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Abstract allow to distinguish among the vertices. Networks with dis-

tinct values have been extensively studied in the literature

An anonymous ring network is a ring where all proces- and problems such as: leader election, edge election, min-
sors (vertices) are totally indistinguishable except for their imum and maximum finding, sorting, topology recognition
input value. Initially, to each vertex of the ring is associated have been solved and analyzed in several asynchronous net-
a value from a totally ordered set; thus, forming a multiset. work topologies (e.g., [11]).

In this paper we consider the problem of sorting such a  Inthe case of a general multiset (i¥.S) < n), unfortu-
distributed multiset and we investigate its relationship with nately very little is known. Most of the existing results focus
the election problem. on the Boolean case (i.8(S) < 2) and study the problem

We focus on the computability and the complexity of of computing Boolean functions (such as OR, AND, XOR)
these problems, as well as on their interrelationship, pro- [2, 3, 4, 5, 8, 12]. For the general case, only a few dis-
viding strong characterizations, showing lower bounds, and tributed problems have been studied: finding the extrema of
establishing efficient upper bounds. the multiset [1], and finding the multiplicity of a value in
the multiset [1].

In this paper we consider the problemsofitingthe mul-
tiset MSP) in asynchronous anonymous rings, and we in-
vestigate its relationship with the vertex and edge election
problems VE, EE respectively) and with the general elec-

An anonymousing networkR = ry,...7, iS a ring tion problemGEP.
where all processors (or vertices) are totally indistinguish- Sorting the multiset means that, at the end of the compu-
able except for their input value. Notice that indices are tatjon, the values must be placed on the ring so to be ordered
used only for clarity of discussion and are not known to the i, 4 direction starting from a vertex; the choice of the vertex
vertices. From a computational viewpoint, anonymous sys-js not predetermined. The sorting problem has been exten-
tems are the least powerful distributed systems, and hencgjyely studied when the values are distinct (or the network
the ideal setting to study the complexity of problems and g ot anonymous) (e.g., see [10, 13]): however, it has never
the relationship among them. been investigated in the case of multisets.

Initially, to each vertex; of thering is associated avalue  Thg yertex election probleME consists in starting from
s; from a totally ordered sef. The associated values form 4 gjyation where the network is anonymous and ending in a

1. Introduction

amultisetS = {si,...,s,}, wheres; € V. Letus denote gy ation where a vertex is different from the others. Anal-
by 6(S) the number of distinct elements Bfwhich appear ogously, in the edge election probldEg, an edge must be-
inS.

come different from all others, and identified as the leader.

The particular case whe¥(S) = n corresponds to the  The general election proble@EPis the problem of elect-
case wherb is actually a set; i.e., each vertex has a distinct jng if possible a vertex, otherwise an edge.

input value. In this case, the network is not really anony- Clearly the solvabilty of these problems depends on
mous since the distinct values can be used as identities anﬁinany factors including the input values, the value:gthe

“This work has been supported in part by N.S.E.R.C. and M.U.R.S.T., INg size), the fact that the ring is oriented or not, etc. Since

progetto 40 % “Metodi e Problemi in Analisi Reale”. any non-trivial problem is unsolvable if is unknown to




the vertices [3], we will assume in the following thais a 1
priori known.

In this paper we focus on the computability and the com-
plexity of these problems, as well as on their interrela-
tionship, providing strong characterizations, proving lower 1
bounds, and establishing efficient upper bounds. For ex-
ample, it is well known that, iS' is not a set, the election
problems are in general not solvable; but no characteriza- 0
tion existed. We provide one by showing that, for a general 0
multiset, G EP is solvable if and only ifS is aperiodic.

On the relationship among the sorting and the election
problems we provide a complete characterization. Interest-
ingly, we prove that the solvability relationship among these
problems depends on the value&fS). As we show, the
characterization is rather simple for the casesS) # 2; valuesu with d,,(S) > 0, and byR(S) the ring R with
the situation wherd(S) = 2 is more complex, and it de-  inputS | i.e.,s; being the input of node;.
pends on several factors including the ring orientation and  Gjyen r ¢ {1,...,n} we denote bys*(S) the k-

the value ofn. th cyclic shift (or simply shify of S, ie., o(S) =
We then focus on the complexity of solving these prob- 5, 5, ., .5, ; where all indices are modute. We de-
lems and study the Boolean setting (i&.5) < 2). We  note by (S) the multiset{c*(S)|1 < k < n} and by
first present an algorithm for oriented rings of prime size; /(5 ($)) themultiplicity of o*(S) in o(S); if Ji such that
this algorithm solves the sorting and election problems us- ,(57(5)) = 1 then we say tha$ is unique We also say
ing at most)(Zé.zl(zj2 +1t;%)+nlogn) messages, where that the string igperiodicwith periodk if S = s ...s, =
zj andt; are the lengths of the consecutive blocks of 0’s (s1...s,)% andl < k < n, otherwise the string iaperi-
and 1's inS, respectively. We also present an algorithm odic. Finally we denote bys the reverse string of, i.e.,
for oriented rings of not-prime size; this algorithm solves § =, ... 5.
the election and sorting problems (if a solution exists) us- A y-valued stringS is canonicif s; # s,. Obviously,
ing on averag® (n log n) messages. The same bounds are every S with §(S) > 1 has a shift that is a canonic string;

shown to be achievable also fanorientedings. Finallywe  therefore, w.l.0.g., we only consider canonic strings, where
present some lower bounds; these bounds prove that the alg(g) > 1.

gorithms for the case of prime are optimal. We also show

that, whem is not prime, any solution to these problemsre- property 1 A stringS is unique iff it is aperiodic. Further-
quires the exchange 6f(n logn) messages for almost all  more, S is unique iffS is unique.

multisetsS; hence, for almost all inputs, the algorithms for

the case of. not prime are average-case optimal. Property 2 In every aperiodic string the lexicographical
For sake of brevity, almost all the proofs have been omitted minimal shift is unique.

and can be found in [6].

a) Unsorted string b) Sorted string

Figure 1. A a) unsorted and b) sorted ring.

Property 3 If n is prime then every strin§, is aperiodic.
2. Definitions A v-valued stringS = s; ... s, issortediff 307(S),1 <
i < n, such thato?(S) = 0%(S)1d(S) _ 4du(S)
LetR =r; ...r, be ananonymousring efprocessors. (v — 1)%-1(5) whereu® is the empty string. Note that
We say thaf? is orientedif all processors agree on the same for §(S) < 2, if S is sorted, 0 isS.
direction (e.g., clockwise), otherwideis unoriented We consider several inter-related problems. The main
To each vertex; of the ring it is associated a valug focus of this paper is on the sorting problem.
from a totally ordered se¥, = {0,...,v — 1}; the as-
sociated values form multisetS = {sy,...,s,}, where Problem 1 Multiset sorting problem (A S P)
8i € Zy. Given an (un)oriented ring? and av-valued stringS, move
In the following we will consider such a multiset as a from R(S) to a final configurationR(S’) where:
string of values. More precisely, the multiset corresponds
to av-valuedstring S = s; ...s, of lengthn wheres; € 1. Yu € Z,,6u(S) = 6.(S");
Zy ={0,...,v—1},1 <i < n. We denote by, (S) the
multiplicity of u € Z, in S, by §(S) the number of distinct 2. R(S') is sorted.



An example forw = 2 is shown in Figure 1. We now recall the following obvious result:
We will study M S P in relation to the classical problems
of vertex election(V E) and edge electiofEE). Vertex Lemma2 (VE > EE).
election is the most basic problem in distributed computing
(see [11]); the edge election problem has been widely stud-
ied in detalil _in [15]; whe_n an edge is elected, both vertices Theorem 2 VE(S) > MSP(S).
know about it (e.g., are in a special state).
In addition, we will focus on the more general formula-
tion of the problem which integrates bothZ and EE.

Another simple property is the following:

3.2. Characterization: The Casej(S) # 2

Problem 2 General election problem G EP) Consider first the casgS) = 1. In this case
Given an (un)oriented rindge with input configuratiorss, if . .
possible elect a vertex, else elect an edge. Theorem 3 If §(S) = 1thenGEP is unsolvable)M SP is

already solved.
In the course of our investigation on the Boolean case,

we shall also consider the problem of computing well- It is iqteresting _t(_) observe that to recognize whether

known Boolean functions such asVD and X OR. 6(5) = lisanon-trivial problem. The problef, of deter-
Given a problen® we shall denote by(S) the instance ~ Mining whetherS' = u™ (whereu € Z, = {0,...,v —1})

of P when the input string i§. Given two problems$” and is in fact equivalent to the problem of computing th&/ D

Q, we denote byP > (@ the fact that any solution t@ of a Boolean string.
implies a solution taQ, and by P = @ the fact that both
P> (QandQ@ > P.

| In_ the follc_)l;/vmg_, when cr:)nsmermg the mebssagg gom;j PrROOF Let us first show thaP, > AND. Let us assume
plexity, we will omit to say that messages are bounded and,q paye solved®,. If S is a Boolean string, the®, =

Theorem4 AND = P,.

contain at mosD (log ) bits. {0,1}, and trivially P, (S) = AND(S) since if P;(S) =
_ 1 thenS = 1™ and thereforedAND(S) = AND(1") =
3. General Properties 1, otherwiseP; (S) = 0, i.e., S # 1" and AND(S) =

0. Let us now show thatND > P,. We move from a
In this section we first establish some general proper-configurationS = s;...s, to S’ = s{...s!, where ifr;
ties on resolvability of the election and sorting problem, as hass; = u thens, = 1 elses] = 0. Trivially AND(S") =
well as on their relationship. In particular we show that the P, sinceAND(S’) =1iff S =u". &
nature of this relationship depends directly on the value of

6(S). Another simple case &(S) > 2.

3.1. Basic Results Theorem 5 If §(S) > 2thenM SP(S) = VE(S).

A basic negative well known result is the following and 3.3. Characterization: The Casej(S) = 2

follows from [3]:
. ) The only case left is whef(S) = 2. Unlike the others,

Lemma 1 No non-constant function can be computed in thjs case is rather complex; we will be using a sequence of
asynchronous rings i is not known. technical lemmas. In the following, w.l.0.g., we will assume

From this we have: that the two values in the sequence are 0 and 1, and will omit
to state thad(S) = 2.
Corollary1 The GEP and M SP are deterministically

unsolvable ifz is not known. Lemma 3 (EE > MSP).

Hence in the following we will alwaysssumethatn is ~ PROOF Assume an edge has been elected. d.&e the

known elected edge, and letandy be the incident vertices. In the
We now establish a necessary and sufficient condition forOriented case, one of the two vertices, sayl) becomes

resolvability of GEP. the leader, 2) computes,(S) (e.g., by sending a counter

around the ring), and 3) tells the firg§(S) vertices to as-
Theorem 1 Letn be known and lef be a string given as  sume value 0 and the rest to assume value 1. In absence of
input to an anonymous ringGEP(S) is solvable iffS is orientationd,, (S) is computed (redundantly) in both direc-
aperiodic. tions; two cases arise depending on whethgsS) is even



or odd. Ifdy(S) is even, the firstly(S)/2 vertices on both 4. Sorting and electing a leader in anonymous
sides ofe (includingz andy) become 0, all others become asynchronous rings

1. Consider now the case whép(S) is odd. Ifn is even,

the strings starting from andy and ending with edge

are distinct, hence a leader can be uniquely chosem.idf
odd, a leader is uniquely determined (e.g., the only vertex
at distancdn — 1)/2 from bothz andy). In all these cases
the chosen leader executes steps 2) and 3) of the oriente
casel

In this section, we show how to use the results related to
the properties of the strin§ and to the value:, in order
to solve theGEP and M SP in anonymous asynchronous
(rjngs. We consider all boolean strings (i&.5) < 2).

4.1. Oriented rings

Theorem 6 In oriented ringsV E = MSP. In this section, we first present an algorithm that solves
the GEP and M SP for the casen prime. As shown later
the algorithm is optimal. For the casenot prime, we give
another algorithm that will be shown later to lead to a good
Lemma 4 In unoriented rings average case on every input and every value. of

; . All the algorithms presented consid&(.S) and solve

* Ifdo(S)is 0dd.MSP(S) 2 VE(S); GEP(S) or MSP(S), if a solution exisg;( irz the case no

e ifnisoddMSP > VE; solution exists, all vertices become aware of this fact.

e if both n and dy(S) are even, thenM SP(S) >

In the case of unoriented rings, the relationship between
these problems is slightly more complicated.

4.1.1. Casen prime. Let us first present an algorithm

EE(S). that is used for the case prime. It is divided into three
PROOFAssume a string is sorted; i.e.5 = sy ...s, = steps. In the first one every processor starts iacive-step
0do(S) 1d1(5) 1 state and has an input bitdifferent cases may arise: a) it
1) If do(S) is odd, the vertex;(q,(s)/2)1 is uniquely de- receives a total af — 1 bits equal td and in this case moves
termined and can be elected as a leader. to anall-equalstate since it detects thate {0™,1"} and

2) if n is odd eitherdy(S) or dy(S) is odd. The first therefore the algorithm can end (no leader can be elected

case is already dealt with; in the second case, the vertexandS is already sorted); b) it sends and receives bits until
Tdo(S)+[di(S)/2] 1S Uniquely determined and can become it receives a bit£ b; it chooses as a value the numbebsf
leader. it has collected plus its own, sends its value to the left and

3) A unique edge can be determined and thus to the right and then moves to active-step 2.5tate; c) it
elected, e.g., the edge incident on verticgs s)/») and receives messages from other processors that are in the next
state (active-step 2.1) and in this case it becopassive

Step 2 is divided into two sub steps: active-step 2.1 and
active-step 2.2. In active-step 2.1 state, a processor receives

T(do(S)/2+1)- W

Theorem 7 In unoriented rings\/ SP = EE. the values of its active neighbours. If its value is a local
On the other hand, maxima, i_t remains active, otherwise it become_s passive.

_ _ _ Every active processqr sends a counter to the right and

Theorem 8 In unoriented rings’ E(S) = MSP(S) iff n moves to aractive-step 2.3tate. Passive processors that
or dp(S) is odd. receive this counter increase it and forward it. In active step

2.2 statep eventually receives a counter from the left; if

By definition of GEP, from theorem 7 and theorem 8, it < . o
this value isn, p knows that this is its own message and

follows that: o
that all the other processors are passive, it becdesaker
Theorem 9 MSP = GEP. and moves to amctive-step 3tate, otherwise it chooses
Let us now show how certain valuesiotan help finding thelvalue ofzthe counter as !ts new value ?nd mc()jves back to
a solution to th&? EP and M SP. active-step 2.1. Evgry passive processor forwards messages
and, when appropriate, it increases counters.
Theorem 10 MSP andV E are deterministically solvable Finally, at active-step 3 different actions are taken de-
if n is prime. pending on whether the problem to be solved is the election

Finally we establish a basic relationship betwaés P or sorting. In case of election, the leader sends its value
and the problem of computing tf€OR of a stringS with around which transforms all other processors from passive
5(S) = 2. to defeatedand enters a final statdected In case of sort-

ing, it determines (by circulating a counteég)(.S), chooses
Theorem 11 MSP > XOR. value 0 and it tells the firsty (S) — 1 processors on its right



to change their bit into 0 and the others into 1; once a pro-

cessor knows its final value it beconmmsted
We now introduce an important definition. Any striSg

If exactly C'log n values have been collected it uses the re-
ceived string as a value and moves tceative-step 2tate;
otherwise, it chooses as a value the number of received bits

can be viewed as a sequence of pairs of alternating blocks ofind moves to active-step 2 state. If a processor in active-step

0’s and1’s whose lengths are denoted byandt;, respec-
tively, letl(.S) denote the number of such pairs. kgf,, =
max{z;}, tmez = max{t;}, forj =1,2,...,1(S). When
no ambiguity arises we will omit the subscripts and Use
instead of(.S).

Theorem 12 The above algorithm correctly solves the
GEP and M SP for the casen prime (andM S P also for
S € {0™,1"}). The algorithm requires the exchange of at

mostO(Zé.:1 (2;2 + t;%) + nlogn) messages.

In a later section we will show that this algorithm is op-
timal.

4.1.2. Casen not prime. Let us now consider the case
whenn is not prime. If we apply a trivial input collection
algorithm we can solve the problemdn(n?) messages. In
fact, if the string is periodic, every processor will detect it;
if it is not periodic, a unigue maximal lexicographical shift

1 state receives an active-step 2 message it becomes passive.
All active processors that move to active-step 2 state run a
Hirschberg and Sinclair leader election algorithm [7] using
the chosen values as identifiers. Since those values might
not be distinguished, more than one processor can become
leader. The Hirschberg and Sinclair algorithm can be eas-
ily modified to handle this case (e.g., by neither stopping,
nor “killing” encountered processors with the same value,
and continuing for exactlflog n] steps). Every leader then
moves to aractive-step Jtate and sends a counter around
to determine if it is unique; in this case it beconsdscted

and eventually sorts. Otherwise, every leader sends a stop
bit around and all processors (even the passive one) move
to anactive-step 4tate. In this state, every processor runs
an input collection. IfS is aperiodic, the processor that
has collected the unique maximal lexicographical rotation
of the string is elected and eventually sortsSifs periodic,

all processor move to an all-equal state and end.

of the string exists (see property 2) and the processor thatfheorem 13 The above algorithm correctly solves the

collects it will be elected as leader and will do the sorting,
if needed.

GEP and M SP for the caseS aperiodic (andM S P also
for S € {0",1"}); it requires on average, with respect to

We now present a good average case (with respect tcdll possible input strings)) (n log n) messages.

the input) algorithm. We will use the notation of Kol-
mogorov random [9]; briefly, an bit string is Kolmogorov
random g-random for short) if the length of the short-
est program outputting the string is longer thar- logn
bits. In this context it is trivial to see that the fraction of
Boolean strings of length that are notc-random is only
1/n (2n~leen /27 = 1/n). For further details refer to [9].

The algorithm that we now present is based on a fact that

is derived from some results in [8, 14]:

Property 4 [8, 14] There exists a constanit such that, all
substrings of lengtlt’ log n of anyn-bit cyclic k-random
string are different.

From this fact it trivially follows:

Property 5 There exists a constadt’ such that, all sub-
strings of lengthC’ logn of any n-bit cyclic k-random
string and of its reverse string are different.

The main idea of the algorithm is that every proces-
sor starts in amctive-step Istate where it collects at least
C'log n, but no more than —1 values, continuing as long as
receiving values equal ta If the number of collected val-
uesisn — 1, it moves to arall-equalstate and it ends, since
it detects thatS € {0™, 1"} and therefore it knows that no

4.2. Unoriented rings

In this section we show how to modify the given algo-
rithms for oriented asynchronous rings to solve he P
andM S P for unoriented rings.

4.2.1. Casen prime. Let us first consider the case
of n prime. The main idea is that every processor can
run separate executions of algorithm of section 4.1.1. in
both directions, and as a result, two leaders are elected if
S ¢ {0, 1"}, or it is detected thab € {0",1"}. If
0(S) = 2, the two leaders (by each sending counters) com-
pute the two distancesandc’ (n is known). Since one of
them is even and the other odd, they send an election mes-
sage to the processor in the middle of the path of the even
distance; this processor moves toelactedstate and can
eventually sort. As usual, passive processor forward (and,
if appropriate, increase) the received values.

Observe that, since the algorithm of section 4.1.1. is ex-
ecuted concurrently a processor can be in different states
with respect to each execution. Notice that it is possible
that a passive processor becomes elected (because it is in
the middle of the path).

Theorem 14 The above algorithm correctly solves the

leader can be elected and that the string is already sortedG EP and M S P for the casen prime andS aperiodic (and



MSP also forS € {0™,1"}) in an anonymous unoriented
ring and it requiresO(le:l(zj2 + t;%) + nlogn) mes-
sages.

We finally prove the following:

Lemma 6 For almost all input stringsS, Y°'_, (z;> +

t;?) € O(nlogn).

4.2.2. Caser not prime. Let us now consider the case
n not prime.

Corollary 3 For almost all input strings the lower bound

We now give a good average case (with respect to the in-of theorem 16 reduces to(n log n) messages.

put) algorithm. The main idea is that every processor runs

the algorithm of section 4.1.2. simultaneously and sepa-References
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