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Abstract

From an engineering point of view, the problem of coordinating a set of autonomous,
mobile robots for the purpose of cooperatively performing a task has been studied exten-
sively over the past decade. In contrast, in this paper we aim at an understanding of the
fundamental algorithmic limitations on what a set of autonomous mobile robots can or can-
not achieve. We therefore study a hard task for a set of weak robots. The task is for the
robots in the plane to form any arbitrary pattern that is given in advance. This task is
fundamental in the sense that if the robots can form any pattern, they can agree on their
respective roles in a subsequent, coordinated action. The robots are weak in several aspects.
They are anonymous; they cannot explicitly communicate with each other, but only observe
the positions of the others; they cannot remember the past; they operate in a very strong
form of asynchronicity.

We show that the tasks that such a system of robots can perform depend strongly on
their common agreement about their environment, i.e., the readings of their environment
sensors. If the robots have no common agreement about their environment, they cannot
form an arbitrary pattern. If each robot has a compass needle that indicates North (the
robot world is a flat surface, and compass needles are parallel), then any odd number of
robots can form an arbitrary pattern, but an even number cannot (in the worst case). If
each robot has two independent compass needles, say North and East, then any set of robots
can form any pattern.

1 Introduction

1.1 The Framework

The current trend in robotic research, both from engineering and behavioural viewpoints, has
been to move away from the design and deployment of few, rather complex, usually expensive,
application-specific robots. In fact, the interest has shifted towards the design and use of a
large number of “generic” robots which are very simple, with very limited capabilities and, thus,
relatively inexpensive, but capable, together, of performing rather complex tasks.

The advantages of such an approach are clear and many, including: reduced costs (due to
simpler engineering and construction costs, faster development and deployment time, etc); ease
of system expandability (just add a few more robots) which in turns allows for incremental and
on-demand deployment (use only as few robots as you need and when you need them); simple
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and affordable fault-tolerance capabilities (replace just the faulty robots); re-usability of the
robots in different applications (reprogram the system to perform a different task).

Leading research activities in the engineering area include the Cellular Robotic System (CE-
BOT) of Kawaguchi et al. [18], the Swarm Intelligence of Beni et al. [4], the Self-Assembly
Machine (“fructum”) of Murata et al. [20], etc. In the AI community there has been a number
of remarkable studies, e.g., on social interaction leading to group behavior by Matarić [19], on
selfish behavior of cooperative robots in animal societies by Parker [21], on primitive animal
behavior in pattern formation by Balch and Arkin [3], to cite just a few. An investigation with
an algorithmic flavor has been undertaken within the AI community by Durfee [12], who argues
in favor of limiting the knowledge that an intelligent robot must possess in order to be able to
coordinate its behavior with others.

A group of mobile autonomous robots, each with very limited capabilities, can form (com-
plex) patterns in the space it occupies. The basic research questions are which patterns can
be formed, and how they can be formed. These questions have been studied mostly from an
empirical point of view, with no actual proofs of correctness. Actually, many solutions do not
terminate and they never form the desired pattern (the robots just converge towards it); such
solutions are called “convergence”.

We are interested in provably correct “algorithmic” solutions, which, if possible, form the
pattern, and the conditions under which they exist. The underlying research goal is to under-
stand what kind of basic capabilities a set of robots must have in order to accomplish a given
task in a distributed fashion. By assuming the “weakest” robots, it is possible to analyze in
greater detail the strengths and weaknesses of distributed control; furthermore, this approach
allows to highlight the set of robots’ capabilities that are necessary to accomplish a certain task.

This approach has been first employed in the investigations of Suzuki and Yamashita [26, 28],
and with their collaborators [2, 25]; their algorithmic focus is a rarity in the mobile robots
literature. They have given an elegant and systematic account on the algorithmics of pattern
formation for robots, under several assumptions on the power of the individual robots. They
consider rather weak robots, which are identical, without any central control, execute the same
deterministic algorithm, and do not have any explicit communication mechanism. The life of a
robot is a sequence of cycles; in each cycle, the robot observes the positions of the fellow robots,
computes a destination point according to the algorithm, and moves towards such a point. It is
however assumed that the robots actions (including movement) are atomic and instantaneous.
Their work has inspired and motivated several other investigations, including those by Agmon
and Peleg [1], Défago and Konagaya [10], as well as our own investigations [6, 15].

1.2 The Problem and Existing Solutions

In this paper, we concentrate on the particular coordination problem that requires the robots to
form a specific but arbitrary geometric pattern, the Arbitrary Pattern Formation problem
(shortly Apf problem); a pattern is a set of points (given by their Cartesian coordinates) in the
plane and it is known initially by all robots in the system. As an instance of this problem, we
might require the robots to place themselves on the circumference of a circle, with equal spacing
between any two adjacent robots, just like kids in the kindergarten are sometimes requested to
do. We do not prescribe the position of the circle in the world, and we do not prescribe the size
of the circle, just because the robots do not have a notion of the world coordinate system’s origin
or unit of length. Initially, the robots are in arbitrary positions, with the only requirement that
no two robots are in the same position, and that of course the number of points prescribed in the
pattern and the number of robots are the same. The robots are said to form the pattern, if the
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actual positions of the robots “coincide” with the points of the pattern, where the pattern may
be translated, rotated, scaled, and flipped into its mirror position in each local coordinate system.
This problem has been extensively investigated in the literature, mostly as an initial step that
lets the robots proceed in the desired formation [3, 16] (just like a flock of birds or a troupe of
soldiers); it is interesting algorithmically, because if the robots can form any pattern, they can
agree on their respective roles in a subsequent, coordinated action. The Apf problem includes
as special cases many coordination problems, such as leader election: we just define a pattern
with a uniquely distinguished point; whoever occupies that position becomes the leader. Thus,
studying the solvability of the Apf problem means to investigate what coordination problems
can be solved, and under what conditions. The only means for the robots to coordinate is the
observation of the others’ positions; therefore, the only means for a robot to send information
to some other robot is to move and let the others observe (reminiscent of bees in a bee dance).

This problem has been investigated in [28], where a complete characterization of the class of
formable patterns has been provided for the class of autonomous and anonymous robots that,
in addition to being capable of instantaneous and atomic actions, have an unbounded amount
of memory (i.e., they are non-oblivious).

These two robots’ capabilities, instantaneous and atomic actions, and unbounded non-obliviousness
are rather powerful; furthermore, they are possibly unfeasible in real systems. This motivates
our study of the Apf problem by robots that do not have those capabilities.

1.3 Our Contribution

We investigate the solvability of the Apf problem by a weaker class of robots than those of [26,
27, 28]. In fact, the robots we consider are fully asynchronous: any robots’ action takes a finite
but unpredictable amount of time; and they are totally oblivious: the robots do not remember
results from any of the previous computations.

These two weaknesses have radical computational consequences. For instance, full asyn-
chronicity implies that, since actions are not instantaneous, while a robot is computing the
others might move; hence, by the time the computation ends, the resulting movement might not
be “coherent” with the current configuration. It also implies that a robot can be seen by other
robots while it is moving1.

We give a characterization of what can and what cannot be achieved by this class of robots.
We show that the patterns that can be formed depend strongly on the level of a priori agreement
the robots have about the orientation and direction of the axes in their local coordinate systems.

First, we show that if the robots have no agreement on the direction and orientation of
the axes, the Apf problem is unsolvable; that is there are patterns that can not be formed,
regardless of the algorithm, from some initial configurations of the robots. Here, agreement
on the direction of the x axis means that all robots know and use the fact that all the lines
identifying their individual x axes are parallel. Similarly, agreement on the orientation of an
axis means that the positive side of that axis in the local coordinate systems coincides for all
robots.

We then show that if the robots agree on the direction and the orientation of both axes (a
situation we shall call total agreement), the pattern formation problem is always solvable and
the proof is constructive. Note that agreement on the directions and orientations of both axes
does not imply agreement on the origin or the unit of length.

1Note that this does not mean that the observing robot can distinguish a moving robot from a non moving
one.
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Finally, we study the case when the robots agree only on the direction and orientation of only
one axis (a situation we shall call partial agreement). We show that, with partial agreement,
the Apf problem can be solved whenever the number of robots is odd, and that it is in general
unsolvable when the number of robots is even. Also in this case, the proof of possibility result
is constructive. When the system is populated by an even number of robots, as mentioned, not
all patterns are formable; we fully characterize the patterns that can be achieved in this case,
and provide an algorithm that allows the robots to do so.

The paper is organized as follows. In Section 2 the formal definition of the model under
study is presented; furthermore, we review the state of the art with respect to the analysis of
the limitations to pattern formation by autonomous mobile robots. In Section 3 we present and
solve a preliminary problem that will be useful to present the main results of this paper. In
Sections 4–7 we present the formal proof of the limitations and the algorithms for the problem.
Finally, in Section 8 we draw some conclusions and present suggestions for further study.

2 Definition and Properties

2.1 The Model

We study the problem of coordinating a set of autonomous, mobile robots in the plane. The co-
ordination mechanism must be totally decentralized, without any central control. The robots are
anonymous, in the sense that a robot does not have an identity that it can use in a computation,
and all robots execute the exact same algorithm. Each robot has its own, local view of the world.
This view includes a local Cartesian coordinate system with origin, unit of length, and the di-
rections of two coordinate axes, identified as x axis and y axis, together with their orientations,
identified as the positive sides of the axes. The robots do not have a common understanding of
the handedness (chirality) of the coordinate system that allows them to consistently infer the
orientation of the y axis once the orientation of the x axis is given; instead, knowing North
does not distinguish East from West. The robots observe the environment and move; this is
their only means of communication and of expressing a decision that they have taken. The only
thing that a robot can do is make a step, where a step is a sequence of three actions. First, the
robot observes the positions of all other robots with respect to its local coordinate system. Each
robot is viewed as a point, and therefore the observation returns a set of points to the observing
robot. The robot cannot distinguish between its fellow robots; they all look identical. Second,
the robot performs an arbitrary local computation according to its algorithm, based only on
the common knowledge of the world (assumed e.g. to be stored in read-only-memory and to be
read off from sensors of the environment) and the observed set of points. Since the robot does
not memorize anything about the past, we call it oblivious. For simplicity, we assume that the
algorithm is deterministic, but it will be obvious that all of our results hold for nondeterministic
algorithms as well (randomization, however, makes things different). Third, as a result of the
computation, the robot either stands still, or it moves (along any curve it likes). The movement
is confined to some (potentially small) unpredictable, nonzero amount. Hence, the robot can
only go towards its goal along a curve, but it cannot know a priori how far it will come in the
current step. While it is on its continuous move, a robot may be seen an arbitrary number of
times by other robots, even within one of its steps.

The robots are fully asynchronous: the amount of time spent in observation2, in computation,
in movement, and in inaction is finite but otherwise unpredictable. In particular, the robots

2i.e., activating the sensors and receiving their data.
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do not (need to) have a common notion of time. Each robot makes steps at unpredictable
time instants. The (global) time that passes between two successive steps of the same robot
is finite; that is, any desired finite number of steps could have been made by any robot after
some finite amount of time. In addition, we do not make any timing assumptions within a step:
The time that passes after the robot has observed the positions of all others and before it starts
moving is arbitrary, but finite. That is, the actual move of a robot may be based on a situation
that lies arbitrarily far in the past, and therefore it may be totally different from the current
situation. We feel that this assumption of asynchronicity within a step is important in a totally
asynchronous environment, since we want to give each robot enough time to perform its local
computation.

2.2 The Computational Cycle

The robots execute the same deterministic algorithm, which takes as input the observed positions
of the robots within the visibility radius, and returns a destination point towards which the
executing robot moves.

A robot is initially in a waiting state (Wait); asynchronously and independently from the
other robots, it observes the environment in its area of visibility (Look); it calculates its desti-
nation point based only on the observed locations of the robots in its (Compute); it then moves
towards that point (Move); after the move it goes back to a waiting state.

The sequence: Wait - Look - Compute - Move will be called a computation cycle (or briefly
cycle) of a robot.

The operations performed by the robots in each state will be now described in more details.

1. Wait The robot is idle. A robot cannot stay infinitely idle (see Assumption A1 below).

2. Look The robot observes the world by activating its sensors which will return a snapshot of
the positions of all other robots with respect to its local coordinate system (since robots
are viewed as a point, their positions in the plane is just the set of their coordinates). This
snapshot will be called the view of the world.

3. Compute The robot performs a local computation according to its deterministic, oblivious
algorithm. The result of the computation is a destination point; if this point is the current
location, the robot stays still (null movement),

4. Move The robot moves towards the computed destination; this operation can terminate
before the robot has reached it3. The movement can not be infinite, nor infinitesimally
small (see Assumption A2 below).

Note that we do not require the robots to be able to detect multiplicity (i.e. whether there
is more than one robot on any of the observed points, included the position where the observing
robot is. In the model, there are only two limiting assumptions about time and space. The first
refers to the length of a computational cycle.

Assumption A1(Computational Cycle) The amount of time required by a robot r to com-
plete a computational cycle is neither infinite nor infinitesimally small.

In particular, there exists a constant ǫr > 0 such that, if the destination point is not
reached during the cycle, the cycle will require at least ǫr time.

3e.g. because of limits to the robot’s motorial autonomy.
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Compute
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Figure 1: (a) An example of a cycle. In particular, the three parts that constitute the Look state
(between time t1 and t3) are put in evidence. (b) For simplicity reasons, we can assume that
the Look state is constituted only by the instantaneous snapshot.

As no other assumption on time exists, the resulting system is truly asynchronous and the
duration of each activity (or inactivity) is unpredictable. As a result, the robots do not have a
common notion of time, robots can be seen while moving, computations can be made based on
obsolete observations.

The second assumption in the model refers to the distance traveled by a robot during a
computational cycle.

Assumption A2 (Distance) The distance traveled by a robot r in a move is neither infinite
nor infinitesimally small.

In particular, there exists an (arbitrarily small) constant δr > 0, such that if the destination
point is closer than δr, r will reach it; otherwise, r will move towards it of at least δr.

As no other assumptions on space exists, the distance traveled by a robot in a cycle is unpre-
dictable. In the following, we shall use δ = minr δr.

Only one remark regarding the Look state. As already stated, the result of this state is a set
of positions retrieved at one time instant, i.e. at the time when the snapshot of the world was
done. That is, each Look can be split in three parts: in the first part the sensors are activated;
in the second part the actual snapshot is performed; in the last part, the data captured by the
sensors are sent away in order to be processed. For instance, referring to the cycle depicted in
Figure 1.a, the first part of the Look is executed between time t1 and t2, the snapshot is done at
time t2, and the third part is executed between time t2 and t3. In the following, we will assume
that the first and third part have null length. This is not a loss of generality: in fact, the first
part can be thought to be part of the previous Wait state, and the third part of the following
Compute state (as shown in Figure 1.b). Therefore, each Look coincides with the snapshot.
According to this assumption, if r is executing a Look at time t, then its view of the world is
the snapshot retrieved at t.
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2.3 The Arbitrary Pattern Formation Problem

We study the problem of forming an arbitrary geometric pattern, where a pattern P is a set
of points p0, . . . , pn (given by their Cartesian coordinates) in the plane. The pattern is known
initially by all robots in the system. Initially, the robots are in arbitrary positions, with the
only requirement that no two robots be in the same position, and that, of course, the number
of points prescribed in the pattern and the number of robots are the same.

Let a configuration (of the robots) at time t, denoted by Dt, be a set of robots’ positions at
time t, one position per robot, with no position occupied by more than one robot; in particular,
D0 denotes the configuration of the robots at the beginning of the computation, at time t0. Given
a pattern P and a configuration Df , the robots are said to have formed P at time f , if there
exists a transformation T , where T can be an arbitrary sequence of translation, rotation, scaling,
or flipping into mirror position, such that, T (Df ) = P: in other words, the final positions of the
robots must coincide with the points of the input pattern, where the formed pattern may be
translated, rotated, scaled, and flipped into its mirror position with respect to the input pattern P

in each local coordinate system. In this case, we say that Df is a final configuration for P Given
an arbitrary initial configuration and an arbitrary pattern P, a pattern formation algorithm is
a deterministic algorithm that brings the robots in the system to a final configuration for P in
a finite number of cycles. We say that a pattern formation algorithm is collision-free, if, at any
point in time t, there are no two robots that occupy the same position in the plane at t.

2.4 Basic Limitations and Relationships

Another problem that we will refer to in the following is the leader election problem: the
robots in the system are said to elect a leader if, after a finite number of cycles, all the robots
deterministically agree on (i.e., choose) the same robot l, called the leader. A deterministic
algorithm that lets the robots in the system elect a leader in a finite number of cycles, given any
initial configuration, is called a leader election algorithm.

The relationship between the pattern formation problem and the leader election problem, is
stated in the following

Theorem 2.1. If it is possible to solve the pattern formation problem for n ≥ 3 robots, then the
leader election problem is solvable too.

Proof. Let A be a pattern formation algorithm. Let P be a pattern defined in the following
way:

1. All the robots but one are evenly placed on the same line l; the distance between two
adjacent robots is d; and

2. the last robot is on l, but the distance from its unique adjacent robot is 2d.

After all the robots execute A to form P, the unique robot that has only one neighbor, and
whose distance from it is 2d, is identified as the leader. 2

We note that, since rotation is allowed, two robots always form the desired pattern. Therefore
we will assume to have at least 3 robots in the system.

We will now show that in general, the leader election problem is deterministically unsolvable.
In particular, the following lemma states its unsolvability under the assumptions of an even
number of robots in the system.
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Figure 2: Specular configuration for proof of Theorem 2.2, where each ri has the same view of
the world of r̂i, for i = 1, 2, 3.
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Figure 3: Notation used in the paper. (a) Horizontal distance between Γ and Γ′. (b) Given the
triangle △(a, b, c), we have p ∈ △(a, b, c) and p′ ∈ △(a, b, c).

Theorem 2.2. There exists no deterministic algorithm that solves the leader election problem,
when n is even.

Proof. By contradiction, let A be a deterministic leader election algorithm. Consider an
initial placement of the robots symmetric with respect to a vertical axis; i.e., each robot r has a
specular partner r̂. In addition, let the local coordinate systems be specular with respect to the
symmetry axis: the directions of the x axis of r and the x axis of r̂ are opposite; thus the view
of the world is the same for r and r̂ (see Figure 2). In this setting, at time t = 0, both r and r̂
are in the same state; i.e., σ(r, 0) = σ(r̂, 0). Consider now a semi-synchronous scheduler: robots
are activated at discrete time instants; each robot is activated infinitely often; an active robot
performs its operations instantaneously. Additionally, if a robot r is activated at time t ≥ 0,
the scheduler will activate at that time also r̂. As a consequence, if σ(r, t) = σ(r̂, t), since the
two robots execute the same protocol A, their next state will still be the same: if r moves to d,
r̂ moves to the point d̂ specular to d with respect to the symmetry axis. In other words, in this
execution of protocol A, σ(r, t) = σ(r̂, t) for all t ≥ 0. On the other hand, since A is an election
protocol, it must exist a time t′ > 0 such that a robot, say r′ becomes leader. Since the leader
is unique, σ(r′, t′) 6= σ(r, t′) for all r 6= r′, contraddicting the fact that σ(r′, t′) = σ(r̂′, t′). 2

Corollary 2.1. In a system with n > 2 anonymous robots that agree only on one axis direction
and orientation, the pattern formation problem is unsolvable when n is even.

Proof. It follows from Theorems 2.1 and 2.2. 2

2.5 Notation

In this section, we introduce the notation that will be used through the paper. In general, r
indicates a robot in the system, and r.x(t) and r.y(t) the coordinates of robot r at time t; r is
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used also to represent the point in the plane occupied by that robot. In the following, when
no ambiguity arises, the time reference will be omitted. Capital calligraphic letters (e.g. Z)
indicate regions; given a region Z, we denote by |Z|t the number of robots in that region at time
t. In particular, C denotes a circle. Given a circle C with center c and radius Rad, and a robot
r(t), we will say that r(t) is on C if dist(r(t), c) =Rad, where dist(a, b) denotes the Euclidean
distance between point a and b (i.e., r is on the circumference of C); if dist(r, c) <Rad, we will
say that r is inside C.

Double lined letters (e.g., Z) indicates sets of points, sets of robots’ positions in the plane,
and set of robots. In particular,

1. W(t) denotes the set of robots that are in Wait at time t;

2. L(t) = L∅(t) ∪ L+(t), is the set of robots that at time t are in state Look. The set L∅(t)
contains those robots whose computation’s result in their next Compute state is a null
movement, while L+(t) contains those robots whose computation’s result in their next
Compute is some destination point different from the position where the observing robot
is (we say that they will execute a real movement).

3. C(t) = C∅(t) ∪ C+(t), is the set of all the robots that at time t are in state Compute.
The set C∅(t) contains those robots whose computation’s result is a null movement, while
C+(t) contains those robots whose computation’s result is a real movement.

4. M(t) = M∅(t) ∪ M+(t) is the set of all the robots that at time t are executing a move-
ment. The set M∅(t) contains the robots executing a null movement (they stay still);
M+(t) contains those executing a real movement (they are effectively moving towards a
destination).

Finally, we define a particular set of robots, I(t), that will be useful in order to analyze the
behavior of the robots while executing the algorithms studied in the following. Namely,

5. I(t) = W(t) ∪ L(t) ∪ C∅(t) ∪ M∅(t),

which contains the immobile robots: those robots that at time t are not moving and, if com-
puting, will not move in the current cycle. Lines, half-lines and segments will be denoted by
capital greek letters (e.g., Ψ, Ξ); given a line Ψ, we denote by |Ψ| the number of robots on that
line. In particular, given two distinct points a and b, [ab) denotes the half-line that starts in a
and passes through b; [ab] the segment between a and b. Moreover, given two distinct parallel
lines Γ and Γ′, and a line Γ′′ orthogonal to Γ and Γ′, we define the horizontal distance between
Γ and Γ′, denoted by ΓΓ′, as the length of the segment [qq′], with q = Γ ∩ Γ′′ and q′ = Γ′ ∩ Γ′′

(see Figure 3.a). Furthermore, given a point p, we define the horizontal distance of p from Γ,
denoted by pΓ, as the horizontal distance between Γ and the line passing through p and parallel
to Γ.

A vertical stripe is a region of the plane delimited by two distinct vertical borders. A border
can be a vertical line, a vertical half-line, or a vertical segment, and it belongs to the vertical
stripe it delimits. If a point p is between or on one of the two borders, then p is said to be inside
the vertical stripe. We say that a point p is strictly inside a vertical stripe, if p is between the
two borders, but not on one of them. If all the positions occupied by a robot r during a Move
are always inside the stripe, we say that r moves inside it; similarly, if the positions are strictly
inside the stripe, we say that r moves strictly inside it.
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With △(a, b, c) we define the triangle having as vertices points a, b and c, and by p ∈ △(a, b, c)
we denote that the point p is either inside or on one of the sides of the triangle (see Figure 3.b).

Finally, in the code of the algorithms

• EndC. denotes a robot that ends its Compute state;

• destination:= p; assign to the calling robot p as its destination for the next Move. If p
is null, then the robot will not move.

3 A Preliminary Problem: “Go to Point”

Before discussing the solutions for the arbitrary pattern formation, we first introduce and solve
a problem that will be useful in the following: the “Go to Point” problem (GtP).

3.1 The GtP Problem

Roughly speaking, consider an area of the plane that contains a set of robots, a set of targets,
and a set of obstacles. We want a single robot to reach a target safely, i.e. avoiding collisions
with its fellow robots and with the obstacles present in the environment.

More precisely, let V be a vertical stripe with borders Γ and Γ′, and FR(t̃) be the set of
robots that at a given time t̃ are inside V. Furthermore, let O be a finite set of static obstacles
(points) in V; and FT be a set of targets (points) inside V, with |FR| 6= ∅ and |FT| 6= ∅, such
that no point in FT is occupied by a robot in FR or by an obstacle in O.

The GtP problem is defined as follows:

One of the robots in FR, say r, has to move towards one of the targets in FT, say p,
in such a way that r stays always inside V avoiding collisions; furthermore, all other
robots — i.e. those in FR \ {r} — do not move until r reaches p,

subject to the following conditions:

C0. all robots in FR are in I(t̃);

C1. there is total agreement on the coordinate system among the robots in FR.

C2. for any t′ ≥ t̃ such that r is not on p at t′, |FR(t′)| = |FR(t̃)| (i.e., no extra robots enter
the vertical stripe V).

Without loss of generality, we will assume that Γ is to the left of Γ′, according to the
agreement assumed in C0.

An algorithm that solves this problem is CloseToDestination(FR, FT, O,Γ,Γ′), reported
as Algorithm 1.

The idea behind CloseToDestination() is as follows. First it chooses the robot r in the
set FR that has the minimum Euclidean distance from a point in the set FT; in other words, it
chooses the unique pair (r, p) such that

dist(r, p) = min
r′∈FR

p′∈FT

dist(r′, p′), (1)

where ties are broken by choosing the lexicographically largest pair, according to the common
coordinate system (Condition C1. above; this pair is returned by routine Minimum() on Line 1).
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Algorithm 1 CloseToDestination(FR, FT, O,Γ,Γ′)

(r, p) := Minimum(FR, FT);% Unique since ties are broken by lexicographic order%

If I Am Not r Then destination:= null; EndC.
Else %I Am r%

If No Obstacle Is On The Line Passing Through r And p Then
5: destination:= p; EndC.

Else
SafeT := Voronoi Cell Of p in FT;
SafeR := Circle Centered In p With Radius [p, r];
Safe := SafeT ∩ SafeR;

10: d := Point Strictly Inside Safe Not Occupied By Any Obstacle, And Such That No
Obstacle Is On [dp];
destination:= d; EndC.

Then, if no robot is on the line segment through r and p, the algorithm simply allows r to move
towards p, while all other robots stay still (Lines 2 and 5). Otherwise, it finds an alternative
path for r towards p so that the invariant that r is the robot in FR ”closest” to a target in FT

is maintained, and collisions avoided. In particular, the routine locates two safe regions of the
plane.

The first one, SafeT, is the Voronoi cell of p in the set of all target points (Line 7). If r
moves inside this region, it can not get closer to any other point in FT except for p; that is, if r
moves inside SafeT, it will not change its target destination while moving.

The second one, SafeR, is the circle around center p with radius [p, r] (Line 8). If r moves
inside this region, no other robot in FR can get closer to p than r; that is, if r moves inside
SafeR, it will be always the closest robot to p among the robots FR during its movement.

Algorithm CloseToDestination() moves r always strictly inside SafeT ∩ SafeR: in this
way, r stays the robot in FR ”closest” to p (as long as it does not reach p), and collisions are
avoided (Lines 9–11).

Some simple facts follow immediately.

Observation 3.1.

1. Since SafeT and SafeR are both convex, their intersection Safe = SafeT ∩SafeR is convex.
Furthermore, Safe is never empty.

2. By construction, in SafeR (circle centered in p and having radius [pr]) there are no robots
in FR \ {r}. Therefore, by definition of SafeT, in Safe there are no robots from FR \ {r},
and r is closest to p than to any other target in FT \ {p}.

3. p ∈ SafeR (as its center) and clearly it is in its Voronoi cell.

4. r ∈ SafeT (by Equation (1)) and clearly it is in SafeR (more precisely, on its boundary).

Furthermore, since there is only a finite number of obstacles

Observation 3.2. There exists a point d strictly inside Safe such that there are no obstacles
on [r, d] ∪ [d, p].

11
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SafeT. The black circles are the robots in FR, the white circles the obstacle, and the small filled
circles the targets in FT.

3.2 Correctness of Algorithm CloseToDestination()

We aim to show that if (r(t̃), p(t̃)) is the pair that satisfies Equation (1) at time t̃ with re-
spect to a set of robots FR and a set of points in the plane FT, then the execution of routine
CloseToDestination(FR, FT, O,Γ,Γ′) at time t̃ lets in a finite number of cycles r reach p, and
no other robot in FR(t̃) is allowed to move until this happens, and any collision is avoided.

The following theorem states that, if no obstacle is between r and p, then r reaches p in a
finite number of cycles, while all other robots do not move.

Theorem 3.1. Let conditions C0–C2 hold, and no obstacle be between r and p on [pr] at time
t̃. Then, in a finite number of cycles, say at time t′ > t̃, r will reach p avoiding collisions. If
[pr] ⊆ Γ or [pr] ⊆ Γ′, then r moves always on one of the two borders of V between time t̃ and
t′; otherwise, r moves always strictly inside V between time t̃ and t′. Furthermore, all robots in
FR(t̃) \ {r} are in I(t), for all t̃ ≤ t ≤ t′, and r ∈ I(t′).

Proof. According to CloseToDestination(), and by conditions C0–C2, r is the only robot
in FR allowed to move at time t̃. Furthermore, r moves straight towards p, and since no robot
is on its way, any collision is avoided. During this movement, it follows by Equation (1) and
Observation 3.1 that r remains the closest robot to p. Furthermore, during its movement towards
p, there is no other target in FT that can become closer to r than p (by definition of SafeT),
and the theorem follows. 2

The following theorem deals with the case in which there is an obstacle between r and p on
[pr]. Also in this case, no robot is allowed to move until r reaches p, and r reaches p in a finite
number of cycles avoiding collisions.

12



Theorem 3.2. Let conditions C0–C2 hold, and an obstacle be between r and p on [pr]. Then,
in a finite number of cycles, say at time t′ > t̃, r will reach p, avoiding collisions and moving
always strictly inside V. Furthermore, all the robots in FR(t̃) \ {r} are in I(t), for all t̃ ≤ t ≤ t′,
and r ∈ I(t′).

Proof. In the hypotheses of the theorem, CloseToDestination() computes as destination
point for r a point d inside Safe (Line 10). At time tm > t̃, r starts moving towards d. By
Observation 3.1, while r moves towards d, r is always inside Safe; hence, p remains the point
in FT closest to r and r remains the robot in FR closest to p, and, by C0–C2, (r, p) is the
only pair that satisfies Equation (1) (that is, r is the only robot in FR allowed to move by
CloseToDestination() until it reaches d). In a finite number of cycles, r reaches d. When on
d, r is still the only robot allowed to move by CloseToDestination(). By the way d has been
chosen, no obstacle is on [dp]; therefore, by Theorem 3.1, the theorem follows. 2

4 Total Agreement on Coordinate Systems

in this section we consider the case when there is total agreement on the directions and orienta-
tions of both axes; however this does not imply agreement on the origin and the unit of distance.
We show that the robots can form an arbitrary given pattern.

First, each robot establishes the (lexicographic) total order of the points of the local pattern
(Figure 5.a).

Second, each robot establishes the (lexicographic) total order of the robots’ positions retrieved
in the last Look (Figure 5.b). As we will see, this order will be the same for all robots.

Third, the first and second robots move to the positions matching the first and second pattern
points. This movement can be performed in such a way that the order of the robots
does not change (Figure 5.c and d). Once this is done, the first two robots’ positions will
determine the translation and scaling of the pattern (Figure 5.e).

Fourth, all the other robots go to points of the pattern. This can be done by moving the robots
sequentially to the pattern’s points. The sequence is chosen in such a way to guarantee
that, after one robot has made even only a small move towards its destination, no other
robot will move before that one has reached its destination (Figure 5.f).

We note that the final positions of the robots are not rotated w.r.t. the input positions; in other
words the algorithm keeps the ”orientation” given by the input pattern. Moreover, in this case
Theorem 2.1 holds also for n = 2, since the rightmost and topmost robot in the system can
always be identified as the leader.

The algorithm (called Complete, and whose pseudo-code is reported in Algorithm 2) calls
routines Angle(), Sort(), GoIntoPosition(), FindFinalPositions(), whose behavior is de-
scribed in the following, as well as CloseToDestination(()), described in Section 3.

Angle(p, q) computes the clockwise angle between the horizontal axis passing through p and
the segment [pq].

Sort() gives a lexicographic order to all the positions of the robots in the system observed in
the last Look, including the robot calling the procedure, say from left to right and from bottom
to top; it returns the sorted sequence.

13
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Figure 5: Algorithm 2. (a) The input pattern P. The robots have total agreement on the local
coordinate systems. The numbers represent the lexicographical ordering the robots give to the
points of P, and α = Angle(p1, p2). (b) The robots sort the robots’ positions retrieved in the last
Look state, and compute β =Angle(r1, r2). (c) r1 moves in such a way that Angle(r1, r2)= α,
according to routine GoIntoPositions(). (d) The relative positions of r1 and r2 are such that
Angle(r1, r2)= α. (e) At this point, all the robots can translate and scale the input pattern
according to [r1r2]. Then, all the robots, one at a time, reach the final positions of the pattern
to form. (f) The final configuration.
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Algorithm 2 Complete

Input: An arbitrary pattern P described as a sequence of points p1, . . . , pn, given in lexico-
graphic order, with the ordering given left-right, bottom-up. There is total agreement on
the coordinate system.

α := Angle(p1, p2);
SortedRobots := Sort();
r1 := First robot in SortedRobots;
r2 := Second robot in SortedRobots;

5: r∗ := Last Robot in SortedRobots;
β := Angle(r1, r2);
Case I Am

• r2:
destination:= null; EndC.

10: • r1:
If α = β Then destination:= null; EndC.
Else

p := GoIntoPosition(r1, r2, α).
destination:= p; EndC.

15: • Default: %I am neither r1 nor r2%

If α = β Then
Unit := dist(r1, r2); %all the robots agree on a common unit distance%

FinalPositions := FindFinalPositions(r1, r2, Unit);
Ext := Rightmost Point In FinalPositions;

20: If I Am On One Of The FinalPositions Then
destination:= null; EndC.

Else
FreeRobots := {Robots Not On One Of The FinalPositions};
FreePoints := {FinalPositions With No Robots On Them};

25: Obstacles := {Robots On One Of The FinalPositions};
Γ := Vertical Line Through r2;
Γ∗ := Vertical Line Through r∗;
ΓExt := Vertical Line Through Ext;
Γ′ := Rightmost Vertical Line Among Γ∗ and ΓExt;

30: CloseToDestination(FreeRobots, FreePoints,Obstacles,Γ,Γ′).
Else destination:= null; EndC.
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GoIntoPosition(r1, r2, α) orders r1 to move so as to achieve angle α with r2 while staying
lexicographically first. During this movement, all other robots do not move.

FindFinalPositions(r1, r2, Unit) figures out the final positions of the robots according to
the given pattern and to the positions of r1 and r2. In particular, p1 is translated onto the
position of r1, and p2 onto the position of r2. The common scaling of the input pattern is
defined by the common unit distance Unit.

4.1 Correctness of Algorithm Complete

Now, we are ready to show that Algorithm Complete lets the robots correctly form the input
pattern. Given a configuration where the robots’ positions are ordered according to routine
Sort(), we call it an agreement configuration if the first two robots r1 and r2 are such that
Angle(r1, r2)= α, with α the angle computed in Line 1 of Algorithm Complete.

Lemma 4.1. If the robots are not in a final configuration, then in a finite number of cycles, say
at time tα, and avoiding collisions, they will reach an agreement configuration. Furthermore, all
the robots but r1 are in I(t), for all 0 ≤ t ≤ tα, and r1 ∈ I(tα).

Proof. Let r1 and r2 be the first two robots in the lexicographic order defined by Sort() in
the initial configuration D0. If Angle(r1, r2)= α, then the lemma clearly follows, and tα = 0.
Otherwise, according to the algorithm, the only robot that is allowed to move at the beginning
is r1 (Lines 9, 12, and 28), and it executes GoIntoPosition(r1, r2, α). During this movements,
r1 stays lexicographically first; hence, as long as Angle(r1, r2) 6= α, it is the only robot allowed
to move, and all the others compute only null movements. In a finite number of cycles, say at
time tα, r1 reaches a position such that Angle(r1, r2)= α. Since until tα no robot but r1 is
allowed to move, the lemma follows. 2

We can now state that

Theorem 4.1. Algorithm Complete lets the robots correctly form the input pattern P in a
finite number of cycles, while avoiding collisions.

Proof. According to the previous lemma, at time tα the robots are in an agreement con-
figuration. From now on, r1 and r2 never move again (Lines 9 and 11). At this point, the
distance Unit = dist(r1, r2) is used in routine FindFinalPositions(r1, r2, Unit) to compute
the positions the robots have to reach in order to correctly form the input pattern (Line 16). By
definition of this routine, and since at tα all the robots are in I(tα), from now on all the robots
will agree on the set FinalPositions (i.e., in subsequent computations, they will all compute
the same set of points, up to the translations due to the different origins of the local coordinate
systems). Moreover, by the way these positions have been computed, r1 and r2 are already on
their final targets. Let Γ and Γ′ be as defined in Lines 23 and 26 of the algorithm.

If a robot is on a final position, it never moves again (Line 19). Otherwise, it will call at
every cycle Algorithm CloseToDestination() (Line 27). Let (r, p) be the pair that satisfies
Equation (1) at time tα with respect to the sets FreeRobots and FreePoints as defined in
Lines 21 and 22 of the algorithm. With respect to Algorithm CloseToDestination(), the set
FreePoints corresponds to FT, the set FreeRobots to FR, and the obstacles O are given by the
set of robots that have already reached their final destination. Note that all the four conditions
required by CloseToDestination() are met. In particular, the sets FT, FR, and O are inside
the vertical stripe delimited by Γ and Γ′; |FT| = |FR|; at time tα all robots are in I(tα); and all
robots in O will never move again (Line 19 of Algorithm Complete).
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In (b) an example of a balanced set of points. In this case, ΦE

M is chosen according to the local
orientation depicted. Finally, in (c) a degenerated set of points is reported.

By Theorems 3.1 and 3.2, r reaches in a finite number of cycles p while avoiding collisions,
say at t′ > tα, while all the other robots compute only null movements. Furthermore, r does not
trespass the region of the plane delimited by Γ and Γ′. By the way the input pattern has been
scaled, no final positions can be on Γ below r2. Furthermore, by the way the robots’ positions
have been sorted by Sort(), no robot can be on Γ below r2. Hence r1 and r2 stay the first
two lexicographical robots in the system. Moreover, at t′ the cardinality of sets FreeRobots and
FreePoints decreases by one, and r joins O. Hence, since the number of points in the pattern
equals the number of robots in the system, and by iterating the above argument, eventually
each robot will occupy a pattern point position, while avoiding collisions. 2

Result 1. With total agreement on the local coordinate systems, a set of autonomous, anony-
mous, oblivious, mobile robots can form an arbitrary given pattern.

5 Partial Agreement: The Odd Case

In this section, we deal with the case of the robots having partial agreement: they agree since
the beginning only on the orientation of one axis, say y. As an aside, note that this case would
trivially coincide with the first one, if the robots would have a common handedness (or sense of
orientation, as Suzuki and Yamashita call it [26, 28]).

As stated in Corollary 2.1, this problem is unsolvable in general, since symmetric initial
configuration can impede the formation of arbitrary patterns. We now show that for breaking
the symmetry, it is sufficient that the number n of robots is odd. We make use of the fact
that, since n is odd, either the robots are in a symmetric initial situation, in which there is a
unique middle robot that will move in order to break the symmetry; or the initial situation is
not symmetric, and this asymmetry can be used to identify an orientation of the x axis. We
feel that this technique of symmetry breaking for mobile robots may have other applications,
and hence it may be of independent interest. Also in this algorithm we do not rotate the final
positions w.r.t the input pattern.
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Figure 7: Given the set of points T and E, the circles in (c) are the points in τ(T, E); in this
case τ−1(·, ·) is empty.

5.1 Basic Definitions

Given a set of points E, we say that it is degenerated if all points lie on the same vertical axis.
Furthermore, we define some references related to E that will be used in the following. Consider
the two vertical lines that are tangent to the convex hull of E, and the median ΦE

m: the vertical
line that is in the middle between them. These three vertical lines delimit two regions (or sides):
one to the left of ΦE

m and one to its right; for technical reasons, ΦE
m will not be considered part

of either region. Let ME and LE denote the side in E with more and less points, respectively.
If the two sides have the same number of points, then ME is the rightmost side. Moreover, ΦE

M

denotes the one of the two axes tangent to the convex hull of E that lies in ME, and ΦE

L the
other (Figure 6.a). We say that a point is strictly inside ME (resp. LE) if it belongs to ME

(resp. LE) but it is not on ΦE (resp. Φ′E).
If |ME| 6= |LE|, we will say that E is unbalanced (see Figure 6.a); otherwise, we will call it

balanced (see Figure 6.b).
Moreover, let topE

M and topE

L be the topmost points on ΦE

M and on ΦE

L, respectively.
Given two sets of points E and T, with |E| = |T|, we define the transformation τ(T, E) of T

with respect to E, as the set of points obtained by scaling T with respect to ΦE

M,ΦE

L, and by
translating and flipping T so that ΦT

m is mapped onto ΦE
m, topT

M is mapped onto the topmost
robot on ΦE

M, and topT

L is mapped onto the topmost robot on ΦE

L (see the example depicted
in Figure 7). If such a translation and flipping cannot be obtained, then τ(T, E) = ∅. By
τ−1(T, E), we denote the mirroring of τ(T, E) with respect to ΦE

m. Moreover, if E is unbalanced,
we denote by τM and τL the subset of τ(T, E) whose points are in ME and in LE, respectively.
Analogously, we define τ−1

M and τ−1

L .
The configurations of robots observed during the Looks, as well as the input pattern P, are set

of points, on which all previous definitions apply. However, note that a configuration observed
by a robot is expressed in terms of the local coordinate system of the observing robot. Therefore,
we will denote by E[r] a set of points (coordinates) in the local coordinate system of r. Notice
that, ΦE

m[r] = ΦE
m[r′], for all r 6= r′, regardless of the local coordinate systems. Furthermore, if

E is unbalanced, then all robots agree on ME, LE, ΦE

M ,ΦE

L, topE

M, and topE

L, regardless of the
local orientation of the x axis.
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Figure 8: Definition 5.2: examples of possible semi-final configurations. The circles represent
points in τ(P, E).

Definition 5.1. A configurations of robots E is final for a given pattern P when either τ(P, E) =
E or τ−1(P, E) = E.

A particular configuration of robots E that will be used in the following is the semi-final
configuration (refer to the example depicted in Figure 8).

Definition 5.2. Let τ(P, E) 6= ∅. A configuration of robots E is semi-final for a given pattern
P if the following holds:

1. E is unbalanced; and,

2. one of the following holds:

(a) All robots in ME ∪ LE except exactly one, r, occupy one distinct point in τM ∪ τL;
furthermore, r ∈ ME and among the points in τM ∪ τL exactly one is not occupied
by any robots, call it last.

(b) All robots in ME ∪ LE except exactly one, r, occupy one distinct point in τM ∪ τL;
furthermore, r ∈ ME and all points in τM ∪ τL are occupied by exactly one robot.

(c) All robots in ME ∪ LE except exactly one, r, occupy one distinct point in τM ∪ τL;
furthermore, r ∈ LE and among the points in τM ∪ τL exactly one is not occupied by
any robots, call it last; last is in LE.

(d) All robots in ME ∪LE occupy one distinct point in τM∪ τL; furthermore, among the
points in τM ∪ τL exactly one is not occupied by any robots, call it last; last is in LE.

The previous definition implies that, in a semi-final configuration, there is only one point in
τL ∪ τM not occupied by a robot; this point can clearly be in ME, LE, or on ΦE

m. In cases (a),
(c) and (d), we will call such a point last, where in case (b) last is always set to ∅. Examples of
semi-final configurations are depicted in Figure 8.

In a quasi-final configuration E, all robots except for those on ΦE
m, are in a final configuration

(see Figure 9).

Definition 5.3. A configuration E is quasi-final if either

1. each point in τM ∪ τL is occupied by exactly one robot, and |τM ∪ τL| = |ME| + |LE|; or

2. each point in τ−1

M ∪ τ−1

L is occupied by exactly one robot, and |τ−1

M ∪ τ−1

L | = |ME| + |LE|.
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Figure 9: Definition 5.3: the circles represent points in τ(P, E).

In the following, Dt will denote the configuration of the robots at time t; to simplify the
notation, we will use Υm = ΦP

m, Υ+ = ΦP

M, Υ− = ΦP

L to denote the references in P, and
Km = ΦDt

m , K+ = ΦDt

M, K− = ΦDt

L to denote the references in Dt. When no ambiguity arises,
the time reference will be omitted.

In order to solve the Apf problem with an odd number of robots, we distinguish the two
possible cases:

Case a. P is non-degenerated;

Case b. P is degenerated (see Figure 6.c).

We discuss the two cases separately.

5.2 Case a.: Non-degenerated pattern

In this section, we present Algorithm Pond (whose pseudo-code is reported in Algorithms 3
and 4), that solves the Apf problem with Partial agreement and an odd number of robots that
have to form a non-degenerated input pattern.

5.2.1 The Pond Algorithm

The overall strategy of the algorithm is (1) first to bring the robots in a non-degenerated config-
uration. Then, (2) the robots are forced to form an unbalanced configuration in order to reach
an agreement on the direction of the x axis. Once such a configuration has been reached, say at
time t, the robots compute the set of final positions according to the transform τ(P, Dt): these
are the points they have to reach in order to correctly form P. Finally, (3) the robots reach
these final positions.

Let us describe these three phases in more details (the pseudo-code of the routines used by
the Pond Algorithm is reported in Appendix A).

Non-degenerated configuration. First the references of P are computed. Then, the algo-
rithm checks whether all the robots are on a single vertical axis, say Ξ. In this case, since
by hypothesis Υ+ 6≡ Υm, the algorithm forces the second topmost robot on Ξ, say r, to move
away from Ξ (recall that n ≥ 3), so that a non-degenerated configuration (i.e., where the robots
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Algorithm 3 Pond– First Part

Input: An arbitrary pattern P described as a sequence of points p1, . . . , pn, given in lexico-
graphic order, such that Υ+ 6≡ Υm. The direction and orientation of the y axis is common
knowledge.

(Υ+,Υ−,Υm) := (ΦP

M,ΦP

L,ΦP
m);

D := Current Configuration Of The Robots;
Km := ΦD

m;
If D Is Final Configuration Then STOP.

5: If D Is quasi-final Then Fix(D,Km); EndC.
(SF, r, last) :=TestSF(D);
If SF Then

Case (r, last)
• (6= ∅, 6= ∅)

10: If I Am r Then
If last Is Not In The Side Where I Am Then

destination:=Point On Km With No Robots On [rp]; EndC.
Else CloseToDestination({top}, {last},K+,K−);EndC.

Else destination:= null; EndC.
15: • (6= ∅,= ∅)

If I Am r Then
destination:=Point On Km With No Robots On [rp]; EndC.

Else destination:= null; EndC.
• (= ∅, 6= ∅)

20: top:= Topmost Robot On Km;
If I Am top Then CloseToDestination({top}, {last},K+,K−);EndC.
Else destination:= null; EndC.

Ξ := Vertical Axis With More Robots On It;
If |Ξ| = n Then SameVerticalAxis(Ξ); EndC.

25: If |Ξ| = n − 1 Then
r :=Robot not on Ξ;
If dist(r,Ξ) 6= dist(top(Ξ), bottom(Ξ)) Then SameVerticalAxis2(Ξ); EndC.

If D Is Unbalanced Then (K+,K−) := (ΦD

M,ΦD

L);
Else GetUnbalanced(D)EndC.

30: (S+,S−) := Sides of D where K+ and K− lie, respectively;
(top+, top−) := (topD

M, topD

L);
If Angle(topP

M, topP

L) 6= Angle(top+, top−) Then FixOutermosts(top+, top−); EndC.
If I Am top+ Or top− Then destination:= null; EndC.
FinalPositions := FindFinalPositions(P,D);
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Algorithm 4 Pond– Second Part

If AllOn() Then
r := Robot Strictly Inside S+;
p :=MoveInsideS+(FinalPositions,S+,K+, r);
If I Am r Then destination:= p; EndC. Else destination:= null; EndC.

39: pb := Bottommost Of The FinalPositions On K+;
If There Are At Least Two Robots On K+ Then

p := Point On K+ Below pb.y;
rb := Bottommost Robot On K+;
If rb.y ≥ pb.y Then

44: If I Am rb Then destination:= p; EndC. Else destination:= null; EndC.
Else

r := Robot Strictly Inside S+ With The Smallest Horizontal Distance From K+ (ties
are broken by choosing the topmost);
p := Point On K+ Below pb.y So That There Are No Robots On [rp];
If I Am r Then destination:= p; EndC. Else destination:= null; EndC.

49: If I Am On One Of The FinalPositions Then destination:= null; EndC.
FreeRobotsS− := {Robots’ positions In S− Not In FinalPositions};
FreeRobotsS+ := {Robots’ positions In S+ Not In FinalPositions};
If FreeRobotsS− 6= ∅ Then FromSidesToMedian(K+,K−,Km,S−, F inalPositions);
EndC.
If FreeRobotsS+ \ rb 6= ∅ Then FromSidesToMedian(K+,K−,Km,S+, F inalPositions);
EndC.

54: FreePointsS+ := {FinalPositions In S+ With No Robots On Them };
FreePointsS− := {FinalPositions In S− With No Robots On Them };
If FreePointsS+ 6= ∅ Then FromMedianToSides(K+,K−,Km,S+, F reePointsS+);
EndC.
If FreePointsS− 6= ∅ Then FromMedianToSides(K+,K−,Km,S+, F reePointsS−);
EndC.

occupy at least two distinct vertical axes) is reached (SameVerticalAxis() in Line 24). In
particular, r moves to its local right of a distance equal to the distance between the topmost
and the bottommost robot on Ξ; all the other robot are forced to not move until r reaches such
a distance.

Unbalancing the configuration. At this point, the robots form a non-degenerated config-
uration D, and the references for D can be computed (Line 28). Then the algorithm forces the
robots to create an unbalanced configuration, so that an agreement on the direction of the x
axis can be reached. This is achieved by routine GetUnbalanced() (Line 29). If D is balanced,
the symmetry that derives from having the two sides with the same number of robots is broken
as follows. First all the robots4 in MD are moved on K+ and all the robots in LD on K−. After
all the robots have performed these movements, since D is still balanced and the total number of
robots is odd, there is an odd number of robots on Km: the topmost robot on Km, say top∗, is
selected to move towards its (local) right, so that an unbalanced configuration can be achieved.
This movement is performed carefully since, as soon as top∗ leaves Km and enters the side to

4Note that, since at this time the robots do not still have a common agreement on the direction of the x axis,
for some robots MD and LD might be different. All of them, however, agree on Km.
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its right, the configuration will become unbalanced.
The fact that the configuration is unbalanced allows the robots to implicitly reach an agree-

ment on the direction of the x axis; hence, on a global coordinate system (GCS): the common
orientation of the x axis is given by mapping MP onto MD.

Once the GCS has been established, the topmost robots on K+ and on K− (top+ and
top−, respectively) move strictly on K+ and on K−, respectively, until they reach positions
corresponding to the two topmost points on Υ+ and Υ− in P (routine FixOutermosts() in Line
32, reported in Appendix A.4). More precisely, their final positions will form the same angle as
the topmost points in the local pattern (routine Angle() in FixOutermosts()). Once top+ and
top− place themselves in the correct positions, they will never move again.

At this point, the set of final positions of the robots is computed (routine
FindFinalPositions() in Line 34, reported in Appendix A.5) by transforming the pattern
according to τ(P, D) (note that topP

M and topP

L are mapped onto top+ and top−, respectively,
that are already in their correct positions).

Now, all robots are ready to reach their final destinations. Notice, however, that at this
point it might be possible that the unbalancing process is not completed yet; i.e., top∗ is still
moving towards its destination. Should this be the case, the other robots can detect it, and will
not start their move until top∗ stops. Let us describe in more detail how top∗ performs its move.

Recall that, when top∗ decides to move, all robots are on K+, K−, or on Km. Robot top∗

knows that, (1) as soon as it enters the side to its right, the configuration will become unbalanced;
furthermore, since the algorithm is the same for all the robots, top∗ also knows which robots
will move as soon as the configuration will become unbalanced. In particular, it knows that (2)
the two topmost robots on K+ and K− will move to reach the points corresponding to topP

M

and topP

L (routine FixOutermosts() in Line 32). It also knows that, after such a move, (3) the
input pattern will be scaled according to τ(·, ·). Hence, top∗ can compute the final positions
in the plane that the robots must eventually reach in order to correctly form the input pattern
(routine FindFinalPositions() in Line 34). Therefore, top∗ can compute, before it leaves Km,
the set of final positions as returned by FindFinalPositions(). If at least one of these final
positions is inside its (local) right side, then top∗ chooses as its destination the closest among
them, and moves there. Otherwise (i.e., there are no final positions in its right side), it moves
towards K+. During this move, top+ and top− might be moving to reach their final positions.
All the other robots, however, detect that |L| = |M| − 1, and that all robots are either on K+,
K−, or on Km, except for one (top∗) that is inside S+ and not on one of the final positions. In
this scenario, test AllOn() return true (Line 35). In particular, routine AllOn() (described in
Appendix A.7) returns true when

1. |S−| = |S+| − 1,

2. all the robots but one, say r, are either on K+, or on K−, or on Km, and

3. r is strictly inside S+ not on one of the final positions.

Therefore, Lines 35–38 force all robots but top∗ to wait until top∗ reaches a final position
strictly inside S+ or K+.

Once top∗ reaches its destination, we say that the unbalancing process has been completed.
Once the unbalancing is completed, the next step is to have a particular robot move onto K+,
below any robots and below5 any of the final positions that are on this axis (Lines 39–48). This

5i.e., the y coordinate of the chosen robot must be smaller than the y coordinate of any robot and of any of
the final positions on K+.
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will be used to ensure that the agreement on the direction of the x axis can be correctly kept
until the very end. Until this process has been completed, no other robot is allowed to move.

Reaching the final destinations. From now on, all the robots that are on one of the final
positions never move again (Line 49). Furthermore, the following four steps are executed:

First, the robots in S− sequentially fill the final positions that are in S− (routine
FromSidesToMedian() called in Line 52, and reported in Appendix A.8). If there are
more robots than available final positions, the “extra” robots are sequentially moved to-
wards Km, starting from the topmost robots that is closest to Km.

Second, the robots in S+, except for the bottommost on K+, sequentially fill the final positions
in S+ (routine FromSidesToMedian() in Line 53). If there are more robots than available
final positions, the “extra” robots are sequentially moved towards Km, starting from the
topmost robots that is closest to Km.

Third, if there are still unfilled final positions in S+ (that is, there were not enough robots in
S+ in the second step), the robots on Km are sequentially moved in S+, starting from the
topmost, to fill the final positions occupied by no robots (routine FromMedianToSides()

called in Line 56, and reported in Appendix A.9).

Fourth, if there are still unfilled final positions in S− (that is, there were not enough robots in
S− in the first step), the robots on Km are sequentially moved in S−, starting from the
topmost, to fill the final positions still available (routine FromMedianToSides() in Line
57).

At this point, all the robots not on Km occupy the correct positions except one: the bot-
tommost robot on K+, say r. This scenario is captured by Lines 6–22 that test whether the
current configuration is semi-final. In particular, test in Line 6 returns (true, r, last). According
to Definition 5.2, we distinguish the possible cases:

1. If last6= ∅, with last is inside S+, then r goes there (Line 13). At this point, all the robots
but those on Km are in correct positions. In this case, the configuration is quasi-final, and
routine Fix() (Line 5, reported in Appendix A.2) moves the robots on Km so that they
reach their final positions; hence, the pattern is formed.

2. If last= ∅ (i.e., there are no available final positions inside S+ and S−), r moves towards
Km (Line 17). Once it reaches the median axis, all the robots but those on Km are in
correct positions. Again, the configuration is quasi-final, and, by calling routine Fix(),
the pattern is formed.

3. If last6= ∅, with last inside S−, r first moves towards Km (Line 12). Then, Lines 19–22 will
move the topmost robot on Km in S− on the last unfilled final position. Once also this
position becomes occupied, only the robots on Km must be adjusted, i.e., the configuration
is quasi-final: again, the pattern is formed by invoking routine Fix().

The above description of the algorithm is in global terms, that is, it describes the execution
as seen by an external observer. The protocol (Algorithms 3 and 4), however, is expressed in
local terms, that is from the point of view of a robot (recall, they all execute the same protocol).
Moreover, since the robots are oblivious, every time a robot starts a cycle (observing the current
configuration D and executing the protocol accordingly) it will do so without any memory of
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past observations and executions. Each robot must guess which step of the global execution is
currently being performed and what is its own role in it.

Hence, the sequence of steps of the global execution have been structured in the local view
(i.e., in the protocol), so that this obliviousness does not affect its correctness, as we will show.
In particular, each robot checks if the observed configuration is final, or quasi-final, or semi-final
before it considers other possible configurations.

An example that shown the overall behavior of Algorithm Pond is pictured in Figure 10.

5.2.2 Correctness of Algorithm Pond

In this section we show that Algorithm Pond solves the pattern formation problem for an
arbitrary pattern, if Υ+ 6≡ Υm.

In the following we will say that the robots satisfy the termination conditions at time t,
denoted by T Ct, if the configuration of the robots at time t is either final, or semi-final, or
quasi-final. Alternatively, we will say that T Ct =true.

The following lemma shows that, if the initial configuration D0 is degenerated, then Algo-
rithm Pond brings the robots in a non-degenerated configuration in a finite number of cycles.

Lemma 5.1. In a finite number of cycles, at time tdis ≥ t0, the robots are in a non-degenerated
configuration. Furthermore, until time tdis any collision is avoided, and at tdis all the robot are
in I(tdis).

Proof. If Dt0 is non-degenerated, then the lemma trivially follows. Otherwise, in Dt0 , all the
robots lie on the same vertical axis, say Ξ. In this configuration, a robot can only call routine
SameVerticalAxis(Ξ) (Line 5). According to this routine, the second topmost robot r on Ξ is
the only robot allowed to move: it moves to a point p at horizontal distance d from Ξ, where d
is the distance between the topmost and the bottommost robot on Ξ. Let t1 be the first time
when r leaves Ξ. At time t1, |Ξ| = n − 1. If r is observed when it is not on Ξ, the second
case of the routine holds: all the robots are forced to not move as long as r has not reached
p. Therefore, until this happens, all the other robots compute only null movements, and any
collision is avoided. Let tdis ≥ t1 be the first time when r is at p (tdis is finite, by Assumptions
A1 and A2 of the model). Since at this time all the robots are in I(tdis), the lemma follows. 2

By the previous lemma, at time tdis the robots are on at least two distinct vertical axes;

hence, Φ
Dtdis

M 6≡ Φ
Dtdis

L . In the following, it will be shown that the two vertical axes tangent to
the convex hull of Dtdis

will never change; i.e., there will be at least a robot on each of these axes

that will never leave them: top
Dtdis

M (on Φ
Dtdis

M ) and top
Dtdis

L (on Φ
Dtdis

L ). Therefore, to simplify
the notation, we will refer to them as follows:

1. If Dtdis
is balanced, let top∗ be the topmost robot on Φ

Dtdis
m (since n is odd, an odd

number of robots must be on the median axis), and A = Dtdis
[top∗]. Then, let K+ = ΦA

M,
K− = ΦA

L, and Km = ΦA
m.

2. If Dtdis
is unbalanced, let K+ = Φ

Dtdis

M , K− = Φ
Dtdis

L , and Km = Φ
Dtdis
m (in this case, all

robots agree on which side has the most number of robots inside).

Let an empty configuration be a configuration where all robots are either on K+, K−, or on
Km.
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Figure 10: Main steps executed by Algorithm Pond. (a) The input pattern. (b) The initial
configuration Dt0 is balanced. (c) Routine GetUnbalanced() places all the robots on Km, K+,
and K− (sweeping process). (d) Routine GetUnbalanced() unbalance the configurations by
moving the topmost robots on Km towards the closest of the final positions in its local right. (e)
Routine FromSidesToMedian() in S− moves all the free robots in S− towards final positions in
S−. The only “extra robot” in S− is directed towards Km. (f) Routine FromSidesToMedian()

in S+. (g) Routine FromMedianToSides() in S+ moves the topmost robot on Km towards a
final position in S+. (h) The configuration is semi-final: rb moves towards the last final positions
in S+. (i) The final configuration.
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Let p+ and p− be the two points on K+ and K− and above topA

M and topA

L, respectively,
such that6 Angle(p+, p−)= Angle(topP

M, topP

L). Finally, let S+ (resp., S−) be the side where
K+ (resp., K−) is, and D

′ = A \ {topA

M, topA

L} ∪ {p+, p−}.

Lemma 5.2. Let tdis be as defined in Lemma 5.1, let T Ctdis
=false, and let Dtdis

be balanced.
Then in a finite number of cycles, say at time tg > tdis, the robots either reach a quasi-final or
a final configuration, or a configuration

1. that is unbalanced; and

2. where top
Dtg

M and top
Dtg

L are on p+ and p−, respectively; and

3. either

(a) the configuration is empty, or

(b) there is no robot strictly inside LDtg
, and only one robot, r∗, is inside Dtg , with r∗ on

one of the points in τ(P, D′);

Furthermore, at time tg all robots are in I(tg), and until this time any collision is avoided.

Proof. Since Dtdis
is balanced, the robots execute routine GetUnbalanced() (Line 29 of

Algorithm Pond). In particular, the only robots that are allowed to move are those not on
Km ∪ K+ ∪ K−, starting a sweeping process. Let us consider what happens in S+ (the same
happens in the other side, S−). If the robots in this side are not all on K+, then the robots strictly
inside S+ move sequentially towards K+ (Lines 10–14 of GetUnbalanced()). In particular, the
topmost robot strictly inside S+ with the smallest horizontal distance from K+, say r, is allowed
to move, while all the others in S+ and those on Km wait. According to this routine, r chooses
to move to a position on K+ not occupied by any robot and below topA

M, say p. Since r is the
closest to K+ among all the robots strictly inside S+, there is no robot on [rp]; hence, during
its movement towards p, any collision is avoided.

Applying iteratively the same argument to all the robots that are strictly inside both sides,
we can conclude that in a finite number of cycles, say at time te ≥ tdis, all the robots will be
either on K+, or on Km, or on K−; i.e., Dte is empty. Furthermore, at this time all robots are
in I(te).

Note that, for all tdis ≤ t ≤ te, topDt

M = topA

M and topDt

L = topA

L: this follows from the way
the robots moved towards K+ and K− during the sweeping process. In fact, each sweeped robot
in S+ (resp., S−) choose as destination a point below topA

M (resp., topA

L). Furthermore, at time
te, since no robot changed side (that is, no robot that at time tdis was in S+ is now in the other
side, and viceversa), the configuration is still balanced.

Since n is odd and no robot left Km between time tdis and te, an odd number of robots must
lie on Km at te. If Dte is quasi-final or final, the lemma follows with tg = te.

Let T Cte =false. By Lines 5–10 of routine GetUnbalanced(), the topmost robot on Km,
top∗, is allowed to move, and until it does not leave Km, all the other robots cannot move
(Line 7 of routine GetUnbalanced()). top∗ chooses as destination (by executing routine
ChooseDestination()) a point p∗ in the side to its (local) right. By definition of routines
ChooseDestination() and MoveInsideS+(), p∗ is either one of the points in τ(P, D′), or a
point on K+.

6Recall that routine Angle(p, q) returns the convex angle between the horizontal axis through q and the
segment [p, q].
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Let t∗ be the first time top∗ leaves Km towards p∗, and Dt∗ becomes unbalanced. As long
as top∗ does not reach p∗ or K+, Lines 35–38 force all the other robots, but two, to stay still:
the only two robots allowed to move are topA

M = topDt∗

M and topA

L = topDt∗

L ; for brevity, call
them top+ and top−, respectively. In fact, as long as Angle(top+, top−) 6= Angle(topP

M, topP

L),
routine FixOutermosts() will move either top+ or top− upwards until

Angle(top−, top−) = Angle(topP

M, topP

L). (2)

Note that, the two points on K+ and K− that satisfy Equation (2) are p+ and p−. Since
T Cte =false and Dte is empty, at time te test AllOn() (Appendix A.7) at Line 35 returns true;
hence Lines 35–38 are executed. Observe that

1. at time t∗ there are no other robots strictly inside the sides; furthermore, if p∗ is on K+,
by definition of MoveInsideS+() (in Appendix A.3), p∗ is chosen with no robot on it, and
below top+;

2. top+ and top− only move upwards;

3. during the movements of top∗, top+ and top−, no other robots is allowed to move.

Thus, during these movements any collision is avoided. Therefore, in a finite number of
cycles, at time tg, top∗ reaches either p∗ or K+, and top+ and top− will be on p+ and p−,
respectively. Furthermore, at tg all robots are in I(tg), and the lemma follows. 2

Corollary 5.1. At time tg, test AllOn() returns false.

Lemma 5.3. Let tdis be as defined in Lemma 5.1 and at that time let T Ctdis
=false. Then in a

finite number of cycles, say at time tu ≥ tdis, the robots reach an unbalanced configuration where
top

Dtu

M and top
Dtu

L are on p+ and p−, respectively. Furthermore, until this time any collision is
avoided, and at tu test AllOn() returns false, and all robots are in I(tu).

Proof. If Dtdis
is balanced, the lemma trivially follows by previous Lemma 5.2 and Corollary

5.1.
If Dtdis

is unbalanced, the robots execute routine FixOutermosts() (Line 32). If at time tdis

Angle(top
Dtdis

M , top
Dtdis

L )= Angle(topP

M, topP

L), then the lemma trivially follows.

Otherwise, let us denote top+ = top
Dtdis

M and top− = top
Dtdis

L . As long as top+ and
top− are not on p+ and p−, respectively (i.e., Angle(top+, top−) 6= Angle(topP

M, topP

L)), rou-
tine FixOutermosts() will move either top+ or top− upwards until Angle(top+, top−)=
Angle(topP

M, topP

L). During this time, no other robot is allowed to move; hence no collision
occurs.

In a finite number of cycles, say at time th, top+ and top− reach their positions, p+ and
p−, respectively. At this time, if AllOn() returns false, the lemma clearly follows. Otherwise,

all robots but one, r, are on K+ ≡ Φ
Dth

M , K− ≡ Φ
Dth

L , and on Km ≡ Φ
Dth
m ; furthermore, r is

not on one of the points in τ(P, Dth). In this scenario, r is the only one robot allowed to move
(Lines 35–38). By definition of routine MoveInsideS+(), r chooses as destination either one of
the points in final positions, or a point on K+. Since no other robot is strictly inside S+ and
S−, this movement cannot cause any collision. Furthermore, in a finite number of cycles, say at
time tu, r reaches p and AllOn() returns false; hence the lemma follows. 2

From now on, we will refer to final positions as the points returned by routine
FindFinalPositions() when executed on Dtu . Moreover, top+ and top− will denote top

Dtu

M

and top
Dtu

L , respectively.
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Observation 5.1. By the way the set final positions is computed, at time tu, top+ and top−

occupy two positions, p+ and p−, that are in final positions. Furthermore, all the points in final
positions cannot be neither above top+ on K+, nor above top− on K−, nor outside the region
of the plane delimited by K+ and K−. Moreover, K+ ≡ Φ

Dtu

M and K− ≡ Φ
Dtu

L , i.e., K+ and
K− have not changed since tdis.

Let pb be the bottommost point final positions that lies on K+.

Lemma 5.4. Let tu be as defined in Lemma 5.3 and at that time let T Ctu =false. In a finite
number of cycles, at time tb ≥ tu, the bottommost robot on K+, say rb, is such that rb.y < pb.y.
Furthermore, until this time any collision is avoided, and at time tb all the robots are in I(tb),
Dtb is unbalanced, and AllOn() is false.

Proof. Two cases can occur.

1. At time tu there are at least two robots on K+. Let rb be the bottommost robot on K+. If
rb.y < pb.y, then the lemma trivially follows. Otherwise, rb is forced to move to a position
that is below pb, say p (Lines 39–44 of Algorithm Pond); furthermore, as long as rb does
not reach this position, all the other robots can not move. Hence, in finite time, say at
time tb > th, rb reaches p (note that it is possible that rb goes through pb; however, it
will not stop there). Furthermore, by Lemma 5.3, AllOn() is false at time tu, and all
movements between time tu and tb occur vertically on K+; hence, AllOn() will continue
to be false in this time interval, and the lemma follows.

2. At time tu there is only top+ on K+. Note that, by Lemma 5.3, Dtu is unbalanced.
Therefore, since n ≥ 3, there must be at least two robots strictly inside S+, otherwise,
n = 3 and the configuration would be semi-final, a contradiction.

Among the robots strictly inside S+, the robot with the smallest horizontal distance from
K+ is chosen, r (ties are broken by choosing the topmost). The algorithm forces r to move
towards K+ (Lines 45–48 of Algorithm Pond). In particular, r chooses as destination a
point p on K+ below pb such that there are no robots on [rp]. The absence of robots on
the chosen trajectory is required in order to avoid collisions. Since r moves towards K+,
it is always chosen in Line 46 as the only robot to move towards K+. In a finite number of
cycles, r reaches its destination on K+. At this time, if AllOn() is false, then the lemma
follows.

Otherwise, there is only one robot r′ strictly inside S+, and r′ is not on any of the final
positions. By routine MoveInsideS+() (invoked in Line 37), this robot is the only one
allowed to move: it moves towards one of the final positions (if at least one of them is
strictly inside S+), or towards K+. Once r′ reaches its destination, at time tb > tu,
AllOn() becomes false. At this time, there are at least two robots on K+ (r and top+),
with r below pb, and the lemma follows.

2

Let FreeP (S+, t) (resp. FreeP (S−, t)) be the subset of points in final positions that are in
S+ (resp. S−) and with no robots on them, at time t; and FreeR(S+, t) (resp. FreeR(S−, t))
be the set of robots in S+ (resp. S−) that do not occupy points in final positions at time t.

Lemma 5.5. Let tb be as defined in Lemma 5.4 and at that time let T Ctb =false. In a finite
number of cycles, at time tl ≥ tb, |FreeR(S−, tl)| = 0. Furthermore, between time tb and tl, rb
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does not move, any collision is avoided, all the robots that are on a final position do not move,
AllOn() is false, Dtl is unbalanced, and at time tl all the robots are in I(tl).

Proof. By the previous lemma, at time tb, there is a robot on K+, rb, below any robot and any
final positions on K+; furthermore, AllOn() is false and Dtb unbalanced. Since by hypothesis
T Ctb =false, routine FromSidesToMedian(K+,K−,Km,S−) is executed. We observe that,

Observation 5.2. As long as FreeR(S−, ·) 6= ∅, only robots in FreeR(S−, ·) are allowed to
move (by routine FromSidesToMedian()); in particular, rb cannot move until FreeR(S−, ·) = ∅.

Let us assume that at time tb, FreeR(S−, tb) 6= ∅ (otherwise the lemma would triv-
ially follow). According to the algorithm, all the robots in FreeR(S−, tb) execute Algorithm
CloseToDestination() (Line 8 of FromSidesToMedian(); CloseToDestination() has been
presented in Section 3), while all the others can compute only null movements. With re-
spect to Algorithm CloseToDestination(), the set FreeR(S−, tb) corresponds to FR, the set
FreeP (S−, tb) to FT, and the obstacles O are all the robots except those in FreeR(S−, tb). Let
(r, p) be the pair that satisfies Equation (1) at time tb, among all the robots in FreeR(S−, tb)
and all the points in FreeP (S−, tb). First of all, note that all the four conditions required by
CloseToDestination() are met. In particular, among FR there is a total agreement on the
coordinate systems; by Lemma 5.4 all the robots are in I(tb) at time tb; by Observation 5.2 the
obstacles do not move (in particular, no robot in S+ or on Km can enter S− as long as FR 6= ∅).
Hence, according to Theorems 3.1 and 3.2, r will reach p in a finite number of cycles. Once
r reaches p, it becomes an obstacle and the cardinality of FR and FT decreases by one, and r
joins O. Therefore, since as long as FreeR(S−, ·) 6= ∅ routine FromSidesToMedian() will be
executed, we can conclude that

(A) if 0 < |FreeR(S−, tb)| ≤ |FreeP (S−, tb)| then in a finite number of cycles and avoiding
collisions, |FreeR(S−, ·)| = 0; let t1 ≥ tb be the first time such that |FreeR(S−, t1)| = 0.

(B) if |FreeR(S−, tb)| > |FreeP (S−, tb)| > 0), then in a finite number of cycles and avoiding
collisions, |FreeP (S−, ·)| = 0; let t2 ≥ tb be the first time such that |FreeP (S−, t2)| = 0.
Note that, at this time |FreeR(S−, t2)| > 0.

If Case (A) above applies, then the lemma clearly follows, with tl = t1. Otherwise (Case (B)
above applies), at time t2 the extra robots in FreeR(S−, t2) that are still in S− are sequentially
directed towards Km by routine ChooseOnMedian()(Line 10 of FromSidesToMedian()).

Specifically, the topmost robot in FreeR(S−, t2) with smallest horizontal distance from
Km is allowed to move towards Km. Its destination point on Km is chosen by routine
ChooseOnMedian(), using a strategy that avoids collisions (see Figure 14). During this move-
ment, r remains the (closest to Km) topmost robot in FreeR(S−, t2); hence it is the only one
allowed to move until it reaches Km. Furthermore, by Observation 5.2, the destination point
on Km computed by r can not be the destination point of another robot in S+ (i.e., it can not
collide on Km with a robot coming from S+). Therefore, r reaches Km in a finite number of
cycles, while avoiding collisions. By iterating this argument, all the extra robots in S− will reach
Km in a finite number of cycles while avoiding collisions, say at time t3. In conclusion, within
a finite number of cycles, at time tl = t3, all the robots in S− are on one of the points in final
positions; that is, |FreeR(S−, tl)| = 0, and the lemma follows. 2

Lemma 5.6. Let tl be as defined in Lemma 5.5 and at that time let T Ctl =false. In a finite
number of cycles, at time tr ≥ tl, |FreeR(S+, tr)| = 1. Furthermore, between time tl and tr,
|FreeR(S−, ·)| = 0, rb does not move, and any collision is avoided; at time tr all the robots are
in I(tr), and AllOn() is false.

30



Proof. By Lemmas 5.4–5.5, at time tl there is a robot on K+, rb, below any robot and any
final position on K+. Furthermore, at this time, all the robots in S− are on a final position.
In this scenario, routine FromSidesToMedian(K+,K−,Km,S+) is executed. First, we observe
that, routine FromSidesToMedian(), when executed on S+, does not consider rb as one of the
robots in FreeRobots. Moreover,

Observation 5.3. As long as FreeR(S+, ·) \ {rb} 6= ∅, only robots in FreeR(S+, ·) are allowed
to move (by routine FromSidesToMedian()); in particular, rb cannot move until FreeR(S+, ·) \
{rb} = ∅.

Let us assume that at time tl, FreeR(S+, tl) \ {rb} 6= ∅ (otherwise the lemma would triv-
ially follow). According to the algorithm, all the robots in FreeR(S+, tl) \ {rb} execute Algo-
rithm CloseToDestination(), while all the others can compute only null movements. With
respect to Algorithm CloseToDestination(), the set FreeR(S+, tl) \ {rb} corresponds to FR,
the set FreeP (S+, tl) to FT, and the obstacles O are all the robots inside S+ except those in
FreeR(S−, tl) \ {rb}. Let (r, p) be the pair that satisfies Equation (1) at time tl, among all the
robots in FreeR(S+, tl) \ {rb} and all the points in FreeP (S+, tl). First of all, note that all the
four conditions required by CloseToDestination() are met. In particular, among FR there is
a total agreement on the coordinate systems; by Lemma 5.5 all the robots are in I(tl) at time
tl; by Observation 5.3 the obstacles do not move (in particular, no robot in S− or on Km can
enter S+ as long as FR 6= ∅). Let t′ > tl be the first time r moves. We now distinguish two
cases, depending on the value of AllOn() at this time.

1. AllOn() is false at time t′. According to Theorems 3.1 and 3.2, r will reach p in a finite
number of cycles.

2. AllOn() is true at time t′. By Lemma 5.5 AllOn() is false at time tl; furthermore, no
robot moves between time tl and time t′, hence AllOn() is false between time tl and t′.
Since, by hypothesis, at time t′ the movement of r makes AllOn() true, this implies that,
between tl and t′, r is on K+ and no robot is strictly inside S+. In this case, if r does not
reach p in one cycle, it will execute Line 37 in the next one. The destination of r, chosen
by routine MoveInsideS+(), will still be p. Hence, in a finite number of cycles, r reaches p
avoiding collisions (since no other robot was strictly inside S+ at t′), and AllOn() becomes
false.

Once r reaches p, it becomes an obstacle and the cardinality of FR and FT decreases by one,
and r joins O. Therefore, since as long as FreeR(S+, ·)\{rb} 6= ∅ routine FromSidesToMedian()
is executed, we can conclude that

(A) if 0 < |FreeR(S+, tl) \ {rb}| ≤ |FreeP (S+, tl)| then in a finite number of cycles
and avoiding collisions, |FreeR(S+, ·)| = 1; let t1 ≥ tl be the first time such that
|FreeR(S+, t1)| \ {rb} = 0.

(B) if |FreeR(S+, tl)| \ {rb} > |FreeP (S−, tl)| > 0), then in a finite number of cycles
and avoiding collisions, |FreeP (S+, ·)| = 0; let t2 ≥ tl be the first time such that
|FreeP (S+, t2)| = 0. Note that, at this time |FreeR(S+, t2)| \ {rb} > 0.

In both cases, applying an argument similar to the one adopted in Lemma 5.5, and recalling
that rb is never allowed to move by routine FromSidesToMedian(·, ·, ·,S+), the lemma follows.

2

Note that, at time tr the only robots, if any, that might not be on final positions, in addition
to rb, are those on Km.
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Lemma 5.7. Let tr be as defined in Lemma 5.6 and at that time let T Ctr =false. In a finite
number of cycles, at time ts ≥ tr, |FreeP (S+, ts)| ≤ 1. Furthermore, between time tr and ts,
|FreeR(S−, ·)| = 0, rb does not move, AllOn() is false, and any collision is avoided; at time ts
all the robots are in I(ts), and |FreeR(S+, ts)| = 1

Proof. At time tr, FreeR(S−, tr) = ∅, and |FreeR(S+, tr)| = 1 (rb is in S+). In this
scenario, test in Line 53 fails; hence, FromMedianToSides(K+,K−,Km,S+) is executed. If
|FreeP (tr,S

+)| ≤ 1, then the lemma trivially follows. Let k = |FreeP (tr,S
+)| > 1. Observe

that at this time there must be at least k − 1 free robots on Km, (since there are no free robots
in S−).

Only the topmost robot on Km, say top, is allowed to move towards one of the points in
FreeP (S+, tr) (Lines 3–5 of routine FromMedianToSides()). Since |S+| ≥ |S−|+ 1 (recall that
rb is in S+ at this time), when top leaves Km (towards S+), S+ clearly stays the side with more
robots inside; hence, the global agreement on the orientation of the x axis of GCS does not
change. Moreover, when top enters S+, |S+| ≥ |S−| + 2; hence, AllOn() will be false.

top moves according to routine CloseToDestination({top}, F reeP (tr,S
+),K+,K−) (Line

4 in routine FromMedianToSides()). With respect to Algorithm CloseToDestination(), the
set {top} corresponds to FR, the set FreeP (S+, tr) to FT, and the obstacles O are all the robots
except top. Let (top, p) be the pair that satisfies Equation (1) at time tr, among all the points in
FreeP (S+, tr). First of all, note that all the four conditions required by CloseToDestination()

are met. In particular, by Lemma 5.6 all the robots are in I(tr) at time tr, and at time tr only
top is allowed to move.

As soon as top moves towards p, then FreeR(S+, ·) \ {rb} = {top} 6= ∅;
therefore, routine FromSidesToMedian(K+,K−,Km,S+) in Line 53 still allows only
top to keep moving towards p; this movement is once again controlled in routine
CloseToDestination({top}, F reeP (tr,S

+),K+,K−). Furthermore, by Observation 5.3, the
four conditions required by CloseToDestination() are met as long as top moves towards p.
Hence, according to Theorems 3.1 and 3.2, top will reach p in a finite number of cycles. More-
over, as soon as top reaches p, say at time t1 > tr, the only robot in S+ that is not on one of
the final positions is rb; hence, |FreeR(S+, t1)| = 1.

Therefore, if the number of robots on Km and not on a final position at time tr is equal
to |FreeP (S+, tr)| − 1, in a finite number of cycles, say at ts, there are no more robots on
Km, and the configuration becomes semi-final (with the last available final position in S+), and
|FreeP (S+, ts)| = 1.

Otherwise (the number of robots on Km and not on a final position at time tr is greater than
or equal to |FreeP (S+, tr)|), by iterating the above argument, in a finite number of cycles, say
at time ts, |FreeP (S+, ts)| = 0, |FreeR(S+, ts) = 1.

Finally, between time tr and ts, routine FromMedianToSides(·, ·, ·,S+) allows to move only
robots from Km towards S+, and none of these robots is allowed to move inside S−; hence, since
|FreeR(S−, tr)| = 0 (Lemma 5.6), it follows that |FreeR(S−, t)| = 0, for all tr ≤ t ≤ ts, and
the lemma follows. 2

Lemma 5.8. Let ts be as defined in Lemma 5.7 and at that time let T Cts =false. In a finite
number of cycles, at time tz ≥ ts, |FreeP (S−, tz)| ≤ 1. Furthermore, between time ts and tz,
|FreeR(S+, ·)| = 1, |FreeP (S+, ·)| = 0, rb does not move, AllOn() is false, and any collision
is avoided; at time tz all the robots are in I(tz) and |FreeR(S−, tz)| = 0.

Proof. By Lemma 5.7, FreeR(S−, ts) = ∅ and |FreeR(S+, ts)| = 1 (rb is in S+); further-
more, since by hypothesis T Cts =false, it follows by previous lemma that |FreeP (S+, ts)| = 0,
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otherwise the configuration would be semi-final.
In this scenario, routine FromMedianToSides(K+,K−,Km,S−) is executed. If

|FreeP (S−, ts)| ≤ 1, then the lemma trivially follows. Let k = |FreeP (S−, ts)| > 1. Observe
that there must be at least k − 1 robots on Km.

Only the topmost robot on Km, say top, is allowed to move towards one of the points
in FreeP (S−, ts) (Lines 3–5 of routine FromMedianToSides()). Since |FreeP (S+, ts)| = 0,
|FreeR(S−, ts)| = 0, and rb is in S+ as long as routine FromMedianToSides(K+,K−,Km,S−)

is executed (i.e. as long as there are free positions in S− and there is a robot on Km), when top
leaves Km, |S+| ≥ |S−| + 1; hence, S+ is still the side with more robots inside, and the global
agreement on the orientation of the x axis of GCS does not change. Moreover, since top moves
inside S−, AllOn() will be false.

By using arguments similar to the ones adopted in the proof of the previous lemma, we can
conclude the following:

1. If the number of robots on Km and not on a final position at time ts is equal to
|FreeP (S−, ts)| − 1, in a finite number of cycles, say at time tz, there are no more robots
on Km, and the configuration becomes semi-final (with the last available final position in
S−), and FreeP (S−, tz) = 1.

2. Otherwise (the number of robots on Km and not on a final position at time ts is greater than
or equal to |FreeP (S−, ts)|), in a finite number of cycles, say at time tz, |FreeP (S−, tz)| =
0.

Furthermore, |FreeR(S+, t)| = 1 and |FreeP (S+, t)| = 0, for all ts ≤ t ≤ tz, AllOn() is false,
and the lemma follows. 2

From the proofs of Lemmas 5.7 and 5.8, we can state the following

Corollary 5.2. Let tz be as defined in Lemma 5.8. Dtz is semi-final.

Finally, we deal with the terminal cases; i.e., when the current configuration is either semi-
final, or quasi-final.

Lemma 5.9. Let Dtsf
be a semi-final configuration of the robots at a given time tsf ≥ t0 such

that all the robots are in I(tsf ). In a finite number of cycles, at time tqf , the configuration
becomes quasi-final or final avoiding any collisions. Furthermore, at time tqf all the robots are
in I(tqf ).

Proof. First note that Dtsf
is neither final nor quasi-final. Therefore, TestSF(Dtsf

) returns
= (true, r, last), and Lines 7–22 are executed. By Definition 5.2 of semi-final configuration,
Dtsf

is non-degenerated and unbalanced. We distinguish the possible cases, according to the
definition of semi-final.

1. (r 6= ∅, last 6= ∅). We distinguish the two possible cases.

(a) If r and last are in the same side, then Algorithm CloseToDestination() is called.
According to this algorithm, r moves towards last. Furthermore, during this move-
ment, no other robot is allowed to move (note that any other robot is either on a
final position or on Km). By Theorems 3.1 and 3.2, in a finite numebr of cycles, say
at time tqf > tsf , r reaches last.
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(b) If r and last are not in the same side, then Line 12 allows r to move towards Km,
while any other robot is forced to not move. Therefore, since during this movement
the configuration stays semi-final, in a finite number of cycles r reaches Km. At this
time, the configuration is still semi-final, but now the semi-final test in Line 6 returns
(true, ∅, last), and Case 3. below applies.

2. (r 6= ∅, last = ∅). By Lines 16–18 of Algorithm Pond, r is the only robot allowed to
move, and its destination is a point on Km. While r approaches Km the configuration
stays semi-final; hence, in a final number of cycles, say at time tqf > tsf , r reaches Km.

3. (r = ∅, last 6= ∅). In this case, Lines 20–22 allows top, the topmost robot on Km, to
move towards last. Let t be the first time when top leaves Km towards last. During
its movement, the configuration clearly remains semi-final, but now the semi-final test in
Line 6 returns (true, r 6= ∅, last). If top does not reach last in one cycle, then Lines 10–14
are executed at its next cycle; in particular, top and last lie in the same side, and previous
Case 1.a above applies.

In all cases, Dtqf
is either final or quasi-final; furthermore, between time tsf and tqf no other

robot moves besides r, and at time tqf all the robots are in I(tqf ), and the lemma follows. 2

Before proceeding with the overall sequence of lemmas, let us establish a useful property of
routine MoveCarefully(R, T) (invoked by Fix()) described in Appendix A.2.

Property 5.1. Let R and T be a set of robots and targets, respectively, that at are all on the
same vertical axis K at a given time t; furthermore, let |R| = |T|. If after t no other robot enters
on K, then MoveCarefully(R, T) let in a finite number of cycles each robot in R to reach one of
the targets in T. Furthermore, until that time any collision is avoided, and at time t′ all robots
in R are in I(t′).

Proof. First, routine MoveCarefully() sorts topdown both input sets; let SortedR and
SortedP be the result of the sorting on robots and targets, respectively.

Then, i-th robot in SortedR, ri, is assigned as target the i-th target in SortedP, pi. However,
according to the routine, ri will not start moving as long as there is a robot j, with j > i on
[ri, pi].

Let us define the waiting graph WG = (V,E) as follows. The nodes in this graph are the
robots in SortedR, and there is an edge between ri and rj if rj is on ri’s way; that is, rj ∈ [ri, pi].

First note that, if (ri, rj) ∈ E, then (rj , ri) 6∈ E. In fact, let us assume that ri is above rj;
i.e., i < j. The edge (ri, rj) ∈ E implies that ri is waiting to reach the point pi that is below
rj ; since the points are sorted, pj must be below pi, and (rj , ri) 6∈ E (a symmetrical argument
applies if i > j.

In order to show that each robot reaches its assigned target in a finite number of cycles,
it sufficient to prove that WG contains no cycles. By contradiction, let us assume there is a
cycle C in WG, and, without loss of generality, let C = ri → rj → · · · → rk → rz → rk, with
i < j < · · · < k < (k + 1) < · · · < z. The presence of the edges rk → rk+1 and rz → rk, with
k < z, implies that rk is waiting to reach point pk below rk+1, and that rz is waiting to reach
point pz above pk. This is a contradiction, since pz clearly is not the z-th point in SortedP. 2

The following lemma states that, if a configuration is quasi-final, then the arbitrary pattern
formation problem is solved in a finite number of cycles.
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Lemma 5.10. Let Dtqf
be a non-degenerated quasi-final configuration of the robots at a given

time tqf ≥ t0 such that all the robots are in I(tqf ). In a finite number of cycles, at time tf , the
configuration becomes final avoiding any collisions. Furthermore, at time tf all the robots are in
I(tqf ).

Proof. By definition of quasi-final configuration (Definition 5.3), |Km| = |Υm|.
In such a configuration, all robots inside S+ and S− occupy a position of τ(P, Dtqf

) ∪
τ−1(P, Dtqf

).
Let us define

Targets =

{
τ(P, Dtqf

) if τ(P, Dtqf
) 6= ∅

τ−1(P, Dtqf
) otherwise

Let Targets′ be the subset of Targets containing the points that are on Km.
At time tqf , the robots are in a quasi-final configuration, and routine Fix() is invoked.

This routine first computes the set of final positions and of robots on Km, and then calls
MoveCarefully(). According to this routine, the robots on Km are the only ones allowed to
move. Furthermore, these robots and the final positions on Km are sorted topdown (routine
Sort()), and the i-th robot in this ordering chooses as its destination the i-th point in Targets′.
By previous Property 5.1, in a finite number of cycles a final configuration is reached, and the
lemma follows. 2

From Lemmas 5.1–5.10, we conclude:

Theorem 5.1. With Algorithm Pond, the robots correctly form the input pattern P.

Result 2. When one axis direction and orientation is commonly agreed upon, an odd number
of autonomous, anonymous, oblivious, mobile robots can form any arbitrary given pattern. An
even number of robots cannot form any arbitrary given pattern.

5.3 Case b.: Degenerated Pattern

If Υ+ ≡ Υm, the points in the pattern lie all on the same vertical line. In this section, we
present Algorithm Pod (whose pseudo-code is reported in Algorithm 5), that solves the Apf

problem with Partial agreement and an odd number of robots that have to form a degenerated
pattern. The idea is briefly described in the following. First, the robots reach an unbalanced
configuration, by executing routine GetUnbalanced2() (Appendix B.2). This routine is very
similar to GetUnbalanced() defined in Algorithm Pond; the only difference is in Line 5. Let
S+ and S− be the sides with more and less robots in such configuration, respectively. Moreover,
let K+ and K− the two vertical axis tangent the unbalanced configuration, and that lie in S+

and S−, respectively.
Then, all the robots inside S+ move sequentially to K+ (from the topmost with the smallest

horizontal distance from K+, routine Towards(S+,K+)). After this, all the robots on Km move
sequentially (from the topmost to the bottommost, Towards(Km,K+)) to K+; and finally all
the robots inside S− move sequentially to K+ (Towards(S−,K+)).

Eventually, all the robots are on the same vertical axis, Km: we call quasi-final such a
configuration. At this point, routine LastFix(D,Km) is called, that uses a strategy similar to
Fix() of Algorithm Pond to place all the robots in their correct positions.

FindFinalPositions2() computes the set of points that the robots have to reach in order to
correctly form the input pattern, after they are all on the same vertical axis K. In particular, let
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Figure 11: An example of the behavior of Algorithm 5. (a) The input patterns. (b) The initial
configuration D0. (c) Towards(S+,K+) and Towards(Km,K+). (d) Towards(S−,K+). (e)
All the robots on the same vertical axis. (f) The final configuration.

36



Algorithm 5 Pod

Input: An arbitrary pattern P described as a sequence of points p1, . . . , pn, given in lexico-
graphic order, such that Υ+ ≡ Υm. The direction and orientation of the y axis is common
knowledge.

(Υ+,Υ−,Υm) := (ΦP

M,ΦP

L,ΦP
m);

D := Current Configuration Of The Robots;
If D Is Final Configuration Then STOP.
Km := ΦD

m;
5: If D is quasi-final Then LastFix(D,Km); EndC.

If D Is Unbalanced Then (K+,K−) := (ΦD

M,ΦD

L);
Else GetUnbalanced2(D)EndC.
(S+,S−) := Sides of D where K+ and K− lie, respectively;
FinalPositions :=FindFinalPositions2(P,K+);

10: If AllOn() Then
r := Robot Strictly Inside S+;
p := Point on K+ With No Robots On It And Below The Topmost On K+;
If I Am r Then destination:= p; EndC. Else destination:= null; EndC.

SI := {Robots Strictly Inside S+ };
15: If |SI| 6= 0 Then Towards(S+,K+); EndC.

SI := {Robots on Km};
If |SI| 6= 0 Then Towards(Km,K+); EndC.
SI := {Robots Strictly Inside S− };
If |SI| 6= 0 Then Towards(S−,K+); EndC.

h be the distance between the topmost (say topP) and the bottommost (say bottomP) robot on
P. Then, we define the transform τ(P,K) that returns the set of points obtained by scaling P so
that h is equal to distance between top (the topmost robot on K) and bottom (the bottommost
robot on K), and translating it so that topP is mapped onto top and bottomP onto bottom.
FindFinalPositions2() returns such set of points.

Routines Towards() and LastFix() are reported in detail in Appendix B.

Lemma 5.11. Let Dt0 be non-degenerated. Then in a finite number of cycles, say at time
tu ≥ t0, the robots reach an unbalanced empty configuration. Furthermore, until this time any
collision is avoided, and all robots are in I(tu).

Proof. If Dt0 is unbalanced, the lemma trivially follows. Let Dt0 be balanced. This implies
that the robots execute routine GetUnbalanced2() (Line 7 of Algorithm Pod). In particular,
the only robots that are allowed to move are those not on Km ∪K+∪K−, starting the sweeping
process analyzed in Lemma 5.2. Hence, in a finite number of cycles, say at time te ≥ t0, all the
robots will be either on K+, or on Km, or on K−; i.e., Dte is empty (that is, all robots lie on
K+, K−, or on Km). Furthermore, at this time all robots are in I(te) and Dte is still balanced
(and not final).

Since n is odd and no robot left Km between time t0 and te, an odd number of robots must
lie on Km at te.

By Lines 4–7 of routine GetUnbalanced2(), the topmost robot on Km, top∗, is allowed
to move, and until it does not leave Km, all the other robots cannot move (Line 7 of routine
GetUnbalanced()2). top∗ chooses as destination a point p∗ on K+ below the topmost robot on
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K+.
Let t∗ be the first time top∗ leaves Km towards p∗, and Dt∗ becomes unbalanced.
Since Dte was empty, at time t∗ test AllOn() at Line 10 returns true; hence Lines 11–13 are

executed: top∗ is the only robot allowed to move, and it keeps moving towards p∗ on K+. Thus,
during the movements of top∗ any collision is avoided. Therefore, in a finite number of cycles,
at time tu, top∗ reaches p∗ on K+. Furthermore, at tu all robots are in I(tu), and the lemma
follows. 2

Lemma 5.12. Let Dt, t ≥ 0, be a configuration where AllOn() is true, and such that all
robots are in I(t). Then, in a finite number of cycles, at time tz, (1) AllOn() returns false; (2)
|S+| = |S−| + 1; and (3) Dtz is empty. Furthermore, at tz all robots are in I(tz).

Proof. If AllOn() is true at time t, then at this time |S+| = |S−| + 1, there are no robots
strictly inside S−, and only one robots, r, is strictly inside S+. By definition of τ(P,K+), clearly
r is not on one of the points in τ(P,K+) (these points are all on K+).

Therefore, Lines 11–13 are executed: r is the only robot allowed to move, and it moves
towards K+, on a point between the topmost and the bottomost robot on K+. During this
movement, no other robot is allowed to move. Hence, in a finite number of cycles, r reaches
K+, and the lemma follows. 2

Lemma 5.13. Let Dt0 be non-degenerated. Then in a finite number of cycles, say at time
ts ≥ t0, the robots reach a quasi-final configuration. Furthermore, until this time any collision
is avoided, and all robots are in I(ts).

Proof. First, in a finite number of cycles, at time ta, the robots reach a configuration that
is unbalanced and where AllOn() returns false. In fact, if Dt0 is balanced, this follows by
Lemmas 5.11 and 5.12, with ta = tu. If Dt0 is unbalanced and AllOn() returns true, then, by
Lemma 5.12, ta = tz.

At time ta, the following happens:

1. First, routine Towards(S+,K+) moves sequentially the robots strictly inside S+ towards
K+, in such a way that any collision is avoided. Therefore, in a finite number of cycles,
there are no robots strictly inside S+.

Note that, if at time ta there are no robots strictly inside S−, |S+| = |S−| + 1, and there
are at least two robots strictly inside S+, when the second last robot strictly inside S+

reaches K+, then AllOn() returns true. However, by Lemma 5.12, the last robot strictly
inside S+ will reach K+ in a finite number of cycles, say at t∗; at that time AllOn()

returns false. Moreover, at t∗ there are no more robots strictly inside S+, and at this time
|S+| = |S−| + 1. From now on (as described in the following), robots on Km and inside
S− will enter S+; therefore, after t∗, |S+| > |S−| + 1, and AllOn() will never return true
again.

2. Second, routine Towards(Km,K+) moves sequentially the robots on Km towards K+, in
such a way that any collision is avoided. Therefore, in a finite number of cycles, |Km| = 0.
Note that, during these moves, Towards(S+,K+) will be invoked, and AllOn() returns
always false, since the number of robots in S+ increases.

3. Finally, routine Towards(S−,K+) moves sequentially the robots strictly inside S− towards
K+, in such a way that any collision is avoided. Note that, after a robot in S− reaches Km

and K+, routines Towards(S+,K+)and Towards(Km,K+) can be possibly be invoked.
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Therefore, in a finite number of cycles, there are no robots strictly inside S−. furthermore,
until then, AllOn() returns always false, since the number of robots in S+ increases.

When the last robot on K− moves towards K+, both K− and Km change their positions.
However, since the robots on K+ do not move, the agreement on S+ and S− does not change.
Therefore, in a finite number of cycles, all the robots are on the same vertical axis, and the
lemma follows. 2

Lemma 5.14. Let Dt be quasi-final, t ≥ 0, and let all robots be in I(t). Then in a finite number
of cycles, say at time tf > t, the robots reach a final configuration. Furthermore, until this time
any collision is avoided, and all robots are in I(tf ).

Proof. In this scenario, routine LastFix(D,K) is executed, and by Property 5.1 in a finite
number of cycles a final configuration is reached, and the lemma follows. 2

By previous lemmas, we can state the following

Theorem 5.2. If Υ+ ≡ Υm, then in a finite number of cycles the robots are in a final configu-
ration, by executing Algorithm Pod.

6 Partial Agreement: The Even Case

6.1 Characterization

We know from Section 2.4 that an arbitrary pattern can not be formed by an even number of
robots (Corollary 2.1). In this section, we are interested in determining which class of patterns, if
any, can be formed in this case. From now on, we will assume that the robots in the system have
common agreement on the direction and orientation of only the y axis7, and that the number n
of robots in the system is even.

We say that P is a symmetric pattern if it has at least one axis of symmetry Λ; that is, for
each p ∈ P there exists exactly another point p′ ∈ P such that p and p′ are symmetric with
respect to Λ (see Figure 12.b, c and d).

The proof of the unsolvability result of Theorem 2.2 is useful to better understand what
kind of patterns can not be formed, hence what kind of pattern formation algorithms can not
be designed. In fact, the ability to form a particular type of patterns would imply the ability to
elect a robot in the system as the leader. Formally,

Theorem 6.1. If an algorithm A lets the robots form (a.) an asymmetric pattern, or (b.) a
symmetric pattern that has all its axes of symmetry passing through some vertex, then A is a
leader election algorithm.

Proof.

Part a. Let A be an algorithm that lets the robots form an asymmetric pattern P of n points.
Let Df be the final configuration after they execute the algorithm, starting from an arbi-
trary initial configuration. Moreover, let Γ and Γ′ be respectively the vertical axes passing
through the outermost robots in Df , and let Γm be the vertical axis equidistant from Γ and
Γ′. Γm splits the plane in two regions, S and S ′ . If some robots are on Γm, the topmost
one on Γm can be elected as a leader, and the theorem follows. If no robot is on Γm, we
can distinguish two cases:

7This implies that there is common agreement also on the direction of the x axis, but not on its orientation.
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Figure 12: (a) An unachievable asymmetric pattern. In this example, the sorted sequence of
pairs of robots from the proof of Theorem 6.1 is the following: (r1, r2), (r0, ∅), (r3, ∅), (r4, ∅),
(r5, ∅), (r6, r7), (r8, r9). In this case r0 would be elected as the leader. (b) An achievable pattern
with one axis of symmetry not passing through any vertex. (c) An unachievable pattern. (d)
An achievable pattern that has three axes of symmetry not passing through any vertex. Note
that this pattern has also axes of symmetry passing through vertices. In this case, the routine
Choose(P) of Algorithm 6 would choose the axis Λ2.
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1. |S | 6= |S ′ |. In this case, the robots can agree on the most populated region as the
positive side of x; hence, starting from any initial configuration, it is possible to elect
a leader (e.g., the topmost rightmost one), and the theorem follows.

2. |S | = |S ′ |. In this case, for each robot ri ∈ S , we build a pair (ri, x), x ∈ S ′ ∪ {∗},
where ∗ 6∈ S denotes a special symbol, as follows. Let r.y indicates the height of
robot r. If there exists rj ∈ S ′ such that ri.y = rj .y and riΓm = rjΓm, then x = rj;
otherwise x = ∗. Analogously, we build pairs for each rj ∈ S ′ . Given that (ri, rj) is
defined if and only if (rj , ri) is defined, we can sort all the pairs in descending order,
with respect to the height and the horizontal distance of the robots from Γm. Namely,
(e.g., see in Figure 12.a):

(ri, ∗) > (rj , ∗) ⇔ ri.y > rj .y ∨ (ri.y = rj .y ∧ riΓ < rjΓ)

(ri, ∗) > (rj , rh) ⇔ ri.y > rj .y ∨ (ri.y = rj .y ∧ riΓ < rjΓ)

(ri, rj) > (rh, ∗) ⇔ ri.y > rh.y ∨ (ri.y = rh.y ∧ riΓ < rhΓ)

(ri, rj) > (rh, rk)⇔ ri.y > rh.y ∨ (ri.y = rh.y ∧ riΓ < rhΓ)

We observe that the set of obtained pairs is independent from the orientation of the x
axis in the local coordinate systems of the robots; moreover, since Df is asymmetric
w.r.t Γ by hypothesis, there must exist at least a pair with an ∗. It follows that we
can elect as a leader the robot in the first pair that has ∗ as an element, and the
theorem follows.

Part b. Let A be an algorithm that lets the robots form a symmetric pattern P that has
all its axes of symmetry passing through some vertex in P, starting from any arbitrary
initial configuration. After the robots run A, they are in a final configuration Df whose
positions correspond to the vertices of P (up to scaling and rotation); hence, Df must be
symmetric with all its axes of symmetry passing through some vertex (robot’s position).
We distinguish two cases.

1. Df is not symmetric with respect to any line Γ′ parallel to y (e.g., see Figure 12.c).
In this case, the same argument of Part a. can be used to conclude that a leader can
be elected, and the theorem follows.

2. Df is symmetric with respect to a Γ′ parallel to y (notice that such a vertical axis is
unique). Since by hypothesis Γ′ must pass through a vertex, a leader can be elected
(e.g., the topmost robot on Γ′), and the theorem follows. 2

From Theorem 2.2 and Theorem 6.1, it follows that

Corollary 6.1. There exists no pattern formation algorithm that lets the robots in the system
form (a.) an asymmetric pattern, or (b.) a symmetric pattern that has all its axes of symmetry
passing through some vertex.

Let us call T the class containing all the arbitrary patterns, and P ⊂ T the class containing
only patterns with at least one axis of symmetry not passing through any vertex (e.g., see Figures
12.b and 12.d); let us call empty such an axis. Corollary 6.1 states that if P ∈ T \ P, then P

can not be in general formed; hence, according to Part (b.), the only patterns that might be
formed are symmetric ones with at least one empty axis. In the following, we prove that all these
patterns can actually be formed. In particular, we present an algorithm that lets the robots
form exactly these kind of patterns, if local rotation of the pattern is allowed.
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6.2 Basic Definitions

By the results shown in the previous section, it follows that P is symmetric; therefore, topP

M

and topP

L are at the same height. Moreover, by Corollary 6.1, the input pattern can not be a
vertical line.

Following the notation introduced in Section 5, given a set of points E, we will denote by S
and S

′
the two sides of E, by Γ, Γ′ the two vertical axis tangent to the convex hull of E, and by

topand top’ the two topmost robots on Γ and Γ′, respectively.
Finally, given a configuration D, τ(P, D) is defined as in Section 5.1.

6.3 The Algorithm

In this section, we present Algorithm Pen (whose pseudo-code is reported in Algorithm 6), that
solves the Apf problem with Partial agreement and an even number of robots. In particular,
it lets the robots form symmetric patterns with at least one empty axis.

The overall strategy is as follows. First, the robots compute locally an empty axis of the
input pattern P, say Λ, and then rotate P so that Λ is parallel to the common understanding of
the orientation of y. Then they place themselves in a non-degenerated configuration. Finally,
half of the robots goes in S and half of them goes in S ′ , placing themselves on the final positions
(points in τ(P, ·)). The two sides of the patterns are formed in parallel and independently of
each other.

In particular, if the robots at the beginning lie all on the same vertical line, the
algorithm forces them to place themselves in a non-degenerated configuration (routine
SameVerticalAxis() in Line 7, as defined in Algorithm Pond). Then, the topmost robot
on Γ, top , and the topmost robot on Γ′, top

′
, move so that they place themselves to the same

height. At this point, the set of final positions can be computed (Line19), by using τ(P, ·).
Now, the robots move to reach a balanced configuration, with each side containing half of

the robots. The balancing is obtained as follows.

• In the side that has more than n/2 robot (if any), the robots are moved sequentially
(starting from the topmost with the smallest horizontal distance from Γm) towards Γm,
using a path that avoids collisions, until there are exactly n/2 robots in that side.

• In a side that has less than or equal to n/2 robots, the robots are moved towards the final
positions in that side; the movement are controlled by Algorithm CloseToDestination().

• The robots that are on Γm wait until |S | ≤ n/2 and |S ′ | ≤ n/2, and all the robots in
the two sides are on a final position. At this point, sequentially (from the topmost) they
move towards the final positions still available in the two sides, by executing Algorithm
CloseToDestination(). In fact, by the way the input pattern has been rotated in Line
2, no final positions can be on Γm.

Algorithm Pen calls routines Choose(P) and Rotate(P, S). In particular, the first one
locally chooses an empty axis of symmetry in the input pattern P; since this is a local operation,
and P is the same for all the robots, every robot can be made to choose the same axis of
symmetry8.

8For instance, starting from the point (1, 0) on the unit circle centered in the origin of the local coordinate
system, they can choose the first empty axis that is hit moving counterclockwise (according to the local orientation
of the x axis), after having translated all the empty axes in such a way that they pass through the origin. In the
example depicted in Figure 12.d, axis Λ2 would be chosen.
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Algorithm 6 Pen

Input: An arbitrary pattern P described as a sequence of points p1, . . . , pn, given in lexi-
cographic order. P is symmetric and has at least one empty axis. The direction and
orientation of the y axis is common agreement.

Λ := Choose(P);
PR := Rotate(P,Λ);
(Υ+,Υ−,Υm) := (ΦPR

M ,ΦPR

L ,ΦPR
m );

D := Current Configuration Of The Robots;
5: If D Is A Final Configuration Then STOP.

Ξ := Vertical Axis With More Robots On It;
If |Ξ| = n Then SameVerticalAxis(Ξ); EndC.
If |Ξ| = n − 1 Then

r :=Robot not on Ξ;
10: If dist(r,Ξ) 6= dist(top(Ξ), bottom(Ξ)) Then SameVerticalAxis2(Ξ); EndC.

(Γ,Γ′,Γm) := (ΦD

M,ΦD

L,ΦD
m);

If I Am Not On Γm Then MS := Side In D Where I Lie;
Else MS := Γm;
top := Topmost Robot On Γ;

15: top′ := Topmost Robot On Γ′;
If Angle(topPR

M , topPR

L ) 6= Angle(top, top ′) Then
FixOutermosts(top, top ′); EndC.

If I Am top Or top ′ Then destination:= null; EndC.
FinalPositions := FindFinalPositions(D, PR);

20: If MS = Γm Then
If All The Robots In The Two Sides Of D Are On FinalPositions Then

top∗ := Topmost Robot On Γm;
If I Am top∗ Then

FreePoints := {FinalPositions With No Robots On Them};
25: CloseToDestination({top∗}, F reePoints,Γ,Γ′); EndC.

Else destination:= null; EndC.
Else destination:= null; EndC.

If |MS| > n/2 Then
r := Topmost Robot In MS With The Smallest Horizontal Distance From Γm;

30: p := Point On Γm Such That There Is No Robot On [rp];
If I Am r Then destination:= p; EndC. Else destination:= null; EndC.

If I Am On One Of The FinalPositions Then destination:= null; EndC.
If |MS| ≤ n/2 Then

FreePoints := {FinalPositions In MS With No Robots On Them};
35: FreeRobots := {Robots in MS Not On FinalPositions};

Γ∗ := Axis Among Γ And Γ′ In MS;
CloseToDestination(FreeRobots, FreePoints,Γm,Γ∗); EndC.
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Rotate(P, S) locally rotates P in such a way that the axis of symmetry Λ chosen by
Choose(P) becomes parallel to the y axis. The rotation is (locally) performed clockwise, and
its result is stored in PR. Then, all the reference points for the pattern are computed on the
rotated pattern PR.

All the other routines called by the algorithm are the same as in Algorithm Pond.

6.4 Correctness of Algorithm Pen

Let PR be the result of the local rotation of the input pattern in Line 2. By using the same proof
adopted in Lemma 5.1, at time tdis ≥ 0, the robots are in a non-degenerated configuration. Let

Γ = Φ
Dtdis

M , Γ′ = Φ
Dtdis

L , Γm = Φ
Dtdis
m . Furthermore, let top and top′ be the topmost robots on Γ

and Γ′, respectively, at time tdis.

Lemma 6.1. Let the robots be in a non-final configuration at time tdis. Then, in a finite
number of cycles, at time th ≥ tdis, top and top ′ place themselves at the same height (so that
Angle(top, top ′)= Angle(topP

M, topP

L)). Furthermore, until this time any collision is avoided,
and at time th all the robots are in I(th).

Proof. First note that, since PR is symmetric with respect to Λ, and Λ is parallel to y after
the rotation performed in Line 2, topP

M and topP

L are at the same height.
If at time tdis top and top ′ are at the same height, then the lemma trivially follows. Otherwise,

as long as Angle(top, top ′) 6= Angle(topP

M, topP

L), routine FixOutermosts()will move either top
or top′ topwards until they are at the same height. During this time no other robot can move;
hence, no collision occurs, and the lemma follows. 2

Let FinalPositions be the set of points as returned by routine
FindFinalPositions(Dth, PR). Furthermore, let S and S ′ be the two sides determined
by Γm. Observe that

Observation 6.1. By definition of PR and Λ, none of the final positions can be on Γm.

Lemma 6.2. Let th be as defined in Lemma 6.1, and let the configuration at this time be not
final. In a finite number of cycles, at time tqf , |S | ≤ n/2, |S ′ | ≤ n/2, and all the robots in the
two side are on final positions. Furthermore, between time th and time tqf no collisions occur,
and at time tqf all the robots are in I(tqf ).

Proof. If |S | ≤ n/2, |S ′ | ≤ n/2, and all the robots in the two side are on final positions, then
the lemma trivially follows. Otherwise, let us consider what happens in S (the same happens
symmetrically in S ′). We distinguish two cases, according to the cardinality of S .

|S | ≤ n/2. First observe that,

Observation 6.2. As long as the robots inside S are not all on final positions, all the
robots on Γm do not move (Line 27).

The robots inside S move towards the final positions in S by executing Algorithm
CloseToDestination(). With respect to this algorithm, the set of final positions in
S not occupied by any robot corresponds to FT; the set of robots in S not on any of the
final positions corresponds to FR; and the obstacles O are all the robots not in FR and
in S . Let (r, p) be the pair that satisfies Equation (1) at time th, among all the robots
in FR and all the points in FT. First of all, note that all the four conditions required by
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CloseToDestination() are met. In particular, among FR there is a total agreement on
the coordinate systems, with the x axis oriented from Γm to Γ∗, with Γ∗ as defined in
Line 36; by Lemma 6.1 all the robots are in I(th) at time th; by Observation 6.1, Obser-
vation 6.2, and since the robots in S ′ can move at most up to Γm (Line 37), no robot can
enter S as long as FR 6= ∅. Hence, according to Theorems 3.1 and 3.2, r will reach p in a
finite number of cycles. Therefore, iterating the above argument, we can conclude that in
a finite number of cycles, at time t′ ≥ th, all the robots inside S reach a final position.

|S | > n/2. In this case, all the robots on Γm do not move (Lines 28–31). The robots inside S
move sequentially towards Γm. In particular, let r be the topmost robots with the smallest
horizontal distance from Γm. r chooses as its destination a point p on Γm such that there
are no robots on the segment [rp]; in this way any collision with other robots is avoided.
Note that, since |S ′ | ≤ n/2, by what observed in the previous case, no robot from S ′ can
move on Γm; hence, no collisions can occur with robots coming from the other side. This
process continues as long as |S | > n/2. As soon as |S | = n/2, the previous case applies
and, in a finite number of cycles, at time t′′ > th, all the robots inside S are on final
positions.

In conclusion, in a finite number of cycles, at time tqf = max{t′, t′′}, all the robots in both
sides are on final positions, and the lemma follows. 2

Lemma 6.3. Let tqf be as defined in Lemma 6.2. In a finite number of cycles, at time tf ≥ tqf ,
the robots reach a final configuration avoiding collisions. Furthermore, at time tf all the robots
are in I(tf ).

Proof. If Dtqf
is final, then the lemma trivially follows. Otherwise, by Observation 6.1,

all the robots on Γm must leave Γm to reach the final positions still available in the two
sides of Dtqf

. The robots on Γm are the only ones allowed to move, using Algorithm
CloseToDestination({top∗}, F reePoints,Γ,Γ′). According to this algorithm, {top∗} corre-
sponds to FT; the set FreePoints of final positions still available corresponds to FT; and the
obstacles O are all the robots not in FR. Let (top∗, p) be the pair that satisfies Equation (1)
at time tqf , among all the robots in FR and all the points in FT. First of all, note that all the
four conditions required by CloseToDestination() are met. In particular, by Lemma 6.2, the
cardinality of both sides must be ≤ n/2, and all the robots in the two sides are on final positions
and do not move. Furthermore, all the robots on Γm different from top∗ (if any) cannot move
by Line 26. If top∗ does not reach p in one cycle, then CloseToDestination() (Line 37) is
executed again. Hence, according to Theorems 3.1 and 3.2, top∗ will reach p in a finite number
of cycles. Therefore, by iterating the above argument, we can conclude that in a finite number
of cycles, at time tf > tqf , the robots reach a final configuration, and the lemma follows. 2

Theorem 6.2. Algorithm Pen is a collision-free pattern formation algorithm for P ∈ P.

Result 3. An even number of autonomous, anonymous, oblivious, mobile robots that agree on
the direction and orientation of y axis, can form a pattern P if and only if P ∈ P.

6.5 Remarks on Rotation

In Section 6.1 we provided a characterization of the class of patterns that can be formed by
an even number of anonymous robots, provided they have agreement on the direction and
orientation of the y axis. This characterization assumes that the robots can locally rotate the
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Figure 13: Theorem 7.1: the unbreakable symmetry of a 5-gon.

input pattern. Should the robots be incapable to perform such an operation, the characterization
is different; not surprisingly, the class of achievable patterns is smaller. Let P′ ⊂ P be the class
of symmetric patterns with at least one empty axis, and with no empty axis parallel to y.

Theorem 6.3. There exists no pattern formation algorithm that lets the robots form a symmetric
pattern P ∈ P′ without allowing local rotation of the input pattern.

Proof. By contradiction, let A be an algorithm that, starting from an arbitrary initial
configuration, lets the robots form a pattern P ∈ P′ without rotation. Let Df be the final
configuration of the robots for P after they execute A. Since no local rotation of the pattern
is allowed, Df is symmetric with no empty axis parallel to y. Let Γ = ΦDf , Γ′ = Φ′Df , and

Γm = Φ
Df
m . If Γm ≡ Γ ≡ Γ′, then all the robot are on Γm, hence a leader can be elected (e.g.,

the topmost robot on Γm), contradicting Theorem 2.2. Otherwise, if Df is symmetric with
respect to Γm, then there must be at least one robot on Γm (by hypothesis, Df has no empty
axis parallel to y); hence, the topmost of these robots can be elected as leader, contradicting
Theorem 2.2. Therefore, Df is not symmetric with respect to Γm; also in this case, a leader can
be elected (e.g., following an approach similar to the one used in the proof of Theorem 6.1.a),
thus contradicting again Theorem 2.2. 2

As a concluding remark, we note that skipping the operation Rotate(P) (at Line 2 in
Algorithm Pen), we have a pattern formation algorithm that does not make use of local rotation
and correctly allows the formation of a symmetric pattern that has at least one empty axis that
is parallel to y. Hence, we can state the following

Result 4. An even number of autonomous, anonymous, oblivious, mobile robots that agree on
the direction and orientation of y axis, can form a pattern P if and only if P ∈ P \ P′, if no
local rotation of P is allowed.

7 No Agreement

We will now show that giving up the total agreement on the coordinate system leads to the
inability of the system to form arbitrary patterns.

Theorem 7.1. Without a total agreement on the coordinate system, a set of autonomous, anony-
mous, oblivious, mobile robots cannot form an arbitrary given pattern.
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Proof. By contradiction, let A be a deterministic algorithm for solving the pattern formation
problem without a total agreement on the coordinate system. We show that there are input
patterns, initial configurations of the robots, and a scheduling of the actions of the robots, such
that the robots never can form the input patterns. Consider any pattern different from a regular
n-gon or a single point, and let the initial positions be such that the robots form a regular n-gon.
Let α = 360◦/n be the characteristic angle of the n-gon, and let the local coordinate system of
each robot be rotated by α with respect to its neighbor on the polygon (see Figure 13). In this
situation, all the robots have the same view of the world. Now, for any move that any one robot
can make in its local coordinate system by executing algorithm A, we know that each robot can
make the same move in its local coordinate system. If all of them move in the exact same way
at the same time (i.e., they move according to a synchronous schedule), they again end up in a
regular n-gon or a single point. Therefore, by letting all the robots move at the same time in
the same way, we always proceed from one regular n-gon or single point to the next. Hence, the
desired pattern cannot be formed. 2

8 Discussion

We have shown that from an algorithmic point of view, only the most fundamental aspects
of mobile robot coordination are being understood. In other papers, we have proposed two
algorithms for the point formation problem for oblivious robots; the first one does not need
any common knowledge [6], and the second one works with limited visibility, when two axes are
known [15].

There is a wealth of further questions that suggest themselves. First, we have shown that an
arbitrary pattern cannot always be formed; it is interesting to understand in more detail which
patterns or classes of patterns can be formed under which conditions, because this indicates
which types of agreement can be reached, and therefore which types of tasks can be performed.
Second, in contrast with other researchers who have looked at modeling natural behaviors, our
robots perform quite a complex computation in each step; it is interesting to understand in
more detail the tradeoff between computation complexity and knowledge of the world. Third,
the operating conditions of our robots have been quite restricted; it is interesting to look at more
relaxed models, where for instance robots have a bounded amount of memory at their disposition,
or they have a spatial extent, they collide as they move, or their camera rotates slowly when
taking a picture, so that a robot may never see the world as it was at any time instant. Slightly
faulty snapshots, a limited range of visibility [2], obstacles that limit the visibility and that
moving robots must avoid or push aside, as well as robots that appear and disappear from the
scene clearly suggest that the algorithmic nature of distributed coordination of autonomous,
mobile robots merits further investigation. Recently some issues related to inaccurate sensing,
faults, and inconsistent compasses have been addressed for the convergence problem [7, 8, 9, 23].
For a recent survey on algorithms for autonomous mobile robots see [22].
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Appendix

A Routines Used in Algorithm Pond

A.1 SameVerticalAxis()

SameVerticalAxis(Ξ)

d := dist(top(Ξ), bottom(Ξ));
If I Am The Second Topmost Robot On Ξ Then

p := Point To My Right At Horizontal Distance d From Ξ;
destination:= p; EndC.

5: Else
destination:= null; EndC.

SameVerticalAxis2(Ξ)

r := Robot Not On Ξ;
d := dist(top(Ξ), bottom(Ξ));
If I Am r Then

p := Closest Point To Me At Horizontal Distance d From Ξ;
5: destination:= p; EndC.

Else
destination:= null; EndC.

Since by hypothesis Υ+ 6≡ Υm, this routine handles the case when all the robots are at the
beginning on the same vertical line: in fact, in the final configuration the robots must lie on
three distinct vertical lines. The distance d between the topmost (returned by top(Ξ)) and the
bottommost (returned by bottom(Ξ)) robot on Ξ is computed by dist(top(Ξ),bottom(Ξ));
if there are exactly n robots on Ξ, the second topmost robot r on Ξ moves to its right until it
is at an horizontal distance d from Ξ (note that, while r is moving, the case |Ξ| = n − 1 forces
all the other robots to stay still until r is at distance d from Ξ).

A.2 Fix()

Fix(D,Km)

If τ(P, D) 6= ∅ Then Targets := τ(P, D) Else Targets := τ−1(P, D)
Targets′ := Points In Targets That Are On Km;
RobotsOnKm := Robots In D That Are On Km;
MoveCarefully(RobotsOnKm, Targets′).

MoveCarefully() moves the calling robot r so that any collision is avoided; that is, if r
“sees” a robot r′ on its way, it stops before r′.

MoveCarefully(R, T)

SortedR := Sort(R);
SortedP := Sort(T);
Me:= My Current Position;
If I Am The i-th Robot In SortedR Then p := i-th Point In SortedP ;

5: If Some Robot Is On [Me, p] Then destination:= null; EndC.
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Else destination:= p; EndC.

This routine is called in Line 7 of Algorithm Pond, when D is a quasi-final configuration.
Routine Sort(Input), given as input a set of points that all lie on the same vertical axis,

sorts them from the topmost to the bottommost.

A.3 GetUnbalanced()

GetUnbalanced(D)

Input: A balanced configuration D

(K+,K−,Km) := (ΦD

M,ΦD

L,ΦD
m);

If All The Robots Are Either On K+ ∪ K− ∪ Km Then
top∗ := Topmost Robot On Km;
If I Am top∗ Then

5: p∗ := ChooseDestination(D,top∗);
destination:= p∗; EndC..

Else destination:= null; EndC.
Else

If I Am On K+ ∪ K− ∪ Km Then destination:= null; EndC.
10: MS := Side Where I Am;

K∗ := Vertical Axis Among K+ And K− That Is In MS;
r := Topmost Robot In MS With Smallest Horizontal Distance From K∗;
p := Position On K∗ Occupied By No Robot And Below The Topmost On K∗;
If I Am r Then destination:= p; EndC. Else destination:= null; EndC.

The aim of this routine is to unbalance the current configuration D as follows. It first sweeps
the two sides of the configuration by placing all the robots either on Km, or on K+, or on K−

(Lines 11-17). At this point, since no robot changed side during these movements (Lines 13–14),
the configuration is not unbalanced yet; therefore, the topmost robots on Km moves towards a
point chosen by routine ChooseDestination() in order to unbalance the configuration. Note
that top∗ is the only robot that executes ChooseDestination().

ChooseDestination(D,top∗)

S+ := Side To My Right;
S− := Side To My Left;
(K+,K−,Km) := (ΦD

M,ΦD

L,ΦD
m);

(top+, top−) := Topmost Robots On K+ and K−, Respectively;
5: (p+, p−) := Positions on K+ and K− Where top+ And top− Will Be After FixOutermosts()

Is Executed;
D
′ := D \ {top+, top−} ∪ {p+, p−};

FinalPositions := FindFinalPositions(D
′, P);

p∗ :=MoveInsideS+(FinalPositions,S+,K+, top∗);
Return p∗.

In ChooseDestination(), top∗ chooses a trajectory so that it avoids collisions with any
other robots. Furthermore, it chooses it in such a way to avoid also any of the FinalPositions
that will be computed in next Line 34 of Algorithm Pond. In fact, since top∗ knows in which
side it is going to move, and it also knows how the two topmost robots on K+ and K− will be
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moved by routine FixOutermosts() in order to reach their final positions, it knows already (in
advance) the way in which P will be scaled and translated in routine FindFinalPositions().

MoveInsideS+() is responsible to find a destination p∗ for top∗ that avoids any collisions.
Note that, when this routine is called, all the robots are either on Km, or on K+, or on K−.

MoveInsideS+(FinalPositions,S+,K+, r)

If There Is At Least One Of The FinalPositions Inside S+ Then
p := Point in FinalPositions Closest To r;

Else
top+:= Topmost Robot On K+;
p := Point On K+ With No Robot On It And Below top+;

Return p.

A.4 FixOutermosts()

FixOutermosts(top+, top−)

α := Angle(topP

M, topP

L);
β := Angle(top+, top−);
If topP

L.y < topP

M.y Then
If top−.y ≤ top+.y Then

5: If α ≥ β Then
p := Point On K+ Such That α = β;
If I Am top+ Then destination:= p; EndC. Else destination:= null;
EndC.

Else
p := Point On K− Such That α = β;

10: If I Am top− Then destination:= p; EndC. Else destination:= null;
EndC.

Else
p := Point On K+ Such That p.y = top−.y;
If I Am top+ Then destination:= p; EndC. Else destination:= null; EndC.

If topP

L.y = topP

M.y Then
15: If top−.y < top+.y Then

p := Point On K− Such That α = β;
If I Am top− Then destination:= p; EndC. Else destination:= null; EndC.

Else
p := Point On K+ Such That α = β;

20: If I Am top+ Then destination:= p; EndC. Else destination:= null; EndC.
If topP

L.y > topP

M.y Then
If top−.y ≥ top+.y Then

If α < β Then
p := Point On K+ Such That α = β;

25: If I Am top+ Then destination:= p; EndC. Else destination:= null;
EndC.

Else
p := Point On K− Such That α = β;
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If I Am top− Then destination:= p; EndC. Else destination:= null;
EndC.

Else
30: p := Point On K− Such That p.y = top+.y;

If I Am top− Then destination:= p; EndC. Else destination:= null; EndC.

FixOutermosts() places top+ and top− computed in Line 9 of Algorithm Pond so that their
relative angle is the same as the relative angle between topP

M and topP

L. In particular, routine
Angle(p, q) returns the convex angle between the horizontal axis through q and the segment
[p, q]. Note that the movements of top+ and top− happens strictly vertically on K+ and K−,
respectively, and always upwards; hence, any collisions is avoided.

A.5 FindFinalPositions()

FindFinalPositions(P, D) returns the set of points τ(P, D).
Note that this routine is called in Line 12 of Algorithm Pond, that is when the current

configuration of the robots D is already unbalanced.

A.6 TestSF()

TestSF(D) tests whether configuration D is semi-final (see Definition 5.2). In particular it
returns the triple (SF, r, last), where SF =true if D is semi-final. Following Definition 5.2, we
have that

1. if r 6= ∅, then r is the only robot (not on the median axis of the configuration) not on one
of the FinalPositions;

2. if r = ∅, then all robots in the two sides of the configuration occupy one of the
FinalPositions;

3. if last 6= ∅, then last is the only final position that is inside on of the two sides of the
configuration and with no robot on it;

4. if last = ∅, then the only final positions with no robots on them lie on the median axis of
the configuration.

A.7 AllOn()

Routine AllOn() returns true for a configuration D, if

1. |LD| = |MD| − 1,

2. all the robots but one, say r, are either on K+, or on K−, or on Km, and

3. r is strictly inside MD not on one of the final positions.

A.8 FromSidesToMedian()

FromSidesToMedian(K+,K−,Km,Side,FinalPositions)

FreePoints := {FinalPositions In Side With No Robots On Them };
FreeRobots := {Robots’ positions In Side Not On FinalPositions};
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Figure 14: Routine ChooseOnMedian() determines the destination point for r on Km. The white
circles represent robots’ positions. The thick line is the path followed by r to reach Km.

If Side = S+ Then
rb := Bottommost Robot On K+;

5: FreeRobots := FreeRobots \ {rb};
If I Am In FreeRobots Then

If FreePoints 6= ∅ Then
CloseToDestination(FreeRobots, FreePoints,K+,K−).

Else %I am in F reeRobots but there are no F reePoints in Side%

10: ChooseOnMedian(FreeRobots,Km);
Else destination:= null; EndC.

This routine acts in two steps: first, all the robots in Side that are not on any of
the FinalPositions (as computed in Line 9 of Algorithm Pond), reach sequentially the
FinalPositions in Side that are not occupied by any robot (Lines 7–10). Then, when there
are no more free positions in Side, the robots in Side not on one of the FinalPositions (if any)
are sequentially directed towards Γm by calling routine ChooseOnMedian() (Lines 11–12).

ChooseOnMedian(FreeRobots,Km)

Me:= My Current Position;
If I Am The Topmost And Closest To Km In FreeRobots Then

p := Intersection Between Km And Horizontal Line Passing Through Me;
If No Robot Is On The Line Passing Through Me And p Then destination:= p; EndC.
Ψ := Vertical Line Passing Through Me;
V := Region Of The Plane Delimited By Ψ and Km;
H := Half Plane Above Line Through r and p;
R := (V ∩ H) \ Ψ;
Avoid := {Positions In R Occupied By Robots};
Intersections := ∅;
For All p′ ∈ Avoid Do

Ψ′ := Line Passing Through Me And p′;
Intersections := Intersections ∪ { Intersection Between Km And Ψ′};
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End For
p′ := Topmost Point In Intersections;
p′′ := Point On Km Above p′ At Distance η > 0.
destination:= p′′; EndC.

Else destination:= null; EndC.

In other words, R is the region of the plane above [rp], and delimited by Ψ and Km; all
the points on Ψ are not included in R. ChooseOnMedian() allows the calling robot to choose a
path that goes above all the robots that are inside R, maintaining the invariant to remain the
(closest to Km) topmost robot in FreeRobots. η is an arbitrary positive constant.

A.9 FromMedianToSides()

FromMedianToSides(K+,K−,Km,Side,FreePoints)

top := Topmost Robot On Km;
FreePoints := {FinalPositions In Side With No Robots On Them };
If I Am top Then

CloseToDestination({top}, F reePoints,K+,K−).
5: Else destination:= null; EndC.

This routine moves sequentially the robots on Km (from the topmost to the bottommost)
towards FinalPositions in Side with no robots on them.

B Routines Used in Algorithm Pod

B.1 LastFix()

LastFix(D,K)

(top, bottom) := Topmost And Bottommost Robot On K, Respectively;
Targets := τ(P, D,);
MoveCarefully(D, Targets).

where routine MoveCarefully() is as described in Appendix A.

B.2 GetUnbalanced2()

GetUnbalanced(D)

Input: A balanced configuration D

(K+,K−,Km) := (ΦD

M,ΦD

L,ΦD
m);

If All The Robots Are Either On K+ ∪ K− ∪ Km Then
top∗ := Topmost Robot On Km;
If I Am top∗ Then

5: p∗ := Point On K+ With No Robot On It And Below The Topmost On K+;
destination:= p∗; EndC..

Else destination:= null; EndC.
Else

If I Am On K+ ∪ K− ∪ Km Then destination:= null; EndC.
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10: MS := Side Where I Am;
K∗ := Vertical Axis Among K+ And K− That Is In MS;
r := Topmost Robot In MS With Smallest Horizontal Distance From K∗;
p := Position On K∗ Occupied By No Robot;
If I Am r Then destination:= p; EndC. Else destination:= null; EndC.

B.3 Towards()

Towards(Side,K+)

SI := {Robots Strictly Inside Side };
r := Topmost Robot In SI With The Smallest Horizontal Distance From K+;
If I Am r Then

p := Point On K+ So That No Robot Is On [rp];
5: destination:= p; EndC.

Else destination:= null; EndC.

Note that in Line 9 of Algorithm Pod, this routine has as argument Km: in this case, we
consider Km as a region constituted by only one vertical line. Therefore, |SI| = 0 (test in Line
2 of the routine) if and only if |Km| = 0, and r computed in Line 3 is simply the topmost robot
on Km.
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