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The purpose of this note is to share an intriguing problem which seems to open
several unexpected questions. Many of the readers might already have heard of it (in one
of its many formulations) since | have described the problem on several occasions to
many people in the "algorithm" community; since no definite solution has been found so
far, | have decided to make the problem "public”.

Following are three formulations of the problem (it is up to you to choose the one you
are most comfortable with).

F1. Given an array containing two types of elements, say red and green, we want to
rearrange the array so that all the red elements appear before the green ones while
maintaining the relative ordering between the reds as well as between the greens (ie,
if a and b are both red (green) and a was originally stored before b, then a must still be
stored before b after the rearrangment). This can be trivially accomplished in time linear
in the size n of the array if O(n) workspace is available (counting both comparisons and
data movements). What is the complexity if only O(1) workspace is availabie?

F2. In the process of sorting an array, you are told that all elements smaller than 354
are already sorted, and so are the elements greater than 354. Having only O(1)
workspace, how long does it takes you now to sort the array using this
information?

F3. You are given a sorted array C which was obtained by merging two sorted arrays
A and B. You now want to undo the merging in situ; i.e., move all the elements which
came from A before the elements which came from B maintaining both of them sorted.
Assume that you can test in O(1) time from which array an element in C originally came.
what is the cost of unmerging in situ?

Since in-situ merging can be done in linear time, the immediate answer (at least,
mine and of those who were posed the question) is: linear. However, when trying to
produce a solution algorithm, the best bound achieved was (and still is) O(n log n).

This opens a set of questions. The first is obviously

Q1. Is it possible to unmerge in-situ in linear time?
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The other questions are meaningful only if the answer to Q! is negative:

Q2. wWhy ? Why can't we just apply an 'in-situ’ merging algorithm backward? What
makes in-situ un-merging intrinsically more difficult than in-situ merging?

Q3. Is O(n log n) the best we can do? Such a lower bound would imply that even if you
know (for free) that all the elements greater than k are already sorted and so
are those smatler, you still have to spend O(n log n) to complete the sort in-sity;
or, in other words, size of the workspace is more important than this knowledge
about pre-sortness.

Q4. If it cannot be done using constant workspace, then what is the smallest amount
of extra storage needed to obtain a linear bound?

An observation (made by Shmuel Zaks [Technion]), which supports an affirmative
answer to Q2 is that (by taking red=0 and green=1) any network solving this problem
must have complexity O(n log n).

To obtain an O(n log n) algorithm is not difficult: any in-situ sorting algorithm can be
modified to solve the problem using O(1) workspace.

An elegant O(n log n) solution (suggested by Mike Atkinson [Carieton U.] upon recalling
one of Bentley's “pearis’) is the following. First observe that (using Formulation 1), if
the array is composed of a sequence of greens followed by a sequence of reds, then we
can solve the problem (cali it a "switch") in linear time (easy to prove). In general, the
array will be an alternation of sequences of consecutive reds and of consecutive
greens, as shown below

RGRGRGRGRG ...
If we now “switch” the neighbouring sequences underlined below

RGRGRGRGRG ..
we obtain

RRGGGRRRGG.
thus reducing the number of sequences of consecutive reds and consecutive greens by
one third in one “pass”; we can now repeat the same process until the desired result is
achieved. Since each "pass” can be performed in linear time with O(1) workspace, the O(n
10g n) worst case bound follows,

ts there any other ‘neat’ algorithm for this problem?

As for Q4, | have observed that we can unmerge in linear tlme with O(n‘/2)
workspace: ]ust partItIon the array into n! groups of consecutive n1/2 elements each,
and use the o(n!/ )workspace to solve the problem in each group (in total linear time);
the resulting number of altematmg sequences is now at most 2n! /2 which allows for a
linear solution using 0(n!/2) workspace.



