
ZONER: A ZONE-based Sensor Relocation
Protocol for Mobile Sensor Networks

Xu Li
School of Computer Science
Carleton University, Canada

Email: xlii@connect.carleton.ca

Nicola Santoro
School of Computer Science
Carleton University, Canada

Email: santoro@scs.carleton.ca

Abstract— In mobile sensor networks, self-deployment and
relocation are two different research issues, both of which involve
autonomous sensor movement. They share in most cases a com-
mon goal, that is, to improve overall network sensing coverage.
Under this circumstance, some self-deployment algorithms may
be applied to solving relocation problem without modification.
However, considering efficiency, they will not be a good option
in the scenario with high sensor failure rate. Existing sensor
relocation protocols are not quite practical because they rely on
strong assumptions and/or have weakness in maintaining network
topology. In this paper, we propose a distributed zone-based
sensor relocation protocol, ZONER, for mobile sensor networks
on the basis of a restricted flooding technique, i.e., ZFlooding.
Requiring zero-knowledge about sensor field, the ZONER is
able to effectively discover previously-deployed redundant sensors
without being concerned with obstacles or network ununiformity,
and it relocates them in a shifting way to replace failed non-
redundant ones without changing network topology. At the end
of the paper, we prove the correctness of the ZONER and point
out our future work.

I. INTRODUCTION

Mobile sensor networks (MSNs) is a new paradigm of
wireless sensor networks (WSNs). They inherit all the fea-
tures such as narrow bandwidth, limited lifetime, restricted
computational capability, multi-hop communication, etc. from
conventional WSNs, and they are meanwhile known for their
own particularity – node mobility. As MSNs emerge, some
new research issues motivated by the powerful locomotion
property of mobile sensors come into the radar screen of
sensitive researchers. Two interesting ones are sensor self-
deployment and sensor relocation. The former focuses on
the way of converting a randomized sensor distribution to
a uniform one without human assistance, while the latter
concentrates on how to strategically move sensors to maintain
certain network topology or to respond to some interesting
events. In fact, their combination can provide a complete
solution to the sensing coverage problem. For example, a
self-deployment algorithm is carried out at the beginning of
the operating period of a MSN to achieve a uniform sensor
distribution, and a relocation protocol is conducted throughout
the network lifetime to maintain previously-achieved network
uniformity by healing the sensing holes due to node failure.
Such an integrated scheme has been proposed by us in [1]. In
this paper, we will focus only on sensor relocation problem.

Some existing sensor self-deployment algorithms[2], [3],

[4], [5], [6] are adaptive to node failure and may actually
be employed to solve the sensor relocation problem regarding
sensing hole healing. These algorithms share the same phi-
losophy, that is, uniform sensor distribution is achieved when
certain network equilibrium state is reached. Unfortunately,
the equilibrium that they go for is vulnerable to node failure.
After a node fails, the network or a portion of the network may
have to be re-organized in order to recover the equilibrium
state and consequently heal the sensing hole caused by the
failed node. Considering that sensors are usually dropped
in hostile and/or unknown environment where node failure
is a common phenomenon, such a sensor self-deployment
algorithm is costly because frequent topology change not only
complexes networking protocols but leads to energy loss.

To our best knowledge, only two sensor relocation al-
gorithms, a proxy-based protocol[7], which is an enhanced
version of the early work presented in [8], and a Grid-Quorum
based protocol[9] are proposed in literature. The proxy-based
protocol fills large sensing holes by relocating some mobile
nodes that contribute relatively less to overall coverage. Its
disadvantages are the resulting frequent network topology
change and uniformity degradation. The Grid-Quorum based
protocol patches sensing holes with redundant nodes that
are discovered according to certain policy and relocated in
a cascading manner. This protocol solves the sensing hole
problem without sacrificing existing network uniformity if the
number of redundant nodes are sufficiently large. However,
its strong assumption, i.e., pre-knowledge about sensor field,
makes it less practical in real-world scenarios.

In this paper, under the assumption of global coordinates,
we introduce a restricted flooding technique, Zone Flooding
(or, ZFlooding for short), featured with void-area penetration
capability, and then based on it, we propose a distributed zone-
based sensor relocation protocol, ZONER, using sufficient
redundant nodes. By the ZONER, each redundant node reg-
isters itself with all the non-redundant nodes inside a vertical
registration zone across the entire network; when a node fails,
its specified neighbors inquiry all the non-redundant nodes
inside a bounded horizontal request zone for redundant nodes;
because the request zone intersects with a number of registra-
tion zones, the non-redundant nodes in the intersection areas
can provide the requester with redundant node information;
once a satisfactory and available redundant node is identified,



it will be relocated in a shifting way to replace the failed node
with no change in network topology. Because no network-
wide flooding is used, and because only selected nodes are
required to move for replacing purpose, the ZONER is both
bandwidth and energy efficient. Although the ZONER and
the Grid-Quorum based protocol[9] have similarity in their
node discovery (in fact, both of them are a variant of the
quorum based location service[10], [11] in the context of
sensor relocation) and relocation methods, they differ a lot
from each other in that the ZONER does not require any pre-
knowledge about the sensor field and has immunity to void-
areas (caused by obstacles or unbalanced node distribution)
during node registration and node discovery processes.

The rest of this paper is organized as follows: Section
II briefly reviews the previous work on sensor relocation
in literature; Section III introduces the ZFlooding technique;
Section IV presents the details of the ZONER; Section V
proves the correctness of the ZONER; Section VI concludes
the paper and points out our future work.

II. RELATED WORK

Wang, Cao and Porta[7] presented a proxy-based sensor
relocation protocol for the sensor networks composed of both
static nodes and mobiles. It assumes global coordinates and
location-awareness. For an arbitrary mobile node, the protocol
estimates the size of the coverage hole generated by the
node in the case that the node leaves its current location,
and assigns the node a base price accordingly. Each static
node independently identifies coverage holes based on Voronoi
diagram[12] and bids the closest mobile node with smallest
base price. In the case that a mobile node receives multiple
bidding messages from different static nodes, it is bid by the
bidding message with largest hole size and then moves to fill
the corresponding hole. Hence, mobile nodes always intend to
move to large holes from small ones, and they stay still only
when no larger holes can be detected. To save energy, a mobile
node logically moves to its target location by choosing proxy
node, which then executes the protocol on behalf of it as if it
already moved to that location; actual movement is performed
only when its target location is the final location.

Wang, Cao, Porta and Zhang[9] proposed a Grid-Quorum
based sensor relocation protocol under the assumptions of
global coordinates, location-awareness, and known sensor
field. In this protocol, the network field is geographically
partitioned into grids. In each grid, one node is elected as
grid head and takes the responsibility to collect the location
of all the grid members. Based on grid members’ location,
a grid head determines redundant grid members and detects
sensing holds. A grid row is called demand quorum, while a
grid column is called supply quorum. Each grid head publishes
the information about the redundant nodes inside its grid to
all the grid heads in the supply quorum that it is residing
in. When a grid head detects a sensing hole, it broadcasts
a request within its demand quorum to discovery the closest
redundant node. Because every demand quorum intersects with
all the supply quorums, a redundant can always be found if

any exists. To reduce delay and balance power consumption,
a redundant node is located in a cascaded way. Namely,
the nodes along a relocation path from the redundant node
to the failed node move to the location of their successors
simultaneously. Relocation paths are carefully selected to
minimize the difference between the total power consumption
and the minimum remaining power of cascading nodes.

III. A RESTRICTED FLOODING TECHNIQUE

Flooding as a basic networking technique is widely applied
to a variety of network operations such as routing and ser-
vice discovery. Because network-wide flooding involves the
entire set of network nodes,its application is quite contro-
versial in resource-restricted networks like MSNs. Under this
circumstance, restricted flooding technique is being studied.
Assuming a global coordinate system and nodes’ awareness
of their own coordinates, a restricted flooding algorithm could
be as simple as follows: a node starts a flooding process by
broadcasting a packet carrying the boundary information of the
area to be flooded; a receiver node retransmits (by broadcast)
the packet if and only if it is inside the specified flooding
area; the flooding process terminates after all the nodes in the
flooding area obtain the packet. On the basis of this simple
algorithm, we devise a restricted flooding technique, Zone
Flooding (ZFlooding). The novelty of the ZFlooding is its
void-area penetration ability.

A. Planarizing Network Graph

A graph is a planar graph iff any two edges either do
not intersect or intersect only at their common end vertex.
A typical example of planar graphs is Gabriel Graph (GG),
where the closed diametral disc of each edge contains no
other vertices than the two edge ends[13]. A GG-construction
algorithm, which takes a connected graph G as input and
outputs a GG, G′, spanning G, is as follows: remove non-GG
edges from G by testing every edge using the GG definition;
an edge e remains in G iff it passes the GG test; finally, G
becomes G′. Hence, a GG can be easily built over a connected
network in a localized fashion as long as each network node
knows about the coordinate of its every neighboring node.

Other localized planar graphs than GG include Relative
Neighborhood Graph (RNG) and Localized Delaunay Trian-
gulation (LDT). Due to their planarity, connectivity and easy
construction, these graphs are good options for supporting face
routing, a proven effective building block for conquering the
well known dead-end problem in geographic routing[14], [15].
Similarly, the ZFlooding employs face routing to penetrate
void areas.

B. Penetrating Void Areas

A node is said to be a local minimum in some direction
(west, east, north, or south) if it is the foremost node in
that direction. For a local minimum n in direction d, its two
incidental edges, which respectively have the smallest angle
and the largest angle with d, identify a particular face in
the GG constructed over the underlying network. This face



(a) The scenario of traversing an
inner face.

(b) The scenario of traversing the
outer face.

Fig. 1. An illustration of closed traversal circles

contains a void area that may stop the message transmission
going through n in direction d, and to simplify expression,
we call it d-face. Before retransmitting a received ZFlooding
packet Pkt, n replicates it and stores the replica, denoted
by Pkt′, locally. After retransmission, n attaches its own
coordinate to Pkt′ and then sends two copies of Pkt′, one in
the clockwise direction and the other in the counterclockwise
direction, to traverse its d-face along the face perimeter. Let
FZ denote the flooding zone indicated by the Pkt/Pkt′. For
a perimeter node x receiving Pkt′ for the first time, it checks
if it itself is inside FZ and meanwhile is more foremost
than n in direction d, or if any of its neighbors satisfies the
two conditions. If the answer is “yes”, it terminates the face
traversal process as a terminator, or otherwise forwards the
Pkt to the next perimeter node in the traversal direction as a
forwarder. During the face traversal process, if a forwarder did
not ever receive Pkt before, it also takes the following extra
actions: recover Pkt by removing the coordinate of node n
from Pkt′ and then broadcast Pkt locally.

If node n is the foremost in direction d in the flooding
zone FZ, its attempt to pass the ZFlooding packet Pkt
around its d-face will end up a closed traversal circle as
shown in Figure 1. Observe that, if n is by any chance the
foremost in direction d in the entire network, Pkt actually
traversed the outer face as displayed in Figure 1(b). In this
case, provided each boundary node is aware of the fact that
it itself is a boundary node, the face traversal process can be
terminated earlier, and thus saving both bandwidth and energy.
To enable this early termination, a separate (or, integrated)
boundary detection process should be performed after the GG
construction. However, this optimization is not included in our
current work but left for future study.

C. Packet Format

A ZFlooding packet consists of a header and a payload
part. The payload part contains communication data, the thus
its format is application dependent. As for the packet header,
it is defined as a ten-field tuple:

〈S,WB,EB,NB, SB,LM,DIR, TD,NH, TTL〉 .

Field S contains the ID of the source node. The four fields
WB, EB, NB, and SB are together called flooding boundary

fields. The zone to be flood is defined as a square area
surrounded by four lines, x = a, x = b, y = c, and y = d
(a, b, c, d ∈ � ∪ {∞}), and the flooding boundary fields
respectively record these four parameters. Field LM stores the
coordinate of a locally foremost node in the direction indicated
by Field DIR. Field TD implies traversal direction, and its
value could be either CLOCKWISE or COUNTERCLOCK-
WISE. By default, Field NH is set to BROADCAST which
indicates that the packet is in broadcast mode. Its value is
alerted by the local optimum presented by the two fields LM
and DIR. If the packet is in face traversal mode, NH stores
the coordinate of the next-hop node. Note that the fields LM ,
DIR, and TD are ignored when NH is set to BROADCAST.
Field TTL specifies how far a packet can go in hop counts.
Before a ZFlooding packet is forwarded, the value of its TTL
field is decremented. When its TTL decreases to 0, the packet
will be dropped rather than forwarded.

IV. ZONE-BASED SENSOR RELOCATION

In this section, we will present the zone-based sensor
relocation protocol, ZONER. Some terminologies used in the
rest of the paper can be found in the following table.

TERMINOLOGY DESCRIPTION
Recommender A NR-node that replies the R-node request of

another NR-node.
Registration Zone A horizontally bounded and vertically unbounded

area where a R-node registers with all the inside
NR-nodes.

Request Zone A bounded square area where a NR-node inquires
all the inside NR-nodes for R-node information.

Registration Path A path along which a R-node registers with a
NR-node.

Request Path A path along which a NR-node is asked for R-
node information by another NR-node.

Relocation Path The accumulation of a registration path and a
request path linked by a recommender node.

Path Length A pair of values (Len, Cnt), where Len is the
sum of the Euclidean distance between every two
neighboring node in the path, and Cnt is the hop
count of the path.

A. Network Model

Non-redundant nodes (referred to as NR-nodes) are ran-
domly distributed in a plane and form a connected network
through bidirectional communication links using a geographic
routing protocol such as GFG[14]. Sufficient redundant nodes
(referred to as R-nodes) are scattered in the network, but
they do not participate in any network operation except the
ZONER. All the nodes use omni-directional antenna for com-
munication, and their communication radii are at least twice
their sensing radii. Every node is assigned a unique ID and
aware of its global coordinate, and it has the ability to move
upon request. Any node may fail, but the rest of the network
remains connected.

B. Overview

A NR-node maintains a one-hop neighborhood map by
listening to a periodical HELLO message from its every



(a) Discovery (b) Relocation

Fig. 2. An illustration of how the ZONER works

neighboring NR-node, and transmits this map to all its imme-
diate NR-node neighbors on a regular basis. By merging the
received one-hop neighborhood maps with its own, every NR-
node actually keeps a two-hop neighborhood map throughout
network lifetime. At the beginning of network operation (or,
when necessary), a R-node floods its registration zone with a
registration message to register with all the NR-nodes inside
the zone. After a NR-node failed, its westmost neighbor and
eastmost neighbor respectively start a discovery process by
flooding their request zones with a request message to find a
replacement for it. The two default process initiators are called
discovery partner of each other, and their request zones are
adjacent by an imaginary line vertically across the failed node.
During a discovery process, the initiator first locally searches
for the registered R-node with shortest relocation path and
then takes this R-node as reference to inquires all the NR-
nodes inside its request zone for the R-nodes with yet shorter
relocation path. For message-saving purpose, the length of the
request zone is made subject to the reference node’s relocation
path length. Because the request zone intersects with a number
of registration zones, the NR-nodes in the intersection areas
may be able to reply the initiator’s request as recommender.
Finally, the initiator chooses the one with shortest relocation
path among all the discovered available R-nodes as the failure
node’s replacement. Figure 2(a) is a big picture about a
discovery process. Sequentially, the replacement discoverer
triggers a relocation process by a relocation message. In this
process, the nodes along the replacement node’s relocation
path relocate in a shifting manner to replace the failed node.
That is, every node in the path simultaneously moves to
the location of its path neighbor towards the replacement
node discoverer, and the replacement discoverer moves to the
location of the failed node as illustrated in Figure 2(b). After
such a relocation process, the failed node is in fact replaced
by the discoverer of the replacement node rather than by the
replacement node itself. Note that, for any R-node, once it is
actually involved in a relocation process, it transforms to a
NR-node.

C. Data Definitions

A number of control messages and data structures are
defined by our protocol. They play an essential role in coor-
dinating nodes and helping accomplish protocol goal. Below,
we shall introduce these data definitions.

1) Control Messages: There are four main types of control
messages, i.e., Node Registration (NREG) message, Node
Request (NREQ) message, Node Reply (NREP) message and
Node Relocation (NREL) message.

NREG Message is used by a R-node to register itself
with all the NR-node in a pre-defined registration zone. It is
transmitted in a ZFlooding manner. The ZFlooding header of
a NREG message always has the following settings: NB =
SB = ∞, WB = x∗ − α, EB = x∗ + α, and TTL = ∞,
where x∗ is the X element of the source node’s coordinate,
and α ∈ �+ is a system parameter. These settings imply
that a registration zone is a long zone vertically across entire
network. Other than a ZFlooding header, a NREG message has
three payload fields: SeqNo, PriHop, and PathLen. SeqNo
stores the sequence number of the registration process initiated
by the source node; PriHop records the ID of the node that
most recently transmitted the message; PathLen contains the
registration path length of the source node.

NREQ Message is used by a NR-node to inquire all the
NR-nodes in a specified request zone for satisfactory R-nodes.
It is transmitted in a ZFlooding manner. A NREQ message
has four payload fields: SeqNo, RefPathLen, PriHop, and
PathLen. SeqNo stores the sequence number of the discov-
ery process initiated by the source; RefPathLen stores the
length of a reference path, which is used to estimate whether
a R-node is satisfactory (a R-node is said to be satisfactory
iff its relocation path length is smaller than RefPathLen);
PriHop and PathLen respectively record the ID and the
request path length of the node that most recently transmitted
the message. In the ZFlooding header, define WB = x∗ −
RefPathLen.Len/2, EB = x∗ + RefPathLen.Len/2,
NB = y∗+β, SB = y∗−β, and TTL = RefPathLen.Cnt,
where (x∗, y∗) is the coordinate of the source, and β is a
system parameter.

NREP Message is used by a NR-node to reply the NREQ
message originated from another NR-node. It is transmitted
along the request path of the source node to the destined NR-
node. A NREP message carries the information about a R-node
whose relocation path length is smaller than the reference path
length contained in the NREQ message. It consists of five
fields: Source, Destination, SeqNo, RID, RelPathLen,
and PriorHop. Source and Destination respectively con-
tain the IDs of the source and the destination; SeqNo contains
the sequence number of the discovery process that the message
belongs to; RID and RelPathLen respectively record the
ID and the relocation path length of a satisfactory R-node;
PriorHop stores the ID of the node that most recently
transmitted the message.

NREL Message is used by the discoverer of a R-node to
notify all the nodes along the relocation path of the R-node
to relocate. It also serves as a notification for other NR-nodes
in the request zone of the R-node discoverer to release their
resources. A NREL message is transmitted in a ZFlooding
manner, and its ZFlooding header is configured as that of
a NREQ message. Other than a ZFlooding header, a NREL
message has one payload field, i.e., SeqNo, which contains



the sequence number of the discovery process during which
the R-node node is discovered.

2) Data Structures: There are tree main types of data
structures, i.e., Sequence Number (SeqNo), Registration Table
(RegTab), and Request Buffer (RegBuf).

SeqNo is a monotonically increasing number locally main-
tained by each node. A node associates its current SeqNo
with its registration/discovery process to be initiated, and it
increments its SeqNo after the process is actually started.
As a result, any two different registration/discovery processes
started by the same node have distinct SeqNos, and for a
particular process, the higher its SeqNo, the more recently
it is initiated. In this sense, SeqNo implies the freshness
of a registration/discovery process, and its combination with
initiator ID uniquely identify such a process.

RegTab is a local structure maintained by each NR-node.
It holds the information of every registered R-node. An entry,
containing four fields ID, SeqNo, PriorHop, and PathLen,
of a RegTab represents a particular R-node. ID and SeqNo
respectively contain the ID and registration process SeqNo of
the R-node; PriorHop records the hosting node’s the prior
hop in the R-node’s registration path; PathLen keeps the
registration path length of the R-node to the hosting node.

RegBuf is a local structure maintained by each NR-node.
For any NR-node, its RegBuf stores the information about
the discovery process which it is currently participating in.
If it is not involved in any discovery process, its RegBuf
is empty. A RegBuf consists of six fields, i.e., ID, SeqNo,
NID, NPOS, PriorHop, and PathLen. ID stores the ID
of the NR-node that initiates the discovery process; SeqNo
records the SeqNo of the discovery process; NID and NPOS
respectively records the ID and the coordinate of the failed
node that the discovery process is serving; PriorHop records
the hosting node’s prior hop in its request path; PathLen
keeps its request path length.

D. Protocol Core

The three processes, i.e., registration, discovery, and relo-
cation, constitute the core of the ZONER. In the sequel, we
are going to elaborate on the three processes.

1) Registration Process: Consider an arbitrary R-node r.
When r wants to register within its registration zone, it
generates a NREG message Msgreg, broadcasts the message
to all its neighbors, and then increments its SeqNo. After a NR-
node n in the registration zone receives Msgreg, it computes
the registration path length of r, updates the PathLen field of
Msgreg with the computation result, and searches its RegTab
for r’s entry. There are four possible cases to be examined:
(1) r does not have an entry in the RegTab; (2) r has an
entry in the RegTab, but the content is outdated; (3) r has
an entry in the RegTab, and the content is up-to-date, but
the recorded registration path is longer than the new one; (4)
otherwise. In Case (1), n creates an entry for r in its RegTab
with the information carried by Msgreg; in Case (2) and (3), n
updates r’s entry; in Case (4), n simply drops Msgreg. After
processing any of above four possible cases, if Msgreg has not

been dropped, n updates the PriHop field of Msgreg with
its own ID and then continue to process Msgreg following
ZFlooding rules.

2) Discovery Process: A discovery process is composed
of four successive stages: local search, remote search, hold,
and selection. Taking a NR-node ni, which is discovering
a replacement for a failed neighboring NR-node nf , as an
example, we describe these four stages in detail.

Local Search Stage: In this stage, node ni first looks up
its local RegTab for the closest, available, and registered R-
node, denoted by rref . Let PLenref denote the length of
rref ’s registration path. In the case that rref is null, PLenref

is defined as ∞. Recall that a path length is composed of
two elements, i.e., the Euclidean length (referred to as Len)
and the hop count (referred to as Cnt). Then, ni generates a
NREQ message Msgreq with RefPathLen = PLenref and
TTL = PLenref .Cnt, increments its SeqNo, and sends this
message to its neighbors. Afterwards, the discovery process
enters the remote search stage.

Remote Search Stage: Each NR-node inside the request
zone takes part in the discovery process (specifically, the
remote search stage) by processing its received Msgreq.
However, participation1 is not mandatory. Suppose that a NR-
node nx in ni’s request zone receives Msgreq and is willing to
participate in the discovery process. nx computes its request
path length and checks if its ReqBuf if empty. In the case
that the ReqBuf is empty, nx bookkeeps the information
about the discovery process in its RegBuf and finds the most
satisfactory R-node rmin from its RegTab. Afterwards, it sends
a NREP message carrying rmin’s information back to n along
its reverse request path as recommender if rmin is not null.
We would like to indicate that each intermediate node in this
reverse request path need to remember the node from which it
receives the NREP message so that the forward request path
can be established. In the case that the ReqBuf is not empty, if
nx is currently involved in the same discovery process and its
recorded request path length is smaller than the new one, nx

updates the buffer with the data carried by Msgreq, or simply
drops Msgreq otherwise. After dealing with either of above
two cases, if Msgreg has not been dropped, nx updates the
PriHop and PathLen fields of Msgreq respectively with
its own ID and its request path length, and then continues
to process Msgreq following ZFlooding rules. Considering
discovery failure, a NR-node empties its ReqBuf if no more
process messages are received in a predefined waiting period.

Hold Stage: In this stage, node ni locally records the first-
discovered m R-nodes in a node list in an increasing order of
their relocation path length. Denote by Ci the i-th node in the
list and by R(Ci) the recommender of Ci . Node ni sends a
HOLD message to C1 along C1’s relocation path and expect a
reply from it. When the HOLD message reaches R(C1), if C1

has already canceled its registration, R(C1) blocks the hold
request and replies ni with a NO message on behalf of C1,

1The decision can be make based on certain policy that takes into
consideration nodal remaining energy level and/or other application specific
requirements.



or re-transmits the HOLD message to C1 along C ′
1 reverse

registration path otherwise. Mentionably, during the process
that the HOLD message is transmitted to C1 from R(C1), each
intermediate node along the path need to remember the node
that it just receives the message from so that C1’s forward
registration path can be established. Recall that the forward
request path of R(C1) is constructed in previous remote search
stage. After C1 receives the HOLD message, C1’s relocation
path becomes complete. If C1 is not in “held” status, it will
mark itself as “held” and answers n with a YES message, or
replies with a NO message otherwise. Once C1 becomes held,
it will no longer grant hold request from any other NR-node.
If n does not receive any reply from C1 after a predefined
number of hold request trials, or if it receives a NO message,
it will try to hold C2 in the same way. ni keeps doing so until
a R-node Ci replies its hold request with a YES message.
Then, Ci is taken by ni as the replacement candidate of nf .
In the case that none of those discovered R-nodes make a
positive reply, ni has to re-start the entire discovery process
once again within a size-increased request zone. Since there
are sufficient R-nodes in the network, a replacement candidate
will be eventually identified.

Selection Stage: The objective of this stage is to choose the
official replacement from discovered replacement candidates.
If ni does not have a discovery partner, or if its discovery
partner has failed, the discovered replacement candidate auto-
matically becomes the official replacement of nf . Otherwise,
ni and its discovery partner exchange their discovery results
by making use of the underlying routing protocol and then
independently determine nf ’s official replacement, which is
the replacement candidate with shorter relocation path.

3) Relocation Process: Let us continue with previous ex-
ample. Denote by nr the official replacement of nf . Assume
that node ni is the discoverer of nr. To start a relocation
process, ni generates a NREL message Msgrel carrying
the SeqNo of previous discovery process and broadcasts the
message within its request zone. For a NR-node nx in ni’s
request zone, when it receives Msgrel, it must be in one of
the following four situations: (1) it is not participating in the
discovery process; (2) it is involved in the discovery process
but not in the relocation path of nr; (3) it appears in the
relocation path, but it is not the recommender of nr; (4) it is
the recommender of nr. To simplify expression, we define the
prior hop of a node in a replacement node’s relocation path as
the path neighbor towards that replacement node, and the next
hop as the path neighbor in the opposite direction. In Case
(1), nx simply discards Msgrel; in Case (2), nx processes
Msgrel following ZFlooding rules and then clears its ReqBuf;
in Case (3), nx processes Msgrel following ZFlooding rules,
clears its ReqBuf, and then moves to the location of its next
hop in nr’s relocation path; in Case (4), nx forwards Msgrel

along nr’s relocation path to nr, processes Msgrel following
ZFlooding rules, clears its ReqBuf, and then moves to the
location of its next hop along nr’s relocation path. Before
the replacement node nr moves, it informs all the NR-nodes
inside its registration zone via ZFlooding technique to remove

its registration information. After shifting relocation, all the
nodes in the relocation path fill their next hops’s shoes. Under
this circumstance, they must respectively pass their local data
to their prior hops in order to restore the normal execution
of the networking protocols and applications running on each
nodes. As for the replacement node discoverer, after arriving
at its target location, i.e., the location of the failed node, it has
to ask its neighbors for necessary data since the failed node
will not be able to pass it anything.

Remark: The ZONER is both bandwidth and energy efficient.
The main communication cost of the ZONER is due to the
flooding operation in its registration, discovery, and reloca-
tion processes. Recall that the communication in these three
processes is confined within pre-defined bounded flooding
zones. Although registration zones are vertically unbounded,
a registration process is executed by each R-Node only once
(or, merely on an occasional base). Consider the energy
consumption due to nodal movement. No particular node
will over consume its battery power since moving distance
are distributed to multiple nodes according to the shifting
relocation strategy, and thus prolonging network lifetime.

E. Fault Tolerance

The execution of the ZONER is vulnerable to node failures.
In order to improve its availability and robustness, we equip
the ZONER with a fault tolerance mechanism discussed below.

1) Tolerating node failure during face traversal: In a
Gabriel Graph (GG), after a node fails, the faces adjacent by
that node merge and form a larger face. This type of face
merging naturally tolerates perimeter node failure during a face
traversal process. Let us take the scenario in Figure 3 as an
example. During a ZFlooding process, the ZFlooding packet
Pkt is switched by node a to face traversal mode. Ideally, the
face traversal path of Pkt is a → b → c → d → e around
Face 1 as shown in Figure 3(a). After reaching node e, Pkt
is switched back to broadcast mode because e’s neighbor f is
inside the flooding zone. However, if node d has failed, Pkt
will be transmitted along a path different from the expected
one. Specifically, having detected node d’s failure2, node c
considers the merging face LFace of Face 1, 2, and 3 as
the designated face and forwards Pkt to node k instead of d,
and Pkt’s actual face traversal path becomes a → b → c →
k → l → m → e, around LFace as displayed in Figure 3(b).
Nevertheless, Pkt still successfully penetrates the void-area
(in this particular example, Pkt ends up with node e).

The parallel execution of node replacing can have side-effect
on face traversal. In the previous example, when the failed
node d is replaced by a node d′, the large face LFace is
split back into the three small faces, Face 1, 2, and 3. If this
node replacing takes place before node l transmits the packet
Pkt, the recovered Face 3 becomes current face, and thus l
will forward Pkt to d′, which then sends the packet to c,
therefore generating a unexpected traversal loop as shown in

2Node failure can be detected either by listening to the periodical HELLO
message or by monitoring a node’s communication activities.



(a) Face traversal with no perimeter
node failure

(b) Face traversal with perimeter
node failure at d

Fig. 3. An example of tolerating node failure during face traversal

(a) Traversal loop due to failure-
node replacing

(b) Face traversal resumption at
node c

Fig. 4. An illustration of the side-effect from node replacing

Figure 4(a). After node c receives Pkt from d′, it will be aware
of the loop and consequently terminates face traversal. This
unexpected early termination could lead to the failure of void-
area penetration. To deal with this problem, each node needs to
records not only its actual next hop but also its expected next
hop when transmitting packets in face traversal mode. E.g., the
expected next hop of c is d, while its actual next hop is k. To be
adaptive to node replacing, the two type of next hops should be
stored in the form of coordinates rather than IDs. In addition,
each node needs to back up a face-traversing packet before
transmitting it. For a node participating in a face traversal, in
the case that its actual next hop is different from the expected
one, if it receives the face-traversing packet back from the
expected next hop, it considers there is a traversal loop due to
node replacing and resumes the original face traversal using
the backup packet as shown in Figure 4(b).

2) Tolerating node failure during node replacing: Consider
an arbitrary failed NR-node nf . If the two default discovery
process initiators, namely the westmost neighbor WN(nf )
and eastmost neighbor EN(nf ) of nf , have both failed, n will
never be replaced according to previous protocol description.
To conquer this failed initiators problem, while WN(nf ) and
EN(nf ) are looking for a replacement for nf , other neighbors
of nf keep monitoring their existence by periodically sending
them a beacon message through the underlying routing proto-
col and expecting their reply. If WN(nf ) and EN(nf ) have
both failed, and if the failed node nf has not yet been re-
placed, the westmost, WN ′(nf ), and the eastmost, EN ′(nf ),

among nf ’s functioning neighbors will automatically take
over WN(nf ) and EN(nf )’s responsibility and respectively
start a discovery process. Meanwhile, the rest of nf ’s live
neighbors will turn to monitor WN ′(nf ) and EN ′(nf ). This
type of monitoring and taking-over keeps going until nf is
successfully replaced or all its neighbors fail.

An extreme case of the failed initiators problem is that all
the neighbors of the failure node nf have failed. Assume that
all these failed neighbors are successfully replaced. Because
the neighbor replacements have no knowledge about nf , they
are not able to start a discovery process for it, resulting in that
nf will never be replaced. To handle this failed neighborhood
problem, the ZONER requires that the NR-nodes neighboring
nf but having no knowledge about nf and its neighborhood
independently discover a replacement for nf all alone (without
any discovery partner). By this requirement, the failure node
nf may have more than two discovery process initiators, and
therefore multiple replacements at the end.

During a relocation process, the blank spot due to a NR-
node’s leaving is not treated as a sensing hole since some
other node is supposed to cover that spot soon. However,
if a relocating NR-node/R-node fails before it arrives at its
target location, the blank spot at its target location turns into a
sensing hole as a result. This failed relocating nodes situation
can be identified in the following way: a NR-node informs
all its neighbors before it moves of the estimated time period
in which its location could be occupied by another node; its
neighbors checks if its original location is still uncovered after
that time period and then makes its decision accordingly.

F. Collision Resolution

When more than one node, due to the utilization of the fault-
tolerance mechanism, initiates discovery processes for a single
failure node, multiple replacement nodes may be discovered
and relocated, resulting in node collision and consequent
energy loss. A collision resolution method, Preliminary Re-
placement Attempt (PRA), is integrated within a relocation
process by the ZONER.

Specifically, the discoverer Disc(nr) of the replacement
node nr of a failed NR-node nf delegates its only neighbor
nx in the relocation path of nr to initiate a deferred relocation
process, while it itself performs a PRA. In the PRA, Disc(nr)
attempts to replace nf by moving towards it; while moving,
Disc(nr) constantly broadcasts a message carrying its ID and
nf ’s coordinate; if it hears such a message carrying a smaller
ID and the same coordinate, or if it finds that its target location
has already been occupied, Disc(nr) will return to its original
location. While Disc(nr) is performing this PRA, all the other
nodes in nr’s relocation path stay put. In particular, nx keeps
monitoring the return action of Disc(nr) during this waiting
period. If it finds that Disc(nr) actually returns, it informs all
the nodes involved in the discovery process, in which nr is
discovered, to release their sources by a cancellation message.
The cancellation message is processed by each receiver in a
way similar to that a relocation message is handled. If nx

finds that Disc(nr) does not return after the waiting period, it



initiates a relocation process on behalf of Disc(nr). By this
means, although collision can still occur, excrescent moves
and misspent moving distance are greatly reduced.

V. PROOF OF CORRECTNESS

In an ideal environment where no failure happens to the
nodes involved in current protocol execution:

Lemma 1: A replacement node can always be found for a
failed non-redundant node.
Proof: Redundant nodes register themselves with all the non-
redundant node within its predefined vertical registration zone.
The neighbors of a failed node inquire all the non-redundant
nodes inside their horizontal request zones for redundant node.
The request zones intersect with a number of registration
zones. The non-redundant node in the intersection area is
able to provide redundant node information. In case that no
available redundant node can be found, the size of the request
zones will be increased. When the size is larger than the
area of the sensor field, all the non-redundant nodes will
be asked in the network. According to the assumption of
sufficient redundant nodes, an available redundant node will
be eventually discovered. Hence, Lemma 1 holds.

Lemma 2: A failed non-redundant node can be replaced once
a replacement node is discovered.
Proof: When a replacement node is determined by the two
default discovery process initiators, the communication path
between the replacement node and its discoverer forms a
nature relocation path. By the shifting relocation method, after
the relocation process, the failed node is replaced by the
replacement discoverer. Hence, Lemma 2 holds.

In a real-world scenario where failure may occur at any
node at any given time:

Lemma 3: The ZONER tolerates node failures.
Proof: In a registration process, node failure will not affect the
initiator’s registration operation since the network is always
connected. In a discovery process, if a NR-node inside the
request zone fails, it will not appear in the relocation path of
the finally discovered R-node; if the initiator fails, its discovery
partner is still going to find a R-node anyway; if both of the
two default initiators fail, two other functioning NR-nodes will
take over their discovery and relocation responsibility; if all the
NR-node neighbors of the failure node fail, the replacements
of these nodes are required to find a R-node for the failure
node. In a relocation process, if a relocating node fails before
arriving its target location, the NR-nodes around its target
location can find out and then find a R-node to cover the
blank spot. Hence, Lemma 3 holds.

Lemma 4: The ZONER is able to solve node collision.
Proof: Its correctness follows the fact that no collision will
occur if a node initiates a relocation process iff it is sure about
that there is no other relocation process is being or will be
conducted for the same failure node.

By Lemma 1, 2, 3 and 4, we have the following theorem:
The ZONER is able to effectively patch sensing holes due
to node failures.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a distributed zone-based sen-
sor relocation protocol, ZONER, for mobile sensor networks
(MSNs) on the base of a restricted flooding technique, i.e.,
ZFlooding. The ZONER has a number of advantages: 1) ben-
efiting from the zone-based node discovery strategy, it is able
to quickly and efficiently discovery pre-deployed redundant
nodes; 2) by using the shifting relocation method, energy
consumption for node replacing is distributed into multiple
nodes, and thus prolonging network lifetime; 3) due to the
void-area penetration property of the ZFlooding technique, it
is adaptive to obstacles and unbalanced node distribution, and
it is able to accommodate dynamically added redundant nodes
as well (this situation is not explored in this paper though);
4) thanks to the effective fault tolerance mechanism, it is
robust against node failures; 5) because of the zero knowledge
about the sensor field, it has strong availability in unknown
environment.

In the future, we are going to implement the ZONER and
evaluate its performance in comparison with the Grid-Quorum
based protocol[9] by experiments.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Ivan Stojmenovic for
his valuable discussions on improving this work, and the
anonymous reviewers for their useful comments.

REFERENCES

[1] X. Li and N. Santoro. “An Integrated Self-Deployment and Coverage Maintenance
Scheme for Mobile Sensor Networks”, 2006. Submitted for publication.

[2] A. Howard, M. J. Mataric, and G. S. Sukhatme. “Mobile Sensor Network Deploy-
ment using Potential Fields: A Distributed, Scalable Solution to the Area Coverage
Problem”. In Proc. of DARS, pp. 299-308, 2002.

[3] Y. Zou and K. Chakrabarty. “Sensor deployment and target localization in distributed
sensor networks”. ACM Tran. on Embedded Computing Systems, 3(1):61-91, 2004.

[4] G. Wang, G. Cao, and T. L. Porta. “Movement-Assisted Sensor Deployment”. In
Proc. of IEEE INFOCOM, vol. 4, pp. 2469-2479, 2004.

[5] N. Heo and P. K. Varshney. “Energy-Efficient Deployment of Intelligent Mobile
Sensor Networks”. IEEE Tran. on Systems, Man, and CyberNetics - Part A: Systems
and Humans, 35(1):78-92, 2005.

[6] J. Wu and S. Yang. “SMART: A Scan-Based Movement-Assisted Sensor Deploy-
ment Method in Wireless Sensor Networks”. In Proc. of IEEE INFOCOM, vol. 4,
pp. 2313- 2324, 2005.

[7] G. Wang, G. Cao, and T. L. Porta. “Proxy-Based Sensor Deployment for Mobile
Sensor Networks”. In Proc. of IEEE MASS, pp. 493-502, 2004.

[8] G. Wang, G. Cao, and T. L. Porta. “A Bidding protocol for deploying mobile
sensors”. In Proc. of IEEE ICNP, pp. 315-324, 2003.

[9] G. Wang, G. Cao, T. L. Porta, and W. Zhang. “Sensor Relocation in Mobile Sensor
Networks”. In Proc. of IEEE INFOCOM, pp. 2302-2312, 2005.

[10] I. Stojmenovic. “A scalable quorum based location update scheme for routing in
ad hoc wireless networks”. In Technical Report, SITE, Univ. of Ottawa, TR-99-09,
1999.

[11] D. Liu, I. Stojmenovic and X. Jia. “A scalable quorum based location service in
ad hoc and sensor networks”. In Proc. of IEEE MASS, 2006. To appear.

[12] F. Aurenhammer and R. Klein. “Voronoi Diagrams”. Available online at
“http://www.pi6.fernuni-hagen.de/publ/tr198.pdf”.

[13] J. W. Jaromczyk and G. T. Toussaint. “Relative neighborhood graphs and their
relatives”. In Proc. of the IEEE, vol. 80, pp. 1502-1517, 1992.

[14] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. “Routing with Guaranteed
Delivery in Ad Hoc Wireless Networks”. In Proc. of ACM DIALM, pp. 48-55,
1999.

[15] H. Frey and I. Stojmenovic. “On Delivery Guarantees of Face and Combined
Greedy-Face Routing Algorithms in Ad Hoc and Sensor Networks”. In Proc. of
ACM MobiCom, 2006. To appear.


