
Ping Pong in Dangerous Graphs: Optimal
Black Hole Search with Pure Tokens

Paola Flocchini ∗ David Ilcinkas † Nicola Santoro ‡

Abstract

We prove that, for the black hole search problem, the pure token model is compu-
tationally as powerful as the whiteboard model; furthermore the complexity is exactly
the same. More precisely, we prove that a team of two asynchronous agents, each
endowed with a single identical pebble (that can be placed only on nodes, and with
no more than one pebble per node) can locate the black hole in an arbitrary network
of known topology; this can be done with Θ(n log n) moves, where n is the number of
nodes, even when the links are not FIFO.

Keywords: distributed computing, graph exploration, mobile agents, autonomous robots,
dangerous graphs.

1 Introduction

1.1 The Framework

Black Hole Search (Bhs) is the distributed problem in a networked system (modeled as a
simple edge-labelled graph G) of determining the location of a black hole (Bh): a site where
any incoming agent is destroyed without leaving any detectable trace. The problem has to be
solved by a team of identical system agents injected into G from a safe site (the homebase).
The team operates in presence of an adversary that chooses e.g., the edge labels, the location
of the black hole, the delays, etc. The problem is solved if at least one agent survives and
all surviving agents know the location of the black hole (e.g., see [15]).

The practical interest of Bhs derives from the fact that a black hole can model several
types of faults, both hardware and software, and security threats arising in networked systems
supporting code mobility. For example, the crash failure of a site in an asynchronous network
turns such a site into a black hole; similarly, the presence at a site of a malicious process (e.g.,

∗SITE, University of Ottawa, Ottawa, ON K1N 6N5, Canada. E-mail: flocchin@site.uottawa.ca
†CNRS, LaBRI, Université Bordeaux I, France. E-mail: david.ilcinkas@labri.fr.
‡School of Computer Science, Carleton University, Ottawa, Ontario, K1S 5B6, Canada.

E-mail: santoro@scs.carleton.ca

1

a virus) that thrashes any incoming message (e.g., by classifying it as spam) also renders
that site a black hole. Clearly, in presence of such a harmful host, the first step must be to
to determine and report its location.

From a theoretical point of view, the natural interest in the computational and complexity
aspects of this distributed problem is amplified by the fact that it opens a new dimension
in the classical graph exploration problem. In fact, the black hole can be located only after
all the nodes of the network but one have been visited and are found to be safe; in this
exploration process some agents may disappear in the black hole. In other words, while the
existing wide body of literature on graph exploration (e.g., see [1, 2, 8, 9, 16, 17]) assumes
that the graph is safe, Bhs opens the research problems of the exploration of dangerous
graphs.

Indeed Bhs has been studied in several settings, under a variety of assumptions on the
power of the adversary and on the capabilities of the agents; e.g., on the level of synchroniza-
tion of the agents; on whether or not the links are FIFO; on the type of mechanisms available
for inter agent communication and coordination; on whether or not the agents have a map of
the graph. In these investigations, the research concern has been to determine under what
conditions and at what cost mobile agents can successfully accomplish this task. The main
complexity measures are the size of the team (i.e., the number of agents employed) and the
number of moves performed by the agents; sometimes also time complexity is considered.

In this paper we are interested in the weakest settings that still make the problem solvable.
Thus we will make no assumptions on timing or delays, and focus on the asynchronous
setting. Indeed, while the research has also focused on the synchronous case [5, 6, 7, 18, 19]
where all agents are synchronized and delays are unitary, the main body of the investigations
has concentrated on the asynchronous one (e.g., [4, 10, 11, 12, 13]).

1.2 The Quest and its Difficulties

In the asynchronous setting, the majority of the investigations operate in the whiteboard
model: every node provides a shared space for the arriving agents to read and write (in fair
mutual exclusion). The whiteboard model is very powerful: it endows the agents not only
with direct and explicit communication capabilities, but also with the means to overcome
severe network limitations; in particular, it allows the software designer to assume FIFO
links (even when not supported by the system). Additionally, whiteboards allow to break
symmetry among identical agents. Indeed, whiteboards (and even stronger inter-agent co-
ordination mechanisms) are supported by most existing mobile agent platforms [3]. The
theoretical quest, on the contrary, has been for the weakest interaction mechanism allowing
the problem to be solved.

A weaker and less demanding interaction mechanism is the one assumed by the token
model, used in the early investigations on (safe) graph exploration; it is provided by identical
pebbles (that can be placed on nodes, picked up and carried by the agents) without any other
form of marking or communication (e.g., [2]).

The research quest is to determine if pebbles are computationally as powerful as white-
boards with regards to Bhs. The importance of this quest goes beyond the specific problem,

2

as it would shed some light on the relative computational power of these two interaction
mechanisms.

Two results have been established so far in this quest. In [10] it has been shown that
∆+1 agents∗ without a map (the minimum team size under these conditions), each endowed
with an identical pebble, can locate the black hole with a (very high but) polynomial number
of moves. In [13] it has been shown that two agents with a map (the minimum team size
under these conditions), each endowed with a constant number of pebbles, can locate the
black hole in a ring network with Θ(n log n) moves, where n denotes the number of nodes in
the network.

Although they indicate that Bhs can be solved using pebbles instead of whiteboards,
these results do not prove yet the computational equivalence for Bhs of these two inter-agent
coordination mechanisms. There are two main reasons for this. The first main reason is that
both results assume FIFO links; note that the whiteboard model allows to work assuming
FIFO links, but does not require them. Hence, the class of networks for which the results
of [10, 13] apply is smaller than that covered with whiteboards; also such an assumption is
a powerful computational help to any solution protocol. The second and equally important
reason is that these results are not established within the “pure” token model used in the
traditional exploration problem. In fact, in [10, 13] the agents are allowed to place pebbles
not only on nodes but also on links (e.g., to indicate on which link it is departing); this gives
immediately to a single token the computational power of O(log ∆) bits of information. In
[13], where the network considered is only a ring, each agent has available several tokens,
and multiple tokens can be placed at the exact same place (node or link) to store more than
one bit of information.

1.3 Our Results

In this paper, we provide the first proof that indeed the pure token model is computationally
as powerful as the whiteboard model for Bhs.

The context we examine is the one of agents with a map in an arbitrary graph. For
this context we prove that: A team of two asynchronous agents, each endowed with a single
identical pebble (that can be placed only on nodes, and at no more than one pebble per
node) and a map of the graph can locate the black hole with Θ(n log n) moves, even if the
links are not FIFO.

In other words, for networks of known topology, using pure tokens it is possible to obtain
exactly the same optimal bounds for team size and number of moves as using whiteboards.

Note that our result implies as a corollary an optimal solution for the whiteboard model
using only a single bit of shared memory per node; the existing solution [11] requires a
whiteboard of O(log n) bits at each node.

Our results are obtained using a new and (surprisingly) simple technique called ping
pong. In its bare form, this technique solves the problem but with O(n2) moves. To obtain
the optimal bound, the technique is enhanced by integrating it with additional mechanisms,

∗∆ denotes the maximun node degree in G

3

exploiting two ideas developed in previous investigations: “split work” [12], and “distance
counting” [13]. The mechanisms that we have developed use a variety of novel not-trivial
techniques, and are the first to overcome the severe limitation imposed by the lack of the
FIFO assumption (available instead in all previous investigations with whiteboards or to-
kens).

The paper is organized as follows. We first present our techniques, prove their properties
and analyze their complexity in the case of ring networks (Section 3). Then, in Section 4,
we show how to modify and enhance those techniques so to obtain the same bounds also in
the case of arbitrary graphs.

2 Terminology and Definitions

Let G = (V, E) be a simple biconnected† graph with n = |V | nodes. At each node x, there
is a distinct label from a totally ordered set associated to each of its incident links. We shall
denote by (G, λ) the resulting edge-labelled graph.

Operating in (G, λ) is a team of identical autonomous mobile agents (or robots). All
agents enter the system from the same node, called homebase. The agents have computing
capabilities, computational storage (polynomially bounded by the size of the graph), and a
map of (G, λ) with the indication of the homebase; they can move from node to neighbouring
node, and obey the same set of behavioral rules (the algorithm). Every agent has a pebble;
all pebbles are identical. A pebble can be carried, put down at a node if no other pebble is
already there, and picked up from a node by an agent without pebbles.

When an agent enters a node, it can see if there is a pebble dropped there; it might be
however unable to see other agents there or to determine whether they are carrying a pebble
with them.

The system is asynchronous in the sense that (i) each agent can enter the system at an
arbitrary time; (ii) traveling to a node other than the black hole takes a finite but otherwise
unpredictable amount of time; and (iii) an agent might be idle at a node for a finite but
unpredictable amount of time. The basic computational step of an agent (executed either
when the agent arrives to a node, or upon wake-up) is to look for the presence of a pebble,
drop or pick up the pebble if wanted, and leave the node through some chosen port (or
terminate). The whole computational step is performed in local mutual exclusion as an
atomic action, i.e. as if it took no time to execute it. Links are not FIFO: two agents moving
on the same link in the same direction at the same time might arrive at destination in an
arbitrary order.

To simplify the model, we can assume without loss of generality that the transition
between two states of the agent at a node plus the corresponding move are instantaneous.
In other words, the waiting due to asynchrony only occurs after the move of the agent.
Furthermore we can assume that also the actions of agents at different nodes occur at different
instants.

†Note that biconnectivity is necessary for Bhs to be solvable [11].

4

A black hole is a node that destroys any incoming agent; no observable trace of such a
destruction will be evident to the other agents. The location of the black hole is unknown
to the agents. The Black Hole Search problem is to find the location of the black hole. More
precisely, the problem is solved if at least one agent survives, and all surviving agents know
the location of the black hole.

The two measures of complexity of a solution protocol are the number of agents used to
locate the black hole and the total number of moves performed by the agents.

3 Black hole search in rings

3.1 Preliminaries

Without loss of generality, we can assume that the clockwise direction is the same for both
agents: for example, the direction implied by the link with the smallest label at the homebase.
In the following, going right (resp. left) means going in the clockwise (resp. counterclockwise)
direction. An agent exploring to the right (resp. left) is said to be a right (resp. left) agent.
Using this definition, an agent changes role if it was a left agent and becomes a right agent
or vice versa. For i ≥ 0, the node at distance i to the right, resp. to the left, of the home
base will be called node i, resp. node -i. Hence node i and i − n represent the same node,
for 0 ≤ i ≤ n.

In the algorithm the agents obey the two following metarules:
1. An agent always ensures that a pebble is lying at u before traversing an unknown edge
{u, v} from u to v (i.e. an edge that it does not know to be safe).
2. An agent never traverses an unknown edge {u, v} from u to v if a pebble lies at u and
the pebble was not dropped there by this agent.

These metarules imply that the two agents never enter the black hole from the same edge.
Moreover, each agent keeps track of its progress by storing the number of the most-right,
resp. most-left, node in a variable Last Right, resp. Last Left, used to detect termination:
when only one node remains unexplored, this node is the black hole and the agent can stop.

A (right) agent is said to traverse an edge {u, v} from u to v using cautious walk if it has
one pebble, it drops it at u, traverses the edge (in state Explore-Right), comes back to u
(in state Pick-Up-Right), retrieves the pebble and goes again to v (in state Ping-Right).
A (left) agent is said to traverse an edge {u, v} from u to v using double cautious walk if
it has one pebble and the other is at u, it goes to v (in state Explore-Left) carrying one
pebble, the other pebble staying at u, drops the pebble at node v, comes back to u (in state
Pick-Up-Left), retrieves the other pebble and goes again to v (in state Ping-Left). We
will see later that double cautious walk is employed only by left agents. Note that these two
cautious explorations obey the first metarule.

5

3.2 The Algorithm

Our algorithm is based on a novel coordination and interaction technique for agents using
simple tokens, Ping-Pong. The idea at the basis of this technique is the following: one
agent explores the “right” side and one the “left” side (the side assigned to an agent changes
dynamically, due to the non-FIFO nature of the links). However, only one agent at a time is
allowed to explore; the agent willing to do so must first “steal” the pebble of the other, and
then can proceed to explore its allowed side. When an agent discovers that its pebble has
been stolen, it goes to find it and steal the other pebble as well. This generate a “ping-pong”
movements of the agents on the ring. The actual Ping-Pong technique based on this idea
must however take into account the non-FIFO nature of the links, which creates a large
variety of additional situations and scenarios (e.g., an agent moving to steal the pebble of
the other, might “jump over” the other agent).

Algorithm EnhancedPingPong is divided in two phases, each one further divided into
stages. The first phase is the Ping-Pong technique. The second phase, whose function is to
ensure that the costs are kept low, in some cases may not be executed at all. Inside a phase,
a stage is a maximal period during which no agent changes role.

In the first phase, exploration to the right is always done using cautious walk, while
exploration to the left is always done using double cautious walk (i.e., after stealing a pebble).
Note that, since an agent exploring to the right uses one pebble and an agent exploring to
the left uses two pebbles, the agents cannot make progress simultaneously in two different
directions because there are only two pebbles in total. This also implies that while an agent
is exploring new nodes it knows all the nodes that have already been explored, as well as
the position of the only unexplored node where the other agent possibly died. This prevents
the agents from exploring the same node and thus from dying in the black hole from two
different directions.

Phase 1. Initially both agents explore to the right. Since links are not FIFO, an agent
may pass the other and take the lead without any of the two noticing it. Nevertheless, it
eventually happens that one agent L finds the pebble of the other agent R, say at node p (at
the latest it happens when one agent locates or dies in the black hole). When this happens
L drops its pebble at node p − 1 (if its pebble is not already there) and steals R’s pebble.
Having control on the two pebbles, L starts to explore left using double cautious walk. The
stage has now an even number. When/if R comes back to p to retrieve its pebble, it does not
find it. It then goes left in state Pong-Right until it finds a pebble. Agent R does eventually
find a pebble because at the beginning of the stage there is a pebble at its left (at node p−1),
and Agent L never removes a pebble before putting the other pebble further to the left. At
this point R retrieves the pebble and goes right again in state Ping-Right and explores to
the right. When/if L realizes that one of its pebble has been stolen, it changes role (and
the stage changes) and explores to the right using its remaining pebble. At this point, both
agents explore to the right. Again, one agent will find and steal the pebble of the other. To
ensure progress in exploration, a right agent puts down its pebble only when it reaches the
last visited node to the right it knows (using its variable Last Right). Consequently the
stealing at the end of an odd stage always occurs at least one node further to the right from

6

two stages before. Hence the algorithm of Phase 1 is in fact correct by itself but the number
of moves can be Θ(n2) in the worst case (one explored node every O(n) moves). To decrease
the worst case number of moves to O(n log n), the agents switch to Phase 2 as soon as at
least two nodes have been explored to the right.

Phase 2. Phase 2 uses the halving technique, based on an idea of [12], but highly com-
plicated by the absence of whiteboards and by the lack of FIFO. The idea is to regularly
divide the workload (the unexplored part) in two. One agent has the left half to explore
(using variable Goal Left), while the second agent explores the right half (using variable
Goal Right). These explorations are performed concurrently by using (simple) cautious
walk (for a right agent, in states Halving-Explore-Right, Halving-Pick-Up-Right and
Halving-Ping-Right). After finite time, exactly one agent finishes its part and joins the
other in exploring the other part, changing role and thus changing the stage number. At some
point, one agent A will see the other agent’s pebble. A steals the pebble and moves it by one
position to indicate a change of stage to the second agent B. It then computes the new work-
load, divide it into two parts (using the function Update Goal Left or Update Goal Right),
and goes and explores its newly assigned part, changing role again by switching to state
Halving-From-Left-To-Right or Halving-From-Right-To-Left. This can happen several
times (if B remains blocked by the asynchronous adversary or if it is dead in the black hole).
When/if agent B comes back to retrieve its pebble, it does not find it. It further goes back
to retrieve its pebble in state Halving-Pong-Right (if it is a right agent). The number of
moves it has to perform to find the pebble indicates how many halvings (pair of stages) it
misses. Knowing that, it can compute what is the current unexplored part and what is its
current workload. It then starts to explore its part. Since there are at most O(log n) stages
of O(n) moves each, this leads to a total number of moves of O(n log n).

The algorithm starts with a few stages of Phase 1 because Phase 2 needs some safe nodes
to put the pebble that is used as a message to indicate the current partition of the workload.

Several other technical details and precautions have to be taken because of asynchrony
and lack of FIFO. The code describing all the details of the state transitions can be found
below.

Procedure CHECK TERMINATION

1: if Last Right− Last Left = n − 2 then
2: Black Hole := Last Right + 1
3: Terminate
4: end if

Functions Update Goal Right and Update Goal Left:

Update Goal Right(p, q, 0) = p

Update Goal Right(p, q, k) = bp′+q+n
2 c where p′ = Update Goal Right(p, q, k − 1)

Update Goal Left(p, q, 0) = q

Update Goal Left(p, q, k) = bp+q′−n
2 c where q′ = Update Goal Left(p, q, k − 1)

7

for q ≤ 0 ≤ p and k ≥ 1.

Initial state of Algorithm EnhancedPingPong:
State: Ping-Right
Variables: Last Right = Last Left = Counter = 0

Phase-1 states of Algorithm EnhancedPingPong

Ping-Right
Input invariant: The robot has a pebble with him.
1: CHECK TERMINATION
2: if current 6= Last Right then // Do not use cautious walk if not necessary
3: Move Right
4: (Stay Ping-Right)
5: else
6: if empty then // Everything seems normal
7: Put Down Pebble
8: Move Right
9: Become Explore-Right

10: else // An other right robot is preceding me
11: Move Left
12: Become Put-Pebble-Right
13: end if
14: end if

Explore-Right
Input invariant: The robot is empty-handed.
1: Last Right := max{current, Last Right}
2: if empty then // Everything seems normal
3: Move Left
4: Become Pick-Up-Right
5: else
6: CHECK TERMINATION
7: Pick Up Pebble
8: if Last Right < 2 then // We are still in Phase 1
9: Move Left

10: Become Ping-Left
11: else // Start Phase 2
12: Goal Left := Update Goal Left(Last Right, Last Left, 1)
13: Goal Right := Goal Left + n − 1
14: Move Left
15: Become Halving-From-Right-To-Left
16: end if
17: end if

Pick-Up-Right
Input invariant: The robot is empty-handed.

8

1: if not empty then // Everything seems normal
2: Pick Up Pebble
3: Move Right
4: Become Ping-Right
5: else
6: if Last Right < 3 then // We are still in Phase 1
7: Move Left
8: Become Pong-Right
9: else // Start Phase 2

10: Last Right := Last Right− 1
11: Goal Left := Last Left
12: Counter := 0
13: Move Left
14: Become Halving-Pong-Right
15: end if
16: end if

Put-Pebble-Right
Input invariant: The robot has a pebble with him.
1: Put Down Pebble
2: Move Right
3: Become Explore-Right

Pong-Right
Input invariant: The robot is empty-handed.
1: if empty then // Pebble not yet found
2: Move Left
3: (Stay Pong-Right)
4: else // Pebble found
5: Last Left := min{current, Last Left}
6: CHECK TERMINATION
7: Pick Up Pebble
8: Move Right
9: Become Ping-Right

10: end if

Ping-Left
Input invariant: The robot has a pebble with him.
1: Last Left := min{current, Last Left}
2: CHECK TERMINATION
3: if not empty then // Everything seems normal
4: Move Left
5: Become Explore-Left
6: else // One of my pebbles has been stolen
7: Move Right
8: Become Ping-Right
9: end if

9

Explore-Left
Input invariant: The robot has a pebble with him.
1: Put Down Pebble
2: Move Right
3: Become Pick-Up-Left

Pick-Up-Left
Input invariant: The robot is empty-handed.
1: if not empty then // Everything seems normal
2: Pick Up Pebble
3: Move Left
4: Become Ping-Left
5: else // One of my pebbles has been stolen
6: Move Left
7: Become Pick-Up-Right
8: end if

Phase-2 states of Algorithm EnhancedPingPong

In the following we describe only the states for a right agent. The states for a left agent are
symmetric.

Halving-From-Left-To-Right
Input invariant: The robot has a pebble with him.
1: Move Right
2: Become Halving-Ping-Right

Halving-Ping-Right
Input invariant: The robot has a pebble with him.
1: if not empty then // An other right robot is preceding me
2: Move Left
3: Become Halving-Put-Pebble-Right
4: else
5: if current 6= Last Right then // Do not use cautious walk if not necessary
6: Move Right
7: (Stay Halving-Ping-Right)
8: else // Everything seems normal
9: Put Down Pebble

10: Move Right
11: Become Halving-Explore-Right
12: end if
13: end if

Halving-Explore-Right
Input invariant: The robot is empty-handed.

10

1: Last Right := max{current, Last Right}
2: CHECK TERMINATION
3: if empty then // Everything seems normal
4: Move Left
5: Become Halving-Pick-Up-Right
6: else // An other right robot is preceding me
7: Last Left := Goal Left
8: Goal Left := Update Goal Left(Last Right, Last Left, 1)
9: Goal Right := Goal Left + n − 1

10: Pick Up Pebble
11: Move Left
12: Become Halving-From-Right-To-Left
13: end if

Halving-Pick-Up-Right
Input invariant: The robot is empty-handed.
1: if not empty then // Everything seems normal
2: Pick Up Pebble
3: if Last Right 6= Goal Right then // The current objective is fullfilled
4: Move Right
5: Become Halving-Ping-Right
6: else // The current objective is not fullfilled yet
7: Move Left
8: Become Halving-Ping-Left
9: end if

10: else // My pebble has been stolen
11: Last Right := Last Right− 1
12: Last Left := Goal Left
13: Counter := 0
14: Move Left
15: Become Halving-Pong-Right
16: end if

Halving-Put-Pebble-Right
Input invariant: The robot has a pebble with him.
1: Put Down Pebble
2: Move Right
3: Become Halving-Explore-Right

Halving-Pong-Right
Input invariant: The robot is empty-handed.
1: Counter++
2: Last Left := Goal Left
3: Goal Left := Update Goal Left(Last Right, Last Left, 1)
4: Goal Right := Goal Left + n − 1
5: if empty then // Pebble not yet found
6: Move Left
7: (Stay Halving-Pong-Right)

11

8: else // Pebble found
9: Counter := 0

10: Pick Up Pebble
11: Move Right
12: Become Halving-Ping-Right
13: end if

3.3 Correctness and complexity

As explained before the algorithm consists of up to two phases. The first one corresponds
to the case where both agents are in one of the eight states Ping-Right, Ping-Left,
Explore-Right, Explore-Left, Pick-Up-Right, Pick-Up-Left,
Pong-Right, Put-Pebble-Right. If this is not the case, we say that the algorithm is in
its second phase. (Note that this phase may not exist in all possible executions.) An agent
is said to be a right, resp. left, agent if its state ends with -Right, resp. -Left. Using this
definition, an agent changes role if it was a left agent and becomes a right agent or vice
versa. Finally, inside a phase, a stage is a maximal period during which no agent changes
role.

For the purpose of the proofs of the main theorems, we will use the three following
properties.

Property P(p), with p ∈ {0, 1}: There is a left agent L and a right agent R. The agent
L is waiting at node p − 1, where one pebble is located. Agent L is carrying the other
pebble and is in state Ping-Left. Moreover, its variable Last Right has value p. Agent R,
empty-handed, is in one of the following situations:
- it is dead in the black hole located at node p + 1;
- it is at node p + 1 in state Explore-Right and its variable Last Right has value p;
- it is already back from node p + 1 at node p in state Pick-Up-Right and its variable
Last Right has value p + 1.

Moreover, the termination condition of agent L is not satisfied, and in the last two cases,
the value Last Left is the same for each agent.

Property P ′
L(p, q), with p ≥ 2, q ≤ 0 and p − q < n − 2: There is a left agent L and a

right agent R. There exists some k ≥ 0, with p − k − 1 > q, such that L is waiting at node
p − k − 1 where one pebble is located. Agent L is carrying the other pebble and is in state
Halving-From-Right-To-Left. Moreover, its variable Last Right, resp. Last Left, has
value p, resp. q. Its variable Goal Left has value Update Goal Left(p, q, 1). (Its variable
Goal Right has value Goal Left+n−1.) Agent R, empty-handed, is in one of the following
situations:
- it is dead in the black hole located at node p+1; - it is waiting at p+1 in state Explore-Right
and its variable Last Right has value p;
- it is already back from node p + 1 at node p in state Pick-Up-Right and its variable
Last Right has value p + 1;
- it is waiting at node p + 1 in state Halving-Explore-Right and its variable Last Right

has value p;

12

- it is already back from node p + 1 at node p in state Halving-Pick-Up-Right and its
variable Last Right has value p + 1;
- it is waiting at node p−i, 1 ≤ i ≤ k, in state Halving-Pong-Right, its variable Last Right

has value p + 1 and its variable Counter has value i − 1.
Moreover, in the second and third cases, the value Goal Left of Agent L is equal to

Update Goal Left (p, q′, k+1), where q′ is the value Last Left of Agent R. In the last three
cases, the value Goal Left of Agent L is equal to Update Goal Left(p, q′, k + 1− Counter),
where q′ equals Goal Left of Agent R.

Property P ′
R(p, q), with p ≥ 2, q ≤ 0 and p − q < n − 2: There is a left agent L and a

right agent R. There exists some k ≥ 0, with q + k + 1 < p, such that R is waiting at node
q + k + 1 where one pebble is located. Agent R is carrying the other pebble and is in state
Halving-From-Left-To-Right. Moreover, its variable Last Left, resp. Last Right, has
value q, resp. p. Its variable Goal Right has value Update Goal Right(p, q, 1). (Its variable
Goal Left has value Goal Right−n+1.) Agent L, empty-handed, is in one of the following
situations:
- it is dead in the black hole located at node q − 1;
- it is waiting at q− 1 in state Halving-Explore-Left and its variable Last Left has value
q;
- it is already back from node q−1 at node q in state Halving-Pick-Up-Left and its variable
Last Left has value q − 1;
- it is waiting at node q + i, for some 1 ≤ i ≤ k in state Halving-Pong-Left, its variable
Last Left has value q − 1 and its variable Counter has value i − 1.
Moreover, in the last three cases, the value Goal Right of Agent R is equal to Update Goal Right

(p′, q, k + 1 − Counter), where p′ is Goal Right of Agent L.

Lemma 1 Consider a n-node ring containing a homebase and a black hole, and two agents
running Algorithm EnhancedPingPong from the homebase. After finite time, one of the
following situations occurs:
- Stage 2 of Phase 1 begins and Property P(p) holds for some p ∈ {0, 1};
- Phase 2 begins and Property P ′

L(p, 0) holds for some integer p such that 2 ≤ p ≤ n − 2;
- all agents of the non-empty set of surviving agents have terminated and located the black
hole.
Moreover, at that time, each edge has been traversed at most a constant number of times
since the beginning of the algorithm.

Proof: Let R1 be the first agent to act and let R2 be the other agent.
First assume that R2 starts immediately after R1 and finds R1’s pebble at node 0 at the

beginning. Thus R2 moves left to node -1 in state Put-Pebble-Right. If node -1 is the
black hole, then R2 dies and R1 eventually visits all nodes from 0 to n − 2 and terminates
by correctly locating the black hole at node n − 1 (or equivalently node -1). If node -1 is
not the black hole, then R2 drops its pebble at node -1 and comes back to node 0 in state
Explore-Right. If R1’s pebble is still there, then R2 steals it and goes to the left in state
Ping-Left, and the stage changes. Moreover property P (0) is satisfied, which proves the

13

lemma in this case. If R1’s pebble is not there anymore, then the situation is exactly the
same as if R2 would have not find R1’s pebble at the beginning because in this case R2

eventually goes back to node -1 to retrieve its pebble and comes back to node 0, holding the
pebble, in state Ping-Right, with Last Left = 0.

We now assume that R2 does not find R1’s pebble at node 0 at the beginning. However,
at some point, one agent will eventually find the pebble of the other agent. More precisely,
one agent RL in state Explore-Right eventually finds the pebble of the other agent RR and
executes its transition function while RR’s pebble still lies at the current node p (the other
pebble being at node p−1). This is always true because such a situation occurs, at the latest,
when one of the agent locates the black hole or dies in it. Indeed, in both cases, its pebble
stays forever at the node u preceding the black hole, giving the other agent enough time to
drop its own pebble at the previous node on the left thanks to the state Put-Pebble-Right

(if this latter pebble is not already there), to go back to u and to execute its transition
function. Let p be the number of the node where RR’s pebble is found by RL in state
Explore-Right. Note that p ≥ 1.

If the termination condition of RL is satisfied after the update of the variable Last Right,
then RL terminates by locating the black hole at its actual position p+1 (the only node not
explored by RL). Concerning RR, it has already terminated by locating the black hole at
p+1 (both agents have the same Last Left value). Otherwise (the termination condition of
RL is not satisfied) RL changes role. At this time, if p < 2, then Property P(1) is satisfied,
and if p ≥ 2, then Property P ′

L(p, 0) is satisfied.
Since the beginning of the algorithm, each edge has been traversed at most a constant

number of times. Indeed, the edge between the nodes -1 and 0 is traversed at most twice
and any other edge {x, x + 1}, for x ≥ 0, is traversed at most 7 times by each agent in the
worst case: the first time from left to right (i.e. from x to x + 1) in state Explore-Right,
then twice for retrieving the pebble (if no pebble is found at x + 1), then twice to put the
pebble back (if a pebble appeared meanwhile at x + 1), and finally twice to retrieve again
the pebble (if the pebble disappeared from x + 1). �

Lemma 2 Consider a n-node ring containing a homebase and a black hole, and two agents
running Algorithm EnhancedPingPong from the homebase. Assume that at some time t a
Phase-1 stage of even number i begins and that Property P(p) holds for some p ∈ {0, 1}.
Then at some time t′ > t one of the following situations occurs:
- Stage i + 2 of Phase 1 begins and Property P(p′) holds for some integer p′ such that
p < p′ ≤ 1 (thus p′ = 1);
- Phase 2 begins and Property P ′

L(p′, q) holds for some integers p′ and q such that p′ ≥ 2,
q ≤ 0 and p′ − q < n − 2;
- all agents of the non-empty set of surviving agents have terminated and located the black
hole.
Moreover, each edge has been traversed at most a constant number of times between times t
and t′.

Proof: From the hypothesis of the lemma, Property P(p) holds, with p ∈ {0, 1}. Let L and

14

R be respectively the left and right agent. The integer p is the number of the node where L
stole R’s pebble at the end of the previous stage.

In the first case of Property P(p), the node p + 1 is the black hole and Agent R never
acts again, as it is dead in it. In this case, Agent L explores the ring from right to left, using
both pebbles, until it reaches node p−n+2 (i.e. node p+2) in state Ping-Left. There, the
termination condition is satisfied for Agent L and it locates the black hole and terminates.
Note that L does explore node p − n + 2 in state Ping-Left and thus terminates because
p − n + 2 is at most p − 1 (a ring has at least three nodes).

In the remaining of the proof we assume that we are not in the first case of Property P(p)
and thus that the node p+1 is not the black hole. It follows that Agent R eventually comes
back from node p + 1 to node p with its variable Last Right set to p + 1. It then switches
to state Pong-Right and goes left until it finds a pebble. Agent R does eventually find a
pebble because at the beginning of the stage there is a pebble at its left (at node p− 1), and
Agent L never removes a pebble before putting the other pebble further to the left. Let q
be the number of the node where R eventually finds and takes one of L’s pebbles. Note that
q ≤ 0.

At this point, if the termination condition of R is satisfied (i.e. p+1 minus its new value
Last Left equals n− 2), then R terminates by locating the black hole correctly at the only
node it never visited (node p + 2). Moreover R terminates without taking the found pebble.
Therefore, L continues its exploration to the left, using both pebbles, until it dies in the
black hole. Hence, the lemma holds in this case. Note that L may die in the black hole
before R terminates.

Otherwise (R does not terminate), Agent R comes back to the right in state Ping-Right,
holding the found pebble. If, at this time, L has already moved to node q − 1 in state
Explore-Left and if this node is the black hole, then L is dead and the only surviving agent
R eventually visits node n + q − 2 while going right and terminates by locating the black
hole at node n + q − 1, that is q − 1. Otherwise, L eventually retrieves the second pebble
(if it does not hold it already) and goes right in state Ping-Right. As a consequence, the
stage number is now i + 1.

To summarize, both agents eventually go right in state Ping-Right holding a pebble.
Moreover one can show that the value Last Left is the same for each agent. Indeed, if q− 1
is not smaller than their value of Last Left at time t, then Last Left still has this value,
and otherwise Last Left has now value q for both agents, even if L went to node q − 1 (L
updates its value Last Left only in state Ping-Left). The remaining of the proof is very
similar to the last two paragraphs of the proof of Lemma 1. Indeed, at some point, one
agent RL in state Explore-Right will eventually find the pebble of the other agent RR and
execute its transition function while RR’s pebble still lies at the current node p′. (At the
latest, this occurs when one of the agent locates the black hole or dies in it. In both cases,
its pebble stays forever at the node preceding the black hole.) From the description of the
algorithm in state Ping-Right and the fact that one of the agents has visited node p+1, we
know that this agent will neither drop its pebble nor look at a pebble at node p. Therefore,
we have p′ > p.

15

If the termination condition of RL is satisfied after the update of the variable Last Right,
then RL terminates by locating the black hole at its actual position p′ + 1. Concerning RR

it has already terminated by locating the black hole at p′ + 1 (both agents have the same
Last Left value). Otherwise (the termination condition of RL is not satisfied) RL changes
role. At this time, if p′ < 2, then p′ = 1 and Property P(1) is satisfied, and if p′ ≥ 2, then
Property P ′(p′, q′) is satisfied, where q′ = Last Left.

Since the beginning of stage i (time t), each edge has been traversed at most a constant
number of times. Indeed, during stage i, an edge is traversed at most three times by L and
at most twice by R (in fact at most once except possibly for edge {p, p + 1}). In stage i + 1,
if it exists, each edge is traversed at most 7 times by each agent for the reasons detailed in
the proof of the previous lemma. �

Lemma 3 Consider a n-node ring containing a homebase and a black hole, and two agents
running Algorithm EnhancedPingPong from the homebase. Assume that at some time t a
Phase-2 stage of odd number i begins and that either Property P ′

L(p, q) or Property P ′
R(p, q)

holds for some integers p and q such that p ≥ 2, q ≤ 0 and p − q < n − 2. Then at some
time t′ > t one of the following situations occurs:
- Stage i+2 of Phase 2 begins and either Property P ′

L(p′, q′) or Property P ′
R(p′, q′) holds for

some integers p′ and q′ such that p′ ≥ p, q′ ≤ q and n − (p′ − q′ + 1) ≤ dn(p−q+1)
2

e;
- all agents of the non-empty set of surviving agents have terminated and located the black
hole.
Moreover, each edge has been traversed at most a constant number of times between times t
and t′.

Proof: We assume that at some time t a Phase-2 stage of odd number i begins and that
Property P ′

L(p, q) holds for some integers p and q. The case when Property P ′
R(p, q) holds

is simpler, as there are less cases to consider, and can be treated similarly. Let p − k − 1
be the node where L lies at time t. Note that the node p − k − 2 is not the black hole by
definition of Property P ′

L(p, q).
In the first case of Property P ′

L(p, q), the node p + 1 is the black hole and Agent R never
acts again, as it is dead in it. In this case, Agent L explores the ring from right to left, using
the pebble it carried at the beginning of the stage, until it reaches node Goal Left in state
Halving-Explore-Left. Note that since p− q < n− 2, we have q > Goal Left ≤ p + 1− n
and thus the node Goal Left is reached safely without dying in the black hole. There,
either the termination condition is satisfied for Agent L (Goal Left = p + 2 − n) and it
locates the black hole and terminates, or the termination condition is not satisfied. In
this latter case, it means that p − q′ < n − 2, where q′ = Goal Left. Therefore L comes
back to node q′ + 1 to retrieve its pebble and heads back toward the node Last Right in
state Halving-Ping-Right. The stage number is now i + 1. Since Agent R does not act
anymore, the pebble at node p− k− 1 is still there. Hence Agent L will eventually find it in
state Halving-Ping-Right and then in state Halving-Explore-Right. There L steals the
pebble, changes role again, and go to node p − k − 2 (where the other pebble lies) in state
Halving-From-Right-To-Left. The stage i + 2 begins. Furthermore one can easily check

16

that Property P ′
L(p, q′) holds. In particular, we do have that p − k − 2 > q − 1 ≥ q′. Since

q′ = Update Goal Left(p, q, 1), we have n − (p − q′ + 1) ≤ (n(p − q + 1))/2.
We assume now that we are not in the first case of Property P ′

L(p, q), that is, p + 1 is
not the black hole. Let us consider two cases, depending in which half lies the black hole.

Case 1: The black hole is in the left half, between node q and node Goal Left (inclusive).
In this case, the left agent L will never come back to the right part because it would first visit
the black hole and thus die. Hence, when the right agent eventually wakes up, it goes left in
state Halving-Pong-Right and finds the pebble at node p−k−1. There it updates its values
Goal Left and Goal Right. Note that, by definition of the algorithm and by hypothesis of
Property P ′

L(p, q), both agents now agree on the values Goal Left and Goal Right. At
this point, agent R goes right and explore its half, from node p to node p′ = Goal Right,
which is at least p + 1. If the termination condition of R is satisfied, then R locates the
black hole at its correct position and terminates. Otherwise it changes role and the stage
switches to i+1. Similarly as in the proofs of the two previous lemmas one agent RR in state
Halving-Explore-Left will eventually find the pebble of the other agent RL and execute
its transition function while RL’s pebble still lies at the current node q′. (At the latest, this
occurs when one of the agent dies in it because in this case, its pebble stays forever at the
node preceding the black hole.) Agent RR steals the pebble and goes to node q′ + 1 in state
Halving-From-Left-To-Right. The stage i + 2 begins. Furthermore one can easily check
that Property P ′

R(p′, q′) holds. Since q′ ≤ q and p′ = Update Goal Left(p, q, 1) + n − 1, we
have n − (p′ − q′ + 1) ≤ d(n(p − q + 1))/2e;

Case 2: The black hole is in the right half, between node p and node Goal Right (inclu-
sive).
In this case, the left agent L will eventually explore its half, from node q to node q′ =
Goal Left, which is at most q−1. The termination condition of L is not satisfied because we
assumed that p+1 is not the black hole. Hence it changes role and the stage switches to i+1.
Agent L heads back toward the node Last Right in state Halving-Ping-Right while look-
ing at R’s pebble. If meanwhile R did not retrieve the pebble at node p−k−1, then L finds
this pebble in state Halving-Explore-Right. There L steals the pebble, changes role again,
and go to node p−k−2 (where the other pebble lies) in state Halving-From-Right-To-Left.
The stage i + 2 begins. Furthermore Property P ′

L(p, q′) holds. Otherwise R did come back
from node p + 1 to node p − k − 1 and got back the pebble. There it updates its values
Goal Left and Goal Right. Note that, by definition of the algorithm and by hypothesis of
Property P ′

L(p, q), both agents now agree on the values Goal Left and Goal Right. Sim-
ilarly as before, one agent RL in state Halving-Explore-Right will eventually find the
pebble of the other agent RR and execute its transition function while RR’s pebble still
lies at the current node p′. Agent RL steals the pebble and goes to node p′ − 1 in state
Halving-From-Left-To-Right. The stage i + 2 begins. Furthermore one can easily check
that Property P ′

R(p′, q′) holds. Since p′ ≥ p and q′ = Update Goal Left(p, q, 1), we have
n − (p′ − q′ + 1) ≤ (n(p − q + 1))/2.

It remains to bound the number of edge traversals since time t. During stage i each edge
is traversed at most three times by each agent. During stage i + 1, if it exists, each edge

17

is traversed at most 7 times by each agent, for the same reasons as detailed in the proof of
Lemma 1. �

Theorem 1 Algorithm EnhancedPingPong is correct.
More precisely, consider a n-node ring containing a homebase and a black hole, and two
agents running Algorithm EnhancedPingPong from the home base. After finite time, there
remains at least one surviving agent and all surviving agents have terminated and located the
black hole.

Proof: From Lemmas 1 and 2, we know that the first phase contains at most five stages,
each one ending after finite time. Furthermore we know that after finite time, either the
algorithm terminates correctly, or Property P ′

L(p, q) or P ′
R(p, q) holds, for some integers p

and q such that q ≤ 0 < p and 0 < p − q < n − 2. From Lemma 3, we know that a stage of
Phase 2 ends after finite time. We also know that if the algorithm does not terminate after
two stages i, i + 1 in Phase 2, then Property P ′

L(p′, q′) or P ′
R(p′, q′) holds, for some integers

p′ and q′ such that the positive value p′−q′ is stricty less than p−q. Hence, after finite time,
neither PL(p, q) nor P ′

R(p, q) can be satisfied and the algorithm terminates correctly. �

Theorem 2 The total number of moves performed by two agents running Algorithm
EnhancedPingPong in a n-node ring is at most O(n log n).

Proof: From Lemmas 1 and 2, there are at most five stages in Phase 1 and for each of them
the number of edge traversals performed by each agent is at most O(n). From Lemma 3,
there are at most O(log n) stages in Phase 2 because the unexplored part is basically halved
every two stages. From the same lemma, we have that for each Phase-2 stage the number of
edge traversals performed by each agent is at most O(n). Hence, overall, the total number
of moves performed by two agents running Algorithm EnhancedPingPong in a n-node ring
is at most O(n log n). �

The optimality of the algorithm follows from the fact that, in a ring, the problem cannot
be solved with less agents or (asymptotically) less moves [12], and clearly not with less
pebbles.

4 Black hole search in arbitrary graphs

4.1 Preliminaries

In this section, both agents are provided with a map of the network containing all edge labels
and a mark showing the position of the homebase in this network. Thus, each node of the
map can be uniquely identified (for example by a list of edge labels leading to it from the
homebase). Therefore, each agent is able to know where it lies at any point of the execution
of the algorithm. It also knows where each edge incident to its position leads.

The algorithm GeneralizedEnhancedPingPong we propose for arbitrary networks is an
adaptation of the algorithm EnhancedPingPong that we described for rings. To be able to

18

apply EnhancedPingPong in a general graph, each agent will maintain a partial mapping
between the node numbers used in the algorithm and the actual nodes in the network (or its
map), such that at any point in time an agent knows what means “go left” and “go right”.

During the execution of the algorithm, each agent maintains two walks WR and WL,
defined as two sequences (r0, r1, . . . , rP) and (l0, l1, . . . , lQ) of nodes of the network. The
nodes r0 and l0 correspond to the homebase. Since WR and WL are walks, we have that
{ri, ri+1} and {lj, lj+1} are edges of the graph, for all 0 ≤ i < P and 0 ≤ j < Q.

From these two walks, we define recursively function σ as follows. First σ(0) = 0. Assume
that σ is defined for all j such that 0 ≤ j ≤ i, for some i ≥ 0. Then if there exists an element
rK in WR such that rK 6∈ {rσ(0), rσ(1), . . . , rσ(i)} but for all k < K, rk ∈ {rσ(0), rσ(1), . . . , rσ(i)},
then σ(i + 1) = K, otherwise σ(i + 1) is not defined. Similarly, assume that σ is defined for
all j such that i ≤ j ≤ 0, for some i ≤ 0. Then if there exists an element lK in WL such that
lK 6∈ {lσ(0), lσ(1), . . . , lσ(i)} but for all k < K, lk ∈ {lσ(0), lσ(1), . . . , lσ(i)}, then σ(i − 1) = K,
otherwise σ(i − 1) is not defined.

Let us assume that an agent lies at some node i. If i ≥ 0 (i.e., the agent is at the
homebase or somewhere in the explored part to the right) going one step right from node i
means following the sub-walk (rσ(i), rσ(i)+1, . . . , rσ(i+1)) of WR. Going left from node i + 1 to
node i means following this sub-walk in reverse order. Similarly, if i ≤ 0 (i.e., the agent is
at the homebase or in the explored part to the left) going one step left from node i means
following the sub-walk (lσ(i), lσ(i)+1, . . . , lσ(i−1)) of WL. Going right from node i − 1 to node
i means following this sub-walk in reverse order.

4.2 The Algorithm

We now describe the definitions of the walks WR and WL throughout the algorithm. First
of all, node v0 denotes the homebase. Node v1 is the neighbor of node v0 reachable by the
smallest edge label while node v−1 is the neighbor of node v0 reachable by the largest edge
label.

At the beginning of the algorithm, let TR be a tree spanning all nodes except for node
v−1 and containing the edge {v0, v1}. Let WR be a DFS traversal of TR starting from node
v0 by the edge {v0, v1}. Let WL be (v0, v−1). Clearly, nodes v−1, v0 and v1 are the nodes -1,
0 and 1.

Assume that the stage changes from an odd number to an even number in Phase 1.
Let p and q be the values Last Right and Last Left of the left agent. Then the new
walk WR consists of the first σ(p + 1) + 1 elements of the old WR, that is the sequence
(r0, r1, . . . , rσ(p+1)). In addition, let TL be a tree spanning all nodes except for node p + 1.
Let SL be a DFS traversal of TL starting from node q − 1. Then the new walk WL is the
concatenation of the old WL and of the sequence SL. The left agent does these updates of
the walks when changing role. The other agent does these updates when it finds out that its
pebble has been stolen. More precisely, it updates its walks just before switching to state
Pong-Right. Note that both agents agree on the new definition of the walks because they
use the same values for p and for q (cf. Property P(p)).

19

Similarly assume that the stage changes from an even number to an odd number in Phase
1. Let p and q be the values Last Right − 1 and Last Left of the right agent. Then the
new walk WL consists of the first σ(q − 1) + 1 elements of the old WL, that is the sequence
(l0, l1, . . . , lσ(q−1)). In addition, let TR be a tree spanning all nodes except node q−1. Let SR

be a DFS traversal of TR starting at node p+1. Then the new walk WR is the concatenation
of the old WR and of the sequence SR. The rigth agent does these updates of the walks when
it retrieves a pebble, just before switching from state Pong-Right to state Ping-Right. The
other agent does these updates when it finds out that its pebble has been stolen. More
precisely, it updates its walks just before changing role. Note that again both agents agree
on the new definition of the walks because they use the same values for p and for q.

The walks are also updated at the beginning of each Phase-2 stage of odd number i.
More precisely this is done by an agent each time and just after it updates its knowledge
of the unexplored part and its goals. Assume w.l.o.g. that the stage is now i because a
right agent became a left agent. Let p, q and g be the values, respectively, of Last Right,
Last Left and Goal Right just after the update of the goals. Let {Vex, Vuex} be a partition
of the nodes of the graph such that Vex is the set of nodes {q, q + 1, . . . , p − 1, p}. From
Lemma 5.2 in [11], Vuex can be partitioned into VR and VL such that |VR| = p− g, the node
p + 1 is in VR, and the graphs GR and GL induced by, respectively, Vex ∪ VR and Vex ∪ VL

are connected. Let TR and TL be spanning trees of GR and GL. Let SR be a DFS traversal
of TR starting at node p + 1. Similarly let SL be a DFS traversal of TL starting at node q.
Finally, let W ′

R, resp. W ′
L, consists of the first σ(p + 1), resp. σ(q), elements of WR, resp.

WL. Then the new walks WR and WL are respectively the concatenation of W ′
R and SR and

the concatenation of W ′
L and SL. Note that both agents agree on the new definition of the

walks because they use the same values for p, q and g (cf. Properties P ′
R(p, q) and P ′

L(p, q)).
In some cases, it is possible to use (safe) shortcuts to decrease the number of moves.

Indeed, always following the walks WR and WL to go right and left may lead to a total
of n log2 n moves. The algorithm is modified as follows. During Phase 2, each agent main-
tains an additional variable Last Seen Pebble that basically memorizes the last place where
the agent has seen the other pebble. When an agent finishes a half and switches to state
Halving-Ping-Left, resp. Halving-Ping-Right, it goes directly to node Last Seen Pebble

and if there are no pebbles at this node, it then goes directly to node Last Left, resp.
Last Right. This is done by traversing only nodes that are known to be safe.

4.3 Correctness and complexity

Theorem 3 Algorithm GeneralizedEnhancedPingPong is correct.
More precisely, consider a n-node graph containing a homebase and a black hole, and two
agents running Algorithm GeneralizedEnhancedPingPong from the homebase. After finite
time, at least one agent survives and all surviving agents have terminated and located the
black hole.

Proof: As noticed in the description of the algorithm in the previous subsection, the two
agents agree on the definition of the walks and thus of the node numbers. Moreover, one can

20

easily check that the function σ defining the node numbers always gives the same number
to the same node as soon as this node has been explored by at least one agent. Indeed,
if a node i ≥ 0 is explored, then the initial part (r0, r1, . . . , rσ(i)) of WR is kept unchanged
forever. A similar property holds for i ≤ 0. Finally note that a node of the graph has at
most one pre-image by σ.

To summarize, Algorithm GeneralizedEnhancedPingPong behaves exactly the same as
Algorithm EnhancedPingPong. The only difference is that traversing an edge in the ring may
correspond to the traversals of (finitely) many edges in an arbitrary graph. Nevertheless,
since Algorithm EnhancedPingPong is correct, Algorithm GeneralizedEnhancedPingPong

is correct as well. �

Theorem 4 The total number of moves performed by two agents running Algorithm
GeneralizedEnhancedPingPong in a n-node graph is at most O(n log n).

Proof: In this proof we call the number of edge traversals performed by an agent going from
node i to node i + 1 (−n < i < n − 1) the length of the virtual edge {i, i + 1}. We now
bound the total number of moves performed by each agent in each phase.

As in the case of the ring, the first phase consists of at most five stages. Moreover, each
update of the walks increases their length by at most 2n because the path appended to a walk
is a DFS traversal of a tree. Hence, the sum of all the lengths of the virtual edges traversed
in the first phase is at most 10n. From Lemmas 1 and 2, each edge of the network has been
traversed at most a constant number of times during Phase 1. Hence, the total number of
moves performed by two agents running Algorithm GeneralizedEnhancedPingPong is at
most O(n log n) in the first phase.

From the lemmas 1, 2 and 3, either Property P ′
R(p, q) or Property P ′

L(p, q)) holds, for
some integers p and q, at the beginning of a Phase-2 stage of odd number. Let pi and qi be
the two integers corresponding to the stage 2i + 1 of the second phase, for 0 ≤ i ≤ s. Note
that s is at most O(log n). Let ps+1, resp. qs+1, be the right, resp. left, neighbor of the
black hole. By definition of the properties and from the lemmas, we have that qs+1 ≤ · · · ≤
q0 ≤ 0 ≤ p0 ≤ · · · ≤ ps+1. Since the walks WR and WL are updated when and only when
the goals are updated, and since a walk is always extended by a DFS traversal of a tree, we
obtain that the sum of all the lengths of the virtual edges from node pi to pi+1, and from
node qi to qi+1, is at most O(n), for 0 ≤ i ≤ s. Moreover, from the previous paragraph, the
sum of all the lengths of the virtual edges from node q0 to p0 is at most O(n).

Consider a stage 2i+1 of the second phase, for 0 ≤ i ≤ s. Let A be the agent that started
the stage by changing role and let B the other agent. Without loss of generality, assume that
A is a left agent. The total number of moves performed by A in this stage is at most O(n)
because A first goes directly (by a shortest safe path) to the beginning qi of its workload,
thus in at most n moves, and then stays in the final part of WL that corresponds to the
DFS traversal of a tree to explore its assigned workload, which incurs at most O(n) moves
(from Lemma 3). If it succeeds to explore its half, then it goes directly to the node where it
left the other pebble (thanks to the variable Last Seen Pebble). If the pebble is not there
anymore, it further goes directly to node pi and starts to explore the right half. Hence, in

21

any case, for the same reasons as before, A performs at most O(n) moves in stage 2i + 2.
Concerning B, if it retrieves its pebble in stage 2i+1 or 2i+2, it will perform at most O(n)
moves in these two stages, without counting the moves dones in state Halving-Pong-Right.
Indeed, again, exploring a half or going directly to the beginning of it costs at most a linear
number of moves.

It remains to bound the number of moves done while in one of the states Halving-Pong-Right
or Halving-Pong-Left. This is done globally over the whole second phase. Each edge tra-
versed in one of these two states may cost up to O(n) moves. However, there are at most
O(log n) such traversals because any of them corresponds to an update of the workloads,
which happens only a logarithmic number of times in the entire algorithm.

One can now conclude that the total number of moves performed by two agents running
Algorithm GeneralizedEnhancedPingPong in a n-node graph is at most O(n log n). �

The optimality of the algorithm follows from the fact that, in an arbitrary graph, BHS
cannot be solved with less agents or (asymptotically) less moves [11], and clearly not with
less pebbles.

Acknowledgment This work was done during the stay of David Ilcinkas at the University
of Ottawa, as a postdoctoral fellow. Paola Flocchini was partially supported by the Univer-
sity Research Chair of the University of Ottawa. This work was supported in part by the
Natural Sciences and Engineering Research Council of Canada under Discovery grants.

References

[1] S. Albers and M. Henzinger. Exploring unknown environments. 29th ACM Symposium
on Theory of Computing (STOC), 416–425, 1997.

[2] M. A. Bender, A. Fernández, D. Ron, A. Sahai, and S. P. Vadhan. The power of a pebble:
Exploring and mapping directed graphs. Information and Computation, 176(1):1–21,
2002.

[3] J. Cao and S. Das (Eds), Mobile Agents in Networking and Distributed Computing,
John Wiley, 2008.

[4] J. Chalopin, S. Das, N. Santoro. Rendezvous of mobile agents in unknown graphs with
faulty links. 21st Conf. on Distributed Comp. (DISC), 108-122, 2007.

[5] C. Cooper, R. Klasing, and T. Radzik. Searching for black-hole faults in a network
using multiple agents. 10th Int. Conf. on Principles of Distributed Systems (OPODIS),
320-332, 2006.

[6] J. Czyzowicz, D. Kowalski, E. Markou, and A. Pelc. Complexity of searching for a black
hole. Fundamenta Informaticae, 71 (2-3): 229-242, 2006

22

[7] J. Czyzowicz, D. Kowalski, E. Markou, and A. Pelc. Searching for a black hole in
synchronous tree networks. Combinatorics, Probability & Computing 16: 595-619, 2007.

[8] S. Das, P. Flocchini, S. Kutten, A. Nayak, and N. Santoro. Map construction of unknown
graphs by multiple agents. Theoretical Computer Science 385(1-3): 34-48, 2007.

[9] X. Deng and C. H. Papadimitriou. Exploring an unknown graph. J. Graph Theory 32
(3): 265–297, 1999.

[10] S. Dobrev, P. Flocchini, R. Kralovic, and N. Santoro. Exploring a dangerous unknown
graph using tokens. 5th IFIP Int. Conf. on Theoretical Computer Science (TCS), 131-
150, 2006.

[11] S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Searching for a black hole in
arbitrary networks: optimal mobile agents protocol. Distributed Computing 19 (1): 1-19,
2006.

[12] S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Mobile search for a black hole in
an anonymous ring. Algorithmica 48: 67–90, 2007.

[13] S. Dobrev, R. Kralovic, N. Santoro, and W. Shi. Black hole search in asynchronous
rings using tokens. 6th Conf. on Algorithms and Complexity (CIAC), 139-150, 2006.

[14] P. Flocchini and N. Santoro. Distributed Security Algorithms For Mobile Agents. Chap-
ter 5 of [3], 2008.

[15] P. Fraigniaud, L. Gasieniec, D. Kowalski, and A. Pelc. Collective tree exploration.
Networks, 48 (3): 166-177, 2006.

[16] P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg. Graph exploration by a finite
automaton. Theoretical Computer Science, 345 (2-3): 331-344, 2005.

[17] R. Klasing, E. Markou, T. Radzik, and F. Sarracco. Approximation bounds for black
hole search problems. 9th Int. Conf. on Principles of Distributed Systems (OPODIS)
261-274, 2005.

[18] R. Klasing, E. Markou, T. Radzik, and F. Sarracco. Hardness and approximation results
for black hole search in arbitrary networks. Theoretical Computer Science 384 (2-3):
201-221, 2007.

23

