
Sorting Multisets in Anonymous Rings�

P. Flocchini
University of Ottawa, Canada

flocchin@site.uottawa.ca

E. Kranakis
Carleton University, Canada

kranakis@scs.carleton.ca

D. Krizanc
Wesleyan University, U.S.A.

krizanc@wesleyan.edu

Flaminia L. Luccio
Universit̀a degli Studi di Trieste, Italy

luccio@mathsun1.univ.trieste.it

N. Santoro
Carleton University, Canada

santoro@scs.carleton.ca

Abstract

An anonymous ring network is a ring where all proces-
sors (vertices) are totally indistinguishable except for their
input value. Initially, to each vertex of the ring is associated
a value from a totally ordered set; thus, forming a multiset.

In this paper we consider the problem of sorting such a
distributed multiset and we investigate its relationship with
the election problem.

We focus on the computability and the complexity of
these problems, as well as on their interrelationship, pro-
viding strong characterizations, showing lower bounds, and
establishing efficient upper bounds.

1. Introduction

An anonymousring networkR = r1; : : : rn is a ring
where all processors (or vertices) are totally indistinguish-
able except for their input value. Notice that indices are
used only for clarity of discussion and are not known to the
vertices. From a computational viewpoint, anonymous sys-
tems are the least powerful distributed systems, and hence
the ideal setting to study the complexity of problems and
the relationship among them.

Initially, to each vertexri of the ring is associated a value
si from a totally ordered setV . The associated values form
a multisetS = fs1; : : : ; sng, wheresi 2 V . Let us denote
by Æ(S) the number of distinct elements ofV which appear
in S.

The particular case whenÆ(S) = n corresponds to the
case whenS is actually a set; i.e., each vertex has a distinct
input value. In this case, the network is not really anony-
mous since the distinct values can be used as identities and

�This work has been supported in part by N.S.E.R.C. and M.U.R.S.T.,
progetto 40 % “Metodi e Problemi in Analisi Reale”.

allow to distinguish among the vertices. Networks with dis-
tinct values have been extensively studied in the literature
and problems such as: leader election, edge election, min-
imum and maximum finding, sorting, topology recognition
have been solved and analyzed in several asynchronous net-
work topologies (e.g., [11]).

In the case of a general multiset (i.e.Æ(S) < n), unfortu-
nately very little is known. Most of the existing results focus
on the Boolean case (i.e.,Æ(S) � 2) and study the problem
of computing Boolean functions (such as OR, AND, XOR)
[2, 3, 4, 5, 8, 12]. For the general case, only a few dis-
tributed problems have been studied: finding the extrema of
the multiset [1], and finding the multiplicity of a value in
the multiset [1].

In this paper we consider the problem ofsortingthe mul-
tiset (MSP) in asynchronous anonymous rings, and we in-
vestigate its relationship with the vertex and edge election
problems (VE, EE respectively) and with the general elec-
tion problemGEP .

Sorting the multiset means that, at the end of the compu-
tation, the values must be placed on the ring so to be ordered
in a direction starting from a vertex; the choice of the vertex
is not predetermined. The sorting problem has been exten-
sively studied when the values are distinct (or the network
is not anonymous) (e.g., see [10, 13]); however, it has never
been investigated in the case of multisets.

The vertex election problemVEconsists in starting from
a situation where the network is anonymous and ending in a
situation where a vertex is different from the others. Anal-
ogously, in the edge election problemEE, an edge must be-
come different from all others, and identified as the leader.
The general election problemGEP is the problem of elect-
ing, if possible a vertex, otherwise an edge.

Clearly the solvabilty of these problems depends on
many factors including the input values, the value ofn (the
ring size), the fact that the ring is oriented or not, etc. Since
any non-trivial problem is unsolvable ifn is unknown to



the vertices [3], we will assume in the following thatn is a
priori known.

In this paper we focus on the computability and the com-
plexity of these problems, as well as on their interrela-
tionship, providing strong characterizations, proving lower
bounds, and establishing efficient upper bounds. For ex-
ample, it is well known that, ifS is not a set, the election
problems are in general not solvable; but no characteriza-
tion existed. We provide one by showing that, for a general
multiset,GEP is solvable if and only ifS is aperiodic.

On the relationship among the sorting and the election
problems we provide a complete characterization. Interest-
ingly, we prove that the solvability relationship among these
problems depends on the value ofÆ(S). As we show, the
characterization is rather simple for the casesÆ(S) 6= 2;
the situation whenÆ(S) = 2 is more complex, and it de-
pends on several factors including the ring orientation and
the value ofn.

We then focus on the complexity of solving these prob-
lems and study the Boolean setting (i.e.,Æ(S) � 2). We
first present an algorithm for oriented rings of prime size;
this algorithm solves the sorting and election problems us-
ing at mostO(

Pl
j=1(zj

2+tj
2)+n logn) messages, where

zj and tj are the lengths of the consecutive blocks of 0’s
and 1’s inS, respectively. We also present an algorithm
for oriented rings of not-prime size; this algorithm solves
the election and sorting problems (if a solution exists) us-
ing on averageO(n log n) messages. The same bounds are
shown to be achievable also forunorientedrings. Finally we
present some lower bounds; these bounds prove that the al-
gorithms for the case ofn prime are optimal. We also show
that, whenn is not prime, any solution to these problems re-
quires the exchange of
(n logn) messages for almost all
multisetsS; hence, for almost all inputs, the algorithms for
the case ofn not prime are average-case optimal.
For sake of brevity, almost all the proofs have been omitted
and can be found in [6].

2. Definitions

LetR = r1 : : : rn be an anonymous ring ofn processors.
We say thatR is orientedif all processors agree on the same
direction (e.g., clockwise), otherwiseR is unoriented.

To each vertexri of the ring it is associated a valuesi
from a totally ordered setZv = f0; : : : ; v � 1g; the as-
sociated values form amultisetS = fs1; : : : ; sng, where
si 2 Zv.

In the following we will consider such a multiset as a
string of values. More precisely, the multiset corresponds
to a v-valuedstringS = s1 : : : sn of lengthn wheresi 2
Zv = f0; : : : ; v � 1g, 1 � i � n. We denote bydu(S) the
multiplicity of u 2 Zv in S, by Æ(S) the number of distinct

1

00

1

0 1

1

1

0

0

1

0

1

0

1

a) Unsorted string b) Sorted string

0

Figure 1. A a) unsorted and b) sorted ring.

valuesu with du(S) > 0, and byR(S) the ringR with
inputS , i.e.,si being the input of noderi.

Given k 2 f1; : : : ; ng we denote by�k(S) the k-
th cyclic shift (or simply shift) of S, i.e., �k(S) =
sksk+1 : : : sk�1 where all indices are modulon. We de-
note by�(S) the multisetf�k(S)j1 � k � ng and by
�(�k(S)) themultiplicity of �k(S) in �(S); if 9i such that
�(�i(S)) = 1 then we say thatS is unique. We also say
that the string isperiodicwith periodk if S = s1 : : : sn =
(s1 : : : sk)

n

k and1 � k < n, otherwise the string isaperi-
odic. Finally we denote by�S the reverse string ofS, i.e.,
�S = sn : : : s1.

A v-valued stringS is canonicif s1 6= sn. Obviously,
everyS with Æ(S) > 1 has a shift that is a canonic string;
therefore, w.l.o.g., we only consider canonic strings, where
Æ(S) > 1.

Property 1 A stringS is unique iff it is aperiodic. Further-
more,S is unique iff�S is unique.

Property 2 In every aperiodic stringS the lexicographical
minimal shift is unique.

Property 3 If n is prime then every stringS, is aperiodic.

A v-valued stringS = s1 : : : sn is sortediff 9�i(S); 1 �
i � n, such that�i(S) = 0d0(S)1d1(S) : : : udu(S) : : :
(v � 1)dv�1(S), whereu0 is the empty string. Note that
for Æ(S) � 2, if S is sorted, so is�S.

We consider several inter-related problems. The main
focus of this paper is on the sorting problem.

Problem 1 Multiset sorting problem (MSP )
Given an (un)oriented ringR and av-valued stringS, move
fromR(S) to a final configurationR(S0) where:

1. 8u 2 Zv; Æu(S) = Æu(S
0);

2. R(S0) is sorted.



An example forv = 2 is shown in Figure 1.
We will studyMSP in relation to the classical problems

of vertex election(V E) and edge election(EE). Vertex
election is the most basic problem in distributed computing
(see [11]); the edge election problem has been widely stud-
ied in detail in [15]; when an edge is elected, both vertices
know about it (e.g., are in a special state).

In addition, we will focus on the more general formula-
tion of the problem which integrates bothV E andEE.

Problem 2 General election problem (GEP )
Given an (un)oriented ringR with input configurationS, if
possible elect a vertex, else elect an edge.

In the course of our investigation on the Boolean case,
we shall also consider the problem of computing well-
known Boolean functions such asAND andXOR.

Given a problemP we shall denote byP (S) the instance
of P when the input string isS. Given two problemsP and
Q, we denote byP � Q the fact that any solution toP
implies a solution toQ, and byP � Q the fact that both
P � Q andQ � P .

In the following, when considering the message com-
plexity, we will omit to say that messages are bounded and
contain at mostO(log n) bits.

3. General Properties

In this section we first establish some general proper-
ties on resolvability of the election and sorting problem, as
well as on their relationship. In particular we show that the
nature of this relationship depends directly on the value of
Æ(S).

3.1. Basic Results

A basic negative well known result is the following and
follows from [3]:

Lemma 1 No non-constant function can be computed in
asynchronous rings ifn is not known.

From this we have:

Corollary 1 The GEP and MSP are deterministically
unsolvable ifn is not known.

Hence in the following we will alwaysassume that n is
known.

We now establish a necessary and sufficient condition for
resolvability ofGEP .

Theorem 1 Letn be known and letS be a string given as
input to an anonymous ring.GEP (S) is solvable iffS is
aperiodic.

We now recall the following obvious result:

Lemma 2 (V E � EE).

Another simple property is the following:

Theorem 2 V E(S) �MSP (S).

3.2. Characterization: The CaseÆ(S) 6= 2

Consider first the caseÆ(S) = 1. In this case

Theorem 3 If Æ(S) = 1 thenGEP is unsolvable,MSP is
already solved.

It is interesting to observe that to recognize whether
Æ(S) = 1 is a non-trivial problem. The problemPu of deter-
mining whetherS = un (whereu 2 Zv = f0; : : : ; v� 1g )
is in fact equivalent to the problem of computing theAND
of a Boolean string.

Theorem 4 AND � Pu.

PROOF Let us first show thatPu � AND. Let us assume
we have solvedPu. If S is a Boolean string, thenZv =
f0; 1g, and triviallyP1(S) = AND(S) since ifP1(S) =
1 thenS = 1n and thereforeAND(S) = AND(1n) =
1, otherwiseP1(S) = 0, i.e., S 6= 1n andAND(S) =
0. Let us now show thatAND � Pu. We move from a
configurationS = s1 : : : sn to S0 = s01 : : : s

0
n where if ri

hassi = u thens0i = 1 elses0i = 0. Trivially AND(S0) =
Pu sinceAND(S0) = 1 iff S = un.

Another simple case isÆ(S) > 2.

Theorem 5 If Æ(S) > 2 thenMSP (S) � V E(S).

3.3. Characterization: The CaseÆ(S) = 2

The only case left is whenÆ(S) = 2. Unlike the others,
this case is rather complex; we will be using a sequence of
technical lemmas. In the following, w.l.o.g., we will assume
that the two values in the sequence are 0 and 1, and will omit
to state thatÆ(S) = 2.

Lemma 3 (EE �MSP ).

PROOF Assume an edge has been elected. Lete be the
elected edge, and letx andy be the incident vertices. In the
oriented case, one of the two vertices, sayx, 1) becomes
the leader, 2) computesdu(S) (e.g., by sending a counter
around the ring), and 3) tells the firstd0(S) vertices to as-
sume value 0 and the rest to assume value 1. In absence of
orientation,du(S) is computed (redundantly) in both direc-
tions; two cases arise depending on whetherd0(S) is even



or odd. Ifd0(S) is even, the firstd0(S)=2 vertices on both
sides ofe (includingx andy) become 0, all others become
1. Consider now the case whend0(S) is odd. Ifn is even,
the strings starting fromx andy and ending with edgee
are distinct, hence a leader can be uniquely chosen. Ifn is
odd, a leader is uniquely determined (e.g., the only vertex
at distance(n� 1)=2 from bothx andy). In all these cases
the chosen leader executes steps 2) and 3) of the oriented
case.

Theorem 6 In oriented rings,V E �MSP .

In the case of unoriented rings, the relationship between
these problems is slightly more complicated.

Lemma 4 In unoriented rings

� If d0(S) is odd,MSP (S) � V E(S);

� if n is oddMSP � V E;

� if both n and d0(S) are even, thenMSP (S) �
EE(S).

PROOFAssume a stringS is sorted; i.e.,S = s1 : : : sn =
0d0(S)1d1(S).

1) If d0(S) is odd, the vertexrd(d0(S)=2)e is uniquely de-
termined and can be elected as a leader.

2) if n is odd eitherd0(S) or d1(S) is odd. The first
case is already dealt with; in the second case, the vertex
rd0(S)+dd1(S)=2e is uniquely determined and can become
leader.

3) A unique edge can be determined and thus
elected, e.g., the edge incident on verticesr(d0(S)=2) and
r(d0(S)=2+1).

Theorem 7 In unoriented ringsMSP � EE.

On the other hand,

Theorem 8 In unoriented ringsV E(S) � MSP (S) iff n
or d0(S) is odd.

By definition of GEP, from theorem 7 and theorem 8, it
follows that:

Theorem 9 MSP � GEP .

Let us now show how certain values ofn can help finding
a solution to theGEP andMSP .

Theorem 10 MSP andV E are deterministically solvable
if n is prime.

Finally we establish a basic relationship betweenMSP
and the problem of computing theXOR of a stringS with
Æ(S) = 2.

Theorem 11 MSP � XOR.

4. Sorting and electing a leader in anonymous
asynchronous rings

In this section, we show how to use the results related to
the properties of the stringS and to the valuen, in order
to solve theGEP andMSP in anonymous asynchronous
rings. We consider all boolean strings (i.e.,Æ(S) � 2).

4.1. Oriented rings

In this section, we first present an algorithm that solves
theGEP andMSP for the casen prime. As shown later
the algorithm is optimal. For the casen not prime, we give
another algorithm that will be shown later to lead to a good
average case on every input and every value ofn.

All the algorithms presented considerR(S) and solve
GEP (S) or MSP (S), if a solution exists; in the case no
solution exists, all vertices become aware of this fact.

4.1.1. Casen prime. Let us first present an algorithm
that is used for the casen prime. It is divided into three
steps. In the first one every processor starts in anactive-step
1 state and has an input bitb; different cases may arise: a) it
receives a total ofn�1 bits equal tob and in this case moves
to anall-equalstate since it detects thatS 2 f0n; 1ng and
therefore the algorithm can end (no leader can be elected
andS is already sorted); b) it sends and receives bits until
it receives a bit6= b; it chooses as a value the number ofb’s
it has collected plus its own, sends its value to the left and
to the right and then moves to anactive-step 2.1state; c) it
receives messages from other processors that are in the next
state (active-step 2.1) and in this case it becomespassive.

Step 2 is divided into two sub steps: active-step 2.1 and
active-step 2.2. In active-step 2.1 state, a processor receives
the values of its active neighbours. If its value is a local
maxima, it remains active, otherwise it becomes passive.
Every active processorp sends a counter to the right and
moves to anactive-step 2.2state. Passive processors that
receive this counter increase it and forward it. In active step
2.2 statep eventually receives a counter from the left; if
this value isn, p knows that this is its own message and
that all the other processors are passive, it becomesleader
and moves to anactive-step 3state, otherwise it chooses
the value of the counter as its new value and moves back to
active-step 2.1. Every passive processor forwards messages
and, when appropriate, it increases counters.

Finally, at active-step 3 different actions are taken de-
pending on whether the problem to be solved is the election
or sorting. In case of election, the leader sends its value
around which transforms all other processors from passive
to defeatedand enters a final stateelected. In case of sort-
ing, it determines (by circulating a counter)d0(S), chooses
value 0 and it tells the firstd0(S)� 1 processors on its right



to change their bit into 0 and the others into 1; once a pro-
cessor knows its final value it becomessorted.

We now introduce an important definition. Any stringS
can be viewed as a sequence of pairs of alternating blocks of
0’s and1’s whose lengths are denoted byzj andtj , respec-
tively, let l(S) denote the number of such pairs. Letzmax =
maxfzjg, tmax = maxftjg, for j = 1; 2; : : : ; l(S). When
no ambiguity arises we will omit the subscripts and usel
instead ofl(S).

Theorem 12 The above algorithm correctly solves the
GEP andMSP for the casen prime (andMSP also for
S 2 f0n; 1ng). The algorithm requires the exchange of at
mostO(

Pl
j=1(zj

2 + tj
2) + n logn) messages.

In a later section we will show that this algorithm is op-
timal.

4.1.2. Casen not prime. Let us now consider the case
whenn is not prime. If we apply a trivial input collection
algorithm we can solve the problem inO(n2) messages. In
fact, if the string is periodic, every processor will detect it;
if it is not periodic, a unique maximal lexicographical shift
of the string exists (see property 2) and the processor that
collects it will be elected as leader and will do the sorting,
if needed.

We now present a good average case (with respect to
the input) algorithm. We will use the notation of Kol-
mogorov random [9]; briefly, ann bit string is Kolmogorov
random (k-random for short) if the length of the short-
est program outputting the string is longer thann � logn
bits. In this context it is trivial to see that the fraction of
Boolean strings of lengthn that are notk-random is only
1=n (2n�logn=2n = 1=n). For further details refer to [9].

The algorithm that we now present is based on a fact that
is derived from some results in [8, 14]:

Property 4 [8, 14] There exists a constantC such that, all
substrings of lengthC logn of anyn-bit cyclic k-random
string are different.

From this fact it trivially follows:

Property 5 There exists a constantC 0 such that, all sub-
strings of lengthC 0 logn of any n-bit cyclic k-random
string and of its reverse string are different.

The main idea of the algorithm is that every proces-
sor starts in anactive-step 1state where it collects at least
C logn, but no more thann�1 values, continuing as long as
receiving values equal tob. If the number of collected val-
ues isn� 1, it moves to anall-equalstate and it ends, since
it detects thatS 2 f0n; 1ng and therefore it knows that no
leader can be elected and that the string is already sorted.

If exactlyC logn values have been collected it uses the re-
ceived string as a value and moves to anactive-step 2state;
otherwise, it chooses as a value the number of received bits
and moves to active-step 2 state. If a processor in active-step
1 state receives an active-step 2 message it becomes passive.
All active processors that move to active-step 2 state run a
Hirschberg and Sinclair leader election algorithm [7] using
the chosen values as identifiers. Since those values might
not be distinguished, more than one processor can become
leader. The Hirschberg and Sinclair algorithm can be eas-
ily modified to handle this case (e.g., by neither stopping,
nor “killing” encountered processors with the same value,
and continuing for exactlydlogne steps). Every leader then
moves to anactive-step 3state and sends a counter around
to determine if it is unique; in this case it becomeselected
and eventually sorts. Otherwise, every leader sends a stop
bit around and all processors (even the passive one) move
to anactive-step 4state. In this state, every processor runs
an input collection. IfS is aperiodic, the processor that
has collected the unique maximal lexicographical rotation
of the string is elected and eventually sorts; ifS is periodic,
all processor move to an all-equal state and end.

Theorem 13 The above algorithm correctly solves the
GEP andMSP for the caseS aperiodic (andMSP also
for S 2 f0n; 1ng); it requires on average, with respect to
all possible input strings,O(n logn) messages.

4.2. Unoriented rings

In this section we show how to modify the given algo-
rithms for oriented asynchronous rings to solve theGEP
andMSP for unoriented rings.

4.2.1. Casen prime. Let us first consider the case
of n prime. The main idea is that every processor can
run separate executions of algorithm of section 4.1.1. in
both directions, and as a result, two leaders are elected if
S 62 f0n; 1ng, or it is detected thatS 2 f0n; 1ng. If
Æ(S) = 2, the two leaders (by each sending counters) com-
pute the two distancesc andc0 (n is known). Since one of
them is even and the other odd, they send an election mes-
sage to the processor in the middle of the path of the even
distance; this processor moves to anelectedstate and can
eventually sort. As usual, passive processor forward (and,
if appropriate, increase) the received values.

Observe that, since the algorithm of section 4.1.1. is ex-
ecuted concurrently a processor can be in different states
with respect to each execution. Notice that it is possible
that a passive processor becomes elected (because it is in
the middle of the path).

Theorem 14 The above algorithm correctly solves the
GEP andMSP for the casen prime andS aperiodic (and



MSP also forS 2 f0n; 1ng) in an anonymous unoriented
ring and it requiresO(

Pl
j=1(zj

2 + tj
2) + n logn) mes-

sages.

4.2.2. Casen not prime. Let us now consider the case
n not prime.

We now give a good average case (with respect to the in-
put) algorithm. The main idea is that every processor runs
the algorithm of section 4.1.2. simultaneously and sepa-
rately in both directions. IfS 2 f0n; 1ng or S is periodic,
the algorithm will stop detecting such cases, otherwise it
elects two leadersv andy which move to a new state. In
this state ifv > y (or y > v) thenv (y) is elected, otherwise
the right and left distancesc andc0, betweenv andy are
computed; ifc 6= c0 and eitherc or c0 is odd the processor
in the middle of the smallest odd distance is elected. If both
c andc0 are even or equal run an input collection algorithm.
Once the strings have been collected, the two leaders can
determine whether there exists a vertex which is unambigu-
ously determinable inS and �S; if so, such a vertex becomes
the only elected vertex. Otherwise,V E is not solvable but
an edge can be uniquely determined inS and �S since the
string is aperiodic.

Theorem 15 The above algorithm correctly solves the
GEP andMSP for S aperiodic (andMSP also forS 2
f0n; 1ng), and requires on the average, with respect to all
possible input strings, the exchange of at mostO(n logn)
messages.

5. Lower bounds

In this section we study the lower bounds for the asyn-
chronous (un)oriented rings.

We first have to define the following family:

Definition 1 Given a stringS consisting of alternating
strings of0’s and 1’s, zi and ti, we callF (S) the family
of all the boolean functionsf : S ! f0; 1g, f 2 F (S),
such that8i � zmax, 8j � tmax, 9c1; c2 f0; 1gn�i,
9c01; c

0
2 2 f0; 1gn�j, such that: f(0ic1) = f(0n), and

f(0ic2) 6= f(0n); f(1jc01) = f(1n), andf(1jc02) 6= f(1n).

Lemma 5 Given a stringS, the computation of every
boolean functionf 2 F (S) in an anonymous (un)oriented
ring, requires at least
(

Pl
j=1(zj

2 + tj
2)) messages.

Theorem 16 Given a stringS theGEP andMSP on S
require at least
(

Pl
j=1(zj

2+ tj
2) +n logn) messages in

an asynchronous ring.

Corollary 2 By theorem 12, theorem 14, theorem 16, algo-
rithm of section 4.1.1. and algorithm of section 4.2.1. are
optimal.

We finally prove the following:

Lemma 6 For almost all input stringsS,
Pl

j=1(zj
2 +

tj
2) 2 O(n logn).

Corollary 3 For almost all input strings the lower bound
of theorem 16 reduces to
(n logn) messages.

References

[1] P. Alimonti, P. Flocchini, and N. Santoro. Finding the ex-
trema of a distributed multiset of values.Journal of Parallel
and Distributed Computing, 37:123–133, 1996.

[2] H. Attiya and Y. Mansour. Language complexity on the syn-
chronous anonymous ring.Theoretical Computer Science,
53:169–185, 1987.

[3] H. Attiya, M. Snir, and M. Warmuth. Computing on an
anonymous ring.Journal of the ACM, 4(35):845–875, 1988.

[4] H. Bodlaender, S. Moran, and M. Warmuth. The distributed
bit complexity of the ring: from the anonymous to the non-
anonymous case.Information and Computation, 1(108):34–
50, 1994.

[5] P. Ferragina, A. Monti, and A. Roncato. Trade-off between
computation power and common knowledge in anonymous
rings. InProceedings of the Colloquium on Structural Infor-
mation and Communication Complexity, pages 35–48, 1994.

[6] P. Flocchini, E. Kranakis, D. Krizanc, F. Luccio, and N. San-
toro. Sorting multisets and electing a leader in anonymous
rings. Technical Report (Quaderni Matematici) 463, Univer-
sità degli Studi di Trieste, Trieste, Italy, 2000.

[7] D. Hirschberg and J. Sinclair. Decentralized extrema-finding
in circular configurations of processors.ACM TOPLAS,
5:627–628, 1980.

[8] E. Kranakis, D. Krizanc, and F. Luccio. String recognition
on anonymous rings. InProceedings of the 20th Interna-
tional Symposium on Mathematical Foundations of Com-
puter Science, pages 392–401, 1995.

[9] M. Li and P. Vitanyi. An Introduction to Kolmogorov Com-
plexity and its Applications. Springer-Verlag, 1997.

[10] M. Loui. The complexity of sorting on distributed systems.
Information and Control, 60(1-3):70–85, 1984.

[11] N. Lynch. Distributed Algorithms. Morgan-Kaufmann,
1995.

[12] S. Moran and M. Warmuth. Gap theorems for distributed
computation. InProceedings of the 5th ACM Symposium on
Principles of Distributed Computing, pages 131–140, 1986.

[13] D. Rotem, N. Santoro, and J. Sidney. Distributed sorting.
IEEE Transactions on Computers, 4(34):372–376, 1985.

[14] J. Seiferas. A simplified lower bound for context-free lan-
guage recognition.Information and Control, 69:255–260,
1986.

[15] M. Yamashita and T. Kameda. Computing on anony-
mous networks, part I: Characterizing the solvable cases.
IEEE Transaction on Parallel and Distributed Computing,
1(7):69–89, 1996.


