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Abstract

The objective of this paper is to study the computational power of the qualitative model,
where computing entities (e.g., processing nodes, mobile agents, etc.) are given distinct labels
which are however mutually incomparable. This model is opposed to the quantitative model,
where labels are integers. The qualitative model captures, for example, the cases where there is
no a priori agreement on a common encoding of the labels. We investigate the qualitative model
through the problem of deterministic leader election in a distributed mobile environment. All
known deterministic leader election protocols assume that the initial input values are distinct and
pairwise comparable. While distinctness of the input values is clearly required, the comparability
assumption is questionable. Our concern is whether it is possible to remove this comparability
assumption. We first give a necessary condition for election being possible in the qualitative
model. We then describe a protocol that performs election of one agent among any set of agents
in any network, under restrictive conditions on the network and on the initial positions of the
agents. Our main result is the design of an election protocol that is proved to be effectual
for all anonymous Cayley graphs, i.e., it solves the election problem if the problem is solvable,
otherwise it determines that the problem is not solvable. Our work is a first step toward a better
understanding of the inherent differences between “quantitative computing” where parameters
are taken from a total order, and “qualitative computing” where parameters are taken from a
partial order.
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1 Introduction

1.1 Qualitative Model

Assume that one wants to elect the chair of an international organization, chosen among the
representatives of all nations belonging to this organization. A possible protocol for such an election
could be: (1) every representative goes to the meeting room; (2) representatives aiming to be elected
write their names on the whiteboard; (3) the representative whose name arrives first in alphabetic
order is elected. Beside the philosophical or sociological aspects, this protocol has a major drawback:
it may fail. There are at least two reasons for the failure of the protocol. The first reason is obvious:
there might be different representatives with the same name. In this case, the protocol fails because
it assumes the existence of a set of labels (here the names of the representatives) such that all entities
participating to the election have pairwise distinct labels. The second reason for failure is a bit
more subtle: even if labels are distinct, what about if, after phase 2 of the protocol, the whiteboard
displays names written in Latin, Arabic, Hebrew and Greek alphabets, or displayed with Chinese
or Japanese characters. In this case, the protocol may fail because it does not only assume the
existence of a set of pairwise distinct labels, but it also assumes comparability between these labels.

Of course, as far as computer science is concerned, there exists a natural set of comparable labels:
the binary strings. Encoding labels with binary strings would provide a set of labels supporting
distinctness and comparability, if this encoding is one-to-one and everybody agree on it. However,
such an encoding might not exist. This is currently the case with names written using totally
different systems of characters. (Note that even in the computer worlds, numbers may be encoded
differently by different manufactories). This example illustrates a situation in which a protocol
which seems obviously correct actually relies on the assumption that labels are distinct and compa-
rable. Electing the chair of an international organization may actually require a more sophisticated
protocol since comparability of the labels may not be assumed.

Actually, if there is an agreed-upon meeting room (say “room 1402”, or “the room at the North-
East corner”), then another simpler election protocol could be: the first representative who writes
his or her name on the whiteboard of the meeting room is elected. However, if there is no such
an agreed-upon meeting room, then the problem becomes difficult because the representatives
do not even know where to gather. There is a theoretical framework capturing such an absence
of node-labeling: anonymous networks. However, in anonymous networks, the links incident to
each node are traditionally given distinct local labels between 1 and d, where d is the degree of
the node. The argument supporting the need for such an edge-labeling is often stated as (see,
e.g., [3, 4, 10, 18, 23, 33]): “if links would be unlabeled, then one could not distinguish them”.
This affirmation is correct. However, distinctness is one thing, and comparability is another. For
instance, the streets out-going from the Aκρoπoλησ (Akropolis), are labeled with labels from a
totally ordered set, but this total order remains unknown to a tourist not aware of the Greek
alphabet. Still, any tourist in Athens can distinguish among those streets and can give relative
or local comparable labels to the streets, e.g., “the second to the right”. However, this labeling is
not absolute nor it is fixed in advance. Hence, although it makes sense to enforce distinctness of
link-labels at each node of an anonymous network, there is no formal reason to assume these labels
to be mutually comparable. Instead, one could simply assume a local edge-labeling using distinct
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symbols such as geometric figures, algebraic symbols (e.g., the elements of a group), or colors1.

The aim of this paper is to study the computational power of the qualitative model, where entities
are given distinct labels, called colors, which are however mutually incomparable: two colors can
be distinguished but no other order relationship derived. This model is opposed to the quantitative
model, where labels are integer values. We investigate the qualitative model through the problem of
deterministic leader election among mobile agents. Indeed, all leader election protocols we are aware
of assume either that the initial labels are pairwise comparable, or that there exists an encoding
of the labels providing pairwise comparable codes. That is, all protocols assume the existence of a
total order on the set of labels (this total order being either inherent to the label set, or provided
by an appropriate encoding of the labels). Our concern is whether it is possible to get rid of the
comparability assumption, to eventually solve the election problem.

Incomparable labels are not used in practice, as our computational world is a quantitative one.
Our investigation is actually mostly motivated by a natural scientific curiosity, for tackling the
question of computing without comparability. However, our investigation can still have a significant
practical impact for quantitative worlds. In particular, a setting in which our investigation can find
applications is an environment where input values are both distinct and comparable but there is no a

priori agreement among the agents on the comparability criteria; e.g., some agents might prefer the
decreasing ordering while others the increasing one, while others might have yet a different ordering
criteria. It is for example known that the properties of distributed optimization algorithms for the
coordination of multi-agent systems depend on the underlying preference structures of the agents
[17], which might be unknown a priori.

1.2 Computing in Qualitative Worlds

An environment supporting mobile agents can be described as a collection E of autonomous mobile
entities located in a spatial universe U . The entities have computing capabilities, exhibit the same
behavior (i.e., execute the same protocol), and can move in U (their movement is constrained by
the nature of U). Depending on the context, the entities are sometimes called mobile agents, other
times robots. In the following we shall use these terms interchangeably. In the mobile setting, two
main models have been considered: the geometric world where the universe is assumed to be the
set R

2 of points in the plane, and the entities to be autonomous mobile robots, and the graph world
where the universe is a graph G, and the entities software agents in a network. This paper will
focus on this latter model, i.e., graph world. More precisely, we consider anonymous networks, i.e.,
connected undirected graphs G = (V,E) whose n nodes are unlabeled. The d = deg(x) incident
edges of node x are labeled by d pairwise distinct symbols. Each agent is capable to distinguish
these symbols, and to produce its own encoding of them. Every edge hence receives two labels, one
for each of its extremities. We denote ℓx(e) the label at x of the edge e incident to x.

We consider the standard model of computing with mobile entities. That is communication between
agents is achieved through writing of signs on whiteboards, i.e., local storages where agents can
read, write (and erase) signs. There is one whiteboard per node, and access to a whiteboard is
done by assuming a fair mutual exclusion mechanism. The concept of whiteboard is an abstraction
for the use of local memory space available at each processor of a network. The agents execute the

1There is an underlying total order on the colors, induced by their wavelength. However, ordering colors using
this total order is not an obvious task for most people, and may even be not applicable if colors are not pure.
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same protocol, and can move from node to node along the links of G. The initial position of an
agent is called its home-base. For the sake of clarity, we assume that there cannot be more than one
agent initially placed at a node. However, all our results extend to the case where more than one
agents can occupy a single node when the protocol starts. Let A be a set of r ≤ n mobile agents
located at different nodes of G. Let p : A→ V (G) be the injection describing the placement of the
agents in G. Hence, given a ∈ A, p(a) is the home-base of agent a. The agents are said placed by
p in G.

Let C be a set of mutually incomparable elements, called colors. I.e., for any x, y ∈ C it can only
be determined whether they are equal or different. Every agent a ∈ A is assigned a distinct color.
Let c : A → C be the one-to-one function assigning colors to the agents. Each agent a initially
knows its color c(a) only. In a qualitative graph world colored by C, the basic unit of information
is the colored sign, i.e., a string of bits with a color. The home-base of a ∈ A is marked with a sign
of color c(a); the sign is the same for all home-bases, only the colors of the signs differ. Agents
exchange information through the whiteboards only. Again, an agent can write on the whiteboards
signs colored by its own color. It can read colored signs from the whiteboards, and it is able to
distinguish colors and to produce its own encoding of these colors (i.e., if it sees red signs on two
different whiteboards, it will know that they are of the same color).

The agents are asynchronous in the sense that every action they perform (computing, moving, etc.)
takes a finite but otherwise unpredictable amount of time. The actions of an agent a at a node
x depends on the current state of a, on its color, and on local information available at x, such
as the label of the input port through which a entered x, the content of x’s whiteboard (i.e., the
colored signs written on the whiteboard), and the degree of x. According to these information, a
may decide to access x’s whiteboard, to leave x, or to stay at x, for instance waiting for the arrival
of another agent.

Protocol design

Protocol design in the qualitative world significantly differs from the protocol design in the quan-
titative world, because a protocol in the qualitative world cannot apply the operations < and > to
the IDs of the agents, but can only test whether two colors are equal or different. The designer of
a protocol in the qualitative world must proceed without assuming comparability. He or she must
design the protocol knowing that the agents will run in a qualitative world, that is will be provided
with colors from a set C, but the designer does not need to know C, and thus cannot assume or
compute any a priori total ordering on the set C of colors used by the agents.

1.3 An Exemplary Problem: Election

The agents are aiming at electing one of them as a leader2. Here we don’t assume that each agent
is endowed with a numerical input value, but consider the case where the input value is the agent’s
color (thus distinguishable but not comparable). In particular, when two agents meet, the nature
of the colors alone is not sufficient to break the symmetry. We focus on generic protocols, i.e.,
protocols that can be run independently of the network, its size, the initial position of the agents,

2Once a leader is elected, many other computational tasks become straightforward. Such is the case for the
gathering or rendezvous problem.
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and their number. Thus, initially, the agents are unaware of G’s topology, nor of its size. They
are also unaware of their numbers; i.e., G, n, and r are all a priori unknown to the agents. Among
generic solutions, we would like to design universal protocols, that is deterministic solutions which
solve the problem in every network. More precisely, a generic election protocol P is universal if, for
any network G = (V,E), and any initial placement p of the agents, P elects one agent as a leader.

If agents are labeled with distinct elements that are also comparable (i.e., from a totally ordered
set), then there is a universal election protocol. This universal election protocol implements the
strategy of the protocol described at the very beginning of the paper, without an agreement on the
meeting room. It performs in two phases. During phase 1, every agent performs a traversal of the
graph to collect all agent labels. During phase 2, every agent elects the agent of maximum label as
the leader.

However, universality is a demanding concept if agents are unlabeled or labeled with incomparable
labels. For instance, in the complete network of two nodes K2, with one agent sitting at each node,
there is no way to break the symmetry.

Therefore, we rather focus our attention on effectual protocols, that is deterministic solutions that
solve the problem if the problem is solvable, and otherwise determine that it is not solvable. More,
precisely, following the guidelines of [33], we define the following:

Definition 1.1 Given an election protocol P, I(P) is the set of input pairs (G, p) for which P
successfully elects a leader among agents placed by p in G, no matter the edge-labeling is. I is the
set of pairs (G, p) which belong to I(P) for at least one election protocol P, i.e., I = ∪PI(P). A
generic election protocol P0 is effectual if it elects a leader for every input in I, i.e., I(P0) = I.

By definition, for any protocol P, I(P ) ⊆ I. The existence of an effectual protocol, i.e., a protocol
P0 such that I ⊆ I(P0), is not obvious.

Note that, as for quantitative computing, the protocols should be independent of the edge-labeling
of the networks. Indeed, the role of edge-labeling in anonymous networks is just to allow the agents
to make a distinction between the edges that are incident to a same node. Specific edge-labeling
may introduce, or break symmetries in the graph. effectual protocols are not allowed to use such
asymmetries. In other words, they must complete even if the edge-labeling has been maliciously
chosen by an adversary. The impact of specific kinds of edge-labeling (e.g., compass-compatible,
sense-of-direction, etc.) for the protocol design is beyond the scope of this paper.

Observe that an effectual election protocol cannot exist if both the agents and the network are
anonymous. Indeed, assume for the purpose of contradiction that such an effectual protocol P
does exist. Then consider the two following inputs (G1, p1) and (G2, p2): G1 is the ring of 3 nodes,
and there is one agent; G2 is the ring of 6 nodes, and two agents are initially placed at distance 3
from each other. Consider a synchronous scheduler: in each execution, all agents perform their
instructions and moves simultaneously. Moreover, even if the agents have no notion of left and
right, the scheduler only allows executions in which two agents in the same state, and which have
to move, perform their move in the same direction in the ring. An agent a executing P behaves
the same in G1 and G2. That is, agent a cannot distinguish whether it is alone in G1 or with a
companion b in G2, although election is possible for the former instance (the protocol is: “I am
the leader”), and not for the latter (the scheduler described above implies that both agents will
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always remain in the same state, and hence none of them can become the leader). Hence, P is not
effectual, a contradiction.

We therefore rephrase our problem as follows: does it exist an effectual election algorithm in a
qualitative graph world (i.e., when agents are given distinct but non-necessarily comparable labels)?

The impossibility of distinguishing nodes in an anonymous network yields symmetry in computa-
tions and restricts the computational power of the agents. Breaking the symmetries can be achieved
using the asymmetries of the network. For instance, election is trivial in a star: all agents go to
the central node, and the first node which writes on the whiteboard is elected (recall that the
access to a whiteboard is done in mutual exclusion). However the problem becomes different when
the network itself is very symmetric. In this paper, we focus our attention on highly symmetric
networks, namely on Cayley graphs.

Definition 1.2 The Cayley graph Cay(Γ, S) is described by a group Γ and a generating set S, with
S = S−1. The nodes of Cay(Γ, S) are the elements of Γ, and there is an edge {a, b} if and only if
b−1a ∈ S.

Cayley graphs form a rich class of graphs, including most of the usual models for structured
interconnection networks [22, 24], e.g., complete graphs, cycles, hypercubes, multi-dimensional
toroidal meshes, Cube-Connected-Cycles, wrapped Butterflies, Star-graphs, circulant graphs, etc.
For instance, the n-node cycle is the Cayley graph

Cn = Cay(Zn, {+1,−1})

and the d-dimensional hypercube is the Cayley graph

Qd = Cay(Z2 × Z2 × . . .× Z2, {(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, 0, . . . , 1)}).

In the former case, the group operation is the addition modulo n, and in the latter the bitwise xor
on d-dimensional binary vectors. All Cayley graphs are vertex-transitive graphs (i.e., graphs that
“look the same” from every vertex). The converse does not hold. However, any vertex-transitive
graph G is a quotient of a Cayley graph. Moreover, it is conjectured (see [6]) that almost all
vertex-transitive graphs are Cayley graphs. Finally, Cayley graphs can be used to build explicit
expanders [32].

1.4 Our results

We first give a necessary condition for election being possible in the qualitative model.

We then describe a protocol, called Elect, that performs election of one agent among any set of
agents in any network, under restrictive conditions on the network and on the initial positions of
the agents.

Our main result is the design of an election protocol resulting from a slight modification of Elect,
that is proved to be effectual for all anonymous Cayley graphs, i.e., it solves the election problem
if the problem is solvable, otherwise it determines that the problem is not solvable.

These results are partially summarized in Table 1. In this table, the row “anonymous” corresponds
to the case where the agents are unlabeled; the row “qualitative” corresponds to the case where
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Universal effectual
Agents Arbitrary Cayley

Anonymous No No No

Qualitative No ? Yes

Quantitative Yes Yes Yes

Table 1: Summary of the results of this paper: election in anonymous networks.

the agents are given distinct but incomparable labels; and the row “quantitative” corresponds to
the case where the agents are given comparable labels. In all three cases, the nodes are unlabeled,
i.e., the network is anonymous.

• If the agent are anonymous, then we have seen in Section 1.3 that rings are counter examples
for the existence of a universal election protocol in arbitrary networks. In fact, since rings
are Cayley graphs, they are also counter examples for the existence of a universal election
protocol in Cayley graphs.

• If the agents are given comparable labels (i.e., if agents belong to the quantitative world),
then we have seen in Section 1.3 that there is a universal election protocol. A universal
election protocol being effectual, this implies that there is an effectual election protocol in the
quantitative graph world, for arbitrary graphs, and therefore for Cayley graphs in particular.

• Our contribution concerns the qualitative graph world where agents are given distinct but
otherwise uncomparable labels. K2 is a counter example for the existence of a universal
election protocol in the qualitative graph world. We prove that there exists an effectual
algorithm for the class of Cayley graph.

We were not able to prove or disprove the existence of an effectual election protocol for arbitrary
graphs in the qualitative graph world. We discuss the possible existence of such a protocol in
Section 5.

Our work is a first step toward a better understanding of the inherent differences between “quan-
titative computing” where parameters are taken from a total order, and “qualitative computing”
where parameters can be incomparable (i.e., taken from a partial order), though distinguishable.

1.5 Related Works

This investigation is part of an ongoing research effort on understanding the algorithmic limits of
computing with mobile agents. The study of the election problem in environments other than the
traditional distributed ones is currently being carried out. Such is the case for radio networks,
ad hoc networks, etc. See for instance [12, 21, 26, 29]. However, these investigations all assume
comparable labels.

Among other problems being attacked in the distributed mobile framework, network exploration in
all its variants has definitely played a central role. In [1, 5, 9, 13, 15, 16, 20, 19, 31], the problem
of traversing a graph by a finite automaton, or a finite family of cooperative finite automata (using
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pebbles or not) is considered. The objective is either to derive feasibility results, or to bound the
time required for the exploration, or to bound the local memory of the agents. In the map drawing
problem [8], not only all edges must be traversed by the (group of cooperative) agent(s) but a map
of the graph must also be returned. In the rendezvous (or gathering) problem [2, 14, 25], all agents
must gather at the same place. All protocols described in the papers mentioned above assume
agents with comparable labels.

There are some problems for which agents are not assumed to be given comparable labels. This is
for instance the case of graph searching. In this problem, agents move along the edges of the graph
in order to surround an intruder (see, e.g., [28]). However, all graph searching protocols derived so
far are centralized, and agents are rather considered as token that are placed, moved, and removed
from the graph by an external player (with the exception of [7] which however assumes a way to
break symmetry among the agent). On the contrary, all protocols described in this paper are fully
decentralized.

2 A Necessary Condition for Election

In this paper, all graphs are assumed to be connected. Given an input (G, p) of the election
problem, the placement function p defines a bi-coloring of the nodes of the graph G, say black
nodes correspond to home-bases, and white nodes to those nodes that are initially not occupied by
agents. Hence, thoughout all the paper, we will often consider bi-colored graphs G = (V,E), i.e.,
graphs whose nodes are either black or white (not to be confused with the colors of the agents).

Recall that an isomorphism from G1 to G2 is a one-to-one and onto mapping φ : V (G1)→ V (G2)
satisfying: {x, y} ∈ E(G1) ⇔ {φ(x), φ(y)} ∈ E(G2). If G1 = G2, then isomorphisms are called
automorphisms.

Definition 2.1 Two nodes x and y of a bi-colored graph (G, p) are equivalent, denoted by x ∼ y,
if there is a color-preserving automorphism φ such that φ(x) = y.

All morphisms considered in this paper must preserve the coloring of nodes, thus they are always
color-preserving morphisms, and two equivalent nodes have always the same color, i.e., black or
white.

Let G = (V,E) be an edge-labeled graph. A label-preserving automorphism is an automorphism φ
satisfying: For every x ∈ V , ℓφ(x)({φ(x), φ(y)}) = ℓx({x, y}) for every neighbor y of x.

Definition 2.2 Two nodes x and y are label-equivalent if there is a label-preserving automorphism
φ such that φ(x) = y. We denote by

x ∼lab y

the fact that x and y are label-equivalent.

Since all morphisms must preserve the black or white colors of the nodes determined by the initial
placement p of the agents, a label-preserving morphism in (G, p) preserves both edge-labels and
node-colors. As a consequence

x ∼lab y ⇒ x ∼ y
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where ∼ is defined in Definition 2.1.

Lemma 2.1 All equivalence classes of ∼lab have the same size.

Proof. Assume, for the purpose of contradiction, that not all equivalence classes have the same
size, and let C and C ′ be two equivalence classes with |C| > |C ′|. One can choose C and C ′ such
that there is at least one edge between them. Let C = {x0, x1, . . . , xn} and, for i > 0, let φi be a
label-preserving automorphism such that φi(x0) = xi. Let e be an edge leading from x0 to some
node y0 in C ′, and let α = ℓx0

(e). Since xi ∼lab x0, if x0 has an incident edge labeled α, then xi

has also an incident edge labeled α. Moreover, for i ≥ 0, if yi is the neighboring node of xi reached
after traversing edge labeled α from xi, then yi ∼lab y0. Indeed, on one hand,

α = ℓx0
({x0, y0}) = ℓφi(x0)({φi(x0), φi(y0)}) = ℓxi

({xi, φi(y0)}),

and, on the other hand,
α = ℓxi

({xi, yi}).

Therefore φi(y0) = yi because the labels of the edges incident to xi are pairwise distinct. Therefore
yi ∼lab y0 for all i > 0, i.e., for any i ≥ 0, yi ∈ C

′. Moreover, all yi’s are pairwise distinct because,
for every i ≥ 1,

ℓyi
({yi, xi}) = ℓφ−1

i
(yi)

({φ−1
i (yi), φ

−1
i (xi)}) = ℓy0

({y0, x0}).

Thus, if yi = yj for i 6= j then the two edges {yi, xi} and {yi, xj} would have the same label at yi.
Since all yis are pairwise distinct and all belong to C, we would get |C ′| ≥ |C|, a contradiction.

Theorem 2.1 If there exists an edge-labeling of (G, p) such that the label-equivalence classes (i.e.,
the classes for ∼lab) have size > 1 then election in (G, p) is impossible.

Proof. Recall that the view [33] of an edge-labeled graph G from a node v is the infinite labeled
rooted tree V(v) defined as the union of the edge-labeled paths originated at v in G. This notion
can be trivially extended to bi-colored graphs, and then the views are bi-colored trees. The view
can be alternatively recursively defined as follows. V(0)(v) is v, and for k ≥ 1, V(k)(v) is the tree
rooted at v and having deg(v) subtrees V(k−1)(wi), one for each neighbor wi of v in G. The edge
from the root of V(k)(v) to the root of V(k−1)(wi) has the same two labels as the edge {v,wi} in G.
We denote by

x ∼view y

the fact that x and y have the same view, i.e., there is a label-preserving isomorphism between V(x)
and V(y). From Norris [30], in an n-node graph, x ∼view y if and only if there is a label-preserving
isomorphism between V(n−1)(x) and V(n−1)(y). (Boldi and Vigna [10] proved that one can actually
consider only views up to diameter.) First we show that

x ∼lab y ⇒ x ∼view y (1)

for any edge-labeled bi-colored graph G, and any two nodes x and y. For that purpose, let φ be a
label-preserving automorphism of G such that φ(x) = y. Let ψ : V(n−1)(x)→ V(n−1)(y) be defined
as follows. Any node u of V(n−1)(x) is uniquely defined by a sequence of labels i1, . . . , ik, k ≤ n−1,
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Repeat:

• Wait for reception of a message;
• Upon reception of a message (P,M), execute
P with data M and W ;
• If the execution leads to a move through the
edge labeled i, then send a message (P,M ′)
through the edge labeled i, where M ′ is the
memory content of the agent when it leaves
the node;

Figure 1: Transformation of a protocol for mobile agents into a protocol for processor-network

in the sense that starting from the root of V(n−1)(x), and traversing downward edges of successive
labels i1, . . . , ik leads to u by a shortest path in V(n−1)(x). Since φ is label-preserving, starting from
x (resp., y) and traversing edges of successive labels i1, . . . , ik in G constructs a path Px (resp., Py)
of G. Thus the sequence of labels i1, . . . , ik defines a path from y to some node v in V(n−1)(y). We
define ψ(u) = v. One can easily check that ψ is a label-preserving isomorphism from V(n−1)(x) to
V(n−1)(y).

All equivalence classes of G for ∼view have the same size σℓ(G), which depends on the edge-labeling
ℓ of G (see [33]). As a direct consequence of Equation 1, we get that σℓ(G) is at least as large as
the size of the equivalence classes of ∼lab for the edge-labeling ℓ.

Now, we prove that there is a generic transformation from an election protocol for mobile agents in
an anonymous network G to a distributed election protocol for the anonymous processor-network G.
Here is the transformation. All processors execute the same program. The memory of a processor
is its whiteboard W . A message is an agent, and is of the form (P,M) where P is the program
of the agent, and M is the memory content of the agent. A processor executes the instructions
specified on Figure 1. Initially, when an agent wakes up, the corresponding processor (i.e., the
home-base of the agent) wakes up and starts executing the program from the second instruction, as
if it would have received a message. Obviously, by this transformation, a mobile election protocol
in the anonymous network G is transformed into a distributed election protocol for the processor
network G.

Assume now that there exists an edge-labeling ℓ of G such that all label-equivalence classes of (G, p)
have size d. Therefore, σℓ(G) is at least as large as d. Yamashita and Kameda [33] defined the
symmetricity of a network H as: σ(H) = max{σℓ(H), ℓ edge-labeling of H}, and showed (Lemma 7
in [33]) that if election is possible in an anonymous processor network then the symmetricity of that
network is 1. Yamashita and Kameda’s theory applies in our context because their impossibility
result is valid even with complete knowledge, that is all nodes are given the knowledge of the
network topology, and their location in the network. This is our setting since agents are able
to traverse the network and to build a map of it. By our transformation, we get that if there
is an election protocol for mobile agents in G then there is a distributed election protocol for the
processor-network G. Therefore, if d > 1 then (G, p) /∈ I, i.e., election in impossible for this setting.

Observe here a major difference between quantitative and qualitative computing. In the former,
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Figure 2: Quantitative labeling vs. qualitative labeling

labels are chosen from the set of integers. As a consequence, one can fix a priori an arbitrary ordering
of the views, and this ordering gives a way to elect a leader, provided that the symmetricity of the
graph is 1. For instance, consider the path {x, y, z} (cf. Figure 2(a)) with

ℓx({x, y}) = 1, ℓy({x, y}) = 1, ℓy({y, z}) = 2, and ℓz({y, z}) = 1.

All the views are different, and each view can be represented by, e.g., an array of integers. It results
from this observation that an order on the views can be obtained from an order on the arrays
of integers. Actually, the condition of Theorem 2.1 is also a sufficient condition in quantitative
computing (see [33]). The situation is more complex in the qualitative graph world. Indeed, labels
are from a non totally ordered set C, unknown to the designer. This does not allow the designer to
fix an a priori common ordering of the views, and hence the design of an election protocol becomes
more difficult, even when the symmetricity of the graph is 1. For instance, consider the same
example as before, i.e., the path {x, y, z} (cf. Figure 2(b)). Assume moreover, according to the
qualitative model, that

ℓx({x, y}) = ∗, ℓy({x, y}) = ◦, ℓy({y, z}) = • and ℓz({y, z}) = ∗.

All the views are different, as in the example for the quantitative graph world. However, since
there is no a priori order on the symbols ∗, ◦, and •, one cannot order the views. Another way
to realize the difficulty of ordering the views is to act as an agent would do. For instance, agent
ax starting from x and traversing the graph towards z will see the sequence ∗, ◦, •, ∗, that could
be coded 1, 2, 3, 1 by applying the rule consisting to code i the ith symbol met so far. Similarly,
an agent az starting from z and traversing the graph toward x will see the sequence ∗, •, ◦, ∗, that
will also be coded 1, 2, 3, 1 by az applying the same rule as ax. The two agents ax and az have
therefore the same view of the network, once the views are coded by integers. So election cannot
be performed by just sorting the views.

Note also that the reciprocal of Equation 1 does not hold. For instance, consider the following graph
G = (V,E) with V = {x, y, z}, and E = Ering ∪Emess (cf. Figure 2(c)). G′ = (V,Ering) is a ring of
three vertices whose edges are labeled 1 in the clockwise direction, and 2 in the counterclockwise
direction. G′′ = (V,Emess) is a graph of three vertices with two edges e1 and e2 between x and y, and
a loop f around z. The edge-labels of G′′ are as follows: ℓx(e1) = ℓy(e2) = 3, ℓx(e2) = ℓy(e1) = 4,
and the two extremities of f are labeled 3 and 4. One can check that all nodes have the same view,
although z is obviously not label-equivalent to x nor y, and hence there are three classes of size 1
for ∼lab. (This example can easily be extended to a simple graph without loops nor double edges.)
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3 Protocol Elect

3.1 A Common Ordering

Let d(·, ·) be the distance function in a graph. Our election protocol uses the following notion.

Definition 3.1 The surrounding of a node u in a bi-colored network G = (V,E) is the directed
graph S(u) = (V,X) defined on the same set of nodes as G, with the same node-coloring, and such
that:

(x, y) ∈ X ⇔ ( {x, y} ∈ E and d(u, x) ≤ d(u, y) ).

In other words, the out-neighbors of a node x in S(u) are all the neighbors y of x in G such that
d(u, y) = d(u, x) or d(u, y) = d(u, x) + 1. Note that u is the unique node with in-degree 0 in S(u).

The fact that graphs can be canonically ordered is well known (cf., e.g., [27]). To prove the following
lemma, we need to take care of some technicalities.

Lemma 3.1 There is a deterministic algorithm that computes, for any bi-colored graph (G, p), a
total ordering ≺ for its equivalence classes.

Proof. We first prove that two nodes of the bi-colored network (G, p) are equivalent (cf., Def. 2.1) if
and only if their surroundings are isomorphic. Assume u and v are equivalent in G, i.e., there exists
a color-preserving automorphism φ of G mapping u to v. φ trivially extends to an isomorphism
between S(u) and S(v). Conversely, let ψ be an isomorphism between S(u) and S(v). Since u and
v are the unique nodes with in-degree 0 in S(u) and S(v) respectively, ψ maps u to v. ψ trivially
extends to an automorphism of G, and hence u and v are equivalent in G.

Next we prove that there is a deterministic algorithm which computes a total ordering of the
directed graphs. Let G be any n-node digraph, and let M be an adjacency matrix of G, i.e., nodes
are arbitrarily labeled from 1 to n, and there is a 1-entry at row i and column j if and only if node
j is an out-neighbor of node i, and there is a 0-entry otherwise. Let w(M) be the Boolean word
of length n2 obtained by concatenating the n rows of M : row 1, then row 2, etc. Every different
labeling of the nodes from 1 to n corresponds to a permutation π of the rows and the columns of M .
The resulting matrix is denoted by π(M). Let w(G) be the Boolean word of length n2 defined as
the minimum, taken over all permutations π of n symbols, of w(π(M)). Obviously, w(G) = w(G′)
if and only if G and G′ are isomorphic. Therefore, the lexicographic order on the Boolean words
of length n2 produces a total ordering of the n-node directed graphs. Digraphs of different order
are just ordered according to their number of vertices.

We extend this construction to bi-colored digraphs to show that there is a deterministic algorithm
which computes a total ordering of the bi-colored digraphs. For that purpose, we define a hair of
a graph G as a maximal path x0, x1, . . . , xk in G such that deg(xi) = 2 for every i, 0 < i < k,
and deg(xk) = 1. We first order the bi-colored digraphs by their number of vertices, and then by
the maximum length of their hairs (this maximum length is zero if G has no hair). The bi-colored
digraphs of the same order, and having hairs of the same maximum length are ordered as follows.
Let G and G′ be two non color-isomorphic bi-colored digraphs of hairs of maximum length k. G
and G′ are transformed into two non isomorphic uni-colored digraphs Ĝ and Ĝ′ by replacing every

12



Begin

Map-drawing;
Compute & order classes C1, . . . , Cℓ, Cℓ+1, . . . , Ck;
D := C1;
i := 2;
Synchronize(D);
While (i ≤ ℓ and |D| > 1) do /* stage agent-agent */
D ← Agent-Reduce(D,Ci);
i← i+ 1;
Synchronize(D);

While (i ≤ k and |D| > 1) do /* stage agent-node */
D ← Node-Reduce(D,Ci);
If D has been modified, then Synchronize(D);
i← i+ 1;

If |D| = 1 then the unique agent in D is the leader
else election fails;

End.

Figure 3: Protocol Elect

black node by a white node attached to a path of white nodes of length k+ 1. The digraphs G and
G′ are then ordered according to the ordering of Ĝ and Ĝ′ expressed before.

Therefore, two non-equivalent nodes u and v have two non-isomorphic surroundings S(u) and S(v).
One of the two surroundings is smaller than the other according to the ordering of bi-colored graphs.

Remark. Lemma 3.1 is a key point: although colors do not give an a priori order to the agents,
agents are able to group themselves in subsets, and to assign a total order to these sets based on
the topology of the network G and on the initial placement p of the agents.

3.2 Description of Protocol Elect

We now describe our election protocol, called Elect. An agent is successively asleep, awake, active,
possibly passive, and eventually leader or defeated. Agents communicate via the node whiteboards
by writing and reading (colored) messages.

Protocol Elect is sketched on Figure 3. It proceeds in successive phases. The number of phases
depends on the structure of the network, and on the initial positions of the agents.

An initial phase, called Map-drawing, allows each agent placed by p in a network G to draw a map
of G, including the positions and the colors of the home-bases (i.e, the colors of the agent initially
placed at every home-base). For that purpose, marking the whiteboards, each agent performs a
DFS traversal of G. Note that the distincness of the agents’ colors is required for the agents to
draw a map of the graph G. Without such a distincness, this task would be impossible. During its
traversal, if an agent meets a sleeping agent, then it wakes up this agent.

Once the map of G has been drawn, every agent executes Compute & order. I.e., it locally
computes the surroundings of all nodes in (G, p), including those that contain home-bases of agents,
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and those that are initially empty. Based on these surroundings, every agent locally computes the
equivalence classes C1, . . . , Ck of the nodes. Let C1, . . . , Cℓ be those that include the home-bases
of the agents. We assume C1 ≺ C2 ≺ . . . ≺ Cℓ and Cℓ+1 ≺ Cℓ+2 ≺ . . . ≺ Ck where ≺ is the total
order defined in Lemma 3.1. Observe that all agents agree on the classes Ci’s, i.e., agree on which
node belongs to which class, simply because they have a map of the same graph. Moreover, all
agents agree on the order ≺ of these classes.

There are at most k−1 other phases, called reduction phases, where k is the number of equivalence
classes. Each reduction phase executes one of the two variants of the same subroutine. These
variants are called Agent-Reduce and Node-Reduce. Given two sets A and B of agents, the
goal of Subroutine Agent-Reduce is to reduce the number of agents to gcd(|A|, |B|). Given a set
A of agents, and a set B of nodes, the goal of Subroutine Node-Reduce is to reduce the number
of agents to gcd(|A|, |B|). The descriptions of subroutines Agent-Reduce and Node-Reduce

are in Section 3.3. A new phase begins if the number of current active agents is larger than 1.

Phases are grouped into two stages, one called “agent-agent”, and the other called “agent-node”,
corresponding to the two while-loops in Figure 3. The number of phases performed in the agent-
agent stage is ℓ−1, while the number of phases performed in the stage agent-node is k−ℓ. Between
phases, active agents synchronize by traversing the network and letting appropriate colored signs
on the whiteboards. This is the role of procedure Synchronize.

Stage agent-agent: If ℓ > 1, then agents in C1 and C2 become active. The algorithm is aiming
at reducing the number of active agents to d1 = gcd(|C1|, |C2|). For that purpose, active agents
apply the sub-routine Agent-Reduce. It results in a set D1 of active agents, with |D1| = d1.
If d1 > 1, then a new phase is performed, aiming at reducing the number of active agents to
d2 = gcd(|D1|, |C3|). For that purpose, agents in D1 start activating the agents of C3 by visiting
them. An agent in C3 becomes active when it has been visited by all agents in D1. Phase 2 then
begins, and the selection of d2 = gcd(d1, |C3|) active agents is again performed by application of
the routine Agent-Reduce, which results in a set D2 of active agents, |D2| = d2. If d2 > 1, then
yet another phase is performed. Agents in D2 activate agents in C4, and agents in D2 and C4

enter phase 3, i.e., execute the routine Agent-Reduce. An so on, until either some di = 1, or
ℓ − 1 phases have been performed. After phase ℓ − 1, the number of active agents is reduced to
dℓ−1 = gcd(|C1|, |C2|, . . . , |Cℓ|), and the stage agent-agent is completed.

Stage agent-node: In this stage, the phases perform very similarly as for the stage agent-agent.
Let Dℓ−1 be the set of dℓ−1 active agents resulting from the stage agent-agent (or the set C1 of
active agents if ℓ = 1, in which case, we set d0 = |C1|). If dℓ−1 > 1, then phase ℓ aims at reducing
the number of active agents to dℓ = gcd(dℓ−1, |Cℓ+1|). This is performed by application of the
sub-routine Node-Reduce which returns a set Dℓ of active agents, |Dℓ| = dℓ. If dℓ > 1, then yet
another phase is initiated, aiming at reducing the number of active agents to dℓ+1 = gcd(dℓ, |Cℓ+2|).
This phase is again performed by application of Node-Reduce. An so on, until either some di = 1,
or k − 1 phases have been performed in total. Then, stage agent-node is completed.

It results from this sequence of phases that the number of active agents is reduced to

dk−1 = gcd(|C1|, |C2|, . . . , |Ck|).

If dk−1 = 1 then the unique remaining active agent is elected as leader. In that case, the leader
traverses the network to let all other agents know about the color of the leader, and these other
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agents become defeated. If dk−1 > 1, then the remaining active agents traverse the network to
inform the other agents of the failure of the election, and all agents become passive.

3.3 Subroutines Agent-Reduce and Node-Reduce

We introduce few new states for the agents. An active agent may be alternatively searching or
waiting. A waiting agent is a priori unmatched, and can be matched by a searching agent.

3.3.1 Subroutine Agent-Reduce

Subroutine Agent-Reduce takes as input a set D of active agents, and a set C of asleep agents.
It is described on Figure 4. Initially, Agents in D traverse the graph to wakeup the agents in C.
Let S = argmin{|C|, |D|} and W = argmax{|C|, |D|}. Agents in W are waiting agents, and agents
in S are searching agents. Note that |W | ≥ |S|.

Agent-Reduce performs in a certain number of rounds. Before entering every round, the searching
agent synchronize by traversing the network and letting appropriate colored signs on the white-
boards. At every round, waiting agents stay in their home-base, and wait to be visited by all the
searching agents. The searching agents traverse the graph to visit the waiting agents. If a searching
agent matches with a waiting agent, the latter becomes matched. When a matched waiting agent
has been visited by all the searching agents, it becomes passive. The first time a searching agent
visits the home-base of an unmatched waiting agent, it matches with it. A passive agent, i.e., a
matched waiting agent, remains at its home-base. (It will remain idle until it will be shoulder
tapped at the very end of the protocol Elect.)

At every round of Agent-Reduce, the set of searching and waiting agents changes according to
the following rule. If we denote by S, W , and P the current sets of searching, waiting, and passive
agents, then the sets S′ and W ′ of searching and waiting agents for the next round are:

{
S′ = S and W ′ = W \ P if |W | − |S| ≥ |S|;
S′ = W \ P and W ′ = S otherwise.

Note that |W ′| ≥ |S′|. Agent-Reduce stops when |S| = |W |, and then it returns the set S.
Agents in W become passive.

3.3.2 Subroutine Node-Reduce

The subroutine Node-Reduce performs roughly the same as Agent-Reduce. The major differ-
ence between the two subroutines is that Agent-Reduce involves matchings between two agents
whereas Node-Reduce involves matchings between agents and selected nodes. Initially, all nodes
in the input class Ci are selected. We describe hereafter how matchings between α agents and β
selected nodes can be performed, α 6= β. Two cases are considered:

• Case 1: α > β. Then let q and ̺ such that α = q · β + ̺, 0 < ̺ ≤ β. Each of the α agents
traverses the network in order to “acquire” one of the β nodes3. Each of the β nodes can be

3Agent a acquires a node simply means that a is able to access the whiteboard, and write ”acquired” on it.
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Input: a set D of active agents, and a set C of asleep agents;
Begin

S ← argmin{|C|, |D|} and W ← argmax{|C|, |D|};
While |S| < |W | do

Synchronize(S);
Agents in S match with a subset P of agents in W ;
If |W | − |S| ≥ |S| then W ←W \ P
else W ′ ← S, S ←W \ P , W ←W ′;

Return S;
End.

Figure 4: Subroutine Agent-Reduce

acquired by q agents. I.e., as soon as an agent a that has not yet acquired any node visits
a node b that has not yet been acquired by q other agents, a acquires b. Agents that have
acquired a node become passive, and the remaining ̺ agents remain active.

• Case 2: α < β. Then let q and ̺ such that β = q · α + ̺, 0 < ̺ ≤ α. Each of the α agents
traverses the network in order to acquire q of the β nodes. A node can be acquired by one
agent only. Only the ̺ nodes that are not acquired remain selected.

These operations are repeated until the number of active agents is equal to the number of selected
nodes, and then Node-Reduce returns the current set of active agents.

3.4 Properties of Protocol Elect

The main properties of Protocol Elect are summarized by the following:

Theorem 3.1 Protocol Elect elects a leader among any set of agents placed by p in a network
G = (V,E), provided that gcd(|C1|, . . . , |Ck|) = 1 where the Ci’s are the equivalence classes of
(G, p). Moreover, if gcd(|C1|, . . . , |Ck|) > 1 then Elect lets the agents know about the failure of
the election. The total number of moves and whiteboard accesses performed by r agents is O(r|E|).

Proof. Given two sets C and D of agents, Agent-Reduce completes with gcd(|C|, |D|) active
agents. Indeed, by construction of the sets S’s and W ’s, the sequence of pairs (|S|, |W |) is the se-
quence of pairs of integers obtained by computing gcd(|C|, |D|) using Euclid’s algorithm. Similarly,
given a set D of agents, and a set C of nodes, Node-Reduce completes with gcd(|C|, |D|) active
agents. Indeed, if b = qa + r, 0 < r ≤ a, then gcd(a, b) = gcd(a, r). Given an input (G, p) of the
election problem with gcd(|C1|, . . . , |Ck|) = 1, protocol Elect returns one agent in state leader
and the other agents in state defeated because an invariant of the protocol is that, after execution
of the while-loop for index i, |D| = gcd(|C1|, . . . , |Ci|).

Every agent performs a constant number of whiteboard accesses each time it visits a node. There-
fore, the number of whiteboard accesses is at most big-O of the number of moves. During Map-

Drawing, every agent performs a traversal of the network, resulting in O(r|E|) moves. Between
two consecutive phases the Stage agent-agent, active agents perform a traversal to synchronize.
It results in O(

∑ℓ−1
i=1 di|E|) moves, hence in O(r|E|) moves since di ≤ |Ci+1| for i = 1, . . . , ℓ − 1,
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and r =
∑ℓ

i=1 |Ci|. Between two consecutive phases of Stage agent-node, active agents perform a
traversal to synchronize only if the number of active agents have been modified. In this case, the
number of active agents has been at least halved. It results in O(dℓ−1|E|) moves for synchronisation
between two phases of Stage agent-node, that is in O(r|E|) moves.

Now, we count the number of moves inside Agent-Reduce and Node-Reduce. In Agent-

Reduce, the total number of traversals for one matching and one synchronization is at most twice
the total number of matched waiting agents. Indeed, only searching agents move. Every other
traversal results in a matching between the searching agents and some waiting agents (the other
traversal is for synchronization). These two traversals are charged to the agents matched at this
round. More precisely, if Agent-Reduce is called with C and D, and results in D′, the number of
traversals is at most 2(|D|+ |C|− |D′|). Therefore, by summing up the costs of every call, the total
number of moves due to matching or synchronization traversals during the executions of all calls
to Agent-Reduce is O(

∑
i |Ci||E|) = O(r|E|). Finally, if a round is performed during Node-

Reduce, then the number of active agents is at least halved every two rounds. Indeed, Cases 1
and 2 described in Section 3.3.2 alternate every two rounds because ̺ replaces max{α, β} for the
next round. Therefore, the total number of moves due to matching or synchronization traversals
during all the executions of Node-Reduce is also O(r|E|). Hence, the total number of moves and
whiteboard accesses is O(r|E|), which completes the proof.

Remark. In this paper, we aim at establishing feasibility thresholds for the election problem, as
a function of the computational ability of the agents, and of the knowledge given to these agents.
As a consequence, we are less concerned by the time it may take to solve that problem. We
agree though that, if time is an issue, in particular as far as practical applications are concerned,
then Protocol Elect presents two major drawbacks, despite the fact that the total number of
moves and whiteboard accesses is kept reasonably small. Firstly, computing the equivalence classes
C1, . . . , Ck can be quite time-consuming since graph-isomorphism is not known to be in P, in NPC,
or in between these two classes. Secondly, computing the ordering ≺ also involves time-consuming
computations. An interesting and challenging problem is to devise a computationally effective
alternative to Protocol Elect.

4 Effectual Election in Cayley networks

To get an effectual protocol for the class of Cayley graphs, we slightly modify Elect as follows:
during the first phase, once the map of the network G has been computed by the agents, they
test whether G is a Cayley graph (it is time-consuming, but decidable). If G is Cayley, then the
agents carry on Elect using equivalence classes for translations instead of equivalence classes for
arbitrary automorphisms. Recall that a translation is an automorphism of Cay(Γ, S) of the form

φγ : Γ 7→ Γ
a→ γa

for any γ ∈ Γ. Importantly, note that since every agent executes the same protocol, if the network is
Cayley, then agents select isomorphic groups, and hence all nodes agree on the translation-classes.
Note also that the translations act transitively on Cay(Γ, S), and the translation which maps x to
y is γ = yx−1. However, the black and white coloring of the nodes creates different classes. Two
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nodes that are equivalent for translation are called translation-equivalent. Two equivalent nodes
may not be translation-equivalent. For instance, consider the cycle Cay(Zn, {+1,−1}), n even,
with two agents placed at nodes 0 and n/2. Nodes 1 and n/2−1 are equivalent (the automorphism
is a symmetry), but are not translation-equivalent because the translation a 7→ a+(n/2−2) mod n
maps 0 to n/2− 2, and these two nodes are of different colors (since one is an home-base, whereas
the other is not). We prove the following:

Theorem 4.1 Protocol Elect using translation is an effectual election protocol for the class of
Cayley graphs.

Proof. Let G = Cay(Γ, S) be a Cayley graph, and p be a placement of agents in G. Let C1, . . . , Ck

be the translation-equivalence classes of (G, p). Assume first that gcd(|C1|, . . . , |Ck|) = d > 1, and
let us show that election is then impossible.

The elements of the generating set S induces a natural edge-labeling of Cay(Γ, S): ℓx(x, y) =
x−1y ∈ S. We claim that the label-equivalence classes of ℓ have size d. Note that, for any γ ∈ Γ,
the translation γ preserves the labeling since (γx)−1(γy) = x−1y. This is because generators in S
act on the right whereas translations act on the left.

We proceed iteratively, by refining the translation-equivalence classes to create label-equivalence
classes. At each iteration, we mark with two elements in S the two extremities of some set of yet
unmarked edges. Initially, all edges are unmarked. At the end of the process, all edges are marked,
and the mark at the extremity x of an edge e is the label ℓx(e).

At any current state of the process, we say that two nodes are pseudo label-equivalent if they
are label-equivalent relatively to the currently marked edges. I.e., marked edges are mapped to
marked edges of same labels, and unmarked edges to unmarked edges. Initially, all nodes of a same
translation-equivalence class are pseudo label-equivalent since no label is taken into account.

An invariant of our process is that, if an edge between two nodes of two pseudo label-equivalence
classes C and C ′ has been marked, then |C| = |C ′|.

A new iteration starts if not all the pseudo label-equivalence classes have the same size. If so, take
two pseudo label-equivalence classes C and C ′, of different size, and linked by some edges. (Since
S is a generating set, Cay(Γ, S) is connected, and hence such C and C ′ do exist.) Assume, w.l.o.g.,
that |C| < |C ′|. If the edge labeled s at c ∈ C has its other extremity in C ′, then, by translation,
the edge labeled s at any node of C has its other extremity in C ′. Indeed, let e = {x, y}, x ∈ C,
y ∈ C ′, and ℓx(e) = s. Thus s = x−1y. Let e′ = {x′, y′}, x′ ∈ C, and ℓx′(e′) = s. We get
y′ = x′s = x′x−1y. Thus, if x′ = γx for some γ ∈ Γ, we get y′ = γxx−1y = γy, and therefore y′ is
translation-equivalent to y, hence y′ ∈ C ′.

Since |C| 6= |C ′|, by the invariant property, let s be an element of S corresponding to a not yet
marked edge between C and C ′. Let Cs = {cs, c ∈ C} ⊂ C ′. Mark with s and s−1 the extremities
of all edges corresponding to the generator s between C and Cs. Since translations preserve the
Cayley edge-labeling, all pseudo label-equivalence classes remain pseudo-equivalence classes after
updating the labeling, with the exception of C ′ that is split into two classes Cs and C ′\Cs. Indeed,
no translation can send x = cs ∈ Cs to y ∈ C ′ \ Cs while preserving the current labeling because
either y has no marked edge labeled s−1, or the edges labeled s−1 at x and y have their other
extremities in two different classes.
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Another invariant of our process is the following: at any time, the gcd of the sizes of the current
pseudo label-equivalence classes is equal to d. Indeed:

1. each iteration transforms a pair (C,C ′) into a triple (C,Cs,C ′ \ Cs) with |Cs| = |C|;

2. all other classes remain of same size; and

3. gcd(|C|, |Cs|, |C ′ \ Cs|) = gcd(|C|, |C ′| − |C|) = gcd(|C|, |C ′|). (This latter equality follows
from Euclid’s Theorem.)

After a certain number of iterations, we end up with pseudo label-equivalence classes of same size.
From the previous observation, this size is d, the gcd of the original translation-equivalence classes.
If some edges remain unmarked, mark them with the corresponding element of S. Again, since
translations preserve the edge-labeling all resulting pseudo label-equivalence classes remain the
same, and become label-equivalence classes, all of size d. Theorem 2.1 states that election is then
impossible.

Hence, election is impossible if gcd(|C1|, . . . , |Ck|) > 1. On the other hand, if gcd(|C1|, . . . , |Ck|) = 1,
then, from Theorem 3.1, Elect elects a leader. Therefore, protocol Elect is effectual for the class
of Cayley graphs.

We have designed an election protocol that is proved to be effectual for the class of Cayley graphs
in the qualitative graph world. However, there are symmetric graphs for which protocol Elect

is not effectual. In particular, the Petersen graph (see Figure 5(a)) allows to construct a counter-
example of Elect’s effectualness. Consider two agents whose initial positions are marked in black
on Figure 5(a). The equivalence classes are indicated on Figure 5(b). There are three classes,
marked black, gray, and white on the figure, and denoted by Cb, Cg, and Cw respectively. The
bold arrows indicate an automorphism φ exchanging the two black nodes (i.e., home-bases). Also,
φ exchanges two white nodes while it lets the two others fixed. Two pairs of gray nodes are
exchanged by φ. The dotted arrows indicate an automorphism ψ exchanging white nodes. ψ also
exchanges two gray nodes, while it lets two other gray nodes fixed, as well as the two black nodes.
Combining φ and ψ with the horizontal symmetry makes all white nodes equivalent, and all gray
nodes equivalent. Finally, gray nodes are adjacent to black nodes, and hence form a class distinct
from the class of white nodes.

We have gcd(|Cb|, |Cg|, |Cw|) = 2, and hence protocol Elect does not elect a leader. However,
there is a protocol, specific of this setting, which allows to elect a leader. Here are the actions to
be performed by each of the two agents for election:

1. Wake up the other agent (if not yet awaken);

2. Go to one of the neighboring nodes of your home-base, distinct from the home-base of the
other agent, and mark the whiteboard of that node; (Note that the two home-bases have
distinct sets of neighbors.)

3. Visit the neighboring nodes of the other agent to check which one was marked by it;

4. Try to acquire the unique common neighbor x of the two marked nodes;
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(a) (b)

Figure 5: The Petersen graph

5. If you acquired x then you are the leader, otherwise you are defeated.

Obviously, this sequence of actions allows to elect a leader, and hence protocol Elect is not
effectual.

This counter example of Elect’s effectualness demonstrates that we cannot always relate the sizes
of the equivalence classes C1, . . . , Ck with the size d of the label-equivalence classes. It may happen
that gcd(|C1|, . . . , |Ck|) > 1 while d = 1. An example is provided by the Petersen graph with two
agents as described in Figure 5(a). Any edge-labeling will result in label-equivalence classes of
size 1, whereas gcd(|Cb|, |Cg|, |Cw|) = 2. It is interesting to note that the Petersen graph is not
Cayley but vertex-transitive. Now, from Sabidussi characterization theorem, any vertex-transitive
graph G is a quotient of a Cayley graph. More precisely, G ≡ Cay(Γ, S)/H where Γ = Aut(G),
H = stab(u0) = {φ ∈ Γ / φ(u0) = u0}, and S = {φ ∈ Γ / d(φ(u0), u0) = 1}. In other words,
G = (V,E) where V = {φH,φ ∈ Γ}, and {φH,φ′H} ∈ E if and only if there are h, h′ ∈ H and
σ ∈ S such that φ′h′ = φhσ. The quotient operation seems therefore enough to destroy some of the
properties of translations in Cayley graphs, enough to invalidate a generalization of Theorem 4.1
to vertex-transitive networks.

5 Concluding Remarks

We have shown that, even without comparability, election is still solvable: for all instances but
those for which gcd(|C1|, . . . , |Ck|) > 1, distinctness is a necessary and sufficient condition for
leader election. It is not surprising that algorithms in the qualitative graph world strongly depend
on structural properties of graphs. Indeed, qualitative computing cannot benefit of any help from
labeling, and hence should count only on asymmetries. The equivalence classes of the network form
structures that an effectual algorithm in the qualitative model should take into account, and this
is exactly what protocol Elect does. However, we were unable to prove or disprove whether it is
the ultimate structure that an algorithm can take benefit of, and hence to prove or disprove the
existence of an effectual election protocol in the qualitative graph world. We hence state explicitly
the following question:

Open problem 1: Does it exist an effectual election protocol for arbitrary graphs in the qualitative
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model?

Since the writing of this paper, a positive answer to this question has been recently announced
in [11].

More generally, the main goal of this paper was to establish feasibility thresholds for problems
arising in the distributed mobile framework, as a function of the computational ability of the agents,
and of the knowledge given to these agents. Very intriguing questions of a general nature are the
following. What (natural) problems are not solvable without comparability, or solvable in a very
restricted context only? What (natural) problems are (almost always) solvable in the qualitative
graph world without additional constraints? For such problems, what is the degradation of the
performances in comparison with those observed in the quantitative graph world? These questions
can obviously be asked not only in the mobile computational setting, but also in the standard (i.e.
static) distributed one. Notice that, in this latter setting, the relationship between computability
and comparability had never before been examined. Hence, we conclude by the following general
informal problem:

Open problem 2: What is the impact of incomparability on computability?
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