
THE UN-MERGING PROBLEM

Nicola Santoro
School of Computer Science

Carleton University
Ottawa, IS 5B6

CANAD A

The purpose of this note is to share an intriguing problem which seems to ope n
several unexpected questions . Many of the readers might already have heard of it (in one
of its many formulations) since I have described the problem on several occasions t o
many people in the "algorithm" community ; since no definite solution has been found s o
far, I have decided to make the problem "public" .

Following are three formulations of the problem (it is up to you to choose the one yo u
are most comfortable with) .

F 1 . Given an array containing two types of elements, say red and green, we want t o
rearrange the array so that all the red elements appear before the green ones whil e
maintaining the relative ordering between the reds as well as between the greens (i .e . ,
if a and b are both red (green) and a was originally stored before b, then a must still be
stored before b after the rearrangment). This can be trivially accomplished in time linear
in the size n of the array if 0(n) workspace is available (counting both comparisons an d
data movements) . What is the complexity if only 0(1) workspace is available ?

F2. In the process of sorting an array, you are told that all elements smaller than 35 4
are already sorted, and so are the elements greater than 354 . Having only 0(1)
workspace, how long does it takes you now to sort the array using thi s
information?

F3. You are given a sorted array C which was obtained by merging two sorted array s
A and B . You now want to undo the merging in situ ; i .e., move all the elements whic h
came from A before the elements which came from B maintaining both of them sorted .
Assume that you can test in 0(1) time from which array an element in C originally came.
What is the cost of unmerging in situ?

Since in-situ merging can be done in linear time, the immediate answer (at least ,
mine and of those who were posed the question) is : linear . However, when trying to
produce a solution algorithm, the best bound achieved was (and still is) 0(n log n) .

This opens a set of questions . The first is obviousl y

01 . Is it possible to unmerge in-situ in linear time ?

1'7, 1-5

The other questions are meaningful only if the answer to 01 is negative :

Q2. Why ? Why can't we just apply an 'in-situ' merging algorithm backward? Wha t
makes in-situ un-merging intrinsically more difficult than in-situ merging ?

03. Is 0(n log n) the best we can do? Such a lower bound would imply that even if you
know (for free) that all the elements greater than k are already sorted and s o
are those smaller, you still have to spend 0(n log n) to complete the sort in-situ ;
or, in other words, size of the workspace is more important than this knowledg e
about pre-sortness .

Q4. If it cannot be done using constant workspace, then what is the smallest amoun t
of extra storage needed to obtain a linear bound ?

An observation (made by Shmuel Zaks [Technion]), which supports an affirmativ e
answer to Q2 is that (by taking red=0 and green =1) any network solving this proble m
must have complexity 0(n log n) .

To obtain an 0(n log n) algorithm is not difficult : any in-situ sorting algorithm can b e
modified to solve the problem using 0(1) workspace .

An elegant 0(n log n) solution (suggested by Mike Atkinson [Carleton U .] upon recallin g
one of Bentley's "pearls") is the following . First observe that (using Formulation 1), i f
the array is composed of a sequence of greens followed by a sequence of reds, then w e
can solve the problem (call it a "switch") in linear time (easy to prove) . In general, the
array will be an alternation of sequences of consecutive reds and of consecutive
greens , as shown below

RGRGRGRGRG	
If we now "switch" the neighbouring sequences underlined belo w

RRGBJiR RG
we obtain

RRGGGRRRGG
thus reducing the number of sequences of consecutive reds and consecutive greens b y
one third in one "pass" ; we can now repeat the same process until the desired result i s
achieved. Since each "pass" can be performed in linear time with 0(1) workspace, the 0(n
log n) worst case bound follows,

Is there any other 'neat' algorithm for this problem ?

As for 04, I have observed that we can unmerge in linear time with 0(n 1/2)
workspace: just partition the array into n ,12 groups of consecutive n 2 elements each ,
and use the 0(n i12) workspace to solve the problem in each group (in total linear time) ;
the resulting number of alternating sequences is now at most 2n 1 '2 which allows for a
linear solution using 0(n 1 "2) workspace.

1 ;% . 1 ...- o

