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Abstract

The mobile agent rendezvous problem consists of k¥ > 2 mobile agents trying to ren-
dezvous or meet in a minimum amount of time on an n node network. Tokens and markers
have been used successfully to achieve rendezvous when the problem is symmetric, e.g.,
the network is an anonymous ring and the mobile agents are identical and run the same
deterministic algorithm. In this paper, we explore how token failure affects the time and
memory requirements of mobile agent rendezvous under symmetric conditions.

1 Introduction

Tokens [3], [4] and markers [2] have been used successfully to achieve rendezvous when the
mobile agent rendezvous problem is symmetric, e.g., the network is an anonymous ring and
the mobile agents are identical and run the same deterministic algorithm. The tokens and
markers were considered to be unfailing and thus always visible to any mobile agent on the
same node as a token. In this paper, we explore how token failure affects the time and memory
requirements of mobile agent rendezvous.

Each mobile agent has a single, identical, stationary token which consists of a single bit
of memory. In the first step of a rendezvous algorithm, each mobile agent places its token
on the node that it currently occupies. As mentioned, an unfailing token is always visible to



any mobile agent on the same node as the token. If the token fails, however, it is no longer
visible to any mobile agent and it remains in the failed state for the rest of the rendezvous
algorithm.

1.1 The Network Model

The network model consists of £ > 2 identical mobile agents in an anonymous, synchronous,
n node ring. FEach mobile agent, M A, owns a single, identical, stationary token that is
comprised of one bit. A given node requires only enough memory to host a token and, at
most, £ mobile agents.

The M As follow the same deterministic algorithm and begin execution at the same time.
A M A releases its token in the first step of any rendezvous algorithm. Since the tokens are
stationary, the original intertoken distances are maintained unless a token fails. A token fails
when it is no longer visible to any M A on the same node. Tokens may fail upon release or
may fail later. If a token has not failed, then it and any M A on a given node are visible to
all M As on the same node, but are not visible to any other M As.

1.2 Outline of the Paper

Three cases of token failure are investigated. First, we assume tokens can fail only upon
release. We prove that if the M As have O(klogn) memory, gcd(k’,n) = 1 for all ¥’ < k, and
at most k£ — 1 tokens fail, then the mobile agent rendezvous problem can be solved in time
O(kn).

Second, we assume tokens can fail at anytime. We prove that if the M As have O(klogn)
memory, ged(k',n) = 1 for all &' < k, and at most k¥ — 1 tokens fail, then the mobile agent
rendezvous problem can be solved in time O(k?n).

Finally, we assume tokens can fail at anytime, ged(k',n) = 1 for all ¥’ < k, at most k —
1 tokens fail, and the M As know n, the number of nodes in the ring. We prove that if the
M As have O(logn) memory, then the mobile agent rendezvous problem can be solved in time
O(kn).

We conclude by comparing the time and memory requirements of rendezvous when tokens
can fail to those when tokens cannot fail.

2 Rendezvous When Tokens Fail Upon Release

First, we assume a token can fail only upon release, i.e., in the first step of a given algorithm.
The M A that released the token is unaware that it failed. The M As known k so, with
adequate memory, they can walk around the ring and calculate the sequence S = dj, ..., dsg,
i.e., the sequence of the first 3k intertoken distances. Let S™ denote the reverse of S. Since
the tokens fail only upon release, S® can be partitioned as follows:

SR=Q"+dy,...,d, (1)
where Q7 is the concatenation of g copies of a unique aperiodic subsequence (), + is the
concatenation operator, and di,...,d, is a subsequence such that v < |Q|. Upon identifying

the subsequence ), the M As can identify a unique node upon which to rendezvous.



Algorithm 1

1. Release the token at the starting node.

2. Choose a direction and start walking.

3. Compute the sequence of 3k intertoken distances i.e., S = dy,do, ..., ds.

4. Let ST be the reverse of S.

5. Find the shortest aperiodic subsequence @ that starts with the first element of
S® and is repeated such that S® = Q7 +dy,...,d, where v < |Q|.

. Let Q¥ be the reverse of Q.

Let lexi(someSequence) denote the lexicographically maximum rotation of

someSequence.

. Set forward = lezi(Q) and reverse = lexi(Q).

. If forward and reverse differ, then determine which of these sequences is the
lexicographic maximum and rendezvous at the node where this sequence be-
gins.

10. Else let M A; and M A; denote the M As at the beginning of forward and

reverse respectively.

11. If M A; and M A; are the same M A, then rendezvous at the node where M A;

resides.

12. If M A; and M A; are distinct M As, then look at the two paths between M A;

and MA; in the ring.
i) If only one of the paths had an odd number of nodes,
then rendezvous at the node in the midpoint of that path.
ii) If both paths have an odd number of nodes, then
a) if the paths differ in length, rendezvous at the
midpoint of the shorter path,
b) else compare the sequences of intertoken distances for
the two paths and rendezvous at the node in the midpoint
of the path that is the lexicographic maximum.
iii) If both paths have an even number of nodes, then
rendezvous at the node in the midpoint of the path that
contains an odd number of M As.
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Theorem 1 When the M As have O(klogn) memory, ged(k',n) = 1 holds for all k' < k,
f < (k—1) tokens fail, and tokens can fail only upon release, then the mobile agent rendezvous
problem can be solved in O(kn) time.

Proof of Theorem 1.

Let a be the number of tokens that do not fail, i.e., a = k — f. Let A = dy,...,d,
be the sequence of intertoken distances that exist after the f tokens have failed such that
Yo 1 di =n. Let S be the sequence of 3k intertoken distances calculated by a given M A in
step 3 of Algorithm 1. Let S be the reverse of S. With a renumbering of the intertoken
distances in S,

Sp=A"+di,...,d :(dl,...,da)p+d1,...,d7. (2)
where A” is the concatenation of p copies of the aperiodic subsequence A, + is the con-
catenation operator, and di,...,d, is a subsequence such that v < a. Thus there exists at



least one aperiodic subsequence, namely A, that satisfies equation 1. If A is the shortest sub-
sequence that satisfies equation 1, the M As discover A in step 5 of Algorithm 1. Otherwise,
the M As discover a shorter aperiodic subsequence, (), that satisfies equation 1.

The subsequence discovered in step 5 of Algorithm 1 is unique. If the shortest subsequence
has z elements, these elements are the first z elements of S®. Any other subsequence of the
same length that satisfies equation 1 is also comprised of the first z elements of S® and thus
the subsequence discovered in step 5 is unique. This implies that all the M As identify the
same rendezvous node in the remaining steps of Algorithm 1 and rendezvous occurs.

Calculating S, the sequence of 3k intertoken distances requires O(klogn) memory and
requires O(kn) time. Identifying the appropriate subsequence in step 5, determining the
rendezvous node, and walking to the rendezvous node can be done in O(kn) time as well, so
the overall time requirement is O(kn). This completes the proof of Theorem 1. ]

It is interesting to note that when k is known and the tokens only fail upon release,
Algorithm 1 also solves the mobile agent rendezvous problem when the ring is asynchronous.

3 Rendezvous When Tokens Fail After Release And the Ring
Size is Unknown

Suppose token failures occur after release. In the following algorithm, if more than one but
fewer than k M As meet on a given node, then a partial rendezvous occurs, i.e., the M As
merge and act as one M A for the remainder of the algorithm.

Algorithm 2

Release token.

Set r = 0, where r denotes a round of the algorithm.

Choose a direction and begin walking.

Upon meeting another M A, merge with that M A.

Calculate the first k£ — r intertoken distances, i.e., S = (d1,...,dk—r).
Estimate n as # = Y57 d;.

Calculate Sparr, the lexicographically maximum rotation of S.

Set h = 0.

. Walk to the node that starts Stsr and increment A for each node travelled.
10. Wait 27 - h clock ticks.

11. If there are k M As or their merged equivalent on the current node, stop.
/* Rendezvous has occurred. */

12. Else if there are 1 < v < k M As on the current node, then merge.

13. Set r = r 4+ 1 and repeat from step 3.
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The following three lemmata are used in the proof of Theorem 2. Lemma 1 demonstrates
that the M As are always less than a round apart. In fact, if M A; is the first M A to complete
step 5 of round r and does so at time 7, then all other M As either merge with MA; or
complete round r — 1 by time 7. As a result, M A; need only wait 372/2 clock ticks for other
M As that have the same view. This lemma, therefore provides the appropriate waiting time
for step 10 of Algorithm 2.

Lemma 1 Given a mobile agent MA* and 0 < r < f — 1, all other M As will either finish
round r or merge with M A* by the time M A* finishes step 5 of round r + 1 in Algorithm 2.



Proof of Lemma 1.

Base case: r = 0.

Let M A; be an arbitrary M A, other than M A*, that finishes round r = 0 after M A* does.
Let 7 and 7 denote the estimates for n calculated by M A* and M A; respectively in round
r = 0. The two M As will meet and merge if:

e (ase 1: M A*’s wait in step 10 of round r = 0 overlaps M A;’s walk in step 5 of round
r = 0 by at least n steps, or

e (Case 2: MA;’s wait in step 10 of round r = 0 overlaps M A*’s walk in step 5 of round
r =1 by at least n steps.

If the two M As do not meet and merge in round r = 0, then

e (ase 3: MA; must finish round » = 0 on or before the time that M A* finishes step 5
of round r = 1.

In round 7 = 0 of Algorithm 2, M A* begins waiting no later than %’fb, thus Case 1 requires
that

%ﬁJrnSﬁ. 3)

Suppose that Case 1 does not hold. Case 3 requires that

37 < 37 +n* (4)

where n* is the estimate for n calculated by M A* in step 5 of round r = 1.
Suppose that Case 3 does not hold either. The final case, Case 2, requires that

3
§ﬁ < 3n. (5)
Since Case 3 does not hold, equation 4 implies that

3h + n* < 37 (6)

and thus M A; waits in round r = 0 while M A* walks at least n steps in step 5 of round
r =1 and the two M As subsequently meet and merge.

Suppose that, like the previous cases, Case 2 does not hold. Since equation 5 does not
hold, then

3 < gn (1)

This implies, however, that 272 < 7 and thus contradicts the fact that Case I does not
hold. Therefore one of the cases must hold and thus, on or before M A* finishes step 5 of
round r = 1, either M A* and M A; meet and merge or M A; finishes round r = 0.

Inductive Hypothesis: The lemma, holds for r = ¢.

r=q+1:
The inductive hypothesis implies that in round r = ¢, the two M As either meet and merge,
or M A; finishes round r = ¢ on or before M A* finishes step 5 of round r = ¢ + 1. M A; only
starts round r = ¢+ 1 if the two M As did not meet in round r = ¢, i.e., M A; finished round
r = ¢q on or before M A* finished step 5 of round r = ¢ + 1.



Let ty and ¢; denote the respective times that M A* and M A; begin round r = ¢+ 1 and
let § = tg — t1. The inductive hypothesis implies that § > 0 and that M A; begins round
r = ¢ + 1 no later than #y + 7, where 7 is the estimate for n calculated by M A* in round
r=q+1.

The two M As will meet and merge in round r = g + 1 if

e Case 1': M A*’s wait in step 10 of round r = ¢ + 1 overlaps M A;’s walk in step 5 of
round 7 = ¢ + 1 by at least n steps, or

e Case 2': MA;’s wait in step 10 of round r = ¢ + 1 overlaps M A*’s walk in step 5 of
round 7 = g + 2 by at least n steps.

If the two M As do not meet and merge in round r = g + 1, then

e (Case 3': M A; must finish round 7 = g+ 1 on or before the time that M A* finishes step
5 of round r = q + 2.

Case 1! occurs if

3
to+ 5 +n <to+d+ (8)

where 7. and 72 are M A* and M A;’s respective estimates for n in round r = ¢ + 1.
Suppose that Case 1’ does not hold. Case 3' occurs if M A; finishes round » = g+ 1 on or
before M A* finishes step 5 of round r = g + 2, i.e.,

to+ 0+ 30 < tg + 30 +n" (9)
where n* is M A*’s estimate for n in round r = q + 2.
Suppose that Case 3’ does not hold. Case 2’ occurs if

6+gﬁ§3ﬁ (10)

However, since Case 3' does not hold, then

3 < 37 +n" < 6+ 3. (11)

and thus M A; waits in round r = ¢ + 1 while M A* walks at least n nodes in step 5 of
round r = g+ 2. This contradicts the fact that Case 1’ did not occur. Thus one of three cases
must occur when M A; is in round r = g + 1. This ends the proof of Lemma 1. [

Lemma 2 proves that the M As which see the same sequence of intertoken distances in a
given round will rendezvous in that round.

Lemma 2 The M As that see the same sequence, up to a rotation, of intertoken distances S
in a given round will rendezvous in that round.

Proof of Lemma 2.

The M As that see the same sequence of intertoken distances S, up to a rotation, will have
the same estimate for 7, and will identify the same rendezvous node. Let tg denote the time
that the first M A finishes calculating S. Lemma 1 implies that the remaining M As that see
rotations of S will start calculating those rotations no later than ty. The first M A will wait at



the rendezvous node from no later than ¢y + % until exactly tg+ 27. The remaining M As that
see rotations of S arrive at the rendezvous node no later than ¢ + %, and thus all M As that
saw rotations of S in a given round will rendezvous by the end of that round. This completes
the proof of Lemma 2. ]

Lemma 3 ensures that no M A will overshoot and execute a round r where r exceeds the
number of existing failures f.

Lemma 3 A mobile agent M A; will not execute round r = f if fewer than f tokens have
failed by the time that all M As finishes step 5 of round f — 1.

Proof of Lemma 3.
Base case: f = 1. If no tokens fail before all M As, including M A;, complete step 5 of round
r = () then the M As see, up to a rotation, the same sequence of intertoken distances S and
thus identify the same rendezvous node. Since rendezvous occurs in round r = 0, round r =
1 is not executed.

Inductive hypothesis: The theorem is true for f = gq.

Caser =g+ 1:
If exactly g of ¢ + 1 token failures have occurred, then the M As are in rounds r < ¢. If all of
the M As do not merge or rendezvous in one of the first ¢ — 1 rounds, then some M As execute
round ¢. If no more tokens fail before these M As finish step 5 of round g, then all the M As
in round g calculate, up to a rotation, the same sequence of intertoken distances, S, and thus
rendezvous occurs in round r = ¢. If an additional token fails before all the M As finish step 5
of round r = ¢, then the M As may calculate sequences of intertoken distances that differ by
more than a rotation and thus rendezvous may not occur. Those M As that continue to round
r = g + 1, however, all calculate the same sequence, up to a rotation, of intertoken distances
and thus rendezvous occurs in round r = g + 1. This completes the proof of Lemma, 3. [

Theorem 2 When the M As have O(klogn) memory, ged(k',n) = 1 holds for all k' < k,
at most (k — 1) tokens fail, and token failures occur after release, then the mobile agent
rendezvous problem can be solved in O(k?n) time.

Proof of Theorem 2.

Let f <k — 1 be the number of tokens that actually fail. Lemma 3 implies that no M A will
execute more than f rounds of Algorithm 2. Suppose that rendezvous has not occurred by
the end of round r = f — 1. Let M A* denote the first M A that begins round » = f and let
to denote the time when M A* starts round r» = f of Algorithm 2. Since f tokens have failed,
M A*s estimate for n will be correct, i.e., 7 = n. The remaining M As see the same sequence,
up to a rotation, of intertoken distances as M A*, and thus Lemma 2 implies that rendezvous
occurs at the end of round f.

The number of failures, f, is at most £ — 1 so at most k£ — 1 rounds of Algorithm 2
are executed. A round takes at most k(n — 1) time, i.e., the product of the number of
intertoken distances measured and the maximum intertoken distance possible. The resulting
time required is O(k?n). Because at most k intertoken distances are calculated and the
maximum intertoken distance is (n — 1), the resulting memory complexity is O(klogn). This
completes the proof of Theorem 2. [ |



4 Rendezvous When Tokens Fail After Release and the Ring
Size is Known

The following algorithm is useful when the M As know not only k, the number of M As, but
also know n, the number of nodes in the ring. With adequate memory, the M As can walk
around the ring and calculate the sequence S = dy, ..., ds, of 3n intertoken distances. If S,
the reverse of S, begins with an aperiodic subsequence A that is repeated at least twice, the
M As can identify a unique node upon which to rendezvous. Otherwise, the M As restart the
algorithm. A M A that identifies a node for rendezvous would wait at that node until all M As
that could have seen the same view have arrived at that node. If the equivalent of k£ M As
arrived at the node, rendezvous would occur. Otherwise, the M As restart the algorithm.
Algorithm 3

1. Release the token at the starting node.

2. Choose a direction and start walking.

3. Compute the sequence of intertoken distances for 3n steps, i.e., S = dy,do,...,d;
such that ), o d; = 3n.

4. Let S® be the reverse of S.

5. Attempt to find an aperiodic subsequence A that starts at the first element of
S® and is repeated at least twice.

6. If no such subsequence exists, wait n/2 clock ticks and repeat from step 3.

Else let AR be the reverse of A.

Let lexi(someSequence) denote the lexicographically maximum rotation of

someSequence.

9. Set forward = lexi(A) and reverse = lexi(AF).

10. Execute steps 9 through 12 of Algorithm 1.

11. Wait n/2 minus the distance travelled in step 10.

12. If k M As or their merged equivalent have arrives at the current node, ren-
dezvous is complete.

13. Else repeat from step 3.

®© N

Theorem 3 When the M As have O(logn) memory, know k and n, gcd(k',n) =1 for all
k' < k, at most k — 1 failures occur, and tokens failures occur at anytime, then the mobile
agent rendezvous problem can be solved in O(kn) time.

Proof of Theorem ?? Rendezvous fails when at least two M As see different views during
a given 3n node walk around the ring or when at least one M A does not see a repeated
aperiodic sequence. Both of these situations arise when, in a given 3n step walk around the
ring, at least one token fails. Since at most k£ — 1 tokens can fail, then at most k — 1 of the
3n step walks can be completed before all M As see the same view. Thus rendezvous requires
O(kn) time. This completes the proof for Theorem 3. ]

5 The Cost of Token Failure

When tokens fail, the time and memory requirements of the mobile agent rendezvous problem
increase. In Table 1, we compare the memory and time requirements for rendezvous with and
without token failure.



Knowledge | Memory | TokensFail | Time

k O(klogn) no O(n)
O(klogn) | upon release | O(kn)
O(klogn) | anytime | O(k?n)
k O(logn) no O(kn)
k,n O(logn) anytime O(kn)

Table 1: The Cost of Token Failure

Kranakis et al [3] proved that when k& is known and tokens cannot fail, the £ > 2 mobile
agent rendezvous problem can be solved with O(klogn) memory and O(n) time. We proved
that when tokens can fail upon release, however, the time required for rendezvous increases
to O(kn). If tokens can fail at anytime, the time required for rendezvous increases to O(k%n).

Flocchini et al [4] also proved that when k is known and tokens cannot fail, the k£ > 2
mobile agent rendezvous problem can be solved with O(logn) memory and O(kn) time.
When tokens can fail at anytime, the memory and time required for rendezvous can be held
to O(logn) and O(kn) respectively but the mobile agents need to know n in addition to k.

6 Conclusion

The effect of token failure on the time and memory requirements of rendezvous suggests that
it would be interesting to explore other sources of failure in the mobile agent rendezvous
problem. For example, what are the implications for rendezvous when mobile agents fail?
Mobile agent failure could be partial, such as not merging when appropriate, or absolute,
such as not operating at all. It would also be interesting to determine the impact of network
problems, such as heavy traffic, on mobile agent rendezvous.
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