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Abstract— Energy management is one of the main hurdles constructing and maintaining dynamic clustering strussur
in the quest for autonomous and reliable sensor networks. which depend on the current position of the cluster heads.
We present a cluster-based model for energy management in thg |atter approach, where cluster membership is dynamic,

networks with static sensors and mobile robots that act as nmiate- . . ianificant head si d d to be mbiifi
nance entities. The objective is to increase network avaitality by INCUTS In a significant overnead since nodes need 1o be ihe

recharging, replacing or redeploying "depleted” sensors ith the ~ Of any change (in the position) of their cluster head. When
help of mabile robots. The problem is to find a network partition  robots are employed in the solution, they may act as thearlust
where (1) workload is balanced (i.e. an equipartition)and (2) heads; in this case, it is possible for the cluster membetshi
the movements of the maintenance robots in their partition hecome very unbalanced due to robots movements in the field.
is minimized. This should be done efficiently at least for the o o .
weakest elements of the system, the sensors; that is (3) theA significantly unbalanced part't'on _W'” impose extra bend .
number of sensor communications should be kept small. While On the robots resources compromising the health of theeentir
finding the optimal partition is a NP-hard problem, we show a system.
simple and efficien_t distributed $O|Uti0ﬂ that pr_ovides partiti_ons Assuming the recharging (fixing/replacing) capacity ofteac
of remarkable quality. The experimental analy3|s of our salitions _robot is bounded and the same among all robots, the problem
shows that sensor message cost remains constant as the size . o
of the network increases. The experiments also show a rapid IS how to find & network partition Wh_er_e _the robots act as a
progression towards convergence with the quality of the paition ~ cluster head, and: (1) each robot minimizes the sum of the
similar to a centralized clustering benchmark (K-means). distances to all sensors in the cluster, and at the same time
(2) the number of sensors in the clusters is balanced. This
problem should be solved efficiently at least for the weakest
A. The Framework elements of the system, the sensors; that is (3) the number
Energy consumption is a constant concern when designmbsensor communications should be kept small. A simpler
a Wireless Sensor Network (WSN). Regardless of the probles@rsion of this problem is the facility location problem ),
being addressed, the ultimate goal of a sensor network isal§0 studied in the context of sensor networks [6], [10], iehe
achieve accurate sensing and maximize lifetime while mai-number of facilities (i.e., robots), can be placed only in a
taining an acceptable level of coverage. The most simplisgubset of a pre-defined number of locations; the goal is to
approach to deal with sensor losses would be to deploy mé@vide services to the sensors at minimal (traveling).cost
sensors to compensate for the loss of depleted ones; for olfunding an optimal placement is a NP-hard problem [15];
ous environmental or economical reasons this kind of smutihence our problem is also NP-hard.
is not sustainable. More creative approaches attempt taaxt _—
energy from the environment (e.g. [13], [14]), while otherg' Contributions
explore the use of mobile robots in conjunction with clusigr ~ In this paper we proposed a cluster-based management
techniques as a means of saving energy and coordinatfiygtem to recharge or repair a network of static sensors by
sensors for data gathering, aggregation and network rgpgir €mploying mobile robots. Our approach combines a static
[12], [19]). The idea of using robots in sensor networks haduster partitioning with a distance aware robot positigni
also been proposed for other network maintenance tasks (&gsed on previous experiences with clustering technicgigs (
[9], [11]). In this paper, we are interested precisely insthi[2], [12]) our objective is to minimize the number of message
approach. exchanged by sensors as well as the total robot travel time.
Our robot-based balanced maintenance system createsrslust
B. The Problem of sensors where each mobile robot becomes a cluster head.
In general, the existing solutions for energy managemente clusters are created through a sequence of iteratiadl, e
(with or without robots) rely on some kind of clustering orcreating a partition whose quality is strictly better thae t
partitioning of the network. The energy management problepnevious. Convergence is achieved in a finite number of steps
is basically addressed by either creating a fixed partitibn when that happens, cluster membership becomes static and
the field, which limits the scalability of the solutions, orobots reposition themselves at the center of mass of isderiu

I. INTRODUCTION



The main features of our contributions are: (1) Our solutiogistributed in an area of unspecified shape; and aiset
is completelydistributed and localized: there is no central {rq,...,7x} of K robots, also randomly distributed throughout
entity with global knowledge. Experimental analysis shbatt the area. Robots can move anywhere within the area and
the cost in terms of sensor messages remains constant aghbg all move at the same speed. Robots can communicate
network size increases. (2) The experiments also show thath sensors and robots within their transmission rarige) (
on average after 3 iterations of the algorithm the quality &ensors are static and can communicate with other sensbrs an
the partition is almost identical to the one obtained at threbots within their transmission range. Sensors are betable
convergence point. (3) The quality of the partition for thenonitor their energy levels and compute remaining time or
distributed solutions tested is similar to the selectedradined time to total depletion (7).
benchmark (K-Means). Sensors and robots are grouped in clusters creating a bal-
anced partition of the entire area. A partition is considere
D. Related work stable (and therefore final) when there are no changes in the
To extend the operating life of sensor networks, reseaschefuster membership. The stable partition must then satisfy
have attempted to obtain alternative sources of energyw@po oad balance requirement based on pre-defined metrics. For
their sensors. The most common approaches are the usex@fmple, the number of sensors in the clusters combined with
solar panels and vibrations (e.g. [8], [13]). Recent adearie their energy levels, etc. Without loss of generality, thedeio
wireless technology have made possible the idea of reat@rgill use a simple metric based on the number of sensors in the
wireless devices using electromagnetic induction/reso@a cluster (equi-partition). Consequently, there will Benod K

and the use of robots for network repair (e.g. [7], [9], [11klusters containing exactlyN/K| sensors and the rest will
[12]). Sheng et al. ([16], [18]) also explore the use of s&&vi contain |N/K | sensors.

robots for maintenance tasks. In particular, they address t The proposed clustering algorithms assume that robots and
issue of robot workload distribution and task allocatioheT gensors can determine their own positions by using GPS or
emphasis of their experiments centers on the quality of théyer |ocalization method. Also, there is no global clock or
final balanced partition rather than the cost of achievinthsucentralized entity to coordinate communications or aation
partition. The authors observe that due to the discreta®@afu T4t s, the system iasynchronous and sensors should be able

the point of interest (sensors), it was very difficult to obta 14 reach at least one of the robots{ € S,3r € {r1,...,rx}
perfectly balanced partition. Consequently, the outputhefr whered(s,r) < Tr ).

algorithms may lead to oscillatory behavior and, in order to
achieve convergence, the conditions for termination henaet
relaxed. 1. OVERALL VIEW
The main differences between previous works, such as ([12],
[16], [18]) and ours are: 1) The problem we attack ibia Our robot-based balanced maintenance system creates a
criterion optimization one: the partitioning of the sensors angluster structure that facilitates the network mainteeaasks
the positioning of the robots within their cluster must betsu needed to maximize the network lifetime. This is a two stage
that the service movement of the robots in their cluster &stem. The first phase, the initialization phase, creates a
minimized and at the same time the workload of the robotstable and balanced partition and the second phase is where
must be optimized (i.e., the size of the clusters must lge maintenance tasks are carried out by the robots. Once
the same); in [16], [18] only one (the second) optimizatiothe clustering creation is finalized, there will be exacthyeo
criterion is used. 2) We propose using a static partition &aintenance robot for each sensor in S, the sensors will know
opposed to dynamic structures that need to be updated wita® location of their maintenance robot, and each robot will
the robots move to repair or service a sensor. 3) We hak@ow the position of all the sensors in its cluster. The seso
robots re-position themselves within their regions to mize Wwill also keep the location of at most two other sensors (@eer
the total trajectory required to recharge or repair nodethén for failure detection.
cluster. After the initialization phase has been completed, the tobo
The rest of this paper is organized as follows: Section ghd sensors move to the maintenance phase. The behavior
presents the model. Section 3 and 4 examine the overalisyster sensors in this phase includes the following actions: 1)
and the algorithms to compute the stable balanced partitidensors monitor their energy levels. When a sensor detects
Section 5 discusses some experimental results and Sectioh&@ its time to depletion or time leftT{) is less than a
contains conclusions and discussions on future work. constant {y) then it sends a request for recharge (RC) to its
maintenance robot. 2) Sensors send probes periodicalieto t
peers. If a response is not received; they send a repairseque
The proposed cluster-based energy management appro@iR) to their maintenance robot containing the locatiorhef t
can be used to either replace or recharge the sensor nodes faitilting node. The robots await repair/recharge requests f
minor modifications to the algorithms. Regardless of thalkirtheir sensors and try to service them in a first-come firsteser
of functionality selected, the model includes the followkey basis. The figure 1 summarizes the life cycle of the proposed
components: a sef = {si,...,sy} of N sensors randomly maintenance system.

Il. THE MODEL



n After the first balanced partition has been achieved, either
st Stabe because each robot received replies from N/K sensors or as
poion | W) | oo | m—) | (e a result of the gossiping phase, the rest of the robot/sensor
e communication will be limited to each cluster and the closes
I U l sensors in adjacent clusters. Consequently, in each sudrsieq
iterations, the robots accept the first N/K requests andtreje
<> all others by sending a CLUSTERULL message back to
the sensor. The algorithm terminates when two consecutive
rounds produce the same clustering structure. A limitatibn
this method is that, due to the asynchronous and distributed

Fig. 1. System life cycle nature of the network, there is no guarantee that the algorit
will always converge to a stable partition.

IV. COMPUTING THE STABLE PARTITION

Py |
The initial phase of the cluster creation is started by hgvin 1 )
the robots broadcast their locations to all sensors; theasen 2 ) 4
will respond to only one robot (the closest) by sending a \ \
CLUSTERJOIN request. This step creates a Voronoi partition le ﬁ czz i

with K clusters with exactly one robot as cluster head. At
this point all sensors know about their tentative mainteean
robots and all robots know the location of the sensors they Fig. 2. Simple limited memory algorithm

have to maintain. Then, the robots should move to a point

in their clusters that minimizes the sum of all distances. | gmma 1: The cluster formation using the “limited mem-
Such a point is unique and is known as the Weber poiRjry” algorithm does not always converge to a stable partitio
Unfortunately, the Weber point is not computable 191> 5 Proof: Consider the simple network shown in Figure
sensors [3], [4]. Consequently, the robots will use the @e”'z. Due to the asynchronous nature of the communications,

of mass as an approximation 9f the Weber point. .In We “limited memory” algorithm does not converge in this
scenario, it can be as-,sumed,. W'thOUt loss of generahty, t%rticular environment. Let us assume that during the first
the mass of each point (ppsmon of sensors) is _equall to if'ération of the algorithm, robot 1 receives a sequence of
Consequenily, the robo_ts_W|II relocate to 1the pcdhlun their ¢ USTERJOIN messages from sensors 1,2,3,4 in that order.
Voronoi region that satisfies’(cy, c2) = (§ 2 @i, 5 2 41) According to the algorithm, robot 1 will accept sensors 1 and
2 and send CLUSTERULL messages to sensors 3 and 4.
Rter been rejected by robot 1, sensors 3 and 4 will send
¥LusSTERJIOIN messages to their robot with ranking 2,
in this case, robot 2. Once this phase has been completed,
] S robot 1 moves to point A and robot 2 moves to point C.
A. Smple Algorithm with limited memory Let us assume now, that for the second iteration, after the
A simple distributed algorithm with “limited memory” corresponding broadcast messages have been sent by both
can be used for the initialization phase. A robot is sai@®bots, robot 1 receives a new sequence of CLUSTERN
to have “limited memory” if it only has capacity to storemessages from sensors 1,3,2 in that order. Following the sam

(remember) information about the previously obtainedteius behavior, robot 1 will now accept sensors 1, 3 and robot 2
In this algorithm the robots operate in logical rounds aiill eventually accept sensors 2 and 4. The robots will then
iterations, by sending STARROUND broadcast messagesmove to point B and D respectively. Since a new partition
announcing their positions_ After receiving the |n|t|a|3]1mn has been Created, the robots will proceed to a new iteration.
from all robots, the sensors will rank the robots based d&rPnsequently, if consecutive iterations of the algorithmovs
their distances (from closest to farthest) and will replyhwa @ changing behavior regarding the arrival of CLUSTERIN
JOIN_.CLUSTER message to the smallest ranked robot. Singtessages as described in the two iterations above, Robot 1
some of the robots may be outside the sensors transmissiéth be oscillating between points A and B and robot 2 will
range, the first iteration will produce a K-cluster parmio oscillate between pOintS C and D without aChiEVing a stable
which is not necessarily balanced. The robots will then eRartition. Hence the lemma holds. u
change information about the sensors in their areas to-redisFrom the previous lemma we could generalize that if the
tribute them in a balanced manner although not necessaribpots are provided with a fixed amount of memapyM)
optimal at this point. After concluding this “gossiping” @be, (i.e. the robots can only “remember” tii¢ previously created
the robots will travel to the center of their clusters andtstaclusters), the “simple memory” algorithm does not always
the next iteration. converge.

centers, they will repeat the same process until there n@m
changes to their cluster membership.



B. Achieving Convergence Algorithm 1 Sensor Selection: Robdt

. * .k
In order to achieve convergence of the clustering strugtureS;: E)e:;inState END_ROUND : *)
we propose to extend the memory capabilities of the robots, . -
In particular, the robots will now be able to “remember” all i: i re’csl\gggéﬁgeiai é%é'ljg;é ]s\ige)nstgrecst)
previous clusters they have created and will stop the el@tut ﬁc s_’—lnull then !

of the algorithm as soon as they obtain a previously seen or:
created cluster. The behavior of the static sensors remair% sendCLUSTER FULL message (&

unchanged in this new approach and there are only smal[ else dCLUSTER.FULL 6!
changes to the robot’s behavior. Each robot will now keepgj ds_e;n message 16
a list of old clusters and will stop the execution when a newlxo'_ endei? !

created cluster is found in such a list.

Lemma 2: The cluster formation with the memory option
will converge in a finite number of rounds. 13
Proof: Let S = {S1,...,Sn} a set of N static sensors
randomly placed in a plane al= {Ry, ..., Rx } a set ofK _
mobile robots also randomly placed in a plane. At any given
iteration of the initialization algorithm, a set df clusters

C ={C,...,Ck} is created.

11: if receiving END_ROUND(R’) then
12: numOfEndRoundMsg =numEndRoundMsg+1
if numOfEndRoundMsg = K-then
C = center(sensorList)
MoveTo(C)
if find (currentCluster,ClusterListhen
sendINIT_DON E broadcast message

Without loss of generalityy, we can assume tha}sf elsebecomeDON E
at the end of round 1 the algorithm produces thgoj hecomel NIT
following K clusters C4,Cs,...,Cxk where C; = 21: end if

{Ri,s%i+1,5%i+2,...75%(i+1) with 0 < 7 < K — 1. 29: end if
Let P = {P,..., Pr} be the set of partitions created in23. end if
each round of the algorithm. Whet® = {Ci,...,Ci} is 24 end

the cluster partition obtained after iteratianand C; with
1 < j < K, are the clusters obtained in such iteration.

By definition of the clustering with memory algorithn¥»  sensor. Basically, this rule can be called the “farthestcios-
is the final partition ifvC/" with 1 <4 < K, 3j, 1 <j < F  est” rule where the farthest as possible sensor from thescent
where Cf' = C]. The existence ofPr can be proved by and at the same time, closest to a neighboring robot will be
contradiction. Let us assume for a moment that the algorithr@jected_ Ties are broken based on a secondary criteridn suc
does not converge. This means that after each round, a ngy\energy levels or simply selecting the sensor with thelsmal
partition is created where there is at least one clustér 4. |n general, if robotR receives a CLUSTEROIN(R,))
1 <i< K, such thatCf" # C/, forallj, 1 < j < F. This  from sensorS. Then R acceptsS if and only if there exists
contradicts the definition of a cluster formation where ¢hely sensors; in its cluster for whichd(R, $i) > d(R,S) and
are only a finite number of combinations &%/ K sensors for d(S;, R;) = min {d(S;, R,)} whereS; denotes all sensors in
the same cluster heald;. Hence, the lemma holds. B the cluster,R; is the next closest ranked robot ffy list and

d is the Euclidean distance (séégorithm 1).

C. Improving Convergence and Quality

In the previous algorithm, the robots limit themselves to V. EXPERIMENTAL ANALYSIS
only accepting the firstV/K sensors and blinding rejecting This section examines the simulation results for the “mem-
any other request. This rather passive behavior in combimatory only” and “sensor selection” algorithms. In all cases th
with the asynchronous nature of the network may impasimulation software utilized was Omnet++ [20] along witle th
the performance of the algorithm. In an effort to improvenobility framework extension [5]. To improve the robot’s-ca
convergence and the quality of the overall partition, a nepabilities and provide additional control over their mo\asits,
sensor selection rule is added to the iterations. The difie@ a new on-demand mobility mode was implemented and added
now is that after accepting the firéf/ K CLUSTERJOIN to the mobility framework. For all the experiments, the rsbo
requests, a robot will still accept a new sensor in its cluase and sensors are randomly placed in an area08fm?. The
long as the inclusion of the new sensor decreases the diameigalysis centers on two important aspects of the solutitves:
of the cluster. message cost and the quality of the patrtition.

Since our model imposes the requirement of load balancing,
the robots will have to reject one of the previously acceptdd Rounds and Messages
sensors in order to accept a better candidate. The selectioiihe first experiment involves a performance comparison
of which sensor will be excluded from the cluster dependgtween the memory only and sensor selection algorithms
on the sensor’s distance to the center and its proximity o networks with 5 and 10 robots and up to 240 sensors.
a neighboring robot which has not previously rejected th@ahe number of rounds necessary to achieve convergence as
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Fig. 3. Number of Rounds and Sensor Messages

well as the number of sensor messages required are plotdgbrithm until achieving convergence. This particulapent-

in figure 3(a) and 3(b) respectively. The results of this testent shows a positive and somehow unexpected result, where
case confirm that the sensor selection algorithm outpedorprogression towards convergence is not gradual as we may
the memory only algorithm by a significant margin. In botthave anticipated. On the contrary, after only a few iteratio
cases, number of rounds and messages per sensor, the safsiie algorithm, the variations in quality are minor with an
selection algorithm shows an expected and almost constamérall behavior almost flat. This is an important featurewf
message cost per sensor even when the number of netwapkroximation algorithms, which on average, if stoppedraft

elements increases. 3 iterations, will produce a solution close to the one adttev
at the convergence point. Depending of the characteristics
B. Quality of the Solution and requirement of the network, this behavior could be an

This experiment explores the quality of the solutions tgdvantage in real life applications. For a complete listhaf t

verify whether the fastest solution produces the best djvergxperlmental results see [21].

cluster partition. The quality criteria for this case are th
average distance from a sensor to its cluster center and the VI. CONCLUSIONS ANDFUTURE WORK
average sum of the distances per cluster. Figures 4(a) an

4(.b) shqw the comparison for networks of 5 and 10 rObOBSf employing mobile robots to recharge/repair a network of
with variable number of sensors. static sensors. The robots should coordinate their work by
. Contr_ary tq thf results for rpessage costs, th three algf?)%\'rtitioning the network into balanced clusters and positi

”tth‘.S (mcIudmg memory only”) produce very §|m|lar ches themselves at the center of these clusters. This work has als
partitions very in terms of average sensor distance to thgﬁown that the construction of such partition in an asyn-

correspondlng cluster c_enters. Another mterestmg fipdin chronous environment is possible if the robots are provided
that quality of the solution obtained by the algorithms doqf/z(l

throughout this work we have discussed the possibility

‘ ith memory capabilities. Furthermore, with some simple

not change as we dquble the_nu_mber of r_obots |n. the n(_atwo odifications a significant impact in cost reduction can be
Perhaps the most interest finding resulting of this test sase, -ieved by selecting and discarding the best candidaseren

that the two distributed solutions produced a similar parti ;, a5ch iteration of the clustering algorithm.
when compared to the chosen centralized clustering benChFrom the experimental analysis we can summarize the fol-
mark (K-means). For this particular experime_nt, the sandenol ing general observations: 1) The sensor selection glfgor
deployment was used to execute a K-Mea_ns in SPSS_for UN tperforms the simple memory only algorithm in terms of
and the re_sults plotted along with our distributed solusigfor sensor message cost. 2) Networks with higher sensor to robot
both quality parameters: average distance to cluster cante ratio perform better than those with lower ratio in terms
sum of distances, the experiment show comparable reséis eys average number of messages per sensors and robots. 3)

when the K-Means patrtition did not contain the restrictidn oAIthough very different in terms of message cost, the memory

Ic:cag_ l::alancn’:cg arr|1|on|g ?” cIl;sterlsl.ﬂl:lgurtle t'4(C) show Fheds%ﬂly and sensor selection algorithms produce a clusteitipart
of distances for all clusters for all the Solutions examined i, gimilar quality i.e. similar average sensor distanoe t

cluster centers and sum of the distances. 4) All the solstion
produce partitions with approximately the same quality mhe

The final test case examines the progression towards ceompared to the centralized benchmark (K-means). 5) Fast
vergence and the quality of the partition after each iterati convergence. The progression towards convergence of the
of the algorithms. For this test several runs of the sensdustering partition is not gradual, which translates ifast
selection algorithm were plotted. Figure 4(d) shows thenprovementin the initial rounds with minor adjustmentsren
average distance to cluster center after each iteratiomesf bn.

C. Progression Towards Convergence
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Fig. 4. Quality of the Partition

Future work in this area might involve the study of the sango] D. Krivistki, A. Schuster, and R. Wolff, “A local facity location
problem under more specific network topologies. Restgctin

the movement of the mobile robots or adding mobility to thﬁ1

sensors could provide an interesting change in the dynamics
and the nature of the derived solutions.
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