
Mapping an Unfriendly Subway System

Paola Flocchini1, Matthew Kellett2, Peter Mason2, and Nicola Santoro3

1 School of Information Technology and Engineering, University of Ottawa, Canada
flocchin@site.uottawa.ca

2 Defence R&D Canada – Ottawa, Government of Canada, Canada
{matthew.kellett, peter.mason}@drdc-rddc.gc.ca

3 School of Computer Science, Carleton University, Canada
santoro@scs.carleton.ca

Abstract. We consider a class of highly dynamic networks modelled on
an urban subway system. We examine the problem of creating a map of
such a subway in less than ideal conditions, where the local residents
are not enthusiastic about the process and there is a limited ability
to communicate amongst the mappers. More precisely, we study the
problem of a team of asynchronous computational entities (the mapping
agents) determining the location of black holes in a highly dynamic
graph, whose edges are defined by the asynchronous movements of mobile
entities (the subway carriers). We present and analyze a solution proto-
col. The algorithm solves the problem with the minimum number of
agents possible. We also establish lower bounds on the number of carrier
moves in the worst case, showing that our protocol is also move-optimal.

1 Introduction

Computer networks are not necessarily safe. They often contain dangerous ele-
ments such as computers that have undetectably crashed or network equipment
that is malfunctioning or misconfigured. There is a large body of research into
distributed algorithms for finding these faults, which are often referred to in
the literature as black holes and black links, or, more generally, as dangerous
elements (e.g., see [2–10, 12–15]). All these investigations on finding dangerous
elements assume that the network itself is static and connected.

There are several classes of networks that have dynamic topologies that
change as a function of time, and that might be disconnected at times. They
include wireless mobile ad hoc networks where the network’s topology may
change dramatically over time due to the movement of the network’s nodes;
sensor networks where links only exist when two neighbouring sensors are awake
and have power; and vehicular networks, similar to mobile ad hoc networks,
where the topology changes constantly as vehicles move. Indeed there is a large
amount of research on these networks (which are called delay-tolerant, challenged,
opportunistic, evolving, etc.) focusing mostly on broadcasting and routing (e.g.,
see [1, 16–19]). At least one study [11] has looked at how to explore one class
of these networks: periodically-varying graphs. In the periodically-varying graph

(PV graph) exploration problem, agents ride carriers between sites in the net-
work. A link only exists between sites when a carrier is passing between them.
The agents explore the network by moving from carrier to carrier when their
routes meet at a site. These dynamic networks are no less prone to faults than
static networks. The question is, how does one find a dangerous element in a
time-varying network?

Imagine a group of tourists are visiting the unfriendly capital of Dystopia—
perhaps not the best travel destination. Although the city has a subway system,
there are no maps because the local population wants to limit their capital’s appeal
to tourists (Dystopians are grumpy by nature). The tourists want to map the
subway system without the local population knowing. They agree on a location in
each station where they will leave notes for each other. The problem is that there
are good stations and there are bad stations. Tourists arriving at good stations
can easily leave notes for each other. Tourists arriving at bad stations get lost
when they try to leave notes, eventually giving up on the whole map-making
process. The group wants to complete the map while minimizing the number of
their group lost to the frustration of the bad stations.

We look at black hole search in a class of time-varying network based on a
similar scenario. Instead of tourists, we have agents. Instead of subway trains, we
have carriers. Instead of stations, we have sites, where the bad stations are black
hole sites that eliminate the agents arriving at them without leaving a discernable
trace. The class of networks described by this subway model is much larger than
the set of real subway systems. We look at the asynchronous version of the black
hole search problem where the calculations of the agents and movements of the
carriers take a finite but unpredictable amount of time. To measure complexity in
this environment, we look at the number of carrier moves needed to complete the
search. We show that our solution has a complexity O(k · n2C · lR) + O(nC · l2R)
carrier moves where nC is the number of carriers and lR is the length of the
longest carrier route. We prove that the lower bound on the worst case complexity
is Ω(k·n2C ·lR)+Ω(nC ·l2R) carrier moves, making our solution worst-case optimal.

2 Model

We consider a set C of nC carriers that move among a set S of nS sites. A
carrier c ∈ C follows a route R(c) between all the sites in its domain S(c) =
{s0, s1, . . . , snS(c)−1} ⊆ S. A carrier’s route R(c) = 〈r0, r1, . . . , rl(c)−1〉 is a cyclic
sequence of stops: after stopping at site ri ∈ S(c), the carrier moves to ri+1 ∈
S(c), where operations on the indices are modulo l(c) = |R(c)| called the length
of the route. Carriers move asynchronously, taking a finite but unpredictable
amount of time to move between stops. Each carrier is labelled with a distinct
id and the length of its route. A route is simple if nS(c) = l(c), and complex
otherwise. A transfer site is any site that is in the domain of two or more
carriers; each transfer site is labelled with the number of carriers stopping at
it. A carrier’s route R(c) = 〈r0, r1, . . . , rl(c)−1〉 defines an edge-labelled directed
multigraph G(c) = (S(c),E(c), λ(c)), called carrier graph, where there is an edge

labeled (c, i+ 1) from ri to ri+1, and the operations on indices and inside labels
are modulo l(c). The entire network is then represented by the edge-labelled
directed multigraph G = (R,E, λ), called subway graph, where R = ∪c∈CR(c),
E = ∪c∈CE(c), and λ = {λ(c) : c ∈ C}. Associated with the subway graph is the
transfer graph of G which we define as the edge-labelled undirected multigraph
H(G) = (C,ET) where the nodes are the carriers and, ∀c, c′ ∈ C, s ∈ S, there
is an edge between c and c′ labeled s iff s ∈ S(c) ∩ S(c′), i.e., s is a transfer
site between c and c′. In the following, when no ambiguity arises, we will omit
the edge labels in all graphs.See Figure 1c. Working in the network is a team A
of k computational agents that start at unpredictable times from the same site,
called the homebase. Agents can only communicate with each other using shared
memory, available at each site in the form of a whiteboard, which is accessed in
fair mutual exclusion. The agents are asynchronous in that they take a finite
but unpredictable amount of time to perform computations at a site. All agents
execute the same protocol and know the number of carriers nC . The agents move
around the network using the carriers. An agent can move from a carrier to a
site (disembark at a stop) or from a site to a carrier (board a carrier), but not
from one carrier to another directly. An agent on a transfer site can board any
carrier stopping at it. When on a site, an agent can access the whiteboard, and
can read the number of the carriers stopping at that site; furthermore, it can
read the labels of any carrier stopping there. When travelling on a carrier, an
agent can count the number of stops that the carrier has passed, and can decide
whether or not to disembark at the next stop. Once disembarked, the agent can
later board the same carrier at the same point in its route.

Among the sites there are nB < nS black holes: sites that eliminate agents
disembarking on them without leaving a discernable trace; black holes do not
affect carriers. The black hole search (Bhs) problem is that of the agents deter-
mining the locations of the black holes in the subway graph. A protocol solves the
Bhs problem if within finite time at least one agent survives and all the surviving
agents know which stops are black holes. There are some basic limitations for
the Bhs problem to be solvable: the transfer graph must be connected once the
black holes are removed, and the homebase must be a safe site. Hence we will
assume these conditions to hold. Because of asynchrony, slow computation by
an agent exploring a safe stop is indistinguishable from an agent having been
eliminated by a black hole stop, so, with only knowledge of nC , termination
is impossible unless each carrier has at least one safe transfer site. Hence the
agents’ knowledge of nC will be assumed.

As in traditional mobile agent algorithms, the basic cost measure used to
evaluate the efficiency of a Bhs solution protocol is the size of the team that
is the number k of agents needed by the protocol. Let γ(c) = |{i : ri ∈ R(c)
is a black hole}| be the number of black holes among the stops of c; and let
γ(G) =

∑
c∈C γ(c), called the faulty load of subway graph G, be the total number

of stops that are black holes. The faulty load γ(G) of subway graph G is the
number of stops that are black holes. To solve Bhs, it is obviously necessary
to have more agents than the faulty load of the network, i.e. k > γ. A solution

1

r0

3

r1

3

r2

2r3

4
r4

4

r5
2

r6

1
r8

2 r9

5

r10

6

r7

6

r11

Black hole

Transfer stops

Black hole

(a) Route of c1 (R(c1)).

1s1 2 s2

3s3 4 s4

5s5 6 s6

Black hole

Transfer site

(b) Carrier graph of c1
(G(c1)).

c1 c2

c3 c4

c5

1

5 9 10

13

15 14

(c) Transfer graph
H(G).

Fig. 1: A route, the corresponding carrier graph, and a transfer graph (edge labels
are the corresponding transfer site ids).

protocol is agent optimal if it solves the Bhs problem for k = γ + 1. The other
cost measure is the number of carrier moves: when an agent is waiting for a
carrier or riding on a carrier, each move made by that carrier is counted as a
carrier move for the agent. A solution protocol is move optimal in the worst case
if the total number of carrier moves incurred by all agents in solving the Bhs
problem is the best possible.

3 Exploration Algorithm

In this section we present the proposed algorithm SubwayExplore; as we will
show later, our algorithm works correctly with any number of agents k ≥ γ + 1.

Informally, algorithm SubwayExplore works as follows. All the agents start at
unpredictable times from the same site s, called the homebase. An agent’s work
involves visiting a previously unexplored stop on a carrier’s route and returning,
if possible, to report what was found there. Every carrier is searched from a work
site and the work sites are organized into a logical work tree that is rooted in
the homebase. The first agent to access the homebase’s whiteboard sets up the
homebase as a work site (Sect. 3.1). It and the agents awaking after it then begin
to do work by visiting the stops of the carriers stopping at the homebase (Sect.
3.2). If an exploring agent finds a previously unexplored transfer site, the agent
“competes” to add the transfer site to the work tree. If the agent succeeds, the
transfer site becomes a work site for other carriers stopping at it and the work
site from which it was discovered becomes its parent in the work tree (Sect. 3.3).
When the carrier that the agent is exploring has no more unexplored stops, it
tries to find another carrier with work in the work tree. It looks for work in the
subtree rooted in its current work site and if there is no work available it moves

to the work site’s parent and tries again (Sect. 3.4). An agent terminates if it is
at the homebase, there is no work, and there are nC carriers in the work tree.

3.1 Initialization

When an agent awakes for the first time on the homebase, it tries to initialize the
homebase as a work site. Only the first agent succeeds and executes Initialize
Work Site. All other agents proceed directly to trying to find work.

The Initialize Work Site procedure is used to set up each work site in
the work tree. The procedure takes as input the parent of the work site and the
carriers to be worked on or serviced from the work site. For the homebase, the
parent is null and the carriers to be accessed are all those stopping at s. The
procedure initializes the work site’s whiteboard with the information needed to
find work, do work, and compete to add work. More precisely, when a work site
ws is initialized, its parent is set to the work site from which it was discovered
(null in the homebase’s case) and its children are initially null. The carriers it
will service are added to Csubtree, the set of carriers in the work tree at and below
this work site. The same carriers are also added to Cwork, the set of carriers in
the subtree with unexplored stops, and Clocal, the set of carriers serviced by this
work site. For each carrier c added to Clocal, the agent setting up the whiteboard
creates three sets Uc, Dc, and Ec. The set Ec of explored stops is initialized with
the work site at r0 = ws (r0 is always the work site servicing the carrier). The
set Uc of unexplored stops is initialized with the rest of the stops on the carrier’s
route {r1, r2, . . . , rl(c)−1}, which is possible because each carrier is labelled with
its length as well as its id. The set Dc of stops being explored (and therefore
potentially dangerous sites) is initially empty.

3.2 Do Work

We now discuss how the agents do their exploration of unexplored stops (proce-
dure Do Work shown in Algorithm 1). To limit the number of agents eliminated
by black holes, we use a technique similar to the cautious walk technique used in
static networks. Consider an agent a on the work site ws of a carrier c that still
has unexplored stops, i.e. Uc 6= ∅. The agent does the following. It chooses an
unexplored stop r ∈ Uc for exploration, removes r from Uc, and adds it to the
set Dc of stops being explored. It then takes c to r and disembarks. If the agent
survives, it returns to ws using the same carrier c and disembarks. The agent
can make the trip back to ws because it knows the index of r and l(c) and can
therefore calculate the number of stops between r and ws. At ws, it removes r
from Dc and adds it to the set Ec of explored stops. At this point, the agent also
adds the site id and any other information of interest. If r is a transfer site and a
is the first to visit it (its whiteboard is blank), then, before returning to ws, the
agent proceeds as follows. It records on r’s whiteboard all the carriers that pass
by r, including their id and lengths of their route. It initializes two sets in its
own memory: the set of new carriers initially containing all the carriers stopping

Algorithm 1 Do work

Agent a is working on carrier c from work site ws.
1: procedure Do Work(carrier c)
2: while Uc 6= ∅ do
3: choose a stop r from Uc

4: Uc ← Uc \ {r} . Remove r from the set of unexplored stops
5: Dc ← Dc ∪ {r} . Add r to the set of stops being explored
6: take c to r and disembark

. If not eliminated by black hole
7: if r is a transfer site ∧ whiteboard is blank then
8: a.newC ← ∅ . Initialize agent’s set of new carriers
9: a.existingC ← ∅ . Initialize agent’s set of existing carriers

10: for each carrier c stopping at r do
11: record c on whiteboard
12: a.newC ← a.newC ∪ {c} . Add carrier to agent’s set of new carriers
13: end for
14: end if
15: take c to ws and disembark
16: Dc ← Dc \ {r} . Remove r from the set of stops being explored
17: Ec ← Ec ∪ {r} . Add r to the set of explored stops
18: if r was a transfer site then
19: Compete to Add Work
20: end if
21: end while
22: end procedure

at r; and the set of existing carriers, initially empty. These sets are used in the
next procedure that we discuss: competing to add work.

3.3 Compete to Add Work

When an agent a discovers that a stop r is an unvisited transfer site, that stop is
a potential new work site for the other carriers stopping at it. There is a problem,
however: other agents may have independently discovered some or all of those
carriers stopping at r. To ensure that each carrier has only one associated work
site in the work tree, in our algorithm agent a must compete with all those other
agents before it can add r as the new work site in the tree for those carriers.
We use Csubtree on the work sites in the work tree to decide the competition (if
any).

Let us describe the actions that agent a performs; let a have just finished
exploring r on carrier cws from work site ws and found that r is a new transfer
site. The agent has a set of new carriers that initially contains all the carriers
stopping at r, a set of existing carriers that is initially empty, and is currently
on its work site ws. The agent walks up the work tree from ws to s checking
the set of new carriers against Csubtree on each work site. If a new carrier is not
in Csubtree, the agent adds it. If a new carrier is in Csubtree, the agent moves it

to the set of existing carriers. The agent continues until it reaches s or its set
of new carriers is empty. The agent then walks down the work tree to ws. It
adds each carrier in its set of new carriers to Cwork on each work site on the
way down to ws. For each carrier in its set of existing carriers, it removes the
carrier from Csubtree on the work site if it was the agent that added it. When
it reaches ws, it removes the existing carriers and if there are no new carriers,
it continues its work on cws. If there are new carriers, the agent adds r as a
child of ws and goes to r. At r, the agent initializes it as a work site using the
Initialize Work Site procedure with ws as its parent and the set of new
carriers as its carriers. The agent then returns to ws and continues its work on
cws. The procedure Compete to Add Work, shown in Algorithm 2, ensures
the following properties:

Lemma 1 All new work is reported to the root.

Lemma 2 If a new carrier is discovered, it is added to the work tree within
finite time.

Lemma 3 A carrier is always serviced from a single work site.

3.4 Find Work

Now that we have seen work being done and new work added to the tree, it is
easy to discuss how an agent a finds work. When a work site is initialized, its
parent is set to the work site from which it was discovered (null in the homebase’s
case) and its children are initially null. As mentioned before, each work site has
a set Cwork that contains the carriers in its subtree with unexplored stops.

If Cwork on the current work site is not empty, an agent a looking for work
chooses a carrier c and walks down the tree until it reaches the work site ws
servicing c or it finds that c is no longer in Cwork. Assume that agent a reaches
ws without finding c missing from Cwork. Then a works on c until it is either
eliminated by a black hole or Uc is empty. If the agent survives and is the first
agent to discover that Uc is empty, it walks up the tree from ws to s removing c
from Cwork along the way. So, it is possible for an agent descending to do work
on c to find out before it reaches ws that the work on c is finished. In that case,
the agent starts over trying to find work.

If agent a looking for work finds that Cwork at the current work site is empty,
it moves to the work site’s parent and tries again. If it reaches the root without
finding work but the termination condition is not met (there are fewer than
nC carriers in the work tree), the agent waits (loops) until new work arrives or
the termination condition is finally met. The procedure Find Work, shown in
Algorithm 3, ensures the following property:

Lemma 4 Within finite time, an agent looking for work either finds it or waits
on the root.

Algorithm 2 Compete to Add Work

Agent a has found a new transfer site r while exploring carrier cws from work site
ws and is competing to add it to the work tree with ws as r’s parent.

1: procedure Compete to Add Work
. Walk up tree

2: repeat
3: take the appropriate carrier to parent and disembark
4: for c ∈ a.newC do
5: if c ∈ Csubtree then
6: a.newC ← a.newC \ {c} . Remove from set of new carriers
7: a.existingC ← a.existingC ∪ {c} . Add to set of existing carriers
8: else
9: Csubtree ← Csubtree ∪ {c}

10: end if
11: end for
12: until (on s) ∨ (a.newC = ∅)

. Walk down tree
13: while not on ws do
14: for c ∈ a.newC do
15: Cwork ← Cwork ∪ {c} . Add new carriers with work in subtree
16: end for
17: for c ∈ a.existingC do
18: if a added c to Csubtree then
19: Csubtree ← Csubtree \ {c} . Remove carrier from subtree set
20: end if
21: end for
22: take appropriate carrier to child in direction of ws and disembark
23: end while

. Remove any existing carriers on ws
24: for c ∈ a.existingC do
25: if a added c to Csubtree then
26: Csubtree ← Csubtree \ {c} . Remove carrier from subtree set
27: end if
28: end for

. Add any new carriers to the tree with r as their work site
29: if a.newC 6= ∅ then
30: children← children ∪ {r}
31: for c ∈ a.newC do
32: Cwork ← Cwork ∪ {c}
33: end for
34: take carrier cws to r and disembark
35: Initialize Work Site(ws, a.newC)
36: take carrier cws to ws and disembark
37: end if
38: Do Work(cws) . Keep working on original carrier
39: end procedure

Algorithm 3 Find work

Agent a is looking for work in the work tree. The agent knows nC , the number of
carriers, which is needed for termination. Let ws be the current work site.

1: procedure Find Work
. Main loop

2: while (not on s) ∨ (Cwork 6= ∅) ∨ (|Csubtree| < nC) do
. Choose carrier to work on and go there

3: if Cwork 6= ∅ then
4: choose carrier c from Cwork

5: while (c /∈ Clocal) ∧ (c ∈ Cwork) do
6: take appropriate carrier to child in direction of c and disembark
7: end while
8: if c ∈ Clocal then . On the work site servicing c
9: Do Work(c)

10: if c ∈ Cwork then . The first agent to find no work left on c
11: while not on s do
12: Cwork ← Cwork \ {c}
13: take appropriate carrier to parent and disembark
14: end while
15: Cwork ← Cwork \ {c}
16: end if
17: end if
18: else . No work in subtree
19: take appropriate carrier to parent and disembark
20: end if
21: end while
22: end procedure

3.5 Correctness

Let us now prove the correctness of algorithm SubwayExplore. To do so, we need
to establish some additional properties of the Algorithm:

Lemma 5 Let ri ∈ R(c) be a black hole. At most one agent is eliminated by
stopping at ri when riding c.

Lemma 6 There is at least one agent alive at all times before termination.

Lemma 7 An agent that undertakes work completes it within finite time.

Lemma 8 If there is work available, an agent eventually does it.

Lemma 9 All carriers are eventually added to the tree.

We can now state the correctness of our algorithm:

Theorem 1 Protocol SubwayExplore correctly and in finite time solves the map-
ping problem with k ≥ γ(G) + 1 agents in any subway graph G.

4 Bounds and Optimality

We now analyze the costs of our algorithm, establish lower bounds on the
complexity of the problem and prove that they are tight, showing the optimality
of our protocol.

Theorem 2 The algorithm solves black hole search in a connected dangerous
asynchronous subway graph in O(k ·n2C · lR +nC · l2R) carrier moves in the worst
case.

We now establish some lower bounds on the worst case complexity of any
protocol using the minimal number of agents.

Theorem 3 For any α, β, γ, where α, β > 2 and 1 < γ < 2αβ, there exists
a simple subway graph G with α carriers with maximum route length β and
faulty load γ in which every agent-optimal subway mapping protocol P requires
Ω(α2 ·β ·γ) carrier moves in the worst case. This result holds even if the topology
of G is known to the agents.

Proof. Consider a subway graph G whose transfer graph is a line graph; all α
routes are simple and have the same length β; there exists a unique transfer stop
between neighbouring carriers in the line graph; no transfer site is a black hole,
and the number of black holes is γ. The agents have all this information, but do
not know the order of the carriers in the line.

Let P be a subway mapping protocol that always correctly solves the problem
within finite time with the minimal number of agents k = γ + 1. Consider an
adversary A playing against the protocol P. The power of the adversary is the
following: 1) it can choose which stops are transfers and which are black holes; 2)
it can “block” a site being explored by an agent (i.e., delay the agent exploring
the stop) for an arbitrary (but finite) amount of time; 3) it can choose the order
of the carriers in the line graph. The order of the carrier will be revealed to the
agents incrementally, with each revelation consistent with all previous ones; at
the end the entire order must be known to the surviving agents.

Let the agents start at the homebase on carrier c1. Let q = d k−2β−2e. Assume

that the system is in the following configuration, which we shall call Flip(i), for
some i ≥ 1: (1) carrier c1 is connected to c2, and carrier cj (j < i) is connected to
cj+2; (2) all stops of carriers c1, c2, . . . , ci have been explored, except the transfer
stop ri+1, leading from carrier ci−1 to carrier ci+1, and the stop ri+2 on carrier
ci+1, which are currently being explored and are blocked by the adversary; and
(3) all agents, except the ones blocked at stops ri+1 and ri+2, are on carrier ci.
See Fig. 2. If the system is in configuration Flip(i), with i < α−q, the adversary
operates as follows.

(1) The adversary unblocks ri+1, the transfer site leading to carrier ci+1. At
this point, all k− 1 unblocked agents (including the k− 2 currently on ci) must
move to ri+1 to explore ci+1 without waiting for the agent blocked at ri+2 to
come back. To see that all must go within finite time, assume by contradiction

c1ci−3 ci−2ci−1 cici+1 ci+2

×
ci+3 ci+4

Blocked
transfer site

Unblocked
transfer site

Unexplored
carriers

Explored
carriers

Carrier with
starting site

Carrier being
explored

Fig. 2: Transfer graph in the lowerbound proof

that only 1 ≤ k′ ≤ k − 2 agents go to explore ci+1 within finite time, while
the others never go to ri+1. In this case, the adversary first reveals the order of
the carriers in the line graph by assigning carrier cj to be connected to cj+1 for
α > j > i. Then the adversary chooses the following stops to be black holes:
ri+2, the first k′ non-transfer stops visited by the k′ agents, and other k− k′− 2
non-transfer stops arbitrarily chosen in those carriers. Notice this can be done
because, since q = d k−2β−2e, the number of non-transfer stops among these carriers

is q(l − 2) + 1 ≥ k − 1. Thus all k′ agents will enter a black hole. Since none
of the other agents will ever go to ci+1, the mapping will never be completed.
Hence, within finite time all k − 1 non blocked agents must go to ri+1, with a
total cost of O(k · i · β) carrier moves.

(2) The adversary blocks each stop of ci+1 being explored, until k − 1 stops
are being explored. At that point, it unblocks all those stops except one, ri+3.
Furthermore, it makes ri+2 the transfer stop leading to carrier ci+2.

Notice that after these operations, the system is precisely in configuration
Flip(i+1). Further observe now that, from the initial configuration, when all
agents are at the homebase and the protocol starts, the adversary can create
configuration Flip(0) by simply blocking the first two stops of c1 being explored,
and making one of them the transfer to c2. In other words, within finite time, the
adversary can create configuration Flip(0); it can then transform configuration
Flip(i) into Flip(i+1), until configuration Flip(α−q−1) is reached. At this point
the adversary reveals the entire graph as follows: it unblocks rα−q+1, the transfer
site leading to carrier cα−q+1; it assigns carrier cj to be connected to cj+1 for
α > j > α − q; finally it chooses k − 1 non-transfer stops of these carriers to
be black holes; notice that they can be chosen because, since q = d k−2β−2e, the

number of non-transfer stops among these carriers is q(l − 2) + 1 ≥ k − 1.
The transformation from Flip(i) into Flip(i+1) costs the solution protocol P

at least Ω(k·i·β) carrier moves, and this is done for 1 ≤ i ≤ α−q; since α(l−2) ≥
(k − 2) it follows that α− q = α− d k−2β−2e ≥ α−

k−2
β−2 ≥

α
2 ; hence,

∑
1≤i≤α−q i =

O(α2). In other words, the adversary can force any solution protocol to use
Ω(α2 · β · γ) carrier moves.

Theorem 4 For any α, β, γ, where α, β > 2 and 1 < γ < β − 1, there exists a
simple subway graph G with α carriers with maximum route length β and faulty

load γ in which every subway mapping protocol P requires Ω(α·β2) carrier moves
in the worst case. This result holds even if the topology of G is known to the
agents,

Theorem 5 Protocol SubwayExplore is agent-optimal and move-optimal.

References

1. B. Bui-Xuan, A. Ferreira, and A. Jarry. Computing shortest, fastest, and foremost
journeys in dynamic networks. Int. J. Found. Comp. Sci., 14(2):267–285, 2003.

2. J. Chalopin, S. Das, and N. Santoro. Rendezvous of mobile agents in unknown
graphs with faulty links. In DISC 2007, pages 108–122. Springer, 2007.

3. C. Cooper, R. Klasing, and T. Radzik. Searching for black-hole faults in a network
using multiple agents. In OPODIS 2006, pages 320–332. Springer, 2006.

4. C. Cooper, R. Klasing, and T. Radzik. Locating and repairing faults in a network
with mobile agents. Theoretical Computer Science, to appear, 2010.

5. J. Czyzowicz, D. Kowalski, E. Markou, and A. Pelc. Complexity of searching for a
black hole. Fundamenta Informaticae, 71(2,3):229–242, 2006.

6. J. Czyzowicz, D. Kowalski, E. Markou, and A. Pelc. Searching for a black hole in
synchronous tree networks. Combin. Probab. Comput., 16(4):595–619, July 2007.

7. S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Searching for a black hole in
arbitrary networks. Distibuted Computing, 19(1):1–19, 2006.

8. S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Mobile search for a black
hole in an anonymous ring. Algorithmica, 48(1):67–90, 2007.

9. P. Flocchini, D. Ilcinkas, and N. Santoro. Ping pong in dangerous graphs: Optimal
black hole search with pure tokens. In DISC 2008, 227–241. Springer, 2008.

10. P. Flocchini, M. Kellett, P. Mason, and N. Santoro. Map construction and
exploration by mobile agents scattered in a dangerous network. In IPDPS 2009,
1-10, 2009.

11. P. Flocchini, B. Mans, and N. Santoro. Exploration of periodically varying graphs.
In ISAAC 2009, volume 5878 of LNSC, pages 534–543. Springer, 2009.

12. P. Glaus. Locating a black hole without the knowledge of incoming links. In
ALGOSENSORS 2009, volume 5804 of LNCS, pages 128–138. Springer, 2009.

13. R. Klasing, E. Markou, T. Radzik, and F. Sarracco. Hardness and approximation
results for black hole search in arbitrary networks. Theoretical Computer Science,
384(2–3):201–221, October 2007.

14. R. Klasing, E. Markou, T. Radzik, and F. Sarracco. Approximation bounds for
black hole search problems. Networks, 54(4):216–226, 2008.

15. A. Kosowski, A. Navarra, and M. C. Pinotti. Synchronization helps robots to
detect black holes in directed graphs. In OPODIS 2009, 86–98. Springer, 2009.

16. C. Liu and J. Wu. Scalable routing in cyclic mobile networks. IEEE Trans. Parallel
Distrib. Syst., 20(9):1325–1338, 2009.

17. R. O’Dell and R. Wattenhofer. Information dissemination in highly dynamic
graphs. In 2005 Joint Work. on Foundations of Mobile Computing, 104–110, 2005.

18. X. Zhang, J. Kurose, B. Levine, D. Towsley, and H. Zhang. Study of a bus-
based disruption-tolerant network. In 13th Int. Conf. on Mobile Computing and
Networking, 206, 2007.

19. Z. Zhang. Routing in intermittently connected mobile ad hoc networks and delay
tolerant networks: Overview and challenges. IEEE Communications Surveys &
Tutorials, 8(1):24–37, 2006.

