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Abstract— Energy management is one of the main hurdles
in the quest for autonomous and reliable sensor networks.
We present a cluster-based model for energy management in
networks with static sensors and mobile robots that act as mainte-
nance entities. The objective is to increase network availability by
recharging, replacing or redeploying ”depleted” sensors with the
help of mobile robots. The problem is to find a network partition
where (1) workload is balanced (i.e. an equipartition)and (2)
the movements of the maintenance robots in their partition
is minimized. This should be done efficiently at least for the
weakest elements of the system, the sensors; that is (3) the
number of sensor communications should be kept small. While
finding the optimal partition is a NP-hard problem, we show a
simple and efficient distributed solution that provides partitions
of remarkable quality. The experimental analysis of our solutions
shows that sensor message cost remains constant as the size
of the network increases. The experiments also show a rapid
progression towards convergence with the quality of the partition
similar to a centralized clustering benchmark (K-means).

I. I NTRODUCTION

A. The Framework

Energy consumption is a constant concern when designing
a Wireless Sensor Network (WSN). Regardless of the problem
being addressed, the ultimate goal of a sensor network is to
achieve accurate sensing and maximize lifetime while main-
taining an acceptable level of coverage. The most simplistic
approach to deal with sensor losses would be to deploy more
sensors to compensate for the loss of depleted ones; for obvi-
ous environmental or economical reasons this kind of solution
is not sustainable. More creative approaches attempt to extract
energy from the environment (e.g. [13], [14]), while others
explore the use of mobile robots in conjunction with clustering
techniques as a means of saving energy and coordinating
sensors for data gathering, aggregation and network repair(e.g.
[12], [19]). The idea of using robots in sensor networks has
also been proposed for other network maintenance tasks (e.g.
[9], [11]). In this paper, we are interested precisely in this
approach.

B. The Problem

In general, the existing solutions for energy management
(with or without robots) rely on some kind of clustering or
partitioning of the network. The energy management problem
is basically addressed by either creating a fixed partition of
the field, which limits the scalability of the solutions, or

constructing and maintaining dynamic clustering structures
which depend on the current position of the cluster heads.
The latter approach, where cluster membership is dynamic,
incurs in a significant overhead since nodes need to be notified
of any change (in the position) of their cluster head. When
robots are employed in the solution, they may act as the cluster
heads; in this case, it is possible for the cluster membership to
become very unbalanced due to robots movements in the field.
A significantly unbalanced partition will impose extra burden
on the robots resources compromising the health of the entire
system.

Assuming the recharging (fixing/replacing) capacity of each
robot is bounded and the same among all robots, the problem
is how to find a network partition where the robots act as a
cluster head, and: (1) each robot minimizes the sum of the
distances to all sensors in the cluster, and at the same time
(2) the number of sensors in the clusters is balanced. This
problem should be solved efficiently at least for the weakest
elements of the system, the sensors; that is (3) the number
of sensor communications should be kept small. A simpler
version of this problem is the facility location problem (FLP),
also studied in the context of sensor networks [6], [10], where
a number of facilities (i.e., robots), can be placed only in a
subset of a pre-defined number of locations; the goal is to
provide services to the sensors at minimal (traveling) cost.
Finding an optimal placement is a NP-hard problem [15];
hence our problem is also NP-hard.

C. Contributions

In this paper we proposed a cluster-based management
system to recharge or repair a network of static sensors by
employing mobile robots. Our approach combines a static
cluster partitioning with a distance aware robot positioning.
Based on previous experiences with clustering techniques (e.g.
[2], [12]) our objective is to minimize the number of messages
exchanged by sensors as well as the total robot travel time.
Our robot-based balanced maintenance system creates clusters
of sensors where each mobile robot becomes a cluster head.
The clusters are created through a sequence of iterations, each
creating a partition whose quality is strictly better that the
previous. Convergence is achieved in a finite number of steps;
when that happens, cluster membership becomes static and
robots reposition themselves at the center of mass of its cluster.



The main features of our contributions are: (1) Our solution
is completelydistributed and localized: there is no central
entity with global knowledge. Experimental analysis show that
the cost in terms of sensor messages remains constant as the
network size increases. (2) The experiments also show that
on average after 3 iterations of the algorithm the quality of
the partition is almost identical to the one obtained at the
convergence point. (3) The quality of the partition for the
distributed solutions tested is similar to the selected centralized
benchmark (K-Means).

D. Related work

To extend the operating life of sensor networks, researchers
have attempted to obtain alternative sources of energy to power
their sensors. The most common approaches are the use of
solar panels and vibrations (e.g. [8], [13]). Recent advances in
wireless technology have made possible the idea of recharging
wireless devices using electromagnetic induction/resonance
and the use of robots for network repair (e.g. [7], [9], [11],
[12]). Sheng et al. ([16], [18]) also explore the use of service
robots for maintenance tasks. In particular, they address the
issue of robot workload distribution and task allocation. The
emphasis of their experiments centers on the quality of the
final balanced partition rather than the cost of achieving such
partition. The authors observe that due to the discrete nature of
the point of interest (sensors), it was very difficult to obtain a
perfectly balanced partition. Consequently, the output oftheir
algorithms may lead to oscillatory behavior and, in order to
achieve convergence, the conditions for termination have to be
relaxed.

The main differences between previous works, such as ([12],
[16], [18]) and ours are: 1) The problem we attack is abi-
criterion optimization one: the partitioning of the sensors and
the positioning of the robots within their cluster must be such
that the service movement of the robots in their cluster is
minimized and at the same time the workload of the robots
must be optimized (i.e., the size of the clusters must be
the same); in [16], [18] only one (the second) optimization
criterion is used. 2) We propose using a static partition as
opposed to dynamic structures that need to be updated when
the robots move to repair or service a sensor. 3) We have
robots re-position themselves within their regions to minimize
the total trajectory required to recharge or repair nodes inthe
cluster.

The rest of this paper is organized as follows: Section 2
presents the model. Section 3 and 4 examine the overall system
and the algorithms to compute the stable balanced partition.
Section 5 discusses some experimental results and Section 6
contains conclusions and discussions on future work.

II. T HE MODEL

The proposed cluster-based energy management approach
can be used to either replace or recharge the sensor nodes with
minor modifications to the algorithms. Regardless of the kind
of functionality selected, the model includes the following key
components: a setS = {s1, ..., sN} of N sensors randomly

distributed in an area of unspecified shape; and a setR =
{r1, ..., rK} of K robots, also randomly distributed throughout
the area. Robots can move anywhere within the area and
they all move at the same speed. Robots can communicate
with sensors and robots within their transmission range (TR).
Sensors are static and can communicate with other sensors and
robots within their transmission range. Sensors are be ableto
monitor their energy levels and compute remaining time or
time to total depletion (Td).

Sensors and robots are grouped in clusters creating a bal-
anced partition of the entire area. A partition is considered
stable (and therefore final) when there are no changes in the
cluster membership. The stable partition must then satisfythe
load balance requirement based on pre-defined metrics. For
example, the number of sensors in the clusters combined with
their energy levels, etc. Without loss of generality, the model
will use a simple metric based on the number of sensors in the
cluster (equi-partition). Consequently, there will beNmodK
clusters containing exactlydN/Ke sensors and the rest will
containbN/Kc sensors.

The proposed clustering algorithms assume that robots and
sensors can determine their own positions by using GPS or
other localization method. Also, there is no global clock or
centralized entity to coordinate communications or actions.
That is, the system isasynchronous and sensors should be able
to reach at least one of the robots (∀s ∈ S, ∃r ∈ {r1, ..., rK}
whered(s, r) < TR ).

III. OVERALL V IEW

Our robot-based balanced maintenance system creates a
cluster structure that facilitates the network maintenance tasks
needed to maximize the network lifetime. This is a two stage
system. The first phase, the initialization phase, creates a
stable and balanced partition and the second phase is where
the maintenance tasks are carried out by the robots. Once
the clustering creation is finalized, there will be exactly one
maintenance robot for each sensor in S, the sensors will know
the location of their maintenance robot, and each robot will
know the position of all the sensors in its cluster. The sensors
will also keep the location of at most two other sensors (peers)
for failure detection.

After the initialization phase has been completed, the robots
and sensors move to the maintenance phase. The behavior
for sensors in this phase includes the following actions: 1)
Sensors monitor their energy levels. When a sensor detects
that its time to depletion or time left (Tl) is less than a
constant (Td) then it sends a request for recharge (RC) to its
maintenance robot. 2) Sensors send probes periodically to their
peers. If a response is not received; they send a repair request
(RR) to their maintenance robot containing the location of the
faulting node. The robots await repair/recharge requests from
their sensors and try to service them in a first-come first-serve
basis. The figure 1 summarizes the life cycle of the proposed
maintenance system.
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IV. COMPUTING THE STABLE PARTITION

The initial phase of the cluster creation is started by having
the robots broadcast their locations to all sensors; the sensors
will respond to only one robot (the closest) by sending a
CLUSTERJOIN request. This step creates a Voronoi partition
with K clusters with exactly one robot as cluster head. At
this point all sensors know about their tentative maintenance
robots and all robots know the location of the sensors they
have to maintain. Then, the robots should move to a point
in their clusters that minimizes the sum of all distances.
Such a point is unique and is known as the Weber point.
Unfortunately, the Weber point is not computable forN ≥ 5
sensors [3], [4]. Consequently, the robots will use the center
of mass as an approximation of the Weber point. In our
scenario, it can be assumed, without loss of generality, that
the mass of each point (position of sensors) is equal to 1.
Consequently, the robots will relocate to the pointC in their
Voronoi region that satisfies:C(c1, c2) = ( 1

N

∑

xi,
1
N

∑

yi)
where (x1,y1),...,(xN ,yN ) are the positions of theN sensors
in the region. Once the robots have arrived to their cluster
centers, they will repeat the same process until there no more
changes to their cluster membership.

A. Simple Algorithm with limited memory

A simple distributed algorithm with “limited memory”
can be used for the initialization phase. A robot is said
to have “limited memory” if it only has capacity to store
(remember) information about the previously obtained cluster.
In this algorithm the robots operate in logical rounds or
iterations, by sending STARTROUND broadcast messages,
announcing their positions. After receiving the initial position
from all robots, the sensors will rank the robots based on
their distances (from closest to farthest) and will reply with a
JOIN CLUSTER message to the smallest ranked robot. Since
some of the robots may be outside the sensors transmission
range, the first iteration will produce a K-cluster partition
which is not necessarily balanced. The robots will then ex-
change information about the sensors in their areas to redis-
tribute them in a balanced manner although not necessarily
optimal at this point. After concluding this “gossiping” phase,
the robots will travel to the center of their clusters and start
the next iteration.

After the first balanced partition has been achieved, either
because each robot received replies from N/K sensors or as
a result of the gossiping phase, the rest of the robot/sensor
communication will be limited to each cluster and the closest
sensors in adjacent clusters. Consequently, in each subsequent
iterations, the robots accept the first N/K requests and reject
all others by sending a CLUSTERFULL message back to
the sensor. The algorithm terminates when two consecutive
rounds produce the same clustering structure. A limitationof
this method is that, due to the asynchronous and distributed
nature of the network, there is no guarantee that the algorithm
will always converge to a stable partition.
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Fig. 2. Simple limited memory algorithm

Lemma 1: The cluster formation using the “limited mem-
ory” algorithm does not always converge to a stable partition.

Proof: Consider the simple network shown in Figure
2. Due to the asynchronous nature of the communications,
the “limited memory” algorithm does not converge in this
particular environment. Let us assume that during the first
iteration of the algorithm, robot 1 receives a sequence of
CLUSTERJOIN messages from sensors 1,2,3,4 in that order.
According to the algorithm, robot 1 will accept sensors 1 and
2 and send CLUSTERFULL messages to sensors 3 and 4.
After been rejected by robot 1, sensors 3 and 4 will send
CLUSTERJOIN messages to their robot with ranking 2,
in this case, robot 2. Once this phase has been completed,
robot 1 moves to point A and robot 2 moves to point C.
Let us assume now, that for the second iteration, after the
corresponding broadcast messages have been sent by both
robots, robot 1 receives a new sequence of CLUSTERJOIN
messages from sensors 1,3,2 in that order. Following the same
behavior, robot 1 will now accept sensors 1, 3 and robot 2
will eventually accept sensors 2 and 4. The robots will then
move to point B and D respectively. Since a new partition
has been created, the robots will proceed to a new iteration.
Consequently, if consecutive iterations of the algorithm show
a changing behavior regarding the arrival of CLUSTERJOIN
messages as described in the two iterations above, Robot 1
will be oscillating between points A and B and robot 2 will
oscillate between points C and D without achieving a stable
partition. Hence the lemma holds.

From the previous lemma we could generalize that if the
robots are provided with a fixed amount of memoryO(M)
(i.e. the robots can only “remember” theM previously created
clusters), the “simple memory” algorithm does not always
converge.



B. Achieving Convergence

In order to achieve convergence of the clustering structure,
we propose to extend the memory capabilities of the robots.
In particular, the robots will now be able to “remember” all
previous clusters they have created and will stop the execution
of the algorithm as soon as they obtain a previously seen or
created cluster. The behavior of the static sensors remains
unchanged in this new approach and there are only small
changes to the robot’s behavior. Each robot will now keep
a list of old clusters and will stop the execution when a newly
created cluster is found in such a list.

Lemma 2: The cluster formation with the memory option
will converge in a finite number of rounds.

Proof: Let S = {S1, ..., SN} a set ofN static sensors
randomly placed in a plane andR = {R1, ..., RK} a set ofK
mobile robots also randomly placed in a plane. At any given
iteration of the initialization algorithm, a set ofK clusters
C = {C1, ..., CK} is created.

Without loss of generality, we can assume that
at the end of round 1 the algorithm produces the
following K clusters C1, C2, ..., CK where Ci =
{

Ri, SN

K
i+1, SN

K
i+2, ..., SN

K
(i+1)

}

with 0 ≤ i ≤ K − 1.

Let P = {P1, ..., PF } be the set of partitions created in
each round of the algorithm. WherePi =

{

Ci
1, ..., C

i
K

}

is
the cluster partition obtained after iterationi and Ci

j with
1 ≤ j ≤ K, are the clusters obtained in such iteration.

By definition of the clustering with memory algorithm,PF

is the final partition if∀CF
i with 1 ≤ i ≤ K, ∃j, 1 ≤ j < F

where CF
i = Cj

i . The existence ofPF can be proved by
contradiction. Let us assume for a moment that the algorithm
does not converge. This means that after each round, a new
partition is created where there is at least one clusterCF

i ,
1 ≤ i ≤ K, such thatCF

i 6= Cj
i , for all j, 1 ≤ j < F . This

contradicts the definition of a cluster formation where there
are only a finite number of combinations ofN/K sensors for
the same cluster headRi. Hence, the lemma holds.

C. Improving Convergence and Quality

In the previous algorithm, the robots limit themselves to
only accepting the firstN/K sensors and blinding rejecting
any other request. This rather passive behavior in combination
with the asynchronous nature of the network may impact
the performance of the algorithm. In an effort to improve
convergence and the quality of the overall partition, a new
sensor selection rule is added to the iterations. The difference
now is that after accepting the firstN/K CLUSTERJOIN
requests, a robot will still accept a new sensor in its cluster as
long as the inclusion of the new sensor decreases the diameter
of the cluster.

Since our model imposes the requirement of load balancing,
the robots will have to reject one of the previously accepted
sensors in order to accept a better candidate. The selection
of which sensor will be excluded from the cluster depends
on the sensor’s distance to the center and its proximity to
a neighboring robot which has not previously rejected that

Algorithm 1 Sensor Selection: RobotR
1: (* In StateEND ROUND : *)
2: begin
3: if receiving CLUSTER JOIN(S) then
4: s′ = findFarthestAndClosest(sensorList)
5: if s′=null then
6: sendCLUSTER FULL message toS
7: else
8: sendCLUSTER FULL message tos′

9: end if
10: end if
11: if receiving END ROUND(R′) then
12: numOfEndRoundMsg =numEndRoundMsg+1
13: if numOfEndRoundMsg = K-1then
14: C = center(sensorList)
15: MoveTo(C)
16: if find (currentCluster,ClusterList)then
17: sendINIT DONE broadcast message
18: becomeDONE
19: else
20: becomeINIT
21: end if
22: end if
23: end if
24: end

sensor. Basically, this rule can be called the “farthest andclos-
est” rule where the farthest as possible sensor from the center
and at the same time, closest to a neighboring robot will be
rejected. Ties are broken based on a secondary criterion such
as energy levels or simply selecting the sensor with the smaller
Id. In general, if robotR receives a CLUSTERJOIN(R,j)
from sensorS. ThenR acceptsS if and only if there exists
a sensorSi in its cluster for whichd(R,Si) > d(R,S) and
d(Si, Ri) = min {d(Sj , Rj)} whereSj denotes all sensors in
the cluster,Rj is the next closest ranked robot inSj list and
d is the Euclidean distance (seeAlgorithm 1).

V. EXPERIMENTAL ANALYSIS

This section examines the simulation results for the “mem-
ory only” and “sensor selection” algorithms. In all cases the
simulation software utilized was Omnet++ [20] along with the
mobility framework extension [5]. To improve the robot’s ca-
pabilities and provide additional control over their movements,
a new on-demand mobility mode was implemented and added
to the mobility framework. For all the experiments, the robots
and sensors are randomly placed in an area of106 m2. The
analysis centers on two important aspects of the solutions:the
message cost and the quality of the partition.

A. Rounds and Messages

The first experiment involves a performance comparison
between the memory only and sensor selection algorithms
in networks with 5 and 10 robots and up to 240 sensors.
The number of rounds necessary to achieve convergence as
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Fig. 3. Number of Rounds and Sensor Messages

well as the number of sensor messages required are plotted
in figure 3(a) and 3(b) respectively. The results of this test
case confirm that the sensor selection algorithm outperforms
the memory only algorithm by a significant margin. In both
cases, number of rounds and messages per sensor, the sensor
selection algorithm shows an expected and almost constant
message cost per sensor even when the number of network
elements increases.

B. Quality of the Solution

This experiment explores the quality of the solutions to
verify whether the fastest solution produces the best overall
cluster partition. The quality criteria for this case are the
average distance from a sensor to its cluster center and the
average sum of the distances per cluster. Figures 4(a) and
4(b) show the comparison for networks of 5 and 10 robots
with variable number of sensors.

Contrary to the results for message costs, the three algo-
rithms (including “memory only”) produce very similar cluster
partitions very in terms of average sensor distance to their
corresponding cluster centers. Another interesting finding is
that quality of the solution obtained by the algorithms does
not change as we double the number of robots in the network.

Perhaps the most interest finding resulting of this test caseis
that the two distributed solutions produced a similar partition
when compared to the chosen centralized clustering bench-
mark (K-means). For this particular experiment, the same node
deployment was used to execute a K-Means in SPSS for UNIX
and the results plotted along with our distributed solutions. For
both quality parameters: average distance to cluster center and
sum of distances, the experiment show comparable results even
when the K-Means partition did not contain the restriction of
load balancing among all clusters. Figure 4(c) show the sum
of distances for all clusters for all the solutions examined.

C. Progression Towards Convergence

The final test case examines the progression towards con-
vergence and the quality of the partition after each iteration
of the algorithms. For this test several runs of the sensor
selection algorithm were plotted. Figure 4(d) shows the
average distance to cluster center after each iteration of the

algorithm until achieving convergence. This particular experi-
ment shows a positive and somehow unexpected result, where
progression towards convergence is not gradual as we may
have anticipated. On the contrary, after only a few iterations
of the algorithm, the variations in quality are minor with an
overall behavior almost flat. This is an important feature ofour
approximation algorithms, which on average, if stopped after
3 iterations, will produce a solution close to the one achieved
at the convergence point. Depending of the characteristics
and requirement of the network, this behavior could be an
advantage in real life applications. For a complete list of the
experimental results see [21].

VI. CONCLUSIONS ANDFUTURE WORK

Throughout this work we have discussed the possibility
of employing mobile robots to recharge/repair a network of
static sensors. The robots should coordinate their work by
partitioning the network into balanced clusters and position
themselves at the center of these clusters. This work has also
shown that the construction of such partition in an asyn-
chronous environment is possible if the robots are provided
with memory capabilities. Furthermore, with some simple
modifications a significant impact in cost reduction can be
achieved by selecting and discarding the best candidate sensors
in each iteration of the clustering algorithm.

From the experimental analysis we can summarize the fol-
lowing general observations: 1) The sensor selection algorithm
outperforms the simple memory only algorithm in terms of
sensor message cost. 2) Networks with higher sensor to robot
ratio perform better than those with lower ratio in terms
of average number of messages per sensors and robots. 3)
Although very different in terms of message cost, the memory
only and sensor selection algorithms produce a cluster partition
with similar quality i.e. similar average sensor distance to
cluster centers and sum of the distances. 4) All the solutions
produce partitions with approximately the same quality when
compared to the centralized benchmark (K-means). 5) Fast
convergence. The progression towards convergence of the
clustering partition is not gradual, which translates intofast
improvement in the initial rounds with minor adjustments there
on.
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Fig. 4. Quality of the Partition

Future work in this area might involve the study of the same
problem under more specific network topologies. Restricting
the movement of the mobile robots or adding mobility to the
sensors could provide an interesting change in the dynamics
and the nature of the derived solutions.
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