
International Journal of Networking and Computing – www.ijnc.org

ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume X, Number Y, pages 1–13, January 20XX

ON THE COST OF WAKING UP

Stefan Dobrev

Slovak Academy of Sciences
Bratislava, Slovakia

Rastislav Královič

Comenius University
Bratislava, Slovakia.

and

Nicola Santoro

Carleton University
Ottawa, Canada

Received: (received date)
Revised: (revised date)

Accepted: (accepted date)
Communicated by Editor’s name

Abstract

Often, in a distributed system, a task must be performed in which all entities must be
involved; however only some of them are active, while the others are inactive, unaware of the
new computation that has to take place. In these situations, all entities must become active, a
task known as Wake-Up. It is not difficult to see that Broadcast is just the special case of the
Wake-Up problem, when there is only one initially active entity. Both problems can be solved
with the same trivial but expensive solution: Flooding. More efficient broadcast protocols exist
for some classes of dense interconnection networks. The research question we examine is whether
also wake-up can be performed significantly better in three classes of regular interconnection
networks: hypercubes, complete networks, and regular complete bipartite graphs.

In a d-dimensional hypercube network of n nodes, the cost of broadcasting is Θ(n) even if
the edge labeling is arbitrary and the network is asynchronous. We show that, instead, wake-up
requires Ω(n logn) message transmissions in the worst case, even if the network is synchronous
and has sense of direction. Similarly, in a regular complete bipartite network Kp,p of n = 2p
anonymous entities the cost of broadcasting is Θ(n) even if the edge labeling is arbitrary and the
network is asynchronous; instead, we show that wake-up requires Ω(n2) message transmissions
in the worst case, even if the network is synchronous and has sense of direction.

In a complete network Kn of n entities, the cost of broadcasting is minimal: n− 1 message
transmissions suffice even if the entities are anonymous. In this paper we prove that the cost
of wake-up is order of magnitude higher. In the case of anonymous entities, Ω(n2) message
transmissions are needed in the worst case, even if the network is fully synchronous and has
sense of direction. In the case of entities with distinct ids, Ω(n logn) transmissions need to be
performed and the bound is tight. This shows that, when the entities have Ids, Wake-Up is
computationally as costly as the apparently more complex Election problem.

1

Wake-Up

Keywords: distributed algorithms, message complexity, sense of direction, complete networks,
complete bipartite graphs, hypercubes, wake-up, reset, election

1 Introduction

1.1 Framework

Consider a distributed system composed of a set V of computational entities connected by a set
E ⊆ V × V of communication links; the graph G = (V,E) describes the resulting network topology.
The entities communicate by sending and receiving messages over the links, and cooperate to achieve
a common goal (e.g., solve a problem, perform a task, etc). In such a system, we are often faced
with the following situation: A task has to be performed in which all entities must be involved;
however only some of them are aware (because of a spontaneous event, or having locally terminated
a previous computation) that the (new) computation must be started. A similar situation occurs
when, during the execution of a computation, some entities detect the occurrence of an anomalous
condition and independently decide that the ongoing computation need to be restarted. In these
situations, all entities must become aware and active within finite time. Obviously this process can
only be started by the entities which are aware already, the initiators; notice that, however, these
entities do not necessarily know which other entities (if any) are initiators, nor their location.

This problem, called Wake-Up, Reset, or Restart, is one of the most basic primitive tasks,
employed in a variety of contexts, such as self-stabilization and checkpoint-recovery (e.g., see [3, 4, 5,
9, 10, 11, 15, 18, 19, 20]), and it is related to several other computations. For example, in synchronous
systems, it is directly related to the Unison problem requiring the global synchronization of local
clocks (e.g., [2, 11, 15]). It is not difficult to see the relationship between Broadcast and Wake-Up:
a broadcast is a wake-up with only one initially aware entity; conversely, a wake-up is a broadcast
with possibly many initiators (i.e., more that one entity initially has the information). In other
words, Broadcast is just a special case of the Wake-Up problem.

The cost of a wake-up is the total number of message transmissions performed during the entire
process in the worst case. This cost depends on many factors, first and foremost the topological
structure of the nework, the number and location of the initiators, but also on a variety of other
factors such as the whether the entities are anonymous or have distinct ids, whether the system is
synchronous or asynchronous, whether the local edge labelings provide a global sense of direction or
is arbitrary, etc.

Interestingly, regardless of any of those factors, both Broadcast and Wake-Up can be solved
by the same standard technique, Flooding, which consists of two simple rules:

(1) if initiator, send the message to all your neighbours;
(2) if not initiator, receiving the message for the first time, forward it to all the other neighbours.

The cost of Flooding is O(m) messages, regardless of the number of initiators, where m is the
number of links in the network. Although reasonable in sparse networks (i.e., when m = O(n)), this
cost becomes prohibitive in dense networks. Indeed, much more efficient Broadcast protocols exist
for some classes of dense interconnection networks, such as hypercubes, complete bipartite graphs,
and complete networks.

The research question we examine is whether also Wake-Up can be performed significantly
better in specific classes of networks, and under what conditions. In this paper we examine three
classes of interconnection networks: hypercubes, complete bipartite graphs, and complete networks,
and establish tight bounds on the complexity of Wake-Up in such networks.

1.2 Contributions

In a d-dimensional hypercube network Hd of n = 2d anonymous entities, the cost of broadcasting
is minimal, O(n), even if the edge labeling is arbitrary [7, 8]. We show that, instead, to perform
a wake-up requires n log n message transmissions in the worst case, even if the network is fully
synchronous and there is sense of direction. The bound is tight since it can be achieved by just
flooding the network.

2

International Journal of Networking and Computing

Similarly, in a regular complete bipartite network Kp,p of n = 2p anonymous entities, the cost
of broadcasting is O(n) even if the edge labeling is arbitrary and the network is asynchronous: the
initiator sends the message to all its p neighbours, only one of those messages containing a special
marker; the neighbour receiving the marker will then forward the message to all its other p − 1
neighbours. We show that, instead, Wake-Up may require Ω(n2) message transmissions in the
worst case, even if the network is fully synchronous and has sense of direction. The bound is tight
since it can be achieved by just flooding the network.

Also in a complete network Kn of n entities, the cost of broadcasting is minimal: n− 1 message
transmissions suffice even if the entities are anonymous. In this paper, we show that the cost of
Wake-Up is order of magnitude higher. More precisely, in the case of anonymous entities, 1

2 (n2−2n)
message transmissions may be needed, even if the network is fully synchronous and there is sense of
direction. Also in this case the bound is tight since it can be achieved by just flooding the network.

If the entities have unique Ids, then it is well known that a much more complex problem, Elec-
tion, can be solved in an asynchronous complete graph with O(n log n) message transmissions
[1, 6, 14, 16, 21]. We show that the apparently much simpler Wake-Up problem cannot be solved
with a better complexity; in fact, at least 1

2n log n message transmissions need to be performed in the
worst case. Since any Election protocol solves also Wake-Up, the lower bound is asymptotically
tight, and it indicates that Wake-Up is computationally as expensive as Election.

2 Definitions and Terminology

Consider a distributed system composed of a set V of computational entities connected by a set
E ⊆ V × V of bidirectional edges (or links); the graph G = (V,E), assumed to be simple, describes
the communication topology of the system. Given a node x ∈ V , let E(x) = {(x, y) ∈ E} denote the
set of edges incident on x. Associated to each node x ∈ V is a local injective labeling λx : E(x)→ L,
where L is a set of labels called port numbers; notice that associated to each edge (x, y) are two
labels: λx(x, y) at x, and λy(x, y) at y. Let Λ be the extension of λ from edges to walks, that is:
Λ([(x0, x1), (x1, x2), . . . , (xm−1, xm)]) = [λx0

(x0, x1), . . . , λxm−1
(xm−1, xm)] .

An important and powerful property is that of sense of direction (e.g., [12, 13]); to define it,
we need the concept of consistent coding and decoding. A coding function f in (G,λ) is a function
which maps sequences of labels associated to walks in G to a set N of names; a coding function f
is consistent for λ if and only if ∀x, y, z ∈ V,∀π1 ∈ P [x, z], π2 ∈ P [x, y],

f(Λ(π1)) = f(Λ(π2)) ⇐⇒ y = z.

where P [x, y] denotes the set of walks from x to y. Given a consistent coding function f , a consistent
decoding function for f is any function h : L × N → N such that ∀x, z ∈ V,∀(x, y) ∈ E(x),∀π ∈
P [y, z], π′ ∈ P [x, z],

h(λx(x, y), f(Λ(π))) = f(Λ(π′)).

We say that (G,λ) has sense of direction iff there exist a consistent coding function f for λ and a
consistent decoding function for f .

Some important examples of labelings that are sense of direction in any networks, in hypercubes,
and in complete bipartite graphs, respectively, are described next. A chordal labeling of a graph
G = (V,E), with |V | = n, is defined by fixing a cyclic ordering of the nodes < v0, v1, ..., vn−1 >
and, for each link (vi, vj), assigning label (i − j)mod n at vi and label (j − i)mod n at vj ; (thus,
L ⊆ {1, . . . , n−1}); see Figure 1. With this labeling the network has sense of direction [12]. Consider
for example, the set of names N = {0, 1, . . . , n − 1} and the coding function f defined as follows:
for any walk π = [(x0, x1), (x1, x2), . . . , (xm−1, xm)]

f(Λ(π)) = (

m−1∑
i=0

λxi(xi, xi+1)) modn

It is easy to verify that f is indeed consistent and has a consistent decoding.

3

Wake-Up

1"

3"

2"

4"
5"

1"

3"
2"

4"
5"

1"

3"
2"

4"
5"

1"
3" 2"

4"
5"

1"
3"2"
4"

5"

1"
3"

2"

4" 5"

Figure 1: Complete network K6 with chordal labeling.

The traditional dimensional labeling of a d-dimensional hypercube Hd of n = 2d nodes, where
each edge is consistently labeled with one of the hypercube’s dimensions (i.e., L = {1, . . . , d}, see
Figure 2), creates a sense of direction [12]. For example, the set of names is N ⊂ L∗, and computing
the coding of the sequence of labels corresponding to a walk consists in applying the following two
steps: (1) remove from the sequence of labels any pairs of identical labels; and (2) lexicographically
sort the labels still in the sequence. It is easy to verify that f is indeed consistent and has a consistent
decoding.

1!

3!
2!

1!

2!

3!

3! 2!
1! 1!

3!

1! 1!

2!

1!
2!

3!

3! 2!

1!
3!

2!
2! 3!

Figure 2: Hypercube H3 with dimensional labeling.

In a regular complete bipartite graph Kp,p of n = 2p nodes {a1, a2, . . . , ap, b1, b2, . . . , bp}, the
set of edges is just {(ai, bj) : 1 ≤ i, j ≤ p}. In the standard cyclic labeling of Kp,p, edge (ai, bj) is
assigned label ((j − i) mod p) + 1 at ai, and label ((i − j) mod p) + 1 at bj (see Figure 3 for an
example). Given a walk
pi = [(x0, x1), (x1, x2), . . . , (xm−1, xm)], let |π| = m denote its length. Consider now the function

g(Λ(π)) = (

m−1∑
i=0

(λxi
(xi, xi+1)− 1) mod p

Give two walks π1, π2 starting from the same node x, it is not difficult to verify that they end in the
same node y if and only if g(Λ(π1)) = g(Λ(π2)) and |π1| and |π2| have the same parity (i.e., they are
both even or both odd). The corresponding coding function has a consistent decoding, thus, with
this labeling, the network has sense of direction.

The entities communicate by sending finite sequence of bits, called messages. The primitive
operation is “send to l”, where l is one of the local port numbers. Once a node x issues such a
command, the message will be received in its integrity and in finite time at the neighbouring node y

4

International Journal of Networking and Computing

1" 1" 1" 1"

1" 1" 1" 1"
2"

2" 2"
2"

2"
2"

2"2" 3"
3" 3"

3"

3"
3"3"

3"

4"

4"
4"

4"

4"
4"

4"
4"

Figure 3: Complete bipartite graph K4,4 with cyclic labeling.

connected to the link (x, y) labeled l at x. All entities are behaviourally identical in that they obey
the same protocol. They are said to be anonymous if they do not use distinguished identifiers in
their protocols, and with Ids if each entity has a distiguished value from a totally ordered set, and it
uses it in its protocols. In systems with Ids, each entity is aware of its identifier, but not necessarily
of those of its neighbours; of course, this information can be acquired through communication.

In a synchronous system, there is a common unit of time (e.g., all local clocks tick simultaneously),
it takes one unit of time for a transmitted message to reach the neighbouring destination, and
processing time is negligible (i.e., instantaneous). In a asynchronous system, there is no common
notion of time, and processing and transmissions delays are (finite but) unpredictable.

Initially, some nodes are active, the others inactive; the number and locations of the active entities
is a priori unknown. The Wake-Up problem requires all entities to become active within finite time.

The cost measure is total number of messsage transmissions.

3 Distributed Wake-Up in Hd

In a d-dimensional hypercube network Hd of n = 2d anonymous entities, the cost of broadcasting
is Θ(n) even if the edge labeling is arbitrary [7, 8]. By contrast, we show that Wake-Up requires
order of magnitude more message transmissions, even if the network is synchronous and has sense
of direction.

Theorem 1 Wake-Up in hypercubes of n anonymous nodes requires the transmission of at least
n log n messages in the worst case. This result holds even if the class of networks is restricted to
synchronous hypercubes with sense of direction.

Proof By contradiction, let P be a synchronous protocol that correctly solves Wake-Up in
every hypercube of n anonymous nodes and does so with less than n log n message transmissions in
hypercubes with sense of direction. Let H be a hypercube of n anonymous entities with the classical
dimensional labeling; thus H has sense of direction.

Consider the synchronous execution E of P in H where all entities are initially active. Since
the entities are anonymous and because of the symmetry of the labeling, at each step every entity
will be in the same state, experience the same events (reception of specific messages from specific
ports), and perform the same actions (transmission of specific messages through specific ports). In
particular, since in the dimensional labeling an edge has the same label at both end nodes, whenever
an entity sends a message on an incident edge, it will also receive the same message from that edge.
Since, by assumption, P is correct, at some time t all entites will terminate. Let L(x) be the set
of port numbers on which a message was sent to or received from entity x during execution E′.
Because of the symmetry, L(x) = L(y) = L for all entities x and y; hence the total number M of
message transmissions is M ≥ n|L|. Since M < n log n by assumption, then k = |L| < log n = d.

5

Wake-Up

Note that the set of labels L induces 2d−k disjoint subcubes of dimension k < d. Let H ′ be one
such subcube.

Consider now the synchronous execution E′ of P in H where only the entities of H ′ are initially
active, the others are inactive. Clearly for the entities of H ′, the two executions are indistingushable,
since they do not interact with entities outside of H ′. Hence at time t they will terminate; however,
at time t all the other entities are still inactive and they will never become active, contradicting the
correctness of the protocol.

�

As a consequence, the obvious technique of Flooding provides a simple and generic solution that
is worst-case optimal; furthermore, it works with the same cost also in asynchronous hypercubes
with arbitrary labelings.

4 Distributed Wake-Up in Kp,p

Consider the regular complete bipartite graph Kp,p of n = 2p entities. In such a network the solution
to Broadcast is rather simple: the sole initiator sends the message to all its p neighbours, only one
of those messages containing a special marker; the neighbour receiving the marker will then forward
the message to all its other p − 1 neighbours. Regardless of asynchrony, anonymity and arbitrary
edge-labeling, its cost of 2p− 1 = n− 1 message transmissions is clearly optimal.

By contrast, we show that Wake-Up requires orders of magnitude more message transmissions,
even if the network is synchronous and has sense of direction.

Theorem 2 Wake-Up in a regular complete bipartite graph Kp,p of n = 2p anonymous entities

requires at least n2

4 message transmissions in the worst case. This result holds even if the class of
networks is restricted to be synchronous and with sense of direction.

Proof By contradiction, let P be a protocol that correctly solves the wake-up problem and does
so with less than 1

4n
2 message transmissions in every regular complete bipartite network of size n

with sense of direction.
LetG be a regular complete bipartite network of n = 2p entities, A∪B, whereA = {a1, a2, . . . , ap}

and B = {b1, b2, . . . , bp}, with cyclic sense of direction. Thus, edge (ai, bj) is labeled (j − i)modp+ 1
at ai, and (i − j)modp + 1 at bj ; notice that if an edge is labeled j at one end, it will be labeled
(2− j) mod p at the other end.

Consider the fully synchronous execution E of P in G in which every entity starts the protocol
simultaneously and proceeds in synchronous steps. Since the entities are anonymous and because
of the symmetry of the labeling, at each step every entity will be in the same state, experience the
same events (reception of specific messages from specific ports) at the same time, and perform the
same actions (transmission of specific messages through specific ports).

In particular, if x sends a message via port number j at time t, so will everybody else; and all
of them will receive it from port number (2 − j)modp at time t + 1. Since protocol P is correct
by assumption, within a finite number of steps, say at time t̂, all the entities will simultaneously
terminate. Let S(x) be the set of port numbers on which a message was sent by entity x during
this execution. Because of the symmetry, S(x) = S(y) = S for all entities x and y; hence the
total number M of message transmissions is M = n|S|. Let R(x) be the set of port numbers on
which a message was received by entity x during this execution; again, because of the symmetry,
R(x) = R(y) = R for all entities x and y; also clearly |R| = |S|.

Since, by assumption, in every execution of P there are fewer than n2

4 message transmissions,

then M = n|S| < n2

4 ; that is, |S| < p
2 . Thus, for the set L = S ∪R of ports on which a message was

sent or received in execution E we have |L| = |R ∪ S| < p.
Let L = {l1, ..., lk}, where w.l.g. li < li+1 (1 ≤ i < k), and let L̄ = {1, ..., p} \ L = {lk+1,...,lp .

Because of the cyclic labeling and of the symmetry of transmissions/receptions in execution E (if x
sends a message via port number j at time t, so will everybody else; and all of them will receive it
from port number (2− j) mod n at time t+ 1), we have that

6

International Journal of Networking and Computing

li =

{
(2− lk−i+1)modp (1 ≤ i ≤ bk/2c) if 1 ∈ L̄
(2− lk−i+2)modp (2 ≤ i ≤ dk/2e) if 1 ∈ L

Let us now construct a regular complete bipartite network G′ on the same set of nodes with
the edge labeling defined below. Let A′ = {a1, ..., ak}, A′′ = {ak+1, ..., ap}, B′ = {b1, ..., bk}, and
B′′ = {bk+1, ..., bp}; since k < p, A′′ and B′′ are not empty. Then for (ai, bj) ∈ A × B, we assign
label λai

(ai, bj) at ai and label λbj (ai, bj) at bj , where

λai
(ai, bj) =

 l(j−i)modp+1 if 1 ≤ i, j ≤ k
lj if 1 ≤ i ≤ k, k < j ≤ p
(j − i)modp+ 1 if k < i ≤ p

and

λbj (ai, bj) =

 l(i−j)modp+1 if 1 ≤ i, j ≤ k
li if 1 ≤ j ≤ k, k < i ≤ p
(i− j)modp+ 1 if k < j ≤ p

It is easy to verify that all the local labeling functions λx are injective.

1" 1" 1" 1"

1" 1" 1" 1"
2"

2"
2" 2"

2"2"
2"2"

3"
3" 3"

3"

3"
3"3"3"

4"
4" 4"

4"

4"

4"4"
4"

Figure 4: Proof of Theorem 2: G′ with L = {1, 2, 4} and L̄ = {3}.

Let V ′ = A′ ∪B′. Observe that the subgraph Kk,k(V ′) induced by the set of the initiator nodes
is a regular complete bipartite graph on n′ = 2k nodes; the edges in Kk,k(V ′) are locally labeled
with the port numbers in L, while the edges connecting to the other nodes are labeled with the port
numbers in L̄ (see Figure 4).

Consider now the synchronous execution E ′ of P in G′ in which only the entities in V ′ = A′ ∪B′
are initially active. From the point of view of these initiators, everything in this execution happens
exactly as if they were in execution E in G: messages will be sent to and received exactly from the
same ports in L in the same steps in both executions. In particular, none of these entities will send
a message outside Kk,k(V ′); hence, none of the entities in A′ ∪B′ will receive any message and thus
none of them will send any message to the initiators; hence no initiator will receive a message from
outside Kk,k(V ′). Therefore, the initiators will act as if they are in G and the execution is E ; thus, at
time t̂, the initiators will all terminate the execution of the protocol. However the n− n′ = 2(p− k)
entities in A′ ∪ B′, initially inactive, will never become active, contradicting the correctness of the
protocol. �

In other words, any correct wake-up protocol for regular complete bipartite anonymous networks

will always require at least n2

4 message transmissions in the worst case, even if the system is syn-
chronous. This also implies that the Flooding technique, which provides a solution that uses at

most n2

2 messages in such networks, is worst-case optimal within a factor of two; furthermore, it
works also in asynchronous networks with arbitrary labelings.

7

Wake-Up

5 Distributed Wake-Up in Kn

Consider now a complete network Kn of n entities. In such a network, Broadcast is trivial: the
sole initiator just sends its message to all neighbours. Regardless of asynchrony, anonymity and
arbitrary edge-labeling, its cost of n− 1 message transmissions is clearly optimal.

In this paper we show that the cost of Wake-Up is order of magnitude higher. Depending on
whether the network is anonymous or with Ids, different tight lower-bounds are established.

5.1 Anonymous Entities

Consider the case when the entities are anonymous.

Theorem 3 Wake-Up in complete networks of n anonymous entities requires at least 1
2 (n2 − 2n)

message transmissions in the worst case. This result holds even if the class of networks is restricted
to be synchronous and with sense of direction.

Proof By contradiction, let P be a protocol that correctly solves the wake-up problem and does so
with less than 1

2n
2 message transmissions in every complete network of size n with sense of direction.

Let G be a complete network of n entities V = {x0, ..., xn−1} with chordal sense of direction; thus,
the edge (xi, xj) is labeled (j − i)modn at xi and (i− j)modn at xj . Consider the fully synchronous
execution E of P in G in which every entity starts the protocol simultaneously and proceeds in
synchronous steps. Since the entities are anonymous and because of the symmetry of the labeling,
at each step every entity will be in the same state, experience the same events (reception of specific
messages from specific ports), and perform the same actions (transmission of specific messages
through specific ports). In fact, if x sends a message via port number j at time t, so will everybody
else; and, because of the chordal labeling, all of them will receive it from port number n− j at time
t+1. Since protocol P is assumed to be correct, all the entities will simultaneously terminate within
a finite number of steps, say at time t̂.

Let S(x) be the set of port numbers on which at least one message was sent by entity x during
execution E ; because of the symmetry, S(x) = S(y) = S for all entities x and y. The total number of
messages transmitted by protocol P in execution E is thus at least M ≥ n|S|. Since, by assumption,
in every execution of P in G there are fewer than 1

2 (n2 − 2n) message transmissions, then n|S| ≤
M < 1

2 (n2 − 2n); that is

|S| < 1

2
(n− 2.)

Let R(x) be the set of port numbers on which at least one message was received by entity x
during execution E ; because of the symmetry, R(x) = R(y) = R for all entities x and y. Because
the labeling is chordal, R = {n− l : l ∈ S}; thus, |R| = |S|. Let L = S ∪R and k = |L|; then

k < n− 2.

Let L = {l1, ..., lk}, where w.l.g. li < li+1 (1 ≤ i < k). Construct now a complete network G′ on
the same set of nodes with a different edge labeling; the construction differs depending on whether
n is odd or even.

(Case n odd.) Let L̄ = Zn \ L, let X = {xl0 , xl1 , . . . , xlk} where l0 = 0, and let X̄ = V \X. Notice
that, since k < n− 2, then |X̄| = n− k > 2. The edge labeling is constructed as follows:

1. For 0 ≤ i < j ≤ k, label the edge (xli , xlj) with label lj−i at xli and label lk−j+i at xlj .

2. Label any other edge (xi, xj) with label i at xj and with label j at xi.

(Case n even.) Let L+ = L ∪ {n/2} if k is even, L+ = L otherwise; let L̄+ = Zn \ L+. Let
X = {xl0 , xl1 , . . . , xlk+}, where l0 = 0 and k+ = |L+| ≤ k+ 1; and let X̄ = V \X; notice that, since

by assumption k < n−2, then |X̄| = n−k+ ≥ n−k−1 ≥ 2. Let Y = {(y1, z1), (y2, z2), ..., (yp, zp)},
where p = |X̄|/2, be a maximal matching of the entities in X̄. The edge labeling is constructed as
follows (e.g., see Figure 5):

8

International Journal of Networking and Computing

1. For 0 ≤ i < j ≤ k, label the edge (xli , xlj) with label lj−i at xli and label lk−j+i at xlj .

2. Label any edge (y, z) ∈ Y of the matching with label n/2 at both y and z.

3. Label any other edge (xi, xj) with label i at xj and label j at xi.

1"
3"

2"

4"
5"

1"

3" 2" 4"5"

1"

3"
2"

4"
5"

1"

3"

2"
4"

5"

1"
3"

2"
4"

5"

1"

3"

2"

4" 5"

Figure 5: Proof of Theorem 3: G′ with L+ = {1, 3, 5} and L̄+ = {2, 4}.

It is easy to verify that, in both constructions, all the local labeling functions λxi
are injective.

Consider now the synchronous execution E ′ of P in G′ in which only the entities in X are
initially active. Observe that the subgraph K(X) induced by X is a clique. From the point of view
of these initiators, everything in this execution happens exactly as if they were in execution E in G:
messages will be sent and received exactly from the same ports in the same steps in both executions.
In particular, none of these entities will send a message outside K(X); hence, none of the entities
in X̄ will receive any message and thus none of them will send any message to the initiators; hence
no initiator will receive a message from outside K(X). Therefore, the initiators will act as if they
are in G and the execution is E ; thus, at time t̂, the initiators will all terminate the execution of the
protocol. However the n − k ≥ 2 entities in X̄ are still inactive and they will never become active,
contradicting the correctness of the protocol. �

In other words, any correct wake-up protocol for complete anonymous networks will always
require at least Ω(n2) message transmissions in the worst case, even if the system is synchronous.
This also implies that the obvious technique of Flooding provides a solution that is asymptotically
optimal, and that works also in asynchronous networks with arbitrary labelings.

5.2 Entities with Unique Ids

Consider now the case when each entity x ∈ V has a distinguished value Id(x) from a totally ordered
set I. The presence of these unique values and the fact that they are drawn from a totally ordered
set allows a protocol not only to differenciate topologically identical nodes but also to use them
in decisions made by the protocol (e.g., the choice of the port number to use next is made as a
function of the value of the id). A protocol that exploits only the properties of the total order of I
is sometimes called comparison-based.

If the entities have unique Ids, then it is well known that a much more complex problem, Elec-
tion, can be solved asynchronously with O(n log n) transmissions of messages, each containing a
constant number of Ids, by comparison-based protocols ([1, 6, 14, 16, 21]). The apparently much
simpler Wake-Up problem cannot be solved with a better complexity; in fact, the proofs that
Ω(n log n) messages are needed for solving Election [1, 17] in reality prove that that number of
messages are needed for Wake-Up. Following is a new direct proof of the Ω(n log n) worst case
complexity of Wake-Up in the asynchronous case, even for non-comparison based solutions.

9

Wake-Up

Theorem 4 In asynchronous complete networks with arbitrary labeling, wake-up requires the trans-
mission of at least 1

2blog nc2blognc messages in the worst case, even if the entities are non-anonymous.

Proof To prove this theorem we consider a game between the protocol P, an arbitrary solution
protocol, non necessarily comparison-based, and an adversary A on a complete graph G on n nodes
V = {x0, ..., xn−1}, each node x ∈ V with a distinct value id(x). To prove the Theorem, we will
show that, with its decisions, the adversary can force an execution E of P in G where the number
of transmitted messages is as claimed.

The power of the adversary A is the following : (i) it decides the activation time of each entity;
(ii) it decides when a transmitted message arrives (it must be within finite time); (iii) it decides the
duration of the execution of each operation at the nodes (must be finite); and, more importantly, (iv)
at each node, it decides which incident link is assigned a specific port number, from {1, ..., n − 1}.
Since the adversary controls transmission and execution delays, we can assume without loss of
generality that, in the execution of the protocol, each entity sends one message at a time, and only
after its previous message has arrived.

Given a subset V ′ ⊆ V of the nodes, let E′(t) ⊆ V ′×V ′ be the set of edges between the nodes in
V ′ where at least one message has been received (in either direction), from the start of the execution
up to and including time t; if the graph (V ′, E′(t)) is connected, then we will say that V ′ is a
connected component at time t.

The overall strategy of the adversary A is composed of two processes: Creation and Control of
connected components, described below.

Process Component Creation

1. To construct a new connected component C of level 0, A selects a still inactive node x and
makes it active; x start its execution of the protocol, and C = {x}. If there are no inactive
nodes, the adversary creates a virtual empty component; i.e., C = ∅,

2. To construct a connected component C of level i > 0:

(a) A creates two disjoint connected components A and B of level i− 1;

(b) If both A and B are non-empty, then:

i. A decides labels and controls delays, using process Control, until there are two nodes,
x in A and y in B, that, having communicated (by receiving or sending a message)
with all the other nodes in their component, execute a “send to lx” and a “send
to ly” operation, respectively, where lx is a still unused port number of x (i.e., no
message was sent on nor received from that port), and ly is an unused port number
of y.

ii. It assigns to edge (x, y) label lx at x and label ly at y, and lets the two messages
reach their destinations.

(c) A sets C = A ∪B.

Process Component Control

1. Existing Internal Link. When an entity x executes a “send to α” operation, where label α
has already been assigned by A to an incident link, A lets the message reach its destination
without delays.

2. New Internal Link. If an entity x executes a “send to β” operation, where β is an unassigned
local label, and x has an unused link (i.e., a link on which no messages have been sent nor
received so far) connecting it to a node y in its component, A assigns label β to that link and
lets the message reach its destination without delays.

3. External Link. When an entity x executes a “send to γ” operation, where γ is an unassigned
local label, but all links between x and the nodes of its component have been used, A forces
a more complex process. Let C be the component to which x belongs and let i be its level.

10

International Journal of Networking and Computing

(a) A creates a new connected component C ′ of level i, using process Creation.

(b) As soon as an entity y in C ′, whose links to the nodes of its component have all been
used, executes a “send to δ” operation, where δ is a still unused port number of y, A
assigns to edge (x, y) label γ at x and label δ at y, and lets the two messages reach their
destinations without further delays

(c) When this happens, the connected component C ∪ C ′ of level i+ 1 is formed.

The overall execution E of P is started with A creating a component of level 0 (i.e., activating the
first node); it continues with the formation of a larger and larger component; and it terminates as
soon as all entities are in the same component. Let ti be the first time when a connected component
of level i ≥ 0 is formed in execution E ; let size(i) be the size (i.e., number of nodes) of that
component.

Claim 1 Let k be the highest level reached by a connected component in execution E.
(i) size(k) = n
(ii) for 0 ≤ i < k, size(i) = 2i

(iii) k = dlog ne.

Proof (i) By definition. (ii) By induction. The statement clearly holds for i = 0, 1. Let it hold for
1 ≤ i < k − 1. Let Ci be the component formed at time ti; by inductive hypothesis, size(i) = 2i.
After time ti the execution proceeds with the adversary operating according to the Component
Control process. Eventually, the External Link operation is invoked by a node of Ci. When this
happens, a new component C ′i of level i will be created following the recursive process Component
Creation. According to the rules of that process, C ′i will have the same size of Ci provided there
are enough inactive nodes when the process starts. At time ti the number of inactive nodes is
n− |Ci| = n− 2i. Hence, if 2i ≤ n/2, C ′i will contain 2i nodes; that is, the new component Ci+1 of
level i+ 1, formed when Ci and C ′i merge at time ti+1, will have |Ci|+ |C ′i| = 2i+1 nodes. In other
words, if 2i ≤ n/2, the statement of the Lemma holds also for i+1. Consider now the case 2i > n/2;
in this case, Ci will be composed of all the n − 2i < 2i nodes inactive at time ti. Thus, when Ci

and C ′i merge to form the new component Ci+1 of level i+ 1 at time ti+1, all nodes become part of
the same component; but this means that i + 1 = k, contradicting the assumption that i < k − 1.
Hence 2i ≤ n/2 and the satatement of the Lemma holds. (iii) It follows from (i) and (ii). �

Hence, we can see the execution of P as proceeding in stages: stage i starting at time ti and
ending at time ti+1, 0 ≤ i ≤ dlog ne.

Let us examine how many messages are transmitted in each stage; let µ(i) denote the minimum
number of messages that will be transmitted in stage i. Consider the beginning of stage i, that is
when at time ti there is a single connected component C and its level is i. During this stage, another
component of level i is constructed; this is done by first constructing two components of level i− 1,
A and B; merging them into a single component D of level i; and then merging C and D into a
single component of level i+ 1. However, regardless of the nature of protocol P, the adversary will
not allow two components to merge unless it is forced to. In the case of the merging of A and B,
this will happen only when there are two nodes, a and b in A and B, respectively, that, having
communicated with all the other nodes in their component, execute a “send to la” and a “send
to lb” operation, respectively, where la is a still unused port number of a and lb is an unused port
number of b. Similarly, in the case of the merging of C and D, this will happen only when there are
two nodes, c and d in C and D, respectively, that, having communicated with all the other nodes
in their component, execute a “send to lc” and a “send to ld” operation, respectively, where lc is
a still unused port number of c and ld is an unused port number of d. This means that, before the
merging of C and D takes palce, d must have communicated already with all the nodes in D; if d
was in A (resp. B), it has thus sent at least |B| (resp. |A|) messages on or after the merge of A and
B. In other words, the minimum number µ(i) of messages transmitted in stage i is: 2µ(i − 1) to
construct A and B; an additional |A| = |B| = 2i−1 to/from d before the merging of C and D; and

11

Wake-Up

the two messages between c and d for the merging of C and D, which concludes stage i. Observing
that µ(0) = 0, we have

µ(i) = 2 µ(i− 1) + 2i−1 + 2 > i 2i−1

The total number of stages is k = dlog ne; however, if n is not a power of two, one of the two
components in the last merge contains only n− 2blognc nodes. In any case, the adversary can force
P to transmit more than

µ(k − 1) =
1

2
blog nc2blognc

messages, completing the proof of the theorem. �

Note that, as in the proofs of [1, 17] for the Election problem, by appropriately “sliding” the
timing of the send and receive events (in the creation and control of the connected components), the
proof of Theorem 4 can be extended so that the result holds even when the graph is synchronous.

Since any protocol that solves Election solves also Wake-Up, the existing O(n log n) protocols
for the former problem imply that the above lower bound is asymptotically tight.

6 Concluding Remarks

In this paper we have analyzed the message complexity of the Wake-Up (or Reset) problem in
three general classes of interconnection networks: hypercubes, complete graphs, and regular complete
bipartite graphs. This basic problem is just the generalization of the Broadcast problem in which
there is an arbitrary number of initiators (all with the same message). We have shown that, while
anonymous entities can solve Broadcast in Θ(n) messages in all three classes of networks, order of
magnitude more are required in the worst case for Wake-Up: Ω(n log n) in hypercubes, and Ω(n2) in
complete graph and regular complete bipartite graphs, even if the networks are synchronous and with
sense of direction. In the case of a complete network with distinct Ids, Wake-Up is computationally
as expensive as Election.

Acknowledgments. Some of these results have been described in [20]. This work has been sup-
ported in part by the Natural Sciences and Engineering Research Council of Canada, under the
Discovery Grants program.

References

[1] Y. Afek and E. Gafni. Time and message bounds for election in synchronous and asynchronous
complete networks. SIAM J. Computing, 20:376–394, 1991.

[2] A. Arora, S. Dolev, and M. Gouda. Maintaining digital clocks in step. Parallel Processing
Letters, 1(1):11–18, 1991.

[3] A. Arora and M. Gouda. Distributed reset. IEEE Transactions on Computers, 43(9):1026–1038,
1994.

[4] B. Awerbuch and R. Ostrovsky. Memory-efficient and self-stabilizing network reset. In Proceed-
ings of the 13th Symposium on Principles of Distributed Computing (PODC), pages 254–263,
1994.

[5] B. Awerbuch, B. Patt-Shami, G. Varghese, and S. Dolev. Self-stabilization by local checking
and global reset. In Proceedings of the 8th International Workshop on Distributed Algorithms
(now DISC), pages 326–339, 1994.

[6] M.Y. Chan and F.L.Y. Chin. Distributed election in complete networks. Distributed Computing,
3(1):19–22, 1988.

12

International Journal of Networking and Computing

[7] K. Diks, S. Dobrev, E. Kranakis, A. Pelc, and P. Ruzicka. Broadcasting in unlabeled hypercubes
with a linear number of messages. Information Processing Letters, 66(4):181–186, 1998.

[8] S. Dobrev and P. Ruzicka. Linear broadcasting and o(n log log n) election in unoriented hy-
percubes. In Proceedings of the 4th International Colloquium on Structural Information and
Communication Complexity (SIROCCO), pages 53–68, 1997.

[9] S. Dolev. Self Stabilization. MIT Press, 2000.

[10] S. Even and S. Rajsbaum. The use of a synchronizer yields maximum computation rate in
distributed networks. In Proceedings of the 22nd ACM Symposium on Theory of Computing
(STOC), pages 95–105, 1990.

[11] S. Even and S. Rajsbaum. Unison, canon and sluggish clocks in networks controlled by a
synchronizer. Mathematical System Theory, 28:421–435, 1995.

[12] P. Flocchini, B. Mans, and N. Santoro. Sense of direction: Definitions, properties and classes.
Networks, 32(3):65–180, 1998.

[13] P. Flocchini, B. Mans, and N. Santoro. Sense of direction in distributed computing. Theoretical
Computer Science, 291(1):29–53, 2003.

[14] P.A. Humblet. Selecting a leader in a clique in O(n log n) messages. In Proceedings of the 23rd
Conference on Decision and Control, pages 1139–1140, 1984.

[15] A. Israeli, E. Kranakis, D. Krizanc, and N. Santoro. Time-message trade-offs for the weak
unison problem. Nordic Journal of Computing, 4(4):317–329, 1997.

[16] E. Korach, S. Moran, and S. Zaks. Tight lower and upper bounds for some distributed algorithms
for a complete network of processors. In Proceedings of the 3rd Symposium on Principles of
Distributed Computing (PODC), pages 199–207, 1984.

[17] E. Korach, S. Moran, and S. Zaks. Optimal lower bounds for some distributed algorithms for
a complete network of processors. Theoretical Computer Science, 64:125–132, 1989.

[18] S. S. Kulkarni and A. Arora. Multitolerance in distributed reset. Chicago Journal of Theoretical
Computer Science, 4, 1998.

[19] E.B. Moss. Checkpoint and restart in distributed transaction systems. In Proceedings of the
3rd Symposium on Reliability in Distributed Software and Database Systems (SRDSDS), pages
85–89, 1983.

[20] N. Santoro. Design and Analysis of Distributed Algorithms. Wiley, 2007.

[21] G. Singh. Leader election in complete networks. SIAM Journal on Computing, 26(3):772–785,
1997.

13

