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ABSTRACT
The connection between sense of direction and communication complexity in distributed

complete networks is studied for two basic problems: finding a minimum-weight spanning tree (MST)
and finding a spanning tree (SP). Several models of the complete network are defined, the difference
being the amount (and type) of sense of direction available, forming a hierarchy which includes the
models previously studied in the literature. It is shown that to move up in the hierarchy might require
Ω(n2) messages in the worst case. It is shown that the existing O(n) bound for SP can still be achieved
at a lower level in the hierarchy; and that the Ω(n2) bound for MST still holds at a higher level in the
hierarchy.

1. INTRODUCTION
Consider a network of n processors.  Each processor has a distinct identity of which it alone is

aware, and has available some labeled direct communication lines to other (possibly, all) processors; it
also knows the (non-negative) cost associated with each such line. The network can viewed as an
undirected graph G=(V,E) where |V|=n. Communication is achieved by sending messages along the
communication lines.  It is  assumed that messages arrive, with no error, after a finite but otherwise
arbitrary delay, and are kept in order of arrival in a queue until processed. All processors execute the
same algorithm, which involves local processing as well as sending a message to a neighbor and
receiving a message from a neighbor. Any non-empty set of processors may start the algorithm. In
this context, two basic problems are finding a minimum-weight spanning-tree (MST) and
distinguishing a unique processor (a leader); the latter is very closely related to the problem of finding
a spanning tree (SP). These problems have been mostly studied in the literature for circular networks
and complete networks.

The interest in the circular network derives from the fact that it is the simplest symmetrical
graph. In this graph both problems are equivalent and have been extensively studied; different bounds
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have been established depending on whether the lines are unidirectional [DKR, P] or bidirectional, and
whether (in the latter case) there exists a strong and consistent sense of direction (i.e., "left" means the
same to all processors) [F, KRS]; in all cases the message complexity is Q(n log n), and the difference
is felt only in the multiplicative constant.

The interest in the complete network derives from the fact that it is the 'densest' symmetrical
graph, each processor having a direct connection to all others. The O(nlogn+|E|) bounds of [GHS]
for minimum-weight spanning-tree construction in arbitrary graph implies an O(n2) bound on both SP
and MST in the case of complete networks.  By exploiting the 'density' of the complete graph, in
[KMZ1] it has been shown that Q(nlogn) messages are sufficient and in the worst case necessary to
solve SP in a complete network. On the other hand, in [KMZ2], it has been shown that solving MST in
a complete network might require Ω(n2) messages. Thus, the two problems are not equivalent in a
complete network.

These results for complete networks do not assume any sense of direction, where (informally)
sense of direction refers to the knowledge that processors have about the labeling of their incident
lines. However, it has been shown in [LMW] that, if the processors have a strong and consistent sense
of direction (to be defined later), then SP can be solved in Q(n) messages; that is, presence of sense of
direction drastically reduces the message complexity of the SP problem in the complete graph. On this
basis, the following questions naturally arise (e.g., see [S]): does sense of direction influence also the
complexity of MST? how much sense of direction is actually needed to achieve the O(n) bound for
SP?

The contribution of this paper is to shed some light on the relationship between sense of
direction and communication complexity for these two problems in complete networks. Several
models of the complete network are defined, the difference being the amount (and type) of sense of
direction available; in these models not all the lines connected to a processor are undistinguishable.
These models form a hierarchy which include the models previously studied in the literature; and it is
shown that to acquire more sense of direction (i.e., to move up in the hierarchy) Ω(n2) messages might
be required in the worst case. The impact of sense of direction on the communication complexity of
SP and MST  is then investigated. In particular, it is shown that the O(n) bound for SP can still be
achieved with some degree of ambiguity in the sense of direction (i.e., at a lower level in the
hierarchy); and that the Ω(n2) bound for MST still holds in spite of additional sense of direction (i.e.,
at a higher level in the hierarchy).

2. THE MODELS
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The communication network is a complete graph G = (V,E).  Each node has a distinct identity
of which it alone is aware; without loss of generality and unless otherwise specified, assume that the
identities are integers in [1,n], where n=|V|.  Furthermore, a node has a label associated with each
incident edge. Let l(i,j) denote the label associated at node i with edge (i,j); again, without loss of
generality, assume that the labels used at node i are integers in [1,n-1]. Depending on which property
is assumed to exist on the labels, different models can be defined and have been considered. Let  Ni =
{1,2,...,n} - {i}, and let {{ }} denote a multiset.
The following models of the complete network are considered here:

[G] The general model:  for every processor i
{l(i,j) | jŒNi } = Nn.

That is, all the edges incident to a node have different labels; however, no relationship is known
between l(i,j) and l(j,i). This is the model discussed in [KM1, KMZ2].

[CS] The consistent strong model: for every i and j
{l(i,j) | jŒNi } = Nn  
l(i,j) = (j-i) mod n
l(i,j) + l(j,i) = n.

That is, at each node the labels of the incident edges are distinct and denote the distance between that
node and its neighbours with respect to a predefined directed Hamiltonian circuit (the same for all
nodes). This is the model discussed in [LMW].

[CW]  The consistent weak model: for every i and j
{l(i,j) | jŒNi } c {{ 1,1,2,2,...,n-1,n-1 }}
l(i,j) = min {(i-j) mod n, (j-i) mod n}
l(i,j) = l(j,i).

That is, at each node the labels of the incident edges denote the minimum distance between that node
and its neighbours with respect to a predefined Hamiltonian circuit. It also follows that, at every node,
each label (except one, if n is even) is associated to two incident edges; furthermore, each edge has the
same label at both end nodes.

[IW] The inconsistent weak model: for every i and j
{l(i,j) | jŒNi } c {{ 1,1,2,2,...,n-1,n-1 }}
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l(i,j) = l(j,i).
That is, it is possible to have the same label associated to two different edges incident  on the same
node; however, each edge has the same label at both end nodes.

Depending on whether the model is G, CS, CW, or IW, we shall say that there exist a G-
labeling, a CS-labeling, a CW-labeling, or an IW-labeling of the communication lines, respectively.

3. HIERARCHY
It is clear that every CS-labeling is also a CW-labeling, every CW-labeling is an IW-labeling,

and all of them are also G-labelings.  The situation is depicted in the following diagram:

CS  ------> CW ------> IW -----> G

which also express the hierarchy of sense of direction defined by the labelings. The amount of
information in any two levels of the hierarchy is significantly different, and moving from one
labeling to another is quite costly from a computational point of view.  In fact, we show that Ω(n2)

messages might be needed to move upword in the hierarchy.

Theorem 1 In the worst case,  Ω(n2) messages are required to transform a G-labeling to
an IW-labeling,  an IW-labeling to a CS-labeling, and a CW-labeling to a CS-
labeling, with the minimum number of label changes.

Proof. (G ---> IW)
Let A be an algorithm which always correctly transforms a G-labeling into an IW-labeling. Execute A
on a complete graph G with a G-labeling which is already a IW-labeling of G; thus A will terminate
without changing any label.  Assume that there are two edges (x,y) and (x,z), y≠z and l(x,y)≠ l(x,z),
along which no messages were transmitted during the execution of A. Consider now the graph G'
obtained by exchanging l(x,y) and l(x,z) in the IW-labeling of G; note that this labeling of G' is no
longer an IW-labeling. Since everything is the same except for the exchange (at a single node) of the
labels of two edges along which no message was transmitted, the two graphs G and G' are
undistinguishable for algorithm A; thus, the same execution is possible in both G and G' terminating,
in the latter case, with a labeling which is not IW: a contraddiction. Therefore, at least one out of every
couple of edges (x,y) and (x,z) must carry a message; that is, Ω(n2) messages must be transmitted.

(IW ---> CW)
Let A be an algorithm which always correctly transforms a IW-labeling to a CW-labeling. Execute A
on a complete graph G with n=2k (for an odd k) nodes and with a IW-labeling which is already a
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CW-labeling of G; thus, A will terminate without changing any label. Assume that no messages were
transmitted along the edges (x,x+i), (x+i,x+k), (x+k,x+k+i) and (x+k+i,x) for a node xŒ{0,1,...,n-
1}where iŒ{1,2,...,k-1} and all arithmetic is modulo n. Consider now the graph G' obtained by
exchanging the labels of those edges in the IW-labeling of G as follows: l(x,x+i)= l(x+k,x+k+i)=k-i
and l(x+i,x+k)= l(x+k+i,x)=i. Since k is odd, it follows that k-i≠i; hence this labeling of G' is no
longer a CW-labeling. Since everything is the same except for the exchange (at two nodes only) of the
labels of edges along which no message was transmitted, the two graphs G and G' are
undistinguishable for algorithm A; thus, the same execution is possible in both G and G' terminating,
in the latter case, with a labeling which is not CW: a contraddiction. Therefore, at least one out of every
four edges (called a 'square') of the form (x,x+i), (x+i,x+k), (x+k,x+k+i) and (x+k+i,x) must carry a
message; since there are O(k2) such squares for xŒ{0,1,...,k-1} and iŒ{1,2,...,k-1}, and since k=n/2, it
follows that Ω(n2) messages must be transmitted.

(CW ---> CS)
Let A be an algorithm which always correctly transforms a CW-labeling to a CS-labeling. Let G have n
= 2k+1 nodes and a CW-labeling where {l(i,j) | jŒNi } = {{ 1,1,2, 2,...,k,k }}. The execution of A on
G will obviously change only k labels at each node; namely, at each node x, of the two edges labeled i
(i=1,...k) one will be relabeled n-i and the other will be unchanged. Assume that, for some node x, no
message is transmitted on the edges  µ=(x,x+i) and ∂=(x-i,x), where iŒ{1,...k} and all arithmetic is
modulo n. Consider the graph G' obtained from G by exchanging µ and ∂; the identical CW-labeling
is obviously possible in both G and G'. In this case, since everything is the same except for the
exchange of those two edges along which no messages were transmitted, the two graphs G and G' are
undistinguishable for algorithm A; thus, the same execution is possible in both G and G' terminating,
in the latter case, with a labeling which is not CS: a contraddiction. Therefore, at least one out of every
couple of edges (x,x+i) and (x,x-i) must carry a message; that is, Ω(n2) messages must be transmitted.
[ ]

4. COMMUNICATION COMPLEXITY
In this section we study the complexity of the problems of constructing a spanning tree (SP)

and a minimum-weight spanning tree (MST) in a complete network with respect to the hierarchy of
models defined above.  In figure 1 at the end of the paper, the existing bounds for these two problems
are shown; we strengthen both results by showing that the Q(n) bound for SP can be achieved with
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less sense of direction, and that the Ω(n 2) bound for MST  still holds in spite of more available sense
of direction.

Theorem 2 The message complexity of the SP problem for the CW (and, thus, for the
CS) model is Q(n).

Proof (sketch). Since Ω(n) is an obvious lowerbound and since once a leader is elected O(n)
messages suffice to construct a spanning tree, to prove the theorem is sufficient to design an algorithm
for finding a leader in a complete network with a CW-labeling using at most O(n) messages. First
note that the edges labeled 1 form a bidirectional ring without a global sense of direction (i.e.,
processors know that they are on such a ring, but cannot distinguish their left from their right).  We
modify the election algorithm of [F] for such rings so to take advantage of the fact that more
communication lines are available. In this algorithm, each intitiator (there could be one or more
initiator, possibly all nodes) becomes active and sends a message carring its identity in both directions;
upon reception of such a message, a non-initiator becomes passive and acts as a relay; the messages
travel along the ring until they encounter another active node. An active node waits until it receives a
message from both directions; it will stay active iff both received identities are smaller that its own; if
the identities are its own, it becomes elected; otherwise it becomes passive, disregards the message and
acts as a relay of future messages. In case it remains active, a node will start the process again (i.e.,
send a message in both direction, etc.). This algorithm, when executed on a ring will exchange O(n log
n) messages; this is due to the fact that, although the cumulative sum of all active nodes in all iterations
of the algorithm is just linear, all nodes (including the passive ones) will transmit a message in each
stage.  In a complete network with a CS-labeling, by adding a counter to each message (describing the
distance travelled by the message), it is possible for the active node receiving the message to determine
the direct link connecting it to the originator of the message; this link (called cord) can then be used as
a shot-cut in the next stage. This is essentially the technique of the algorithm described in [LMW]. In
presence of a CW-labelling, the active node receiving a message with such a counter has two edges
which could possibly to be the correct cord. This ambiguity is easily resolved by having the node
sending a check message (containing the identity of the node which should be at the other end of the
cord) over the two candidate edges; the correct node will then reply with an acknowledgment which
will break the ambiguity. It is easy to show that the edges carrying 'normal' messages in this modified
algorithm necessarily form a planar graph (hence their number is of O(n)), and each is carrying a
constant number of messages, which amounts to a total of O(n) messages. Furthermore, the number
of check and acknowledgment messages in each stage is linear in the number of nodes active in that
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stage; since the cumulative sum of all active nodes in all iterations of the algorithm is O(n), the bound
stated in the theorem follows.  []

It should be pointed out that the described algorithm can easily be modified so to have a smaller
multiplicative constant in the bound; further improvement can be obtained by using as a basis a more
efficient election algorithm for bidirectional rings without sense of orientation (e.g., [KRS]).

Theorem 3 The worst-case message complexity of the MST problem for the IW
model is Ω(n2).

Proof. Let G be the complete graph on n=2p+1 nodes; partition the nodes into two sets
A={a1,a2,...,am} and B={b1,b2,...,bm} where m=n/2, and construct a symmetric latin square L of size m
with the first colum being the identity permutation (i.e., each row and each column of L is a
permutation of <1,2,...,m>, L(i,k)=j iff L(j,k)=i, and L(i,1)=i). Define four edges of the form  (ai,aj),
(bi,bj), (ai,bj), (aj,bi) to be a r-square if L(i,2r)=j and L(j,2r)=i, r=1,2,...,m-1; it is not difficult to see that,
by the definition of L, there is a total of exactly m(m-1)/2 such squares and they are all edge-disjoint.
Construct a IW-labeling of G as follows: for each r-square (r=1,...,m-1) assign label r to each edge in
the square at  both end-points; to the remaining edges (i,i) assign label m.  Assign now weight 0 to all
edges connecting nodes in the same partition, and weight 1 to all other edges; obviously, the weight of
the minimum spanning tree must be 1. Let A be an algorithm which always correctly construct the
minimum-weight spanning tree of a complete graph; execute A on G.  Assume that there is an r-square
(ai,aj), (bi,bj), (ai,bj), (aj,bi) where no messages were transmitted during this execution, rŒ{1,...,m-1}.
Consider the graph G' obtained from G by changing the weights of the edges on that square; that is,
by setting w(ai,aj)=w(bi,bj)=1 and w(ai,bj)=w(aj,bi)=0. Obviously, the weight of the minimum
spanning tree of G' is 0. Since everything is the same except for the exchange of the weights of four
edges along which no message was transmitted, the two graphs G and G' are undistingushable for
algorithm A; thus, the same execution is possible in both G and G' terminating, in the latter case, with a
spanning tree of weight 1: a contraddiction. Therefore, at least one out of the four edges in a square
must carry a message; since there are m(m-1)/2=(n2-2n)/8 such squares, the theorem follows.  []

A summary of the above results (designated with a * ) as well as the existing ones is shown in the
following figure.
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Model SP MST
___________________________________________________________

CS Q(n) [LMW] ?

CW Q(n)  [*] ?

IW ? Q(n2)  [*]

G Q(nlogn)  [KMZ1] Q(n2) [KMZ2]
___________________________________________________________

Figure 1. New and existing bounds for the different models

CONCLUDING REMARKS
The problem considered in this paper is the relationship between sense of direction and

communication complexity in distributed networks. This problem seems to be definitely important in
that drastic reduction in complexity can be associated to presence of sense of direction; on the other
hand, as argued in [S], 'insensitivity' of a problem to sense of direction seems to indicate the presence
of an inherent complexity of the problem.
The results presented here should be seen as preliminary insights in this problem. A main obstacle to
a deeper understanding seems to be the lack of an accurate definition of the notion of 'sense of
direction'. The definitions given here for complete networks (the four models) have been sufficient to
shed some light at least for the two problems considered (see the above figure); however, much is still
unknown even within these models (e.g., the '?' entries in the above figure).
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