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Abstract

In this paper we study the problem of gathering in the same location of the
plane a collection of identical oblivious mobile robots. Previous investigations have
focused mostly on the unlimited visibility setting, where each robot can always see
all the other ones, regardless of their distance.

In the more difficult and realistic setting where the robots have limited visibility,
the existing algorithmic results are only for convergence (towards a common point,
without ever reaching it) and only for synchronous environments, where robots’
movements are assumed to be performed instantaneously.

In contrast, we study this problem in a totally asynchronous setting, where
robots’ actions, computations, and movements require a finite but otherwise unpre-
dictable amount of time. We present a protocol that allows anonymous oblivious
robots with limited visibility to gather in the same location in finite time, provided
they have orientation (i.e., agreement on a coordinate system).

Our result indicates that, with respect to gathering, orientation is at least as
powerful as instantaneous movements.
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1 Introduction

In current robotics research, both from engineering and behavioral viewpoints, the trend
has been to move away from the design and deployment of few problem-specific robots
which are powerful enough to solve the problem at hand; the main reason is that such
robots are clearly complex, difficult to program and to construct, and, thus, usually
expensive.

The interest has shifted instead towards the design and use of a large number of
generic robots which have minimal physical capabilities, exceedingly simple behavior but
are easy (and, thus, relatively inexpensive) to design, construct and deploy (e.g., see
[4, 5, 6, 7, 14, 15, 18, 19, 20, 21]). In particular, these robots are only capable of sensing
their immediate surrounding, performing simple computations on the sensed data, and
moving towards the computed destination; their behavior is a simple cycle of sensing,
computing, moving and being inactive. In spite of their limitations, the robots should be
able, together, of performing rather complex tasks.

A basic set of theoretical questions refer to determining minimal robot capabilities;
that is, how “simple” the robots can be to perform the required task. In computational
terms, this question is to identify the factors which influence solvability of a given problem
(the task) by a set of mobile robots. The research is still focusing on basic tasks such as
gathering, flocking, pattern formation, scattering, etc. [1, 4, 8, 9, 10, 12, 13, 16, 17, 22,
23, 24, 25].

In this paper we are interested in gathering: the basic task of having the robots meet
in a single location (the choice of the location is not predetermined). Since the robots are
modeled as points in the plane, the task of robots gathering is also called point formation.
A related task is that of convergence, in which the robots must converge towards a single
point without necessarily reaching it.

Both gathering and convergence have been extensively investigated experimentally
and theoretically in the unlimited visibility setting, that is assuming that the robots are
capable to sense (“see”) the entire space (e.g., see [1, 8, 9, 10, 11, 12, 16, 18, 22, 23, 25]).

In general, and more realistically, robots can sense only a surrounding within a radius
of bounded size (refer to the example depicted in Figure 1). This setting, called the limited
visibility case, is understandably more difficult; for example, a robot might not even know
the total number of robots nor where they are located if outside its radius of visibility.

Not surprisingly, only few algorithmic results are known [2, 3]. In particular, Ando
et al. [2] presented a procedure which allows indistinguishable robots, placed on a plane
without any common coordinate system, to converge towards the same point. Their pro-
cedure does not require the robots to remember observations nor computations performed
in the previous steps. Their result implies that convergence can be achieved by robots
with limited visibility which are indeed very simple: anonymous, oblivious and disori-
ented. This powerful result is however based on a very strong “atemporal” assumption:
the robots must be capable in each cycle to perform all the computing and moving in-
stantaneously; moreover, cycles are performed at specific instants of time (i.e., they are
synchronized) although not all robots might be active at those times. This model is called
semi-synchronous. The properies of this model have many crucial consequences; in partic-
ular, if movement is instantaneous, a robot will not be seen by the others while moving; if
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Figure 1: The limited visibility setting: a robot can only see robots that are within its
radius of visibility.

computing is instantaneous, a robot always decides based on the correct current situation
in its neighborhood. This assumption clearly limits the practical impact of the results.

There are some immediate and natural questions arising from observing the nature of
this result. In particular:

- Under what conditions anonymous oblivious robots with limited visibility can gather
in finite time (and not just converge without ever reaching the point)?

- Under what conditions can they do so if movement is not instantaneous?

In other words, the quest is for a gathering algorithm for the most general asynchronous
setting, when both computations and movements require a (finite but otherwise) unpre-
dictable amount of time. Notice that, if movement is not instantaneous, a robot can be
seen by the others while moving, and that position mistaken for a destination point of a
move; if computing is not instantaneous, a robot might make a decision based on a view
of its neighborhood that is totally outdated.

In this paper, we provide an effective answer to both questions. In fact, we prove that
the availability of orientation1 enables a set of anonymous oblivious robots with limited
visibility to gather in finite time even if they are fully asynchronous. This result holds not
only allowing each activity and inactivity of the robots to be totally unpredictable (but
finite) in duration, but also making their movement towards a destination unpredictable
(but not infinitesimally small) in length.

This shows that gathering can be performed in a finite number of moves by simpler
robots with fewer restrictions on the problem than known before, provided they have a
common orientation. From a computational point of view, our result implies that with
respect to the gathering problem, orientation is at least as powerful as instantaneous
action.

Let us remark that the proposed algorithm does not assume that the robots have the
capability of multiplicity detection (i.e., the ability to determine in the sensing phase if
more than one robot is in a given location).

1i.e., agreement on axes and directions (positive vs. negative) of a common coordinate system, but
not necessarily on the origin nor on the unit distance.
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The paper is organized as follows. In Section 2 the terminology and notations used in
the paper and some useful geometric lemmas are introduced. The gathering algorithm is
described in Section 3, and in Section 4 its correctness is proven. Finally, in Section 5,
some conclusions are drawn and ideas for future work are presented.

2 Terminology and Definitions

2.1 The Robots

We consider a system of autonomous mobile robots. Each robot is capable of sensing
its immediate surrounding, performing computations on the sensed data, and moving
towards the computed destination; its behavior is an (endless) cycle of being inactive,
sensing, computing, and moving.

The robots are viewed as points, and modeled as units with computational capabilities,
which are able to freely move in the plane. Each robot has its own local coordinate system,
defined by two linearly independent vectors in the plane (as for the usual Cartesian
coordinate system), one called the direction of the ”x-axis”, the other of the ”y-axis”.
The vectors are the same for all robots; we say the robots ”agree on the axes and their
direction”, and we call this their ”orientation”. The unit length along each axis is chosen
independently by each robot; we say the robots ”do not agree on the unit distance”.
Furthermore, the origin of the coordinate system need not be the same for all robots; we
say the robots ”do not agree on the location of the origin”. They are equipped with sensors
that let each robot observe the positions of the others. The robots are oblivious, meaning
that they do not remember any previous observation nor computations performed in the
previous steps.

The robots are anonymous, meaning that they are a priori indistinguishable by their
appearances, and they do not have any kind of identifiers that can be used during the
computation. Moreover, there are no explicit direct means of communication.

The robots are fully asynchronous: there is no common notion of time, and the amount
of time spent in observation2, in computation, in movement, and in inactivity is finite but
otherwise unpredictable.

The robots have limited visibility; that is, each robot can observe only what is at most
at a fixed distance V from it.

Summarizing, the robots are asynchronous, oblivious, anonymous, and with limited
visibility; they do however have orientation.

2.2 The Cycle of Activity

The robots execute the same deterministic algorithm, which takes as input the observed
positions of the robots within the visibility radius, and returns a destination point towards
which the executing robot moves.

A robot is initially in a waiting state (Wait); asynchronously and independently from
the other robots, it observes the environment in its area of visibility (Look); it calculates

2i.e., activating the sensors and receiving their data.
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its destination point based only on the observed locations of the robots (Compute); it
then moves towards that point (Move); after the move it goes back to a waiting state.

The sequence: Wait - Look - Compute - Move will be called a cycle of activity (or
briefly cycle) of a robot.

The operations performed by the robots in each state will be now described in more
details.

1. Wait The robot is idle. A robot cannot stay idle forever (see Assumption A2 below).

2. Look The robot observes the world by activating its sensors which will return a snap-
shot of the positions of all other robots with respect to its local coordinate system.
(Since robots are viewed as points, their positions in the plane is just the set of their
coordinates; furthermore, they do not obstruct visibility among other points).

Notice that a robot might not in general be able to detect multiplicity, i.e. whether
there is more than one robot on any of the observed points, including the position
where the observing robot is.

3. Compute The robot performs a local computation according to its deterministic,
oblivious algorithm. The result of the computation is a destination point (which
could be the current location).

4. Move The robot moves towards the computed destination. If the destination is the
current location, the robot is said to perform a null movement; otherwise, it is
said to execute a real movement. The movement is uninterrupted, but the speed
is not necessarily uniform. Provided the distance travelled is neither infinite nor
infinitesimally small (see Assumption A1 below), the move can end anywhere before
the destination3.

In the rest of the paper we shall partition the robots into sets depending on their state
at a given time.

W(t) and L(t) are the sets of all the robots that are respectively in state Wait and Look
at time t.

C(t) is the set of all the robots that at time t are in state Compute; the subset C∅ contains
those robots whose computation’s result is to execute a null movement.

M(t) is the set of all the robots that at time t are executing a movement; the subset
M∅(t) contains the robots executing a null movement (they stay still).

Regarding the Look state, without loss of generality, in the following we will assume
that it consists only of the time instant where the snapshot is actually done. In fact, any
time the robot needs to activate its sensors (before the snapshot is taken) and to process
the information retrieved with the snapshot (that will be used in the next Compute state,
after the snapshot is taken), can be charged to the Wait and to the Compute state,
respectively.

3e.g. because of limits to the robot’s motorial capability.
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Figure 2: When s starts moving (the left end of the arrow), r and s do not see each other.
While s is moving, r Looks and sees s; however, s is still unaware of r. After s passes the
area of visibility of r, it is still unaware of r.

In the model, there are only two limiting assumptions about time and space. The first
refers to space; namely, the distance traveled by a robot during a cycle of activity.

Assumption A1 (Distance) The distance traveled by a robot r in a Move is not infi-
nite. Furthermore, it is not infinitesimally small: there exists a constant δr > 0,
such that, if the destination point is closer than δr, r will reach it; otherwise, r will
move towards it by at least δr.

Note that, without this assumption, it would be impossible for any algorithm to ter-
minate in finite time. As no other assumptions on space are made, the distance traveled
by a robot in a cycle is unpredictable. In the following, we shall use δ = minr δr.

The second assumption in the model refers to the length of a cycle of activity.

Assumption A2 (Cycle of Activity) The amount of time required by a robot r to
complete a cycle of activity is not infinite. Furthermore, it is not infinitesimally
small: there exists a constant εr > 0 such that the cycle will require at least εr time.

The purpose of this assumption is to ensure that gathering does not become impossible
because some robot takes an infinite time to complete one of its cycles. As no other
assumption on time exists, the resulting system is truly asynchronous and the duration
of each activity (or inactivity) is unpredictable. As a result, robots can be seen while
moving, and computations can be made based on obsolete observations. For example (see
Figure 2), robot s in transit towards its destination, is seen by r; however, s is not aware
of r’s existence and, if it starts the next cycle before r starts moving, s will continue to
be unaware of r.

2.3 Visibility and Geometric Properties

Given a robot r, let First(r, t) = min{t′ ≥ t|r ∈ L(t′)} be the first time, from time t on,
at which r performs a Look operation; and let Last(r, t) = max{t′ ≤ t|r ∈ L(t′)} be the
last time, from the start up to time t, at which r has performed a Look operation.
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Figure 3: Lemma 2.3.

The robots are (viewed as) points in the plane. Let r(t) denote the position of robot
r at time t; when no ambiguity arises, we shall omit the temporal indication. The sur-
rounding circle Circle(r, t) of r at time t is the circle of radius V centered in r(t). The
circle of visibility of r at time t, Ct(r) = Circle(r,Last(r, t)) is the surrounding circle of r
in its most recent Look.

The result of an observation by a robot (in the Look state) will be the positions4 of
the robots in its circle of visibility at that time. Since a robot might not be able to
detect multiplicity, it follows that it might not be aware of the real number of robots that
populate its area of visibility at the time of the Look; in fact, a position can be occupied
by more than one robot, but the observing robot will see all these robots as just one.

We now introduce some notations and geometrical lemmas which will be needed later.
Let A and B be two points; with AB we will indicate the segment starting in A and
terminating in B. When no ambiguity arises, we will also use the notation AB to denote
the length of such a segment. Let A and B be two non-opposite points on a circle;
with arc(AB) we indicate the smaller of the two arcs on the circle between A and B;
moreover, seg(AB) indicates the region limited by the line segment AB and arc(AB).
Finally, given three distinct points A, B, and C, we denote 4(A, B, C) the triangle having

them as corners, and by AB̂C the corresponding angle in B.
Capital Greek letters will represent vertical axes; capital calligraphic letters (e.g. L,

R) indicate regions. Given a region X , we denote by |X (t)| the number of robots in that
region at time t; when no ambiguity arises, we will omit the temporal indication.

The following are elementary useful geometric properties.

Lemma 2.1. Every internal chord of a triangle has length less or equal to the longest
side of the triangle.

Lemma 2.2. Let Q be a convex quadrilateral. If all the sides and the two internal diago-
nals have length less or equal to V then every internal chord of Q has length less or equal
to V .

Another useful property is the following (see Figure 3).

4in its local coordinate system.
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Lemma 2.3. Let OB be the radius of a circle centered in O and let BÔD = β, with
0 ≤ β ≤ 90◦, for D on the circle. Then pC ≤ BC, ∀p ∈ arc(BD) and ∀C ∈ OD.

Proof. The perpendicular bisector of the segment Bp passes through O, and all of OD
lies on p’s side of the bisector, and the lemma follows. 2

3 The Algorithm

Let Left and Right be the leftmost and rightmost vertical axis, respectively, where some
robot initially lie, and let us call Universe (U) the portion of the plane delimited by Left
and Right .

The idea of the algorithm is to make the robots move towards Right , in such a way
that, after a finite number of steps, they will reach it and gather at the bottommost
position occupied by a robot at that time.

Let r perform a Look operation at time t; as a result, it has available its circle of
visibility Ct(r) with the positions of all the robots in it at time t. The algorithm describes
the computation that r will now do with this input. Different destination points will
be computed depending on the positions of the robots in its circle of visibility; once the
computation is completed, r starts moving towards its destination (but it may stop before
the destination is reached). Informally,

• If r sees robots to its left or above on its vertical axis, it does not move.

• If r sees robots only below on its vertical axis, it moves down towards the nearest
robot.

• If r sees robots only to its right, it moves horizontally towards the vertical axis of
the nearest robot.

• If r sees robots both below on its axis and on its right, it computes a destination
point and performs a diagonal move to the right and down, as explained later.

Let us now describe the algorithm in details (refer to Figure 4). Let AA′ be the
vertical diameter of Ct(r) with A′ the top and A the bottom end point; let Rr and Lr

denote the two topologically open regions5 inside Ct(r) and to the right and to the left
of r, respectively (when no ambiguity arises, we will use R and L, respectively); and let
S = rA and S ′ = rA′, where both S ′ and S are topologically open on the r side (i.e.,
r belongs neither to S ′ nor to S). Let Ψ be the vertical axis of the robot in Rr, if any,
nearest to r with respect to its projection on the horizontal axis; and let B and C be the
upper and the lower intersection, respectively, between Ct(r) and Ψ.

The algorithm for gathering in a point, described for robot r, works as follows.

5with respect to AA′. The circle boundary belongs to Rr and Lr.
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Figure 4: Notation used in the Gathering Algorithm: (a) vertical move, (b) horizontal
move, and (c) diagonal move.

Gathering Algorithm

Extreme := (|L| = 0 ∧ |S′| = 0);
If ¬Extreme Then

Do nothing();
Else

Case (|R|, |S|)
•(0, 0) :
Do nothing();

•(0, 6= 0) : *Vertical Move*
r := nearest visible robot on S;
Move(r).

•(6= 0, 0): *Horizontal Move*
Ψ := Nearest();
H := Horizontal Destination(Ψ);
Move(H).

•(6= 0, 6= 0) : *Diagonal Move*
Ψ := Nearest();
Diagonal Movement(Ψ).

where the functions Nearest(), Horizontal Destination(Ψ), and Move(p) are as fol-
lows.

Nearest() returns the vertical axis Ψ of the robot in R nearest to r with respect to its
projection on the horizontal axis (robot r′ in Figure 4.b). Horizontal Destination(Ψ)

returns the intersection between Ψ and the horizontal line passing through r (see Fig-
ure 4.b). Move(p) terminates the local computation of the calling robot and moves it
towards p.

In the last case of the Algorithm, r sees some robots below it and some to its right
(robots r and r′ in Figure 4.c); to avoid losing some robots, r moves diagonally, according
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Figure 5: Routine Rotate(): in (a), β < 60◦; in (b) the scenario after Rotate() has been
invoked.

to the following routine.

Diagonal Movement(Ψ)

B := upper intersection between Ct(r) and Ψ;
C := lower intersection between Ct(r) and Ψ;
A := point on S at distance V from r;
2β = Ar̂B;
If β < 60◦ Then

(B,Ψ) := Rotate(r,B);
H := Diagonal Destination(V,Ψ, A,B);
Move(H).

where Rotate(r, B) and Diagonal Destination(V, Ψ, A, B) are as follows (see Fig-
ure 4.c).

Rotate(r, B) rotates the segment rB in such a way that β = 60◦ and returns the new
position of B and Ψ. This choice of angle ensures that the destination point is not outside
the circle, that is rH ≤ V (see Figure 5).

Diagonal Destination(V, Ψ, A, B) computes the destination of r in the following
way: the direction of r’s movement is given by the perpendicular to the segment AB; the
destination of r is the point H on the intersection of the direction of its movement and
of the axis Ψ.

4 Correctness

In this section, we prove the correctness of the algorithm by first showing that the robots
which are initially visible will stay visible until the end of the computation, and then
proving that at the end of the computation, all robots will gather in one point.
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For simplicity, in the following we use ”to the right” etc. to denote the projection onto
a single coordinate axis; i.e., the other coordinates are ignored.

4.1 Preliminary Observations

We first make some preliminary observations on the workings of the Algorithm. Let
r ∈ L(t) be on vertical axis Γ at time t. Let β be the smallest of the two angles between the
vertical axis of r and the direction of its diagonal movement (e.g., Ar̂H in Figure 4.c). By
construction, β ≥ 60◦ (this is guaranteed by routine Rotate()). Furthermore, 4(A, r, B)
is isosceles; hence, we get:

Lemma 4.1. The length of line segment rH is always smaller or equal to V .

Lemma 4.2. BH = AH = V , and, ∀ p ∈ rA and q ∈ rH, pq ≤ V . Moreover,
3(A, r, B, H) is a parallelogram.

Let Γ′ and Γ′′ be two vertical axes to the right of Γ. We will denote by ΓΓ′ and ΓΓ′′

the distances between the corresponding axes. Then we have:

Lemma 4.3. Let βΓ′ and βΓ′′ be the angles computed by routines Diagonal Movement(Γ′)

and Diagonal Movement(Γ′′), respectively. We have that: if βΓ′ > βΓ′′ then ΓΓ′ < ΓΓ′′;
if ΓΓ′ < ΓΓ′′ then βΓ′ ≥ βΓ′′.

Proof. Let A be the point on Γ below r at distance V (refer to Figure 6.a). If βΓ′ > βΓ′′,
clearly ΓΓ′ < ΓΓ′′. On the other hand, if ΓΓ′ < ΓΓ′′, then the upper intersection B′

between Ct(r) and Γ′ is higher than the upper intersection B′′ between Ct(r) and Γ′′ (and
B′ is to the left of B′′). Thus, if Ar̂B′ and Ar̂B′′ are both smaller than or equal to 120◦

the routine Diagonal Movement(Γ′) returns 60◦ for both βΓ′ and βΓ′′ (thus, βΓ′ = βΓ′′),
otherwise clearly Ar̂B′ > Ar̂B′′ and, thus, βΓ′ > βΓ′′ . 2
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Let F 6= r(t) be a point on Γ below r at distance at most V from r, H be the
destination point of the planned diagonal move of r, and Ψ the vertical axis where H is.
Moreover, let K be the horizontal projection of F on Ψ, and M be the point on Ψ below
H at distance rF from H (the situation is depicted in Figure 6.b).

Lemma 4.4. Let pq be a segment in 4(F, M, K), with q to the right of p, and q′ the
vertical projection of q over rH. Then, ∀ l ∈ pq, l′ ∈ q′H we have that ll′ ≤ V .

Proof. By Lemma 2.1 on 4(F, H, M), pH ≤ V (recall that FM = rH ≤ V by
Lemma 4.1). Furthermore, by Lemma 2.1 on 4(p′, p, H), pq′ ≤ V , with p′ the vertical
projection of p over rH. Since, by construction, qq′ ≤ V , the lemma follows by applying
Lemma 2.2 on 3(q′, H, q, p). 2

Two other preliminary observations that follow directly from the Algorithm are:

Lemma 4.5. Let robots r and s be within distance V at time t, and let r ∈ L(t). If s is
to the right of r at time t, then r can not pass the vertical axis of s in one cycle.

Lemma 4.6. Let robots r and s be within distance V at time t, and let r ∈ L(t). If they
are on the same axis Γ with s below r at time t, then r can not move on Γ below s(t) in
one cycle.

4.2 Preserved Connectivity

The initial distance graph D(0) = (N, E(0)) of the robots is the graph whose node set
N is the set of the input robots and, ∀r, s ∈ N , (r, s) ∈ E(0) iff r and s are initially
at distance no more than the visibility radius V . First of all notice that D(0) must be
connected for the gathering problem to be solvable:

Lemma 4.7. If the distance graph D(0) is disconnected, the gathering problem is unsolv-
able.

Proof. By contradiction, assume that there exists a deterministic algorithm A that
solves the problem even if D(0) is disconnected. Consider the universe composed of only
two robots, r and s, initially at distance more than V from each other. Consider the
execution of the algorithm under a fully synchronous scheduler (i.e., the robots perform
each phase of their cycle simultaneously and move at the same speed). Under such a
scheduler, both r and s see the world in the same way (namely no other robot is in
their circle of visibility), they will always compute the same move in the same direction,
maintaining always the same distance; hence they will not gather. 2

Thus, in the following we will always assume that D(0) is connected. As the robots
execute the algorithm, their distance conditions may vary. We will denote by D(t) =
(N, E(t)) the distance graph at time t ≥ 0; i.e., ∀r, s ∈ N , (r, s) ∈ E(t) iff 0 ≤ |r(t) −
s(t)| ≤ V . We will now prove that the connectivity of the distance graph is preserved
during the entire execution of the algorithm. We do so by first introducing the notion of
mutual visibility.

Informally, two robots are mutually visible if they include each other in their compu-
tations. Formally, two robots r and s are mutually visible at time t iff both conditions
hold:
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Figure 7: Case 2 of Lemma 4.9.

1. 0 < r(t) s(t) ≤ V ,

2. r, s ∈ L(t) ∪ C∅(t) ∪ M∅(t) ∪ W(t).

Since initially all robots are waiting, then by definition of mutual visibility we have

Lemma 4.8. All the pairs of robots that are initially within distance V from each other
are initially mutually visible.

Note that the definition of mutual visibility does not include robots that are on the
same point; i.e., r(t) = s(t). This is because we do not assume that the robots have the
capability of multiplicity detection (i.e., the ability to determine in the look phase if more
than one robot is in a given location). In fact, as we will see, our gathering algorithm
works without requiring such an additional assumption. We do therefore say that two
robots r and s are inert on the same point at time t iff both conditions hold:

1. r(t) = s(t),

2. r, s ∈ L(t) ∪ C∅(t) ∪ M∅(t) ∪ W(t).

We will now show that, if two robots are or become mutually visible, they will stay
mutually visible until they become inert on the same point. We first prove that this
property holds when two mutually visible robots lie on the same vertical axis; then we
prove that it holds for two mutually visible robots lying on different vertical axes. In the
next lemma we will refer to the notation introduced in Lemma 4.3 and 4.4.

Lemma 4.9. Let r and s be mutually visible at time t. Moreover, let them lie, at time
t, on the same vertical axis Γ, with s being below r. Then there is a time t > t when r
and s are mutually visible or are inert on the same point. Moreover, at all times between
t and t, r and s are at distance at most V .
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Proof. Observe that the lemma trivially holds if L is not empty at time First(r, t). In
fact, according to the Algorithm, r will perform a null move and perform a new Look at
time t′ > t; since r is above s from time t to t′, according to the Algorithm, s can not
move during this time. Thus, the lemma holds with t = t′. We will thus assume that L
is empty at time First(r, t).

Let us first consider the case when R is empty at time First(r, t). Then, according to
the Algorithm, r can only perform a Vertical Move towards s, shortening their distance.
Let t′ > First(r, t) be the time when r completes its move; thus r ∈ W(t′). By Lemma
4.6, r will be above s during its move; hence, according to the Algorithm, s can not move
before r completes its move. In other words, s ∈ W(·) ∪ L(·) ∪ C∅(·) ∪ M∅(·) from time t
until time t′; and ∀l ∈ r(t) s(t′), l s(t′) ≤ V . Thus, the lemma holds with t = t′.

Let us now consider the more interesting case when R is not empty at time First(r, t).
Then the move computed by r as a consequence of its Look at time First(r, t) is a Diagonal
Move. Let L be the position occupied by r on Γ, H be the destination point computed by
r, H ′ be the point where r stops in its movement towards the computed destination, and
Ψ′ be the vertical axis where H ′ resides. Let t′ and t′′ be the time when r starts its move
and when it stops, respectively. Clearly, s can not move before time max{t′,First(s, t′)}.

Claim 4.1. As long as s does not move, the distance between r and s is at most V during
time t′ to t′′.

Proof. Since AH = V (see Figure 4.c) and LH ′ ≤ LH ≤ V (Lemma 4.1), the Claim
follows from Lemma 2.1 on 4(L, A, H). 2

We shall now consider two possible situations:

Case 1: s does not look while r is moving or, whenever it looks between First(s, t′) and
t′′, it decides not to move (because it sees some robots above or to its left).

In this case, at time t′′ when r stops at H ′, s ∈ L(t′′) ∪ C∅(t
′′) ∪ M∅(t

′′) ∪ W(t′′); clearly
r ∈ W(t′′). By Claim 4.1, H ′ s(t) = r(t′′) s(t′′) ≤ V . That is, they are mutually visible
at time t′′ and, by Claim 4.1, they are at distance at most V from each other from t to
t′′; hence the lemma follows with t = t′′.

Case 2: s decides to move as a consequence of some of its Look operations performed
between time t′ and t′′.

Let t0, t1, t2, . . . , tk, k ≥ 0, be the times when s performs a Look operation whose result
is a real movement, t′ < t0 < t1 < t2 < . . . < tk ≤ t′′; let di+1 be the destination point
computed at time ti, pi+1 be the point where s stops in that move, and Ψi+1 be the axis
where pi+1 resides, with 0 ≤ i < k. Let Ψ0 = Γ, and F = p0 be the position of s on Γ at
time t (refer to Figure 7). Before proceeding, we establish the following Claim.

Claim 4.2. Let 0 ≤ i < k. Then

a. Ψi is to the left of Ψi+1, and Ψi+1 is to the left of r(ti);

b. The destination point di+1 that s computes as a result of the Look operation performed
at time ti is inside 4(F, K, M);
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c. pi+1 r(ti) ≤ V .

Proof. We proceed by induction on i.

Basis Since s by definition does not move between time t and t0, then by Claim 4.1,
when s looks at time t0 it will see r to its right. This implies that, according to the
Algorithm, s will perform either a Horizontal or a Diagonal Move. Therefore, d1 is
to the right of Ψ0; furthermore, by Lemma 4.5, d1 can not be to the right of r(t0).
Hence, since the movement of r is continuous, s can not reach r(t0), and claim a
follows.

Furthermore, ΓΨ1 < ΓΨ′ and, by Lemma 4.3, Fd1 must lie above FM ; hence, p1

(that is on Fd1) and d1 must be within 4(F, K, M), and claim b follows.

Finally, since d1 is to the left of r at time t0, by applying Lemma 4.4 on segment Fd1,
we have that p1 r(t0) ≤ V , and claim c follows. Hence the basis of the induction
holds.

Inductive Step Let the claim hold for 1 ≤ l ≤ i. By inductive hypothesis, r(ti−1) is
to the right of Ψi and is visible by s when it looks at time ti−1. Furthermore, by
Lemma 4.5, di (and, thus pi) can not be to the right of r(ti−1). This means that,
when s, after stopping at pi, performs a Look operation at time ti, r will be visible
(by inductive hypothesis on claim c) and it will be to the right of s (recall that the
movements are continuous). Then, according to the Algorithm, s can only perform
a Horizontal or a Diagonal Move; therefore di+1 is to the right of Ψi. Furthermore,
by Lemma 4.5, di+1 can not be to the right of r(ti). Hence, since the movement of
r is continuous, s can not reach r(ti), and claim a follows.

Moreover, ΨiΨ′ < ΓΨ′ and, by Lemma 4.3 the angle β computed by s on pi at time
ti must be greater than or equal to the angle computed by r when it looked at time
t from point L; hence, since by construction the segment FM is parallel to LH ′,
pidi+1 is above FM , but cannot be above FK (because the algorithm does not allow
“up” movements). Therefore claim b follows.

Furthermore, since di+1 is to the left of r(ti), claim b holds, and Ψi+1 can not
be to the right of di+1, by applying Lemma 4.4 on segment pidi+1, we have that
pi+1r(ti) ≤ V , and claim c follows, completing the proof by induction.

2

By Claim 4.2, it follows that all the stops p0, p1, . . . pk that s performs while r is moving
towards H ′ are inside 4(F, K, M); hence, by Lemma 4.4, they are within distance V from
r during its move. Thus, when r stops at H ′ at time t′′ and then Looks, it sees s on its
left. According to the Algorithm, from t′′ onwards, as long as s is to the left of r, r can be
only in W(·), L(·), C∅(·), or M∅(·). Therefore, the first time that s stops after r reaches
H ′ at time t′′, say at time t̃, r and s will be mutually visible. Moreover, between t and t̃,
by Lemma 4.4, we always have rs ≤ V , and the lemma follows with t = t̃. 2

Next, we consider the case when the two mutually visible robots are on different axes.
Let B and C be respectively the upper and lower intersection between Ψ and Cr(t), and
z be the intersection between Cr(t) and the line passing through r(t) and H .
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Lemma 4.10. Let r and s be mutually visible at time t. Moreover, let s be located to the
right of Ψ. Then there is a time t > t when r and s are mutually visible or are inert on
the same point. Moreover, between t and t, r and s are at distance at most V .

Proof. Observe that the lemma trivially holds if L is not empty at time First(r, t). In
fact, according to the Algorithm, r will perform a null move and perform a new Look at
time t′ > t; since r is to the left of s from time t to t′, according to the Algorithm, s can
not move during this time. Thus, the lemma holds with t = t′. We will thus assume that
L is empty at time First(r, t).

Let H be the destination point r computes as a consequence of this Look operation
(the argument holds for both Horizontal and Diagonal Move). Let us first prove that
∀l ∈ rH, ls(t) ≤ V . Side Hq of the triangle 4(r, H, q), where q is the intersection point
of arc(BC) with the line passing through H and s(t), has length no more than V , because
the distance from r to q is V , and q lies on H ’s side of the bisector between r and H .
Hence, the longest side of the triangle 4(r, H, q) is rq with length V , and therefore by
Lemma 2.1 the length of rs(t) is no more than V . Again by Lemma 2.1, the length of
any chord ls(t) for l on r(t)H in triangle 4(r, H, s(t)) is no more than V . In other words,
while r is moving towards H , its distance from s(t) is at most V .

Consider now s. By definition, it is to the right of Ψ and in Cr(First(r, t)). Accord-
ing to the Algorithm, s cannot perform any movement, as long as r is on its left. By
Lemma 4.5, the destination point H can not be to the right of s(t); hence r will be to the
left of s(t) while it is moving. Hence s ∈ W(·) ∪ L(·) ∪ C∅(·) ∪ M∅(·) from time t until r
ends its move, say at time t′′; in particular, s(t) = s(t′′). Since when r stops at time t′′

we have that, by definition, r ∈ W(t′′), the lemma holds at time t = t′′. 2

The above lemmas show that, if two robots are mutually visible, they will continue to
be so at future times until they become inert on the same point. Notice that a pair of
robots that becomes inert on the same point, and thus are not mutually visible at that
time, may later become mutually visible again.

Mutual visibility is defined at discrete points in time, and these points are different
for different pairs of robots; still it is possible to capture globally and in a continuous
way the information about the distance between robots contained in the mutual visibility

16



relationship. Let us consider the relationship of visual neighboring defined as follows.

Two robots x and y are visual neighbors at time t if one of the following two conditions
holds:

1. they were mutually visible at some time t′ ≤ t and have not become inert on the
same point in the interval of time (t′, t).

2. there exists a visual neighbor z of x at time t and y and z are inert on the same
point at time t.

Notice that, according to the first condition, when two visual neighbors become inert
on the same point at time t, they are no longer visual neighbors at time t; when that
happens, according to the second condition, the visual neighbors of each become visual
neighbors of both.

Let G(t) be the undirected graph corresponding to the visual neighboring binary re-
lation; i.e. (x, y) ∈ E(G(t)) iff x and y are visual neighbors at time t.

Lemma 4.11. At time t ≥ 0, if the robots are not all inert on the same point, then G(t)
is a subgraph of D(t).

Proof. We must show that if (x, y) ∈ E(G(t)) then their distance at t is at most V .
By definition of the visual neighboring relation, all robots that are mutually visible are
visual neighbors; thus, by Lemmas 4.9 and 4.10, they will remain visual neighbors and at
distance at most V until they become inert on the same point.

When two visual neighbors x and y become inert on the same point, say at time t,
their neighbors can not distinguish between them; in particular, their distance to both of
them is the same and clearly at most V . Furthermore, x and y become indistinguishable
also from a behavioral view point: since x and y are inert on the same point at time t,
whatever x may subsequently do could have been done by y instead. In other words, the
current execution and the one in which x and y are switched are equally possible and
indistinguishable by their neighbors. Thus, by Lemmas 4.9 and 4.10, every robot z that
was mutually visible with x (resp. y) at time t′ ≤ t and did not become inert on the same
point with x (resp. y) during the interval (t′, t), will become either mutually visible or
inert on the same point with y (resp. x) and, from time t until then, its distance from y
(resp. x) will be at most V . 2

Lemma 4.12. At time t ≥ 0, if the robots are not all inert on the same point, then G(t)
is connected.

Proof. Initially G(0) = D(0), which is by definition connected. Over time, the graph
changes are due only to two types of events. The first type of events is when two robots
that are not visual neighbors, become mutually visible; in this case an edge is added,
and thus existing connectivity is maintained. The second type of events is when two
robots that are visual neighbors become inert on the same point. In this case, the visual
neighbors of each of the two robots become connected by an edge to both, and the edge
connecting the two robots is removed; thus we must just show that removal of such an edge
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Figure 9: Lemma 4.12: (a) robots x and y are visual neighbors at time ti. (b) At time
ti+1 they become inert on the same point p, and the graph G stays connected.

does not disconnect the graph. Let t1, t2, . . . be the times when such events occur, and
let t0 = 0. Let G(ti) be connected, i ≥ 0. Let x and y be a pair of visual neighbors that
become inert on the same point p at time ti+1 (see Figure 9). Let I be the set of robots
that become inert on p at time ti+1; by definition, I includes x and y. By connectivity of
G(ti) it follows that, unless I = N (i.e., at time ti+1 all robots have gathered on p), there
exists at least a robot z /∈ I such that (w, z) ∈ G(ti) where w ∈ I; hence both (x, z) and
(y, z) will be added to G(ti+1) and the removal of (x, y) will not disconnect the graph. 2

By Lemmas 4.11 and 4.12 we can conclude that:

Theorem 4.1. The distance graph D(t) is connected during the execution of the Algo-
rithm.

4.3 Finiteness

In this section we prove that the robots will gather in a point after a finite number of
steps. Recall that the distance graph is connected at all times.

First of all, we show that, until all robots are on the same axis, some robot will indeed
move towards the Right axis of the universe U.

Lemma 4.13. Let Λ be a vertical axis with one or more robots on it, and with no robots
to its left. If there are robots on the right of Λ, in a finite number of steps one of the
robots on Λ will leave Λ. Otherwise, all the robots will reach the bottom-most robot on Λ.

Proof. Let us consider first the case when there are robots to the right of Λ. Let r be a
topmost robot on Λ that can see a robot to the right of Λ, and let S be the set of robots
on Λ above r. If S = ∅, according to the Algorithm, r will move “in the next step” and
the lemma trivially follows. Let S 6= ∅. Assume, by contradiction, that no robot in S∪{r}
leaves Λ in a finite number of steps and that there is a non empty subset R ⊆ S of robots
that do not reach r in a finite number of steps. Let s ∈ R; since s does not reach r, there
exists at least a point on Λ, above r, which s does not pass in a finite number of steps.
Let p(s) be the topmost such point, let p be the topmost of p(s) for all s ∈ R, and let
R

′ ⊆ R be the set of robots that never pass p. Within finite time, all robots in S−R
′ will

be below p; consider a time t when only robots in R′ are above p. Since the cycle time of
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any robot is finite (Assumption A2), and by Theorem 4.1 the connectivity of the distance
graph is always preserved, the topmost robot in R must perform a movement in finite
time; its move must be vertical because the robot is not allowed to leave Λ by hypothesis.
It follows that all robots in R′ will get closer and closer to p. After a finite number of
steps, all the robots in R′ will be at distance smaller than δ from p; let t′ > t be a time
when this happens. Consider now a point p′ above p and below the bottommost (at time
t′) robot in R. We know that all robots in R′ must pass p′ in a finite number of moves.
Since there are no robots between p′ and p, the first robot s which passes p′ must have as
its destination a point below p. Since the distance between s and p is smaller than δ, s
will pass p (Assumption A1) leading to a contradiction. Hence, within finite time, S will
become empty, and the Lemma holds.

Consider now the case when there are no robots on the right of Λ. Let r be the
bottom-most robot on Λ, then, by the same argument as above, all the robots on Λ will
reach r within finite time, and the Lemma holds. 2

Since the destination point that a robot computes might be at a distance smaller than
δ, the existence of an infinite sequence of infinitesimally small movements is not ruled out
by the above lemma. The next Lemma shows that such a situation is impossible: within
finite time, all robots in the system go onto the Right axis of the universe U.

Lemma 4.14. All robots will reach Right in a finite number of steps.

Proof. Assume by contradiction, that some robots never reach Right . This means that
there are some axes that will not be passed by all the robots that were to their left at
the beginning of the algorithm: we call them limit axes. Let Ψ be the leftmost such axis.
Let A be the sets of robots, initially to the left of Ψ, that will become arbitrarily close to
Ψ but never reach it; let B be the sets of robots, initially to the left of Ψ, that will pass
Ψ within finite time; and let C be the sets of robots, initially to the left of Ψ, that will
reach Ψ without ever moving to its right.

Let t be a time when all robots in B have passed Ψ and those in C have reached Ψ;
that is, at time t the only robots to the left of Ψ are those in A.

Consider first the case when A = ∅. In this case, by Lemma 4.13, after a finite number
of moves one of the robots in C will leave Ψ: a contradiction.

Let then A 6= ∅. Consider a vertical axis Ψ′ to the left of Ψ, at distance δ′ < δ sin 60◦

from Ψ. Since Ψ is the leftmost limit axis, each r ∈ A will be to the right of Ψ′ within
finite time; observe that, once on the right of Ψ′, r must stop at least once since, by
definition, it does not reach Ψ. Let t′ > t be a time when all robots in A have stopped
at least once to the right of Ψ′; and let Ψ′′ be an axis, between Ψ′ and Ψ, such that at
time t′ no robot in A is to its right. Since Ψ′′ is not a limit axis, the robots of A will pass
Ψ′′ within finite time. Since at time t′ there are no robots between Ψ′′ and Ψ, the first
robot r ∈ A that passes Ψ′′ must have as its destination a point to the right of Ψ or on Ψ.
According to the Algorithm, r will move on a straight line at an angle β, (60◦ ≤ β ≤ 90◦);
such a line intersects Ψ at a point H . Since this move by r is started from a point S to
the right of Ψ′ (possibly on Ψ′′), then SH < δ′

sinβ
< sin 60◦

sinβ
· δ ≤ δ. Thus, by Assumption

A1, in this move r will reach Ψ: a contradiction.
Hence no limit axis Ψ exists. That is, within finite time, all robots will reach Right .

2
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By Assumption A2, Lemmas 4.13 and 4.14 it follows that:

Theorem 4.2. In a finite number of steps, and in finite time, all the robots in the system
gather in a point on Right.

5 Conclusions and Open Problems

In this paper we have analyzed the gathering problem for groups of autonomous mobile
robots, and presented a gathering algorithm (to be executed by each individual robot)
which solves the problem within finite time. Our solution operates in fully asynchronous
settings and can be achieved by robots which are anonymous, oblivious and with limited
visibility, provided they have orientation.

The results of this paper open many interesting research directions. Coordination
problems should be studied for more powerful robots, where, for instance, the robots
are not totally oblivious, and can remember a small amount of information. Simple tasks
should be investigated under different conditions on the environment, such as the presence
of obstacles, or robots moving on uneven terrains. The impact that sensorial errors and
inaccuracies have on the correctness of the algorithms should be studied in detail. New
algorithms are needed for different assumptions on the visibility power of the robots; for
instance, the accuracy of the robots’ ability to detect the other robots’ positions might
decrease with the distance. New problems (other than gathering) need to be solved, like
scattering (i.e., the robots start from the same location and their goal is to evenly scatter
on the plane), rescue (i.e., the robots have to find a small object which is not initially
visible), exploration (i.e., the robots have to gather information about the environment,
with the purpose, for example, of constructing a map), and many more.

At a more general level, there are interesting fundamental research questions. For
example, how to compare different solutions for the same set of robots? So far, no
complexity measure has been accepted; such a definition is part of our future research.

Finally, the results presented here are a further step towards a better understanding
of the minimal robot capabilities enabling the collective resolution of a given global task.
In particular, they show how one property (“orientation”) has at least the same computa-
tional power for the gathering problem as another assumption (“instantaneous action”).
This fact raises many intriguing questions, including: Are there other (simpler) properties
comparable to these two? How do we compare different properties?

An important concern is clearly the one of the presence of possible faulty robots. The
fault-tolerant issues have been recently addressed in [1, 11], but only in the unlimited
visibility setting. An open problem is to examine them under limited visibility.
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