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Abstract9

In highly dynamic systems (such as wireless mobile ad-hoc networks, robotic10

swarms, vehicular networks, etc.) connectivity does not necessarily hold at a11

given time but temporal paths, or journeys, may still exist over time and space,12

rendering computing possible; some of these systems allow waiting (i.e., pauses13

at intermediate nodes, also referred to as store-carry-forward strategies) while14

others do not. These systems are naturally modelled as time-varying graphs,15

where the presence of an edge and its latency vary as a function of time; in these16

graphs, the distinction between waiting and not waiting corresponds to the one17

between indirect and direct journeys.18

We consider the expressivity of time-varying graphs, in terms of the lan-19

guages generated by the feasible journeys. We examine the impact of waiting20

by studying the difference in the type of language expressed by indirect jour-21

neys (i.e., waiting is allowed) and by direct journeys (i.e., waiting is unfeasible),22

under various assumptions on the functions that control the presence and la-23

tency of edges. We prove a general result which implies that, if waiting is not24

allowed, then the set of languages Lnowait that can be generated contains all25

computable languages when the presence and latency functions are computable.26

On the other end, we prove that, if waiting is allowed, then the set of languages27

Lwait contains all and only regular languages; this result, established using al-28

gebraic properties of quasi-orders, holds even if the presence and latency are29

unrestricted (e.g., possibly non-computable) functions of time.30

In other words, we prove that, when waiting is allowed, the power of the31

accepting automaton can drop drastically from being at least as powerful as a32

Turing machine, to becoming that of a Finite-State Machine. This large gap33

provides an insight on the impact of waiting in time-varying graphs.34

We also study bounded waiting, in which waiting is allowed at a node for at35

most d time units, and prove that Lwait[d] = Lnowait; that is, the power of the36

accepting automaton decreases only if waiting time is unbounded.37

Preprint submitted to Elsevier November 17, 2014



1. Introduction38

1.1. Highly Dynamic Networks and Time-Varying Graphs39

The study of highly dynamic networks focuses on networked systems where40

changes in the topology are extensive, possibly unbounded, and occur contin-41

uously; in particular, connectivity might never be present. For example, in42

wireless mobile ad hoc networks, the topology depends on the current distance43

between mobile nodes: an edge exists between them at a given time if they are44

within communication range at that time. Hence, the topology changes con-45

tinuously as the movements of the entities destroy old connections and create46

new ones. These changes can be dramatic; connectivity does not necessarily47

hold, at least with the usual meaning of contemporaneous end-to-end multi-hop48

paths between any pair of nodes, and the network may actually be disconnected49

at every time instant. These infrastructure-less highly dynamic networks, vari-50

ously called delay-tolerant, disruptive-tolerant, challenged, epidemic, opportunis-51

tic, have been long and extensively investigated by the engineering community52

and, more recently, by distributed computing researchers (e.g. [38, 44, 47, 51]).53

Some of these systems provide the entities with store-carry-forward-like mecha-54

nisms (e.g., local buffering) while others do not. In presence of local buffering,55

an entity wanting to communicate with a specific other entity, can wait un-56

til the opportunity of communication presents itself; clearly, if such buffering57

mechanisms are not provided, waiting is not possible.58

These highly dynamic networks are modelled in a natural way as time-59

varying graphs or evolving graphs (e.g., [18, 27]). In a time-varying graph60

(TVG), edges between nodes exist only at certain times (in general, unknown61

to the nodes themselves) specified by a presence function. Another component62

of TVGs is the latency function, which indicates the time it takes to cross a63

given edge at a given time. The lifetime of a TVG can be arbitrary, that is time64

could be discrete or continuous, and the presence and latency functions can vary65

from finite automata to Turing computable functions and even non-computable66

functions.67

A crucial aspect of time-varying graphs is that a path from a node to another68

might still exist over time, even though at no time the path exists in its entirety;69

it is this fact that renders computing possible. Indeed, the notion of “path over70

time”, formally called journey, is a fundamental concept and plays a central role71

in the definition of almost all concepts related to connectivity in time-varying72

graphs. Examined extensively, under a variety of names (e.g., temporal path,73

schedule-conforming path, time-respecting path, trail), informally a journey is74

a walk1 <e1, e2, ..., ek> with a sequence of time instants <t1, t2, ..., tk> where75

edge ei exists at time ti and its latency ζi at that time is such that ti+1 ≥ ti+ζi.76

The distinction between absence and availability of local buffering in highly77

dynamic systems corresponds in time-varying graphs to the distinction between78

1A walk is a path with possibly repeated edges.

2



a journey where ∀i, ti+1 = ti + ζi (a direct journey), and one where it may79

happen that, for some i, ti+1 > ti + ζi (an indirect journey).80

In this paper, we are interested in studying the difference between direct and81

indirect journeys, that is the difference that the possibility of waiting creates in82

time-varying graphs.83

1.2. Main Contributions84

In a time-varying graph G, a journey can be viewed as a word on the alphabet85

of the edge labels; in this light, the class of feasible journeys in G defines a86

language Lf (G) expressed by G, where f ∈ {wait, nowait} indicates whether87

or not indirect journeys are allowed. In this paper we examine the complexity88

of time-varying graphs in terms of their expressivity, that is of the language89

defined by the journeys, and establish results showing the difference that the90

possibility of waiting creates.91

We will investigate and demonstrate the varying expressivity we get in the92

non-waiting case and the constant expressivity we get in the waiting case.93

Given a class of functions Φ, we consider the class UΦ of TVGs whose pres-94

ence and latency functions belong to Φ. More precisely, we focus on the sets of95

languages LΦ
nowait = {Lnowait(G) : G ∈ UΦ} and LΦ

wait = {Lwait(G) : G ∈ UΦ}96

expressed when waiting is, or is not allowed. For each of these two sets, the com-97

plexity of recognizing any language in the set (that is, the computational power98

needed by the accepting automaton) defines the complexity of the environment.99

We first study the expressivity of time-varying graphs when waiting is not100

allowed, that is the only feasible journeys are direct ones. We show that, for any101

computable language L, there exists a time-varying graph G, with computable102

functions for presence and latency, such that Lnowait(G) = L. We actually prove103

the stronger result that, given a class of functions Φ, the set LΦ
nowait contains104

the languages recognizable by Φ.105

We next examine the expressivity of time-varying graphs if indirect journeys106

are allowed. We prove that, for any class Φ, LΦ
wait is precisely the set of regular107

languages; even if the presence and latency functions are arbitrarily complex108

(e.g., non-computable) functions of time, only regular languages can be gener-109

ated. The proof is algebraic and based on order techniques, relying on a theorem110

by Harju and Ilie [34] that enables to characterize regularity from the closure111

of the sets from a well quasi-order. In other words, we prove as a main corol-112

lary that, when waiting is allowed, the power of the accepting automaton drops113

drastically from being (possibly) as powerful as a Turing Machine, to becoming114

that of a Finite-State Machine.115

To better understand the impact of waiting on the expressivity of time-116

varying graphs, we then turn our attention to bounded waiting; that is when117

indirect journeys are considered feasible if the pause between consecutive edges118

in the journeys has a duration bounded by d > 0. At each step of the jour-119

ney, waiting is allowed only for at most d time units. Hence, we examine the120

set Lwait[d] of the languages expressed by time-varying graphs when waiting121

is allowed up to d time units. In fact, we prove that for any fixed d ≥ 0,122
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Lwait[d] = Lnowait, which implies that the expressivity of time-varying graphs123

is not impacted by allowing waiting for a limited amount of time.124

1.3. Related Work125

The literature on dynamic networks and dynamic graphs could fill a vol-126

ume. Here we briefly mention only some of the work most directly connected127

to the results of this paper. In this light, noticeable is the pioneering work,128

in distributed computing, by Awerbuch and Even on broadcasting in dynamic129

networks [6], and, in graph theory, by Harari and Gupta on models of dynamic130

graphs [33].131

The idea of representing a dynamic graph as a sequence of (static) graphs,132

called evolving graph (EG), was formalized in [27] to study basic dynamic net-133

work problems initially from a centralized point of view [8, 13]. In an evolving134

graph representation, the dynamics of the system is viewed as a sequence of135

global snapshots (taken either in discrete steps or when events occur). This136

notion has been subsequently re-discovered by researchers who, unaware of the137

pre-existing literature, have called it with different names; in particular, the138

term “time-varying graph” was first used in such a context [48].139

The notion of time-varying graph (TVG) used here has been introduced140

in [18]. It is theoretically more general than that of evolving graph; the two141

notions are computationally equivalent in the case of countable events (edge ap-142

pearence/disappearance). In a time-varying graph representation, the dynamics143

of the system is expressed in terms of the changes in the local viewpoint of the144

entities.145

Both EG and TVG have been extensively employed in the analysis of basic146

problems such as routing, broadcasting, gossiping and other forms of information147

spreading (e.g., [5, 9, 17, 21, 25, 29, 47, 49, 50]); to study problems of exploration148

(e.g. [1, 12, 28, 29, 30, 36, 37]); to examine fault-tolerance, consensus and149

security (e.g., [11, 22, 31, 42, 43]); for investigating leader election, counting and150

computing network information (e.g., [4, 16, 24, 32]); to examine computability151

issues (e.g., [15, 45]); for studying the probabilistic analysis of informations152

spreading and use of randomizationn (e.g. [7, 19, 20, 23]); to identify graph153

components with special properties (e.g., [3, 40]); and to investigate emerging154

properties in social networks (e.g., [10, 14, 39, 41, 48]).155

A characterization of classes of TVGs with respect to properties typically156

assumed in distributed computing research can be found in [18]. The impact of157

bounded waiting in dynamic networks has been investigated for exploration [37].158

The closest concept to TVG-automata, defined in this paper, are the well-159

established Timed Automata proposed by [2] to model real-time systems. A160

timed automaton has real valued clocks and the transitions are guarded with161

finite comparisons on the clock values; with only one clock and no reset it is162

a TVG-automaton with 0 latency. Note that, even in the simple setting of163

timed automata, some key problems, like inclusion, are undecidable for timed164

languages in the non-deterministic case, while the deterministic case lacks some165

expressive power. Further note that we focus here on the properties of the166
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un-timed part of the journeys (i.e. the underlying walk made of the edges167

that are crossed), and given that the guards (presence and latency) can be168

arbitrary functions, the reachability problem is obviously not decidable for TVG-169

automaton. This is probably what explains that, to the best of our knowledge,170

such systems have not been considered for these classical questions. We are here171

mainly interested in comparing the expressivity of waiting and non-waiting in172

TVGs, which is a more unusual question.173

2. Definitions and Terminology174

2.1. Time-varying graphs175

Following [18], we define a time-varying graph (TVG) as a quintuple G =176

(V,E, T , ρ, ζ), where V is a finite set of entities or nodes; E ⊆ V × V × Σ is177

a finite set of relations, or edges, between these entities, possibly labeled by178

symbols in an alphabet Σ. The system is studied over a given time span T ⊆ T179

called lifetime, where T is an arbitrary temporal domain, that is, time could be180

discrete (e.g., T = N) or continuous (e.g., T = R+); ρ : E×T → {0, 1} is the edge181

presence function, which indicates whether a given edge is available at a given182

time; ζ : E×T → T, is the latency function, which indicates the time it takes to183

cross a given edge if starting at a given date (the latency of an edge could vary184

in time). In general, both presence and latency are arbitrary functions of the185

time. The impact of restricting the computability class of presence and latency186

is further discussed later. In this paper we restrict ourselves to deterministic187

functions.188

The directed edge-labeled graph G = (V,E), called the footprint of G, may189

contain loops, and it may have more than one edge between the same nodes,190

but all with different labels.191

192

Definition 2.1. A journey is a finite sequence 〈(e1, t1), (e2, t2), ..., ek, tk)〉 where193

〈e1, e2, . . . , ek〉 is a walk in the footprint G, ρ(ei, ti) = 1 (for 1 ≤ i < k), and194

ζ(ei, ti) is such that ti+1 ≥ ti +ζ(ei, ti) (for 1 ≤ i < k). If ∀i, ti+1 = ti +ζ(ei, ti)195

the journey is said to be direct, otherwise indirect. We denote by J ∗(G) the set196

of all possible journeys in G.197

Time-varying graph introduced in [18], can arguably describe a multitude of198

different scenarios, from transportation networks to communication networks,199

complex systems, or social networks. Figure 1 shows two simple examples200

of TVGs, depicting respectively a transportation network (Figure 1a) and a201

communication network (Figure 1b). In the transportation network, an edge202

from node u to node v represents the possibility for some agent to move from203

u to v; typical edges in this scenario are available on a punctual basis, i.e.,204

the presence function ρ for these edges returns 1 only at particular date(s)205

when the trip can be started. The latency function ζ may also vary from206

one edge to another, as well as for different availability dates of a same given207

edge (e.g. variable traffic on the road, depending on the departure time). In208
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Ottawa

Montreal

Lisbon

bus
car boat

plane

(a) Example of multi-TVG

a

b

c d[1, 3)

[2, 5)

[0, 4)

[5, 6) ∪ [7, 8)

(b) TVG with presence function depicted

Figure 1: Two examples of time-varying graphs, highlighting (a) the labels, and (b) the
presence function.

the communication network of Figure 1b, the labels are not indicated; shown209

instead are the intervals of time when the presence function ρ is 1. Assum-210

ing ζ = 1 for all edges at all times, examples of indirect journeys include211

J1 = {(ac, 2), (cd, 5)}, and J2 = {(ab, 2), (bc, 3), (cd, 5)}; an example of direct212

journey is J3 = {(ab, 2), (bc, 3)}; note that J2 is not a direct journey.213

2.2. TVG-automata214

Definition 2.2 (TVG-automaton). Given a time-varying graph G = (V,E, T , ρ, ζ)215

whose edges are labeled over Σ, we define a TVG-automaton A(G) as the 5-tuple216

A(G) = (Σ, S, I, E , F ) where217

• Σ is the input alphabet;218

• S = V is the set of states;219

• I ⊆ S is the set of initial states;220

• F ⊆ S is the set of accepting states; and221

• E ⊆ S×T ×Σ×S×T is the set of transitions such that (s, t, a, s′, t′) ∈ E222

iff ∃e = (s, s′, a) ∈ E : ρ(e, t) = 1, ζ(e, t) = t′ − t.223

In the following we shall denote (s, t, a, s′, t′) ∈ E also by s, t
a→ s′, t′. A224

TVG-automaton A(G) is deterministic if for any time t ∈ T , any state s ∈ S,225

and any symbol a ∈ Σ, there is at most one transition of the form (s, t
a→ s′, t′);226

it is non-deterministic otherwise.227

The concept of journey can be extended in a natural way to the framework228

of TVG-automata.229

Definition 2.3 (Journey in a TVG-automaton). A journey J in a TVG-230

automaton A(G) is a finite sequence of transitions231

J = (s0, t0
a0→ s1, t1), (s1, t

′
1

a1→ s2, t2) . . . (sp−1, t
′
p−1

ap−1→ sp, tp)232

such that the sequence 〈(e0, t0), (e1, t
′
1), . . . , (ep−1, t

′
p−1)〉 is a journey in G.233

Observe that we have ti = t′i−1 + ζ(ei−1, t
′
i−1), where ei = (si, si+1, ai) (for234

0 ≤ i < p). Also note that the transitions defining journeys are guarded by235

arbitrary functions of time.236

6



v0start v1

v2

e0

a

e1

b
e2

b

e4

b

e3

b

(a) Structure of G1

e ρ(e, t) = 1 iff ζ(e, t) =

e0 always true (p− 1)t

e1 t > p (q − 1)t

e2 t 6= piqi−1, i > 1 (q − 1)t

e3 t = p any

e4 t = piqi−1, i > 1 any

(b) Presence and Latency functions for G1

Figure 2: A TVG-automaton G1 such that Lnowait(G1) = {anbn : n ≥ 1}.

Consistently with the above definitions, we say that J is direct if ∀i, t′i = ti237

(there is no pause between transitions), and indirect otherwise.We denote by238

λ(J ) the associated word a0, a1, ...ap−1 and by start(J ) and arrival(J ) the239

dates t0 and tp, respectively. To complete the definition, an empty journey240

J∅ consists of a single state, involves no transitions, its associated word is the241

empty word λ(J∅) = ε, and its arrival date is the starting date. A journey is242

said accepting if it starts at time t = 0 in an initial state s0 ∈ I and ends in243

an accepting state sp ∈ F some time later. A TVG-automaton A(G) accepts a244

word w ∈ Σ∗ iff there exists an accepting journey J such that λ(J ) = w.245

246

Let Lnowait(G) denote the set of words (i.e., the language) accepted by247

TVG-automaton A(G) using only direct journeys, and let Lwait(G) be the lan-248

guage recognized if journeys are allowed to be indirect. Given the set U of249

all possible TVGs, let us denote as Lnowait = {Lnowait(G) : G ∈ U} and250

Lwait = {Lwait(G) : G ∈ U} the sets of all languages being possibly accepted251

by a TVG-automaton if journeys are constrained to be direct (i.e., no waiting252

is allowed) and if they are unconstrained (i.e., waiting is allowed), respectively.253

254

In the following, when no ambiguity arises, we will use interchangeably the255

terms node and state, and the terms edge and transition; the term journey will256

be used in reference to both TVGs and TVG-automata.257

2.3. Example of TVG-automaton258

Consider the graph G = (V,E) composed of three nodes: V = {v0, v1, v2},259

and five edges E = {e0 = (v0, v0, a), e1 = (v0, v1, b), e2 = (v1, v1, b), e3 =260

(v0, v2, b), e4 = (v1, v2, b))}. We show below how to define presence and latency261

functions, and hence a TVG G1 = (V,E, T , ρ, ζ), such that, based on direct262

journeys, the deterministic TVG-automaton A(G1) recognizes the context-free263

language {anbn, n ≥ 1}.264

Consider the automaton A(G1), depicted on Figure 2a, where v0 is the initial265

state and v2 is the accepting state. For clarity, let us assume that A(G1) starts at266

time 1 (the same behavior could be obtained by modifying slightly the formulas267

involving t in Table 2b). The presence and latency functions are as shown in268

Table 2b, where p and q are two distinct prime numbers greater than 1.269
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It is clear that the an portion of the word anbn is read entirely at v0 within270

t = pn time. If n = 1, at this time the only available edge is e3 (labeled b),271

which allows to correctly accept ab. Otherwise (n > 1) at time t = pn, the only272

available edge is e1, which allows to start reading the bn portion of the word.273

By construction of ρ and ζ, edge e2 is always present except for the very last b,274

which has to be read at time t = pnqn−1. At that time, only e4 is present and275

the word is correctly recognized. It is easy to verify that only these words are276

recognized, and the automaton is deterministic. The reader may have noticed277

the basic principle employed here (and later in the paper) of using latencies as278

a means to encode words into time, and presences as a means to select through279

opening the appropriate edges at the appropriate time.280

2.4. Restrictions of Computability.281

When considering general TVG-automata, we will investigate whether the282

class of computability to which the presence and latency functions belong im-283

pacts the class of recognizable language by a general TVG-automaton.284

Consider a finite alphabet Σ. Let q = |Σ| be the size of the alphabet, and285

w.l.o.g assume that Σ = {0, . . . , q − 1}. Let Φ be a class of functions over the286

set of integers represented in base q with a little-endian encoding (i.e., least287

significant digit first). For any integer n, |n| denotes the size of the encoding of288

n in base q.289

A function ψ is Φ−computable if ψ ∈ Φ. A language L is Φ−recognizable if290

there exists c ∈ N, ψ ∈ Φ such that L = ψ−1(c). By extension, a characteristic291

function χL for a set L is said to be Φ−computable if L is Φ−recognizable.292

Let L be an arbitrary Φ−computable language defined over the finite alpha-293

bet Σ. Let ε denote the empty word; note that L might or might not contain294

ε. The notation α.β indicates the concatenation of α ∈ Σ∗ with β ∈ Σ∗.295

Definition 2.4. A class Φ of functions is q−stable, for some base q, if it is296

stable by composition and for any function ϕ ∈ Φ, for any p ∈ Σ,297

1. the function ϕp : n 7→ ϕ(n+ p× q|n|) is in Φ.298

2. the function w 7→ ϕp(w)− ϕ(w) is in Φ.299

Remark. It should be obvious that standard computability classes satisfy300

these conditions. For instance, consider finite state transducers with alphabet301

Σ, adding p×q|n| to n ∈ N can be done with a finite state transducer. Indeed, by302

assuming little-endian encoding in base q for integers in N, such an arithmetic303

operation corresponds to a concatenation of the letter p at the end. Similarly,304

for any ϕ that corresponds to a finite transducer, computing the difference in305

2 can be obtained by a finite transducer that outputs 0 for any letter of (the306

encoding of) n and terminates with a p.307

Definition 2.5. A Φ−TVG-automaton is a TVG-automaton whose presence308

and latency functions are Φ−computable. The set LΦ
nowait is the set of languages309

that can be recognized by a Φ−TVG with no waiting allowed. The set LΦ
wait is310

the set of languages that can be recognized by a Φ−TVG with waiting allowed.311
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v0start v1

q-1

0

q-1

0

q-1

0

q-1

0

. . .

. . .

. . . . . .

(a) Case with ε ∈ L

v0 v1 start

q-1

0

q-1

0

q-1

0

q-1

0

. . .

. . .

. . . . . .

(b) Case with ε /∈ L

Figure 3: The TVG G2(L) that recognizes the arbitrary computable language L.

3. No Waiting Allowed312

This section focuses on the expressivity of time-varying graphs when only313

direct journeys are allowed. We prove that, in this case, the computability class314

of the presence and latency functions translate directly in the computability315

class of recognized languages. In other words, for any class Φ, the set LΦ
nowait of316

languages recognized by Φ−TVG is at least the set of Φ−recognizable languages.317

This inclusion is tight in the case of classical (Turing) computable function: the318

set of recognizable languages is exactly the set of recursive languages.319

Theorem 3.1. Let Φ be a q−stable class of integer functions. The set LΦ
nowait of320

languages recognized by a Φ−TVG contains the set of Φ−recognizable languages.321

Proof. Consider a class Φ of functions, that is q−stable. Consider L a Φ−recogni-322

zable language. Denote ψ ∈ Φ and c ∈ N such that L = ψ−1(c).323

Given p ∈ Σ, we denote by ψp the function of Φ such that ψp : n 7→324

ϕ(n+ p× q|n|). Note that ψp is also in Φ.325

Consider now the TVG G2 where V = {v0, v1}, E = {{(v0, v0, i), i ∈ Σ} ∪326

{(v0, v1, i), i ∈ Σ} ∪ {(v1, v0, i), i ∈ Σ} ∪ {(v1, v1, i), i ∈ Σ}}. The presence and327

latency functions are defined relative to which node is the end-point of an edge.328

For all u ∈ {v0, v1}, i ∈ Σ, and t ≥ 0, we define329

• ρ((u, v0, i), t) = true if ψi(t) = c330

• ζ((u, v0, i), t) = ψi(t)− ψ(t)331

• ρ((u, v1, i), t) = true if ψi(t) 6= c332

• ζ((u, v1, i), t) = ψi(t)− ψ(t)333

Consider the corresponding TVG-automaton A(G2(L)) where the unique334

accepting state is v0 and the initial state is either v0 (if ε ∈ L, see Figure 3a),335

or v1 (if ε /∈ L see Figure 3b).336

Claim 3.2. G2(L) is a Φ−TVG-automaton. Lnowait(G2(L)) = L.337

Proof. Since Φ is q−stable, G2(L) presence and latency functions are obviously338

Φ−computable.339

Now, we want to show there is a unique accepting journey J with λ(J ) =340

w if and only if w ∈ L. We first show that for all words w ∈ Σ∗, there is341
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exactly one direct journey J in A(G2(L)) such that λ(J ) = w, and in this342

case arrival(J ) = ψ(w). This is proven by induction on k ∈ N, the length343

of the words. It clearly holds for k = 0 since the only word of that length is344

ε and ψ(ε) = 0 (by convention, see above). Let k ∈ N. Suppose now that345

for all w ∈ Σ∗, |w| = k we have exactly one associated direct journey, and346

arrival(J ) = ψ(w).347

Consider w1 ∈ Σ∗ with |w1| = k + 1. Without loss of generality, let w1 = w.i348

where w ∈ Σ∗ and i ∈ Σ. By induction there is exactly one direct journey J349

with λ(J ) = w. Let u = arrival(J ) be the node of arrival and t the arrival350

time. By induction, t ∈ ψ(Σ∗); furthermore since the presence function depends351

only on the node of arrival and not on the node of origin, there exists exactly352

one transition, labeled i from u. So there exists only one direct journey labeled353

by w1. By definition of the latency function, its arrival time is ψ(w)+(ψ(w.i)−354

ψ(w)) = ψi(w). This ends the induction.355

We now show that such a unique journey is accepting if and only if w ∈ L. In356

fact, by construction of the presence function, every journey that corresponds357

to w ∈ L,w 6= ε, ends in v0, which is an accepting state. By construction, the358

empty journey corresponding to ε ends in the accepting state v0 if and only if359

ε ∈ L.360

For any Φ−recognizable language L, there exists a Φ−TVG-automaton that361

recognizes L. This concludes the proof of the theorem.362

As a corollary we have363

Corollary 3.3. Let Turing be the class of Turing computable integers func-364

tions. We have LTuring
nowait = Turing365

4. Waiting Allowed366

We now turn the attention to the case of time-varying graphs where indirect367

journeys are possible. In striking contrast with the non-waiting case, we show368

that the languages LΦ
wait recognized by Φ−TVG-automata consists only of reg-369

ular languages, even if Φ strictly contains the Turing computable functions. Let370

R denote the set of regular languages.371

Lemma 4.1. Let Φ be any class of functions containing the constant functions.372

Then R ⊆ LΦ
wait.373

Proof. It follows easily from observing that any finite-state machine (FSM) is374

a particular TVG-automaton whose edges are always present and have a nil375

latency. The fact that we allow waiting here does not modify the behavior of the376

automata as long as we consider deterministic FSMs only (which is sufficient),377

since at most one choice exists at each state for each symbol read. By considering378

exactly the same initial and final states, for any regular language L, we get a379

corresponding TVG G such that Lwait(G) = L.380
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The reverse inclusion is more involved. Consider a TVG-automaton G =381

(V,E, T , ρ, ζ) with labels in Σ and with arbitrary ρ and ζ, we have to show that382

Lwait(G) ∈ R.383

The proof is algebraic, and based on order techniques, relying on a theorem384

of Harju and Ilie (Theorem 6.3 in [34]) that enables to characterize regularity385

from the closure of the sets from a well quasi-order. We will use here an inclusion386

order on journeys (to be defined formally below). Informally, a journey J is387

included in another journey J ′ if its sequence of transitions is included (in the388

same order) in the sequence of transitions of J ′. It should be noted that sets389

of indirect journeys from one node to another are obviously closed under this390

inclusion order (on the journey J it is possible to wait on a node as if the391

missing transitions from J ′ were taking place), which is not the case for direct392

journeys as it is not possible to wait. In order to apply the theorem, we have to393

show that this inclusion order is a well quasi-order, i.e. that it is not possible394

to find an infinite set of journeys such that none of them could be included in395

another from the same set.396

Let us first introduce some definitions and results about quasi-orders. We397

denote by ≤ a quasi-order over a given set Q (this is simply a reflexive and398

transitive relation). A set X ⊂ Q is an antichain if all elements of X are399

pairwise incomparable. The quasi-order ≤ is well founded if in Q, there is no400

infinite descending sequence x1 ≥ x2 ≥ x3 ≥ . . . (where ≥ is the inverse of ≤)401

such that for no i, xi ≤ xi+1. If ≤ is well founded and all antichains are finite402

then ≤ is a well quasi-order on Q. When Q = Σ∗ for alphabet Σ, a quasi-order403

is monotone if for all x, y, w1, w2 ∈ Σ∗, we have x ≤ y ⇒ w1xw2 ≤ w1yw2.404

A word x ∈ Σ∗ is a subword of y ∈ Σ∗ if x can be obtained by deleting some405

letters on y. This defines a relation that is obviously transitive and we denote406

⊆ the subword order on Σ∗. Given two walks γ and γ′, γ is a subwalk of γ′, if γ407

can be obtained from γ′ by deleting some edges. We can extend the ⊆ order to408

labeled walks as follows: given two walks γ, γ′ on the footprint G of G, we note409

γ ⊆ γ′ if γ and γ′ begin on the same node and end on the same node, and γ is410

a subwalk of γ′.411

Given a date t ∈ T and a word x in Σ∗, we denote by J ∗(t, x) the set412

{J ∈ J ∗(G) : start(J ) = t, λ(J ) = x}. J ∗(x) denotes the set
⋃

t∈T J ∗(t, x).413

Given a journey J , J̄ is the corresponding labeled walk (in the footprint G).414

We denote by Γ(x) the set {J̄ : λ(J ) = x}.415

In the following, we consider only “complete” TVG (i.e. there exists a tran-416

sition for each letter in each state.) so we have J ∗(y) not empty for all word417

y; complete TVG can be obtained from any TVG (without changing the recog-418

nized language) by adding a sink node where any (missing) transition is sent.419

In this way, all words have at least one corresponding journey in the TVG.420

Let x and y be two words in Σ∗. We define the quasi-order ≺, as follows:
x ≺ y if

∀J ∈ J ∗(y),∃γ ∈ Γ(x), γ ⊆ J̄ .

The relation ≺ is obviously reflexive. We now establish the link between com-421

parable words and their associated journeys and walks, and state some useful422
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properties of relation ≺.423

Lemma 4.2. Let x, y ∈ Σ∗ be such that x ≺ y. Then for any Jy ∈ J ∗(y), there424

exists Jx ∈ J ∗(x) such that J̄x ⊆ J̄y, start(Jx) = start(Jy), arrival(Jx) =425

arrival(Jy).426

Proof. By definition, there exists a labeled walk γ ∈ Γ(x) such that γ ⊆ J̄y. It is427

then possible to find a journey Jx ∈ J ∗(x) with J̄x = γ , start(Jx) = start(Jy)428

and arrival(Jx) = arrival(Jy) by using for every edge of Jx the schedule of429

the same edge in Jy.430

Proposition 4.3. The relation ≺ is transitive.431

Proof. Suppose we have x ≺ y and y ≺ z. Consider J ∈ J ∗(z). By Lemma 4.2,432

we get a journey Jy ∈ J ∗(y), such that J̄y ⊆ J̄ . By definition, there exists433

γ ∈ Γ(x) such that γ ⊆ J̄y. Therefore γ ⊆ J̄ , and finally x ≺ z.434

Let L ⊂ Σ∗. For any quasi-order ≤, we denote Down≤(L) = {x | ∃y ∈435

L, x ≤ y}.436

The following is a corollary of Lemma 4.2:437

Corollary 4.4. Consider the language L of words induced by labels of journeys438

from u to v starting at time t. Then Down≺(L) = L.439

The following theorem is due to Harju and Ilie; this is a generalization of440

the well known theorem from Ehrenfeucht et al [26], which needs closure in the441

other (upper) direction.442

Theorem 4.5 (Th. 6.3 [34]). For any monotone well quasi order ≤ of Σ∗, for443

any L ⊂ Σ∗, the language Down≤(L) is regular.444

The main proposition to be proved now is that (Σ∗,≺) is a well quasi-order445

(Proposition 4.12 below). We have first to prove the following.446

Proposition 4.6. The quasi-order ≺ is monotone.447

Proof. Let x, y be such that x ≺ y. Let z ∈ Σ∗. Let J ∈ J ∗(yz). Then there448

exists Jy ∈ J ∗(y) and Jz ∈ J ∗(arrival(Jy), z) such that the end node of Jy is449

the start node of Jz. By Lemma 4.2, there exists Jx that ends in the same node450

as Jy and with the same arrival time. We can consider J ′ the concatenation of451

Jx and Jz. By construction J̄ ′ ∈ Γ(xz), and J̄ ′ ⊆ J̄ . Therefore xz ≺ yz. The452

property zx ≺ zy is proved similarly using the start property of Lemma 4.2.453

Proposition 4.7. The quasi-order ≺ is well founded.454

Proof. Consider a descending chain x1 � x2 � x3 � . . . such that for no455

i xi ≺ xi+1. We show that this chain is finite. Suppose the contrary. By456

definition of ≺, we can find γ1, γ2, . . . such that for all i, γi ∈ ¯J ∗(xi), and such457

that γi+1 ⊆ γi. This chain of walks is necessarily stationary and there exits i0458

such that γi0 = γi0+1. Therefore, xi0 = xi0+1, a contradiction.459
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To prove that≺ is a well quasi-order, we now have to prove that all antichains460

are finite. Let (Q,≤) be a quasi-order. For all A,B ⊂ Q, we denote A≤PB461

if there exists an injective mapping ϕ : A −→ B, such that for all a ∈ A,462

a ≤ ϕ(a). The relation ≤P is transitive and defines a quasi-order on P(Q), the463

set of subsets of Q.464

About the finiteness of antichains, we recall the following result465

Lemma 4.8 ([35]). Let (Q,≤) be a well quasi-order. Then (P(Q),≤P) is a466

well quasi-order.467

and the fundamental result of Higman:468

Theorem 4.9 ([35]). Let Σ be a finite alphabet. Then (Σ∗,⊆) is a well quasi-469

order.470

This implies that our set of journey-induced walks is also a well quasi-order471

for ⊆ as it can be seen as a special instance of Higman’s Theorem about the472

subword order. We are now ready to prove that all antichains are finite. We473

prove this result by using a technique similar to the variation by [46] of the474

proof of [35].475

Lemma 4.10. Let X be an antichain of Σ∗. If the relation ≺ is a well quasi-476

order on Down≺(X)\X then X is finite or Down≺(X)\X = ∅.477

Proof. We denote Q = Down≺(X)\X, and suppose Q 6= ∅, and that Q is478

a well quasi-order for ≺. Therefore the product and the associated product479

order (Σ × Q,≺×) define also a well quasi-order. We consider A = {(a, x) |480

a ∈ Σ, x ∈ Q, ax ∈ X}. Because ≺ is monotone, for all (a, x), (a′, x′) ∈ A,481

(a, x) ≺× (b, y)⇒ ax ≺ by. Indeed, in this case a = b and x ≺ y ⇒ ax ≺ ay. So482

A has to be an antichain of the well quasi-order Σ × Q. Therefore A is finite.483

By construction, this implies that X is also finite.484

Theorem 4.11. Let L ⊂ Σ∗ be an antichain for ≺. Then L is finite.485

Proof. Suppose we have an infinite antichain X0. We apply recursively the486

previous lemma infinitely many times, that is there exists for all i ∈ N, a set Xi487

that is also an infinite antichain of Σ∗, such that Xi+1 ⊂ Down≺(Xi)\Xi.488

We remark that if we cannot apply the lemma infinitely many times that489

would mean that Xk = ∅ for some k. The length of words in X0 would be490

bounded by k, hence in this case, finiteness of X0 is also granted.491

Finally, by definition of Down≺, for all x ∈ Xi+1, there exists y ∈ Xi such492

that x ≺ y, ie x ⊆ y. It is also possible to choose the elements x such that no493

pair is sharing a common y. So Xi+1 ⊆P Xi, and we have a infinite descending494

chain of (P(Σ∗),⊆P). This would contradict Lemma 4.8.495

From Propositions 4.3, 4.6, 4.7 and Theorem 4.11 we have the last missing496

ingredient:497

Proposition 4.12. (Σ∗,≺) is a well quasi-order.498
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Indeed, from Proposition 4.12, Proposition 4.6, Corollary 4.4, and Theorem499

4.5, it immediately follows that Lwait(G) is a regular language for any TVG G;500

that is,501

Theorem 4.13. Let Φ be any class of functions containing the constant func-502

tions. Then LΦ
wait = R.503

5. Bounded Waiting Allowed504

To better understand the expressive power of waiting, we now turn our atten-505

tion to bounded waiting; that is when indirect journeys are considered feasible if506

and only if the pause between consecutive edges has a bounded duration d > 0.507

We restrict our study to the class of Turing-computable functions Turing. We508

examine the set LTuring
wait[d] of all languages expressed by Turing−TVGs when509

waiting is allowed up to d time units, and prove the negative result that for any510

fixed d ≥ 0, LTuring
wait[d] = LTuring

nowait . That is, the complexity of the environment511

is not affected by allowing waiting for a limited amount of time when the latency512

and presence are computable.513

The basic idea is to reuse the same technique as in Section 3, but with a514

dilatation of time, i.e., given the bound d, the edge schedule is time-expanded515

by a factor greater than d (and thus no new choice of transitions is created516

compared to the no-waiting case).517

Theorem 5.1. For any duration d, LTuring
wait[d] = LTuring

nowait .518

Proof. Let L be an arbitrary Turing−recognizable language defined over the519

finite alphabet Σ. We denote by ψ its characteristic function. Let d ∈ N520

be the maximal waiting duration. We note K = q1+logq(d). We consider521

a TVG G2,d structurally equivalent to G2 (see Figure 3 in Section 3), i.e.,522

G2,d = (V,E, T , ρ, ζ) such that V = {v0, v1, v2}, E = {{(v0, v1, i), i ∈ Σ} ∪523

{{(v0, v2, i), i ∈ Σ},∪ {(v1, v1, i), i ∈ Σ} ∪ {(v1, v2, i), i ∈ Σ} ∪ {(v2, v1, i), i ∈524

Σ} ∪ {(v2, v2, i), i ∈ Σ}}. The initial state is v0, and the accepting state is v1.525

If ε ∈ L then v0 is also accepting.526

The presence and latency functions are now defined along the lines as those527

of G2, the only difference being that we are somehow stretching the time by a528

factor K.529

For all u ∈ {v0, v1}, i ∈ Σ, and t ≥ 0, we define530

• ρ((u, v0, i), 0) = true iff ψi(0) = c531

• ζ((u, v1, i), 0) = K × i,532

• ρ((u, v0, i), t) = true iff ψi(b t
K c) = c and b t

K c > 0,533

• ζ((u, v0, i), t) = ψi(t)− ψ(t)534

• ρ((u, v1, i), t) = true iff ψi(b t
K c) 6= c535

• ζ((u, v1, i), t) = ψi(t)− ψ(t), t 6= 0.536
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First, this is indeed a Turing-TVG.537

For any word w, we denote by nw the corresponding integer (still using the538

q based enconding). By the same induction technique as in Section 3, we have539

that L ⊆ L(G2,d). Similarly, we have that any journey labeled by w ends at time540

exactly Knw, even if some d−waiting occurred. Finally, we remark that for all541

words w,w′ ∈ Σ+ such that w 6= w′, we have |Knw −Knw′ | ≥ K > d. Indeed,542

if w 6= w′ then they differ by at least one letter. The minimal time difference543

is when this is the first letter and these last letters are i, i + 1 w.l.o.g. In this544

case, |Knw −Knw′ | ≥ K by definition of ζ for t = 0. Therefore waiting for a545

duration of d does not enable more transitions in terms of labeling.546

6. Concluding Remarks and Research Directions547

We have studied the impact that waiting has on the expressivity of time-548

varying graphs, examining the difference in the type of languages expressed549

by indirect journeys (i.e., waiting is allowed) and direct journeys (i.e., waiting550

is unfeasible). We have shown that, if waiting is not allowed, then for any551

computable language L, there exists a time-varying graph G, with computable552

functions for presence and latency, such that Lnowait(G) = L. This result has553

to be compared with the fact that, as we have also proved, if waiting is allowed,554

then a TVG can express only regular languages, and this is even if the latency555

functions are arbitrarily complex (e.g., non-computable) functions of time.556

In other words, if waiting is allowed, the difficulty of the language from arbi-557

trary is always simplified to be regular. This expressivity gap can be rephrased558

as a computational gap: when the guards are (at least) Turing-computable, the559

power of the TVG automaton drops drastically from being (at least) as powerful560

as a Turing machine, to becoming that of a Finite-State Machine. Note that the561

result is also valid for continuous time models. In some sense, when considering562

the untimed behaviour (the trajectories), discrete systems are as expressive as563

continuous systems.564

These results open interesting new research directions and pose intriguing565

questions, some listed in the following.566

567

– Language Classes.568

Several interesting problems are open on the relationship between TVG and569

language classes. In particular:570

What restrictions on the journeys would characterize other classes of lan-571

guages, e.g. only context-sensitive languages ?572

For which computability class Φ the containment of the set LΦ
nowait in the573

set of Φ−recognizable languages is strict ?574

When waiting is allowed, what restrictions would identify specific subclasses575

of the class of regular languages ?576

Can the equivalence of recognizable languages between 0-delay and d-delay577

TVG automaton be generalized to any q−stable computability class ?578

579

– Randomized extensions.580
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In this paper we have considered time-varying graphs where all functions581

(presence, latency, waiting time) are deterministic.582

An important research direction is to consider the impact on expressivity of583

non-deterministic settings. Interesting questions include, for example, the study584

of the expressivity of time-varying graphs where ρ(e, t) is the probability that585

edge e exists at time t; or where the latency or the waiting time is a random586

function.587

Indeed, the study of the expressivity of random journeys is an inviting open588

research direction.589

– Application in highly dynamic networks.590

Indirect and direct journeys in time-varying graphs correspond to the pres-591

ence and absence, respectively, of unbounded buffering in highly dynamic net-592

works. Obviously the availability of buffers (i.e., the ability to wait) increases593

the number of available journeys and thus offers more computational power594

to the designer of protocols for specific applications and tasks (broadcasting,595

routing, etc.).596

The results established here, that LΦ
wait is regular while LΦ

nowait is a Φ lan-597

guage, provide a qualitative insight on the impact of buffering, rather than598

a quantitative measure. This leaves open the important research question of599

how to measure this computational impact. Indeed in a network modelled by600

G, when waiting is allowed, the net gain in terms of of available journeys is601

precisely ∆(G) = Lwait(G) \ Lnowait(G). The quantitative study of these dif-602

ferences for classes of networks seems to be an important research direction.603

In this line of investigation, there are many interesting questions with possibly604

useful implications, e.g., to determine whether ∆(G) = ∅; i.e., whether or not605

Lwait(G) = Lnowait(G).606

The insights our results provide on the nature of time-varying graphs do not607

seem to have an immediate practical impact on tasks and problems in highly608

dynamic networks. Thus the need for investigations on computability and com-609

plexity in time-varying graphs in presence of waiting is still pressing, both in610

general and for specific classes of problems (e.g., information diffusion, routing,611

etc.).612
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