follows:
The Problem: The agent election problem for k agents located in the network (G, λ, b)
is said to have been solved when exactly one of the k agents reaches the final state
‘LEADER’, and all other agents reach the final state ‘FOLLOWER’.
Solvable Instance: A given instance (G, λ, b) of the AEP problem is said to be solv-
able, if there exists a deterministic (distributed) algorithm A such that every execution
of the algorithm A on that instance, solves the problem within some finite time.
Effective Algorithm: A deterministic agent election algorithmA is said to be effective
if every execution of A on every instance of the problem detects whether the instance
is solvable, and terminates in finite time, succeeding in solving the problem if and only
if the given instance is solvable.

2.1 Characterization: Conditions for solvability

In this paper we shall assume that the agents have prior knowledge of the value of at
least one of the parameters n or k (which is a necessary condition as shown in [5]).
Yamashita and Kameda [17] have determined the necessary and sufficient conditions
for solution to the leader election problem (assuming that n is known) in the classical
message passing network model. In that model, they introduced the concept of the
view of a node v in a graph G, which is simply the infinite rooted tree with edge labels,
that contains all (infinite) walks starting at v. In our model, we extend the concept
of view to bi-colored views, where the vertices3 in the view are colored black or white
depending on whether or not they represent the homebase of some agent. The view of
an agent is taken to be the bi-colored view of its homebase.

Definition 1. The bi-colored view Tv(G, λ, b) of node v, in the network (G, λ, b), is
an infinite edge-labelled rooted tree T , whose root represents the node v and for each
neighboring node ui of v, there is a vertex xi in T (with same color as ui) and an edge
from the root to xi with the same labels as the edge from v to ui in G. The subtree of
T rooted at xi is again the bi-colored view Tui(G, λ, b) of the node ui.

The view from node u, truncated to a depth of h is denoted by T h
u . An interesting

observation is that the view T h
u from node u, contains the view T h−d

v for all such nodes
v that are a distance of d < h from node u. Thus, the view up to depth 2n from any
node contains as sub-views, the views up to depth n, of all other nodes.

3 A note on terminology: We use the word ‘vertex’ to refer to vertices in the view
T , whereas the vertices of the original graph G are referred to as ‘nodes’. Multiple
vertices in the view may correspond to a single node in the graph G.

Property 1 ([15, 17]). The views Tu(G, λ, b) and Tv(G, λ, b) of any two nodes u and v
in a graph G of size n, are equal if and only if the truncated view up to depth n− 1, of
these two nodes are equal, i.e. Tu(G, λ, b) = Tv(G, λ, b) if and only if T n−1

u (G, λ, b) =
T n−1

v (G, λ, b).

The following result is known about the solvability of leader election in the message-
passing network model.

Property 2 ([17]). The Leader Election Problem in a message-passing network repre-
sented by graph G having edge labelling λ, is solvable if and only if the view of a node
is unique.

In [4], it was proved that there exists a simple transformation for converting a mobile
agent based algorithm to distributed message passing algorithm, provided that the
homebases are marked (i.e. the graph is bi-colored). This implies the following result:

Theorem 1. The Agent Election Problem is solvable for a graph G with edge labelling
λ, and bi-coloring b, if and only if the bi-colored view of an agent is unique.

2.2 An Effective Election Protocol

When the agents know the value of n, we can use the following protocol for electing a
leader (based on the approach of [17]). Each agent can traverse the graph to compute
its view up to a depth of 2n−1 and thus obtain the views (up to depth n-1) of all other
agents. Since there exists a total order on views (of the same depth), it is possible to
order the agents based on their views and thus solve the leader election problem. The
following algorithm implements such a strategy:

ALGORITHM Compare-View

Set h to 2n− 1;

Call Construct-View(h) to get the bi-colored view T h
u of the homebase u;

Set i to 1; A[i]← T n−1
u ;

For each vertex v in T h
u , which is at level less than n,

If T n−1
v 6= A[j] for any 1 ≤ j ≤ i.

then i← i + 1; A[i]← T n−1
v ;

If i 6= n, then terminate with failure;
Ab ← {T n−1

x ∈ A : x is a black node } ; Sort the array Ab based on a fixed total order;

If Ab[1] = T n−1
u , then become LEADER;

Else become FOLLOWER;

PROCEDURE Construct-View(h)

(To construct the view up to level h, for current node u)

Add the current node u to T h
u ,

If h = 0, return T h
u ;

Else,
For i=1 to degree(u),

traverse link i to reach node vi;

add the traversed edge and its labels to T h
u ;

compute T h−1
vi

= Construct-View(h− 1), and add it to T h
u ;

Return T h
u ;

Theorem 2. The algorithm Compare-View is an effective election algorithm.

Theorem 3. The total number of agent moves in an execution of algorithm Compare-
View is O(k · ∆2n) for a graph of size n with maximum degree ∆, and k agents. The
amount of node memory required by the algorithm is constant.

3 Polynomial Solutions to the Agent Election Problem

3.1 Partial-Views

In the algorithm Compare-View from the previous section, each agent computes its view
by traversing the complete graph which—in the absence of any topological information—
takes an exponential number of moves. We want to reduce the number of the moves
made by an agent to solve the problem. The approach we use for achieving that is to re-
strict the movements of each agent to a limited region around its homebase. Each agent
would traverse only a subgraph of the original graph G and then exchange information
with the other agents to obtain knowledge about the other parts of the graph. In other
words, we partition the graph G into disjoint subgraphs, each owned by a single agent
and called the agent’s territory. Each agent executes the algorithm EXPLORE given
below, to obtain its territory.
Algorithm EXPLORE :

1. Set Path to empty ;
Mark the homebase as explored and include it in the Territory T .

2. While there is another unexplored edge e at the current node u,
mark link λu(e) as a ‘T’-edge and then traverse e to reach node v;
If v is already marked (or v is a homebase),

return back to u and re-mark the link λu(e) as a ‘NT’-edge;
Otherwise

mark v as explored and mark λv(e) as a ‘T’-edge;
Add link λv(e) to Path;
Add edge e and node v to the territory T ;

3. When there are no more unexplored edges at the current node,
If Path is not empty then,

remove the last link from Path, traverse that link and repeat Step 2;
Otherwise, Stop and return T ;

After the agents execute algorithm EXPLORE, each agent has its own territory
T , which forms a tree consisting of the nodes marked by the agent and the ‘T’-edges
joining them. It can be easily shown that the territories of the agents are disjoint from
each-other and together they form a spanning forest of the graph, containing exactly
k trees each rooted at the homebase of some agent.

Lemma 1. The total number of edge traversals made by the agents in executing algo-
rithm EXPLORE, is at most 4.m, irrespective of the number of agents.

During algorithm EXPLORE, each agent A can label the nodes in its territory
TA by marking them with numeric identifiers, i.e. numbering them (in the order that
they are visited). Thus, within the territory of an agent, each node could be uniquely
identified. However, the nodes on two different trees may have the same label. So,
once an agent traverses an ‘NT’-edge to reach another marked node, it is generally not
possible for the agent to determine if that node belongs to its own territory or that of
some other agent. This fact complicates the design of our solution protocol.

Based on the territory of an agent, we define the Partial-View of an agent A
having territory TA, as the finite rooted tree, such that: (i) The root corresponds to
the homebase v0 of agent A. (ii) For every other node vi in TA, there is a vertex xi in
PVA. (iii) For each edge (vi, vj) in TA, there is a edge (xi, xj) in PVA. (iv) For each
outgoing edge e = (vi, ui) such that vi ∈ TA but e /∈ TA, PVA contains an extra vertex
yi (called an external vertex) and an edge ê = (xi, yi) that joins xi to it. (v) Each

edge in PVA is marked with two labels, which are same as those of the corresponding
edge in G. (vi) Each vertex in PVA is colored black or white depending on whether the
corresponding node in G is a homebase or not. (vii) Each vertex is also labelled with
the numeric identifier assigned to the corresponding node of G.

During the execution of algorithm EXPLORE, each agent can build its Partial-
View. We have the following important result:

Lemma 2. If the agent election problem is solvable for an instance (G, λ, b) then, after
the execution of algorithm EXPLORE on (G, λ, b), there would be at least two agents
having distinct Partial-Views.

The above result implies that we can use the Partial-Views to distinguish between
some of the agents. We fix a particular encoding for the partial-views so that we can
compare among the PV’s of the agents. We show below how such comparisons can be
used for an effective agent election algorithm.

3.2 Algorithm Agent-Elect

The following algorithm proceeds in phases, where in each phase, agents compete with
each other to become the leader. An agent can be in one of the following states: Active,
Passive, Leader, Follower or Fail. Each agent starts the algorithm in active state and
knows the value of k at start4. The (encoded) Partial View of an agent A in phase i is
denoted PViA and Agent-Count(A) denotes the number of homebases in the current
territory of agent A.

ALGORITHM Agent-Elect
Execute EXPLORE to construct the territory TA;
PV0A ← COMPUTE-PV(TA) ;
For phase i = 1 to k {

If (AgentCount(A) = k) {
State ← Leader ;
SEND-ALL(“Success”); Exit();

}
SEND-ALL(PViA, i);
S ← RECEIVE-PV (i);
State ← COMPARE-PV(PViA, S);
If (State = Passive) {

SEND-MERGE(i);
SEND-ALL(“Defeated”, i);
Return to homebase and execute WAIT();

}Else {
RECEIVE-MERGE(i);
execute UPDATE-PV() and continue;

}
}
SEND-ALL(“Failure”); Exit();

– Procedure SEND-ALL(M): During this procedure, agent A simply writes the
message M on the whiteboard of each node in its territory.

– Procedure RECEIVE-PV(i): During this procedure, agent A visits each vertex u
in its territory and traverses each NT-edge e = (u, v) incident at u. On reaching the
node v at the other end of the edge e, agent A waits till it finds the pair (PViX , i)
written at node v (where PViX is an encoded Partial-View). Each Partial-View
PViX that is read is added to the set S, which is returned at the end.

4 With a simple modification the same algorithm can be executed if the value of n is
known instead of k.

– Procedure COMPARE-PV(PViA, S): During this procedure, agent A compares
its Partial-View PViA with those in the set S. If it finds any PViX > PViA, agent
A changes its State to Passive. Else, for every PViY that is less than PViA, agent
A stores the corresponding node v (where it was found) to the Defeated-List. The
procedure returns the current state of the agent (Active or Passive).

– Procedure SEND-MERGE(i): During this procedure, the agent A returns to the
node v where it found some Partial-View PViX that is greater than its own Partial-
View PViA. On reaching node v, it writes (MERGE,i,λv(e)) on the whiteboard of
node v, where e is the NT-edge joining v to TA.

– Procedure RECEIVE-MERGE(i): During this procedure, agent A visits every
node v in the Defeated-List and waits till it finds (“Defeated”,i) on the whiteboard
at node v. Finally agent A visits every node u in its territory and if it finds
(MERGE,i,l) written at u, then the edge e having λu(e) = l is re-marked as a
T-edge (from both sides). In this case, we say that the territories at the two ends
of edge e are merged.

– Procedure UPDATE-PV(): During this procedure an active agent updates its
Partial-View and its territory as follows. For every edge e that it re-marked as
T-edge during this phase, it finds the corresponding edge in its Partial-View and
replaces the external node v incident on this edge with the Partial-View PViX

that it read at node v. The new Partial-View obtained at the end of this procedure
is called PV(i+1)A and the internal nodes in this partial view represents the new
territory of agent A.

– Procedure WAIT(): This procedure is executed by a Passive agent A. The agent A
simply waits at its homebase until it finds either “Success” or “Failure” written on
the whiteboard. If it finds “Success”, then State is changed to Follower ; otherwise
the State is changed to Fail, and the agent terminates the algorithm.

We have the following results showing the correctness of the above algorithm.

Definition 2. (a) Γi denotes the set of agents that reach phase i of the algorithm in
active state. (b) We say that the algorithm reaches phase i if at least one agent reaches
phase i in active state.

Lemma 3. (a) During any phase i of the algorithm, the territories of the agents ∈ Γi

form a spanning forest of the graph G where each territory is a connected component of
G. (b)For any phase i, if |Γi| ≥ 2, and none of the agents in Gammai become passive
during phase i, then the AEP problem is unsolvable for the given instance (G, λ, b).
(c)If at least one agent becomes passive in phase i then at least one agent reaches phase
(i+1) in active state.

Theorem 4. Given any instance (G, λ, b) of the AEP, algorithm AGENT-ELECT
succeeds in electing a unique leader agent whenever (G, λ, b) is a solvable instance, and
otherwise terminates with failure notification.

Theorem 5. The algorithm AGENT-ELECT requires O(m · k) agent moves, in total,
for any given instance (G, λ, b) where m is the number of edges in G and k is the
number of agents.

Theorem 6. The algorithm AGENT-ELECT requires O(m log n) memory at the nodes
of the graph.

We have the following lower bound on the cost of an effective election algorithm for
mobile agents.

Lemma 4. Any deterministic algorithm for effective leader election among k anony-
mous agents, dispersed in an arbitrary anonymous graph G(V, E) with |V | = n nodes
and |E| = m edges, would require Ω(k · n) edge traversals, irrespective of the amount
of memory available at the nodes.

Thus from Theorem 5 and Lemma 4, we can say that the algorithm AGENT-
ELECT is almost optimal in terms of agent moves, at least for sparse graphs (where
m ' n).

4 Reducing the Size of the Whiteboards

Even though the number of agent moves used by algorithm AGENT-ELECT is quite
efficient in terms of the number of agent moves; the memory requirements for the
algorithm is much larger than that of algorithm Compare-View which uses constant
memory. We would like to reduce the amount of memory required, without making an
exponential number of agent moves. In the following we propose some modifications to
our algorithm, in order to reduce the amount of memory required at the whiteboards
of the nodes. As a result the number of agent moves made by the algorithm is slightly
increased, even though it is still polynomial in the size of the graph.

4.1 Algorithm Agent-Elect-2

We propose the algorithm Agent-Elect-2 which is a modified version of the previous
algorithm (AGENT-ELECT) and works as follows:

Algorithm Agent-Elect-2
Execute EXPLORE-2 to construct the territory TA;
PV0A ← COMPUTE-PV(TA) ;
For phase i = 1 to k {

If (AgentCount(A) = k) {
State ← Leader ;
SEND-ALL(“Success”); Exit();

}
SEND-ALL(“Begin”, i);
S ← RECEIVE-PV-2 (i);
State ← COMPARE-PV(PViA, S);
If (State = Passive) {

SEND-MERGE(i);
SEND-ALL(“Defeated”, i);
Return to homebase and execute WAIT();

}Else {
RECEIVE-MERGE-2(i);
execute UPDATE-PV() and continue;

}
}
SEND-ALL(“Failure”); Exit();

– The procedure EXPLORE-2() is similar to procedure EXPLORE with the only
difference that instead of marking the edges as T-edge and NT-edge, at each node
v a parent-link would be stored which would point to the parent of node v in the
territory tree.

– The procedure RECEIVE-PV-2() is different from RECEIVE-PV() in the following
way. When an agent A executing RECEIVE-PV-2() reaches an external node v to
read the Partial-View, it traverses the territory TB that contains v (using the
Parent-links), and computes the Partial-View PViB .

– The procedure RECEIVE-MERGE-2() is again similar to RECEIVE-MERGE()
with the following changes. Whenever an agent A has to merge its territory TA

with the territory TB at other end of an external edge (u,v), agent A sets the
Parent-link at node v to point to node u and then updates (i.e. reverses) the
Parent-Link for each edge on the path from v to the root of TB .

Lemma 5. The output of procedure RECEIVE-PV-2 is identical to the output of pro-
cedure RECEIVE-PV.

The only difference between the two algorithms is that in the modified algorithm,
an agent computes the Partial-View of its neighboring agents, instead of reading it from
the whiteboard, as in the original algorithm AGENT-ELECT. Thus, the correctness
of the algorithm Agent-Elect-2 follows from the correctness of AGENT-ELECT, due
to the above lemma.

Theorem 7. The algorithm Agent-Elect-2 performs O(k · m2) agent moves in total
and requires O(log n) bits of node memory.

4.2 Algorithm Agent-Elect-3

In order to further reduce the memory requirement of our algorithm, we can make the
following modifications to algorithm Agent-Elect-2 :

1. The procedure EXPLORE-2 is replaced by procedure EXPLORE-3, with the
change that EXPLORE-3 would not explicitly write the labels of the nodes on
the whiteboard of the nodes.

2. The procedure RECEIVE-PV-2() would be replaced by procedure RECEIVE-PV-
3() where an agent A that is computing the Partial-View of a neighbor B and needs
to read the label of a node x external to TB , computes the label5 by traversing the
tree containing x.

3. During the execution of the algorithm, whenever an agent A has to write the phase
number i on the whiteboard, it will write (i mod 3) instead.

This new algorithm is called Agent-Elect-3.

Theorem 8. The algorithm Agent-Elect-3 performs O(k ·n ·m2) agent moves in total
and requires O(log ∆) bits of node memory.

Acknowledgements

The authors would like to thank Masafumi Yamashita for the many helpful discussions.

5 The label assigned to a node v belonging to tree T , is uniquely determined as the
rank of the path to v from the root of T , when compared with the paths to other
nodes belonging to the same tree T .

References

1. S. Alpern and S. Gal. The Theory of Search Games and Rendezvous. Kluwer,
2003.

2. D. Angluin. Local and global properties in networks of processors. In Proc. 12th
ACM Symp. on Theory of Computing (STOC ’80), 82–93, 1980.

3. H. Attiya, M. Snir, and M.K. Warmuth. Computing on an anonymous ring. Jour-
nal of ACM, 35(4), 845–875, 1988.

4. L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro. Can we elect if we cannot
compare? In Proc. 15th ACM Symp. on Parallel Algorithms and Architectures
(SPAA ’03), 200–209, 2003.

5. L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro. Election and rendezvous
in fully anonymous networks with sense of direction. Theory of Computing Sys-
tems, 2006 (to appear). Preliminary version in Proc. 10th Coll. on Structural
Information and Communication Complexity (SIROCCO ’03), 17–32, 2003.

6. P.W. Beame and H.L. Bodlaender. Distributed computing on transitive grids: The
torus. In Proc. Symp. Theor. Aspects of Computer Science (STACS ’89), 294–303,
1989.

7. M. Bender, A. Fernandez, D. Ron, A. Sahai, and S. Vadhan. The power of a
pebble: Exploring and mapping directed graphs. In Proc. 30th ACM Symp. on
Theory of Computing (STOC ’98), 269–287, 1998.

8. P. Boldi, S. Shammah, S. Vigna, B. Codenotti, P. Gemmell and J. Simon. Sym-
metry breaking in anonymous networks: Characterizations. In Proc. 4th Israel
Symp. on Theory of Computing and Systems, 16–26, 1996.

9. S. Das, P. Flocchini, S. Kutten, A. Nayak, and N. Santoro. Map construction
of unknown graphs by multiple agents. Theo. Comp. Sci. (Submitted). Prelimi-
nary version in Proc. 12th Coll. on Structural Information and Communication
Complexity (SIROCCO ’05), 99–114, 2005.

10. P. Fraigniaud and D. Ilcinkas. Digraph exploration with little memory. In Proc.
21st Symp. on Theoretical Aspects of Computer Science (STACS ’04), 246–257,
2004.

11. R.G. Gallager, P.A. Humblet, and P.M. Spira. A distributed algorithm for
minimum-weight spanning trees. ACM Transactions on Programming Languages
and Systems, 5(1), 66–77, 1983.

12. E. Korach, S. Kutten, S. Moran. A modular technique for the design of efficient
distributed leader finding algorithms. ACM Transactions on Programming Lan-
guages and Systems, 12(1), 84–101, 1990.

13. E. Kranakis. Symmetry and computability in anonymous networks: A brief survey.
In Proc. 3rd Int. Conf. on Structural Information and Communication Complexity
(SIROCCO’97), 1–16, 1997.

14. E. Kranakis and D. Krizanc. Distributed computing on anonymous hypercube
networks. Journal of Algorithms, 23(1), 32–50, 1997.

15. N. Norris. Universal covers of graphs: Isomorphism to depth n − 1 implies iso-
morphism to all depths. Discrete Applied Mathematics, 56(1), 61–74, 1995.

16. N. Sakamoto. Comparison of initial conditions for distributed algorithms on
anonymous networks. In Proc. 18th ACM Symposium on Principles of Distributed
Computing (PODC ’99), 173–179, 1999.

17. M. Yamashita and T. Kameda. Computing on anonymous networks: Parts I and
II. IEEE Trans. on Parallel and Distributed Systems, 7(1), 69–96, 1996.

