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Abstract—We pinpoint a new sensor self-deployment problem,
constructing focused coverage around a Point of Interest (POI),
and introduce an evaluation metric, coverage radius. We pro-
pose two solutions,Greedy Advance (GA)and Greedy-Rotation-
Greedy (GRG), which are to our knowledge the first sensor self-
deployment algorithms that operate in a purely localized manner
and yet provide coverage guarantee. The two algorithms drive
sensors to move along a locally-computed equilateral triangle
tessellation (TT) to surround POI. In GA, nodes greedily proceed
as close to POI as they can; in GRG, when their greedy advance is
blocked, nodes rotate around POI to a TT vertex where greedy
advance can resume. They both yield a connected network of
TT layout with hole-free coverage; GRG furthermore assures
a hexagon coverage shape centered at POI. We prove their
correctness and analyze their coverage radius property. Our
study shows that GRG guarantees optimal hexagonal coverage
radius and near optimal circular coverage radius. Through
extensive simulation we as well evaluate their performance on
convergence time, energy consumption, and node collision.

I. I NTRODUCTION

Sensor self-deployment is an important research issue that
deals with autonomous coverage formation in mobile sen-
sor networks (MSN). Considering network scalability, unpre-
dictable node failure, dynamic topological change, and narrow
network bandwidth, a solution algorithm should be carried out
in a localized manner. Term “localized” means that each node
makes its self-deployment decision independently, using its k-
hop neighborhood information for a constantk. Whenk = 1,
we call the algorithmstrictly localized.

There exist a class of sensor network applications, where
sensors are designated to monitor concerned events or envi-
ronmental changes around a given strategic site, called Point
of Interest (POI). One example are sensors scattered around
a chemical plant to monitor its distance-dependent pollutional
impact on the soil/air in the vicinity. They uniquely require
that an area close to POI have higher priority to be covered
than a distant one. We call the coverage of such a surrounding
network focused coverage. In this paper, we address how to
achieve optimal focused-coverage by sensor self-deployment.

A. Focused coverage evaluation

The coverage region of a sensor network is the region
enclosed by the outer boundary of the network. Asensing
hole is a closed uncovered area inside the coverage region.
The coverage of a sensor network is measured by area. It is
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defined as the subtraction of the total area of sensing holes
from the area of the coverage region. Area and sensing holes
are two key evaluation metrics for traditional area coverage.
They reflect the sensitivity of a sensor network over a Region
of Interest (ROI). An ideal area coverage has maximized
area and no sensing hole. In the focused coverage problem,
measuring area and hole existence is no longer sufficient,
because distance from POI to uncovered areas also makes
significant sense and must be taken into consideration. In this
case, we introduce an additional metric,coverage radius.

Definition 1 (Coverage Radius): The radius of a focused
coverage is the radius of the maximal hole-free disc enclosed
by sensors and centered at POI.

Optimal focused coverage has maximized radius. In con-
tinuous domain, there exists a sensor node at every point
in the coverage region, and the maximum hole-free disc
therefore has a circular shape. In this case, coverage radius
is calledcircular radius and measured by Euclidean distance.
In discrete domain, the shape of the disc is however not
circular but polygonal, and coverage radius is thus referred
to as polygonal radius and alternatively measured bylayer
distance. Layer distance, also called convex layers in compu-
tational geometry or Tukey’s depth in statistics, represents the
number of successive complete convex polygons adjacently
surrounding POI. More precisely, we consider a discrete set
of convex polygonsPi (i = 1, 2, · · · ) composed of sensors,
centered at POI, and having a diameter ofi ∗ d for some
constantd. We count the total number of such polygons lying
completely in the sensor network’s coverage region.

B. Problem statement

We consider an asynchronous MSN of unknown size ran-
domly dropped in a 2D free field (e.g., an area on ocean
surface in practice) and may possibly be disconnected at
initiation. Sensors bear the same communication radiusrc

and the same sensing radiusrs. They move asynchronously
possibly at different speeds. Sensors know the location of POI,
denoted byP. Because the global coordinate system can be
easily (through trivial local processing) converted to onewith
P as origin, we use(0, 0) asP without loss of generality.

The goal is to develop a strictly localized sensor self-
deployment algorithm that yields a network surroundingP
with an equilateral triangle tessellation (TT) layout. Therea-
sons why this TT layout is required are that it maximizes the
coverage area of a given number of nodes without coverage



gap when nodal separation is equal to
√

3rs [1], [11], [14],
and that it automatically maintains network connectivity when
rc ≥

√
3rs. As an additional requirement, the final network

should have maximized coverage radius with respect toP.
We consider this sensor self-deployment problem under

the following common assumptions: (1)rc ≥
√

3rs; (2)
sensors know their own spatial coordinates by GPS devices or
any effective localization algorithm; (3) through lower-layer
protocols (minor modification may apply), sensors have the
information about their 1-hop neighbors, i.e., location, moving
status, and movement destination (if moving).

C. Our contributions

In this paper, we identify a new sensor self-deployment
problem, achieving focused coverage around a Point of In-
terest (POI), and introduce an evaluation metric,coverage
radius, that reflects the significance of distance from POI to
uncovered areas. We propose two strictly localized solution
protocols,Greedy Advance (GA) andGreedy-Rotation-Greedy
(GRG), which convert the area coverage problem to a vertex
coverage problem over a locally-computable equilateral tri-
angle tessellation (TT). In the two algorithms, self-governing
sensors relocate themselves on the TT grid and move from
vertex to vertex to surround POI, according to their one-hop
neighborhood information only. Specifically, in GA, nodes
greedily proceed as close to POI as they can; in GRG, when
their greedy advance is blocked, nodes rotate around POI
to a TT vertex where greedy advance can resume. In both
algorithms, when sensors are compactly placed or collide,
they may move away from POI. Both GA and GRG yield
a connected network of TT layout with hole-free coverage;
GRG furthermore assures a hexagon coverage shape centered
at POI. Thanks to their purely localized nature, the two
algorithms are resilient to node addition and removal (failure)
and work regardless of network disconnectivity. We prove
their correctness and analyze their coverage radius property.
Our study shows that GRG guarantees optimal hexagonal
coverage radius, and near optimal circular coverage radius. We
finally evaluate their performance on convergence time, energy
consumption, and node collision through extensive simulation.

II. RELATED WORK

To our knowledge there is no previous work addressing the
focused coverage formation problem. Sensor self-deployment
algorithms for area coverage over ROI with no particular
coverage focus exist in the literature. Below we will review
some of these related work at very short length. An extensive
survey can be found in our recent article [10].

The most known sensor self-deployment approach is vector-
based approach. Algorithms that belong to this category in-
clude [5], [8], [11], [12], just to name a few. The basic idea
is: each node computes movement vectors for its neighbors in
rounds using their relative position and then moves according
to the vector summation.

Howard et al. [7] proposed an incremental sensor self-
deployment algorithm. In this algorithm sensors are deployed

Fig. 1. Triangle Tessellation

one at a time using an occupancy/configuration grid, based on
the information collected from previously deployed sensors.
This is a centralized algorithm.

Heo and Varshney [6] presented a Voronoi diagram based
algorithm. This algorithm enables sensors to identify local
sensing holes using Voronoi diagram and align their sensing
range along its Voronoi polygon for minimizing uncovered
area. Similar algorithms include [4], [12].

Chellappan et al. [3] presented a centralized algorithm for
mobility-limited sensors. They divide the target field into
weighted regions and model the sensor self-deployment prob-
lem as a minimum-cost maximum-flow problem.

Yang et al. [13] presented a scan-based sensor deployment
scheme (SMART). By this scheme, the target field is parti-
tioned into a 2D mesh, and nodes are treated as load. The
goal is then converted to load balancing among mesh cells
through multi-rounds of scan.

Bartolini et al. [2] presented a snap and spread self-
deployment scheme. Sensors simultaneously construct a
hexagonal tiling portion for ROI by pushing and pulling
sensors to hexagon centers. Tilling portions of different sensors
merge when they meet.

These existing algorithms, when used for focused coverage
formation, have no guarantee on coverage radius (in worst
case, the resulting coverage radius can be as bad as0). Besides,
they have major weaknesses such as unrealistic assumptions
(e.g., initial connectivity out of randomized placement or
fixed network size), requirement for global computation (e.g.,
Voronoi diagram construction or clustering), vulnerability to
node failure, and so on. The unsuitability and the incomplete-
ness of previous work motivate our research presented here.

III. E QUILATERAL TRIANGLE TESSELLATION

An equilateral triangle tessellation (TT) is a planar graph
composed of congruent equilateral triangles. Given an orien-
tation, say north, and edge lengthle, each sensor is able to
locally compute a unique TT containingP as vertex. Denote
the TT graph byGTT . In our work, le is set to

√
3rs. It

is because we want to finally locate sensors on vertices of
GTT , and this particular edge length ensures connectivity and
minimizes sensing range overlapping [1], [11], [14].



Let SP (u, v) represent the shortest path connecting two
verticesu and v in GTT . Then theTT distance betweenu

and v is defined as the number of edges inSP (u, v) and
referred to as|SP (u, v)|. There are6i vertices with equal TT
distancei to P in GTT . They constitute a distance-i hexagon,
denoted byHi. TheseH hexagons are concentric toP. The
total numberν(i) of vertices enclosed byHi (inclusive) is

ν(i) = 1 +

i
∑

q=1

6q = 3i(i + 1) + 1 . (1)

We call the vertices located at hexagon cornerscorner
vertices, the othersedge vertices. Corner vertices form6
rays R0, . . . ,R5, in counterclockwise order, jointing atP
with mutual angle ofπ

3 and divide the entire plane evenly
into 6 sectors. The sector toward south is named “Sector0”
and denoted byS0; the other sectors are named after their
sequence number afterS0 in counterclockwise direction. For
0 ≤ j ≤ 6, Sj is defined by two raysRj andR(j+1)%6, where
% stands for modulus operation; its clockwise next sector
and counterclockwise next sector areS(j+5)%6 andS(j+1)%6,
respectively.GTT is drawn in Fig. 1, where sectors and rays
are labeled, andH hexagons are highlighted.

We assign every vertexv onHi an in-hexagon index and an
in-sector index. The former, denoted byk′ (0 ≤ k′ < 6i), is
equal to the TT distance fromv to R0 alongHi in clockwise
direction; the latter, referred to ask (0 ≤ k < i), is equal to
the TT distance fromv to Rj alongHi in clockwise direction
within its residing sectorSj . Notice thatk′%i = 0 andk = 0
if v is corner vertex. We can uniquely addressv using either a
pair 〈i, k′〉 or a triple〈i, j, k〉, which are mutually convertible
by k′ = ij + k, j = ⌊k′

i
⌋, andk = k′%i. Figure 1, displays

the addresses of vertices onH3 in both formats.
In the sequel, a vertex’s address will be expressed in the

format of 〈i, j, k〉. We define the address ofP as 〈0, ⋆, 0〉,
where ⋆ can be any non-negative integer less than6. The
geographic coordinate of any〈i, j, k〉 can be easily computed.

IV. L OCALIZED SELF-DEPLOYMENT ALGORITHMS

Recall the problem statement given in Sec. I-B. If we deploy
sensors at the vertices aroundP in theGTT introduced in Sec.
III, we automatically obtain a network with the required TT
layout; if we further assure that no empty TT vertex exist
in the coverage region, and that the coverage region have an
(approximate) circular shape centered atP, we as well achieve
the desired focused coverage with no sensing hole and with
(near) maximized radius. By this means, we convert the area
coverage problem to a vertex coverage problem overGTT .

Based on the above intuition, we propose two strictly
localized sensor self-deployment algorithms, Greedy Advance
(GA) and Greedy-Rotation-Greedy (GRG), which are both
resilient to node failure and able to operate regardless of
network partition. The two algorithms are composed of a set
of simple hop selection rules. By these rules, nodes make their
self-deployment decision using merely1-hop neighborhood
information and move asynchronously towardP step by step.
They stop when no next hop is available.

Fig. 2. Hop selection in GA

For simplicity, a TT vertexv is said to beoccupied by
a node if the node is not moving and is located in close
proximity to v, or if the node is moving towardv; P is
also considered occupied in the case that it is not physically
occupiable. We assume for the time being that sensors are all
initially located at distinct vertices ofGTT . This temporary
assumption will be relaxed immediately after, in Sec. IV-D.

A. Greedy Advance (GA)

In GA, a node moves greedily along TT edges as close to
P in terms of TT distance as it can. It has one and only one
possible next hop〈i − 1, j, k〉 if its residing vertex〈i, j, k〉
is a corner vertex (i.e.,k = 0), or two possible next hops
〈i − 1, j, k − 1〉 and 〈i − 1, j, k〉 if, otherwise, it is an edge
vertex (i.e.,0 < k < i). Figure 2 shows six nodes and their
possible next hops, which are marked by thick arrowed lines.
Each node chooses from its next hop candidates one that will
not cause node collision according to its best local knowledge.
If no such a next hop is available, it stays still. A still node
resumes greedy advance whenever possible.

Consider an arbitrary edge vertex, say〈4, 0, 3〉. It has two
possible previous hops〈5, 0, 3〉 and 〈5, 0, 4〉. Examine the
example scenario given in Fig. 2. If〈4, 0, 3〉 is chosen as
next hop by node6 and another node (which is not shown
in the figure) at〈5, 0, 3〉 at the same time, node collision will
likely occur. However, since the two nodes are neighboring
each other, they know about the potential collision and thus
can prevent it from actual happening by the following rule:

Rule IV-A.1 (Priority Rule): If two nodes are greedily
moving to 〈i, j, k〉 from 〈i + 1, j, k〉 and 〈i + 1, j, k + 1〉 (or
〈i + 1, (j + 5)%6, i〉 if k = 0), the one from〈i + 1, j, k + 1〉
(resp.,〈i + 1, j, k〉) has higher priority to proceed.

Special attention should be paid to any corner ver-
tex 〈i, j, 0〉 that has totally three possible previous hops
〈i + 1, (j + 5)%6, i〉, 〈i + 1, j, 0〉, and 〈i + 1, j, 1〉. Let us
again examine the scenario in Fig. 2. By the priority rule,
neither nodes4 and5 nor nodes5 and6 may collide at corner
vertex〈4, 1, 0〉. But nodes4 and6 may, if they simultaneously
move to 〈4, 1, 0〉, and the collision is not locally avoidable
since the two nodes are not aware of each other. To eliminate
this undesired situation, we can simply force node4 not to
take 〈4, 1, 0〉 as next hop by the following rule:



Fig. 3. Hop selection in GRG

Rule IV-A.2 (Forbiddance Rule): A node located at vertex
〈i + 1, j, 1〉 does not chose vertex〈i, j, 0〉 as greedy next hop.

In Fig. 2, hop selection that is forbidden by the forbiddance
rule is shown by dashed arrowed lines.
P has six possible previous hops, i.e., the six vertices onH1,

in total. Consider a scenario whereH1 is fully occupied, and
P is not occupied. In this particular case, a deadlock occurs
due to the priority rule, and none of the six occupant nodes
on H1 will attempt to move toP. To avoid this deadlock, we
define an additional rule as follows:

Rule IV-A.3 (Innermost-Layer Rule): A node located at
〈1, j, 0〉 moves toP as long asP is not occupied.

The innermost-layer rule may cause node collision atP.
However, such a collision takes place at most once, because
a node will stay atP after it reachesP and no node will try
to move toP onceP is occupied.

B. Greedy-Rotation-Greedy (GRG)

GRG involves not only greedy advance but also a new type
of node movement -rotation, which forms the final network
in a shape of hexagon centered atP. An arbitrary node, when
its greedy advance is blocked, tries rotation aroundP along
its residing hexagon without increasing its TT distance toP.
Note that rotation should be restricted to a particular, say
counterclockwise, direction so as to avoid collision among
rotating nodes. Formally speaking, a node at〈i, j, k〉 chooses
only 〈i, j, k + 1〉 (or 〈i, (j + 1)%6, 0〉 if k = i−1) as rotation
next hop. Figure 3 shows six nodes and their possible next
hops, among which rotation next hops and greedy next hops
are differentiated using different colors. A node stops rotating
when it reaches a vertex where greedy advance can resume,
or when it returns to the vertex where it starts rotating. To
properly react to its neighborhood change (due to sensor
deployment or node failure), a return node resets its rotation
starting point to null whenever it finds that its rotation next
hop becomes occupied.

In an asynchronous environment, a rotating node onHi

may never be able to move ontoHi−1 despite the vacancies
on Hi−1, if its neighboring nodes onHi−1 rotate together
with it and keep blocking its greedy advance. To prevent this
problematic situation, we define the following rule:

Rule IV-B.1 (Suspension Rule): A node located onHi−1,
before starting next rotation step, checks if there is any
neighbor rotating onHi. If yes, it gives up its rotation plan.

Consider node4 in Fig. 3. Suppose that〈3, 0, 0〉 and〈4, 0, 1〉
are both occupied, and that〈3, 0, 2〉 and 〈4, 0, 2〉 are both
empty. In this case, the greedy advance of node4 is blocked.
According to the suspension rule, node4 does not rotate to
〈3, 0, 2〉. The intuition is that the node knows that, if it itself
stays put, the node at〈4, 0, 1〉 will rotate to 〈4, 0, 2〉 and then
greedily advance to〈3, 0, 2〉. By the suspension rule, a rotating
Hi node will either meet an empty vertex onHi−1, surpassing
someHi−1 nodes in between, or find no vacancy onHi−1 and
stops at its rotation starting point.

Rule IV-B.2 (Competition Rule): In the case that a greedily
advancing node and a rotating node are targeting at the same
vertex, the former proceeds as usual, while the latter changes
its deployment decision accordingly.

In GRG, each non-POI vertex〈i, j, k〉 has two pos-
sible previous hops〈i + 1, j, k〉 and 〈i + 1, j, k + 1〉 (or,
〈i + 1, (j + 5)%6, i〉 if k = 0) for greedy advance and
one previous hop〈i, j, k − 1〉 (resp., 〈i, (j + 5)%6, i − 1〉)
for rotation. As we discussed in Sec. IV-A, greedy-greedy
collision does not happen at〈i, j, k〉, because the two previous
greedy hops are neighboring each other. Observe that vertices
〈i + 1, j, k〉 and 〈i, j, k − 1〉 (or, 〈i + 1, (j + 5)%6, i〉 and
〈i, (j + 5)%6, i − 1〉 if k = 0) are also each other’s neighbor.
Thus the greedy-rotation collision caused by nodes from these
two vertices can be locally avoided as well, by the competition
rule. Let us examine the greedy-rotation collision due to nodes
from 〈i + 1, j, k + 1〉 and 〈i, j, k − 1〉 (or, 〈i + 1, j, k〉 and
〈i, (j + 5)%6, i − 1〉 if k = 0). Because the two nodes are
out of each other’s communication range, the collision can not
be inferred by them from their local knowledge. Depending
on the way of handling this situation, GRG has two variants:
Collision alloWance (CW) andCollision aVoidance (CV).

1) GRG-CW: In this variant, no additional restriction is
applied; greedy-rotation collision is allowed. During a greedy-
rotation collision, the rotating node is required to make its
next deployment decision first, which immediately affects the
other’s motion plan. The reason why the rotating node is given
priority is to prevent collision loop caused by endless rotating-
retreating role switch. We will come back to this in Sec. IV-D,
when introducing retreat movement for collision resolution.

Through ordered decision making, greedy-rotation collision
could appear as a transient phenomenon. For example, in the
scenario given in Fig. 4(b), collision between nodes2 and 6
takes place atd and is then automatically resolved. However,
there is no assurance that collision does not remain permanent
(this drawback will be resolved later, in Sec. IV-D).

2) GRG-CV: In this variant, greedy-rotation collision be-
comes impossible due to the edge rule and the corner rule to
be introduced below. The purpose of the two rules is to restrict
greedy advance to rotation direction, i.e., counterclockwise di-
rection. The intuition stems from the observation that locally-
unknown greedy-rotation collision occurs only when greedy
advance and rotation are opposite to each other. For example,



(a) GA (b) GRG-CW (c) GRG-CV

Fig. 4. Final node distribution after sensor self-deployment

in Fig. 3, node4 and5 have a potential collision at〈3, 0, 2〉;
node5 and6 have a potential collision at〈4, 1, 0〉.

Rule IV-B.3 (Edge Rule): A node located at edge vertex
〈i, j, k〉 only takes 〈i − 1, j, k〉 (or 〈i − 1, (j + 1)%6, 0〉 if
k = i − 1) as the next hop of its greedy advance.

Rule IV-B.4 (Corner Rule): A node located at corner ver-
tex 〈i, j, 0〉 performs no greedy advance.

Special attention should be paid to the nodes located on
H1. By the corner rule, none of these nodes will move toP,
generating a sensing hole atP. Under this circumstance, we
appoint a particular vertex, denoted byGate(P), on H1 the
gateway to P and allow only a gateway node to move toP.

Rule IV-B.5 (Gateway Rule): A node located onH1 per-
forms only greedy advance if its residing vertex isGate(P),
or only rotation otherwise.

By the corner rule and the gateway rule, anyH1 node not
located atGate(P) has to first rotate toGate(P) in order
to occupyP. A gateway node’s greedy advance is safe as no
otherH1 node is moving toGate(P) in the mean time.

Figure 3, whereGate(P) = 〈1, 0, 0〉, shows the possible
next hops of6 nodes in GRG-CV with solid arrowed lines.
In the figure, dashed arrowed lines imply the hop selection
allowed in GRG-CW but forbidden in GRG-CV. Thanks to
the strict hop selection rules of GRG-CV, nodes are aware of,
thus able to avoid, any potential collision.

C. Execution examples

In the following, we will comparatively show how GA
and the two variants of GRG, i.e., GRG-CW and GRG-CV,
work through examples. Although they operate regardless of
network size and asynchrony, we consider for ease of under-
standing a simple fully synchronized scenario, where7 nodes
initially placed at distinct TT vertices start the self-deployment
algorithms simultaneously, make deployment decision at the
same time, and move step by step at the same speed. In this
case, a sensor is not able to know where its neighbors are
moving and sometimes has to make conservative decision (by
assuming those neighbors are staying put). Figure 4 shows
the final node distribution obtained respectively by GA, GRG-
CW, and GRG-CV. In the figure, node trajectories are marked
by thick arrowed lines, pointing from initial position to final

position. Note that the initial position of node1 is the final
position of node3 in Fig. 4(a), and that the initial position of
node4 is the final position of node6 in Fig. 4(b) and of node
2 in Fig. 4(c). To have a clear view of node movement, we
focus only on nodes2, 4 and6.

Figure 4(a) indicates that, when GA is applied, the three
nodes2, 4 and 6 move towardP and stop respectively ata,
P andb according to the forbiddance rule and the innermost-
layer rule. As shown in Fig. 4(b), when GRG-CW is employed,
node4 proceeds in the same way as in GA; whereas, nodes
2 and nodes6 travel along an extended path. Specifically,
after reachinga, node2 finds that vertexd is occupied by
node 7, and that greedy advance tob is forbidden by the
forbiddance rule. Under this circumstance, it has to rotate
aroundP along its residing hexagon. When node2 rotates
to c, node6 arrives atb. At that moment,d becomes empty
due to node7’s departure, and POI has been taken by node
4. Then node2 decides to greedily proceed tod, and node
6 also decides to rotate tod. Because the two nodes are not
neighboring each other, they do not know each other’s motion
plan and consequently collide atd. Because a rotating node
is given priority to take the next deployment step in such a
greedy-rotation collision, node6 continues its rotation, while
node2 has to wait. Finally, node6 rotates to its final position
f , passing bye; node2 rotates toe after node6 leavese for f .

Observe Fig. 4(c) for GRG-CV. Because node4 is not
allowed to move toP by the corner rule, it has to first rotate
to a particular gateway vertex (which is set to beg in this
example) and then greedily proceed toP by the gateway rule.
Node7 can not start with greedy advance but has to perform
rotation first according to the corner rule, ending up with a
completely different trajectory, which directly affects node2’s
deployment process: now, after reachinga, node2 is able to
continue its greedy advance and immediately proceed tod

since no one is occupyingd. When node6 reachesb through
greedy advance, node2 just arrives atd, and node4 already got
to P. Then node6 has to wait because its can perform neither
greedy advance or rotation in this case. The suspension of
node6’s movement in turn affects nodes3 and5’s trajectories,
which we will not go through here. Finally, node2 rotates to
f , and node6 rotates toe. Notice that the collision between



node2 and6 in GRG-CW does not occur in GRG-CV.

D. Resolving node collision

We previously assumed that nodes are initially located at
distinct TT vertices, which however rarely happens in practice
because of randomized node distribution. This temporary
assumption can be readily relaxed by the following rule:

Rule IV-D.1 (Alignment Rule): A node located inside or on
the border of a TT triangle moves to the triangle vertex that
is occupied by the least number of nodes. If more than one
such triangle vertex exists, the closest is selected; a random
choice is made in case of tie.

The alignment rule is very likely to cause various node
collision. In the following, we shall introduce a new type
of movement -retreat - for collision resolution. Retreat is
opposite to greedy advance. It happens from a vertex onHi

(i ≥ 0) to a vertex onHi+1. With nodal retreat, permanent
collision no longer remains, and both GA and GRG gain the
ability to spread out compactly-placed sensors.

After some nodes collide at a TT vertex, they enter a
local ranking process. These colliding nodes are able to
do the ranking locally and independently because they are
neighboring each other. During this process, each of them is
assigned a rank based on either a random selection or certain
criterion (if available) such as residual energy or node ID or
the combination thereof. Then, the node with the highest rank
makes its next deployment decision first, and the others follow
in accordance with the decreasing order of their ranks. If the
t-th node decides to stay, every node with rank lower thant

retreats by the following rule:
Rule IV-D.2 (Retreat Rule): When a node located at aHi

vertex decides to retreat, it retreats to one of its neighboring
Hi+1 vertices that is occupied by the least number of nodes.
In case of tie, a random choice is made.

In GRG-CW, retreat movement might cause greedy-rotation
collision loop and endless movement in some rare scenario as
shown in Fig. 5. Figure 5(a) shows thatP and entireH1 have
been occupied, and that there is only one empty vertexb on
H2. Under this situation, node1 (located at vertexa on H3)
decides to greedily move tob, and node2 decides to rotate
to b. Because the two nodes are not neighboring each other,
they will collide at b as shown in Figure 5(b). Assume that,
after the collision, node1 is assigned a higher rank than node
2. In this case, node1 decides to stay atb, while node2 has
to retreat ontoHk+1 by the retreat rule.

Suppose that node2 happens to retreat toa and that node
1 meanwhile finishes one rotation step. We end up with
a scenario (see Fig. 5(c)) that is exactly the same as the
one given in Fig. 5(a). Since we are in an asynchronous
environment and we do not assume any specific ranking
method, it is possible that similar situation occurs when node
2 makes its greedy advance later on. If continuing that way,
each node onH2 will make full rotation and then retreat onto
H3 rather than stop at its rotation starting point; in the next
step the node returns toH2 again and starts the next rotation.

As a consequence, a greedy-rotation collision loop appears,
and all nodes are rotating alongH2 infinitively often.

This collision loop is due to the problematic rotating-
retreating role switch, which refreshes the rotating node’s
rotation record. It will not take place if we prevent the rotating
node from being retreated outwards, which in turn can be
achieved by enforcing the following ranking policy:a node
that rotates is always assigned the highest rank in a local
ranking process. Notice that, whether the ranking policy is
applied or not, collision loop never occurs in GRG-CV where
no greedy-rotation collision is possible.

V. A NALYSIS

In this section, we will analyze the correctness and the
coverage radius properties of GA and GRG. Due to space
limitation, some proofs are sketched, and some are omitted.

Lemma1: Both GA an GRG ensure thatP be occupied by
a single node within finite time.

Proof: Because, after the initial node dropping, the dis-
tance from each node to its closest TT vertex is fixed, the
node alignment process will terminate within finite time. By
the alignment rule,P could be occupied by multiple nodes
during the initial node alignment. IfP is still empty after the
alignment process terminates, it will be eventually occupied
by at least one node through greedy advance, because the
algorithms ensures there be a winer in every competition for
greedy advance. In any case,P becomes occupied within finite
time. OnceP is occupied, no node will move to it. If multiple
nodes exist atP at some moment, one and only one of them
will stay, while the others will retreat toH1 according to the
retreat rule. Hence, the lemma holds.

Theorem1: GA terminates within finite time.
Proof: Because, after the initial node dropping, the dis-

tance from each node to its closest TT vertex is fixed, the
node alignment process will terminate within finite time. By
Lemma 1,P will be occupied by a single node within finite
time. Henceforth, we safely assume that the deployment step
already passed the alignment process and thatP has been
occupied by a single node.

When a node is leaving a TT vertex due to the retreat
rule, the TT vertex is occupied by another node. The priority
rule and the forbiddance rule prevent two nodes located at
different TT vertices from greedily moving toward the same
TT vertex. In summary, the number of occupied TT vertices
never decreases.

Assume for the sake of contradiction that GA never ter-
minates. Since the number of occupied TT vertices never
decreases, it follows that there exists anm ≤ n wheren is
the network size such that the algorithm runs infinitively long
on m occupied TT vertices.

Consider that after a finite number of deployment steps the
TT verticesT = {t1, . . . , tm} are occupied. In subsequent
steps, the setT may only change due to a greedy rule. Assume
for the sake of contradiction thatT changes due to the retreat
rule. Whenever an unoccupied TT vertex is visited by the
retreat rule, the number of occupied TT vertices increases by



(a) Rotation (b) Rotating-retreating role switch (c) Greedy advance

Fig. 5. An example of collision loop in GRG-CW

one, contradicting the assumption that GA runs infinitively
long onm occupied TT vertices.

Define by
∑

(T ) the sum of the TT distance fromP to the
TT vertices inT , i.e.,

∑

(T ) =
∑

ti∈T |SP (ti,P)|. Whenever
T changes toT ′ due to a greedy rule, a node moves from a
hexagonHi+1 to a hexagonHi. It follows,

∑

(T ′) =
∑

(T )−
1. Since

∑

(T ) ≥ 0, it follows that the set of occupied TT
vertices can only change a finite number of times.

Let F = {f1, . . . , fm} be the final set of TT vertices
visited by GA, i.e.,F no longer changes in subsequent steps.
Subsequent deployment steps are only due to the retreat rule
since a greedy rule will always visit a non-occupied TT vertex
and would thus change the final setF .

Define d as the maximum distance betweenP and the
finally occupied TT vertices, i.e.,d = max{|SP (fi,P)|},
fi ∈ F . Let Q = {q1, . . . , qn} be the multi set of the
TT vertices occupied by the sensor nodes, i.e.qi is the
TT vertex occupied by sensor nodeni. Nodes moving due
to the retreat rule always move from a hexagonHi to a
hexagonHi+1. Thus, a change fromQ to Q′ always satisfies
∑

(Q′) =
∑

(Q) + 1.
It follows that after a finite number of deployment steps

the multi setQ of occupied TT vertices satisfies
∑

(Q) >

nd, i.e., there exists an occupied TT vertext which satisfies
|SP (t,P)| > d. Thus, the visited TT vertext is not an element
of F which finally contradicts the assumption thatF is the
final set of visited TT vertices.

Lemma2: Let H0, · · · , Hi−1 be fully occupied without
co-located nodes. Letn ≥ ν(i). In GRG, Hi will be fully
occupied without co-located nodes within finite time.

Proof: When H0, · · · , Hi−1 are all fully occupied,
nodes that have decided to stay onHi never leaveHi but
counterclockwise rotate alongHi because they are assigned
highest rank in any local ranking process triggered by node
collision, making unoccupiedHi vertices “rotating” in the
opposite direction. In worst case, they make a full rotation
and then stop moving forever, rendering unoccupied vertices
fixed. In any case, someHi+1 nodes are guaranteed to meet the
empty vertices onHi (by counterclockwise rotation) and move
to fill their location by the suspension rule and the competition
rule. Becausen ≥ ν(i) and there are no co-located nodes on

the i − 1 inner hexagons,Hi will be fully occupied at the
end as nodes keep moving toward it and eventually stop on
it. Nodal retreat guarantees that noHi vertex be occupied by
multiple nodes. Hence, the lemma holds.

Lemma3: Let H0, H1, · · · , Hi−1 be fully occupied with-
out co-located nodes. Letν(i−1) < n < ν(i). In GRG, nodes
located onHi will stop moving within finite time.

Proof: As inner hexagonsH0, H1, · · · , Hi−1 are all fully
occupied, nodes from outer hexagons will rotate alongHi,
after arriving atHi. In GRG-CW, these rotating nodes could
collide with some greedily advancing nodes, but their rotation
is not affected since they are assigned highest rank in the local
ranking process (refer to Sec. IV-D). Becauseν(i− 1) < n <

ν(i), at least one of them will make a full rotation. By protocol
definition, this node will then stop moving forever, which will
in turn block the rotation of any following node. Eventually,
the nodes onHi will become fixed. After the nodes onHi

stop moving, the nodes onHi+1 (if any) will get ontoHi and
possibly rotate alongHi as well. These newly arriving nodes
will stop moving and become fixed within finite time because
of the blocking from previously stopped nodes onHi.

Theorem2: GRG terminates within finite time.
Proof: It follows immediately from Lemmas 1 – 3.

Theorem3: Both GA and GRG yields a connected network
with hole-free coverage.

Proof: We prove this theorem by contradiction. By Theo-
rem 1 and 2, we know that both GA and GRG terminate within
finite time. Assume that there is a sensing hole in the coverage
region at some moment after the algorithm (either GA or
GRG) terminates. Denote byv a vertex farthest fromP on the
border of the hole and by〈i, j, k〉 the address ofv. There must
exist a node at〈i + 1, j, k〉 (or 〈i + 1, j, i〉 if k = 0), because,
otherwise,v would not be the farthest border vertex of the
hole. In this case, that node will greedily proceed to occupyv

by protocol definition. This contradicts our assumption that the
algorithm has terminated. Thus the final coverage constructed
by the algorithm (either GA or GRG) contains no sensing
hole. Then network connectivity simply follows from the lack
of sensing holes and the assumption ofrc ≥

√
3rs.

In GA, the final coverage of a MSN has an unpredictable
shape, depending very much on the initial sensor placement.



As shown in Fig. 4(a), it is possible thatP is located on
the border of the network, rendering coverage radius equal to
0. This example implies that GA does not provide coverage
radius guarantee either in layer distance or in Euclidean
distance. In contrast, as we will see below, GRG generates
optimal or near optimal focused coverage in both metrics.

Consider a MSN of sizen. Let γH
opt be the optimal hexag-

onal coverage radius (measured in layer distance) that the
network can provide. Then we haveγH

opt = ⌊ν−1(n)⌋ where

ν−1(n) =
√

12n−3−3
6 is the inverse function ofν(n) (Eqn. 1).

Let F be the focused coverage constructed by GRG using
this network. Denote byγH the hexagonal radius ofF . From
Lemmas 1 – 3, the following optimality result follows:

Theorem4: In GRG, γH = γH
opt.

We will now study the circular radiusγC (measured in
Euclidean distance) ofF . Denote byγC

opt the optimal circular
coverage radius that the network can provide. Further, letS

be the size (area) ofF , andHκ the outmost hexagon ofF ,
whereκ = ⌈ν−1(n)⌉. We first derive bounds onγC

opt.

Theorem5: 3
2 (κ − 1)rs ≤ γC

opt ≤ 3

√√
3

2π
κrs.

Proof: The lower bound, which is the radius of the
inscribed circle ofHκ−1 is obvious. Recall the definition of
coverage. It is provable that the hexagonal node placement
produces maximized coverage over the TT. In this case,γC

opt

must not be larger than the radius of the circle whose area is

equal to the area ofHκ, that is,γC
opt ≤ 3

√√
3

2π
κrs.

Then we shall show GRG yields optimal or near optimal
circular coverage radius, depending on the network sizen. We
have to examine two cases: (1)n = ν(κ), meaning that,Hκ is
fully occupied; (2)n 6= ν(κ) (preciselyν(κ−1) < n < ν(κ)),
meaning that,Hκ is partially occupied.

Lemma4: In GRG, 0.95γC
opt ≤ γC ≤ γC

opt for n = ν(κ).
Proof: In the case ofn = ν(κ), γC is equal to the

radius of the inscribed circle ofHκ, namely,γC = 3
2κrs.

By Theorem 5, γC

γC
opt

≥
3

2
κrs

3

√ √
3

2π
κrs

=
√

π

2
√

3
= 0.95. And

obviously,γC ≤ γC
opt. Hence, the lemma holds.

Lemma5: In GRG, 0.95κ−1
κ

γC
opt ≤ γC ≤ γC

opt for n 6=
ν(κ).

Proof: When n 6= ν(κ), γC must not be less than the
radius of the inscribed circle ofHκ−1, i.e.,γC ≥ 3

2 (κ− 1)rs.

By Theorem 5, γC

γC
opt

≥
3

2
(κ−1)rs

3

√ √
3

2π
κrs

= κ−1
κ

√

π

2
√

3
= 0.95κ−1

κ
.

Obviously,γC ≤ γC
opt. Hence, the lemma holds.

Summarizing Lemmas 4 and 5, we have the theorem below:

Theorem6: Let δ =

{

1, n = ν(κ);

1 − 1
κ
, n 6= ν(κ).

Then in

GRG, 0.95δγC
opt ≤ γC ≤ γC

opt

By Theorem 6, it would appear that the resultant circular
radius of GRG was far from optimal in small-size network.
For instance, ifκ = 2, the lower bound will be0.475γC

opt. This
is misleading because the lower bound are too coarse in the
case ofk ≤ 6, as indicated by the following complementary
theorem whose proof is omitted due to space limit.

Theorem7: In GRG,γC > 0.86γC
opt for n 6= ν(κ)∧κ ≤ 6.

VI. PERFORMANCEEVALUATION

Although sensor self-deployment is not a new research
issue, sensor self-deployment for focused coverage formation
is to our best knowledge a new problem addressed for the first
time in this paper. Existing sensor self-deployment algorithms
may possibly yield a network with coverage radius as bad as
0. Because we emphasize on optimizing coverage radius, they
are not comparable to GRG which guarantees optimal or near
optimal coverage radius. Thus in the sequel, we are going to
comparatively evaluate GA and GRG only.

A. Evaluation metrics

We evaluate the performance of GA and GRG in three
aspects: convergence time, energy consumption, and node
collision. Because nodes obtain their neighborhood informa-
tion from lower layer protocols, and they themselves do not
generate any message during the course of self-deployment,
communication cost is not our concern here.

1) Convergence time (T): It is also known as deployment
latency, and is defined as the number of time units that it
takes a self-deployment algorithm to yield a stabilized network
(with no floating nodes). Whenn 6= ν(κ), we consider from
guaranteed coverage viewpoint that GRG converges as long
as theκ − 1 inner hexagons are fully filled.

2) Energy consumption: It is measured bynumber of moves
(V ), mileage (M ), and mileage over progress ratio (R). V

andM are respectively defined as the number of times a node
started its motor and the total distance it traveled for its self-
deployment. LetDini andDfin respectively be its initial and
its final Euclidean distance to POI. ThenR = M

P
, whereP =

|Dini − Dfin| is progress.
3) Node collision (C): We consider that two nodes collide

as long as they are located sufficiently close to each other.
Collision is due to randomized initial node placement and
algorithmic design. Although collision appears as transient
phenomenon both in GA and in GRG, it matters because
it could bring colliding nodes radio signal interference at
physical layer, causing various communication failure.

B. Simulation setup

We implemented GA and GRG (including -CW and -CV
variants) within a custom network simulator, and simulated
their execution over a MSN randomly dropped in 2D free
plane. The geographic center of the dropping area is taken as
POI. Nodes are equipped with sensing radius10 and commu-
nication radius10 ×

√
3 ≈ 18; they may move at different

speeds, ranging from0.05 to 0.2 per simulated time unit, for
every step. Through simulation we study the performance of
the two algorithms under different node density by fixing the
size of dropping area to2002 and varying network sizen from
ν(1) = 7 to ν(10) = 331. For each simulation setting, we run
GA and GRG over50 randomly generated network scenarios
in order to get average results.

In fact, we also conducted another set of experiments to
evaluate the two algorithms with different average initialnode
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Fig. 6. Experimental results

distance. Due to space limitation, these experimental results
are not presented here. They can be found in [9]

C. Simulation results

In the following, we are going to elaborate on our simulation
results displayed in Fig. 6. As we will see, GA outperforms
GRG in the aspects of convergence time and energy con-
sumption; GRG-CV is more suitable for dense networks when
compared with GRG-CW.

Examine Fig. 6(a) and 6(b), which respectively indicateT

andV as a function ofn and contain curves of similar trend.
We first investigate the monotonically increasing curves of
GA. When n = ν(1), the network is very sparse and has
a very small size of7. In such a network, greedy advance
overwhelmingly dominates the self-deployment process, and
nodes move most of time without frequently (or even never)
being blocked and waiting, resulting in low-valuedT andV .
As n increases, the frequency of blocking and nodal retreat
rises, and waiting and resuming happen more and more often.
As a result, bothT andV increase.

Now, let us look at the curves for GRG-CW and GRG-
CV in the two figures. If we link the points withn = ν(κ),
we get two closely-located monotonically-increasing curves
in both figures. In either figure, the two new curves are
both located above the curve for GA. It is because GRG
involves extra rotation movement, which complexes the self-
deployment process. Observe any interval betweenν(κ − 1)
andν(κ) for an integerκ, and we find that the curve of either
variant of GRG descends in this interval, which is reasonable.
In the case ofn = ν(κ), GRG does not converge until the
outmost hexagon is fully occupied; in any other case, it, as we
mentioned in Sec. VI-A1, converges as soon as all the inner

κ − 1 hexagons are fully filled, making a dramatic decrease
of both T andV . In fact, whenn is very close toν(κ), GRG
performs even better than GA, as shown in the two figures,
since the latter converges only when nodes all stop moving.

Figure 6(c) illustrates howM varies asn changes. It is
observed that the curves for GRG-CW and GRG-CV have a
declining trend whenn lies in the range betweenν(κ − 1)
andν(κ) for an integerκ. This phenomenon is due to exactly
the same reason as the similar phenomena observed in Fig.
6(a) and 6(b). If we link points on GRG curves withn =
ν(κ) together, we also get two closely-located monotonically-
increasing curves. The two new curves surpass the curve for
GA for every value ofn because GA does not generate rotation
movement. Besides, they also have the same trend as GA:
firstly declining and then climbing. It is because, asn goes
up, the network becomes increasingly dense, andDfin thereby
drops and approachesDini, which in turn makes nodes travel
a decreased distance. But, after node density is beyond a
saturated value (whenn is aroundν(6)), the network shows
an expanding behavior, namely, that nodes move outwards for
coverage maximization, leading to the monotonic increase of
M with increasedn.

Closely examine the three figures 6(a) - 6(c) again. We can
find that GRG-CW performs better in sparse networks, but
worse in dense networks, than GRG-CV. This phenomenon
is arguable. Whenn is small, greedy advance dominates
sensor self-deployment, and node collision, which has obvious
negative impact onT , V and M , happens rarely. In this
case, aggressive GRG-CW beats conservative GRG-CV, as
the latter often unnecessarily forces nodes to travel increased
distance. Asn mounts up, the network shows more and more



a rotating or expanding behavior, and node collision occurs
increasingly often, as confirmed by Fig. 6(d) and discussed in
next paragraph. The positive impact of the strict hop selection
rules of GRG-CV keeps growing, while their negative effect
constantly decrease, finally rendering it outperform GRG-CW.

Figure 6(d) showsC in relation with n. Observe thatC
keeps ascending asn increases because the probability of
node collision climbs as node density, which is proportional
to network size in the case of fixed-sized dropping area,
increases. Also observe that GRG-CV always yields smaller
C than GRG-CW. Recall that GRG-CV itself does not cause
node collision. Collision occurs during its execution onlyfor
the sake of randomized initial node placement. As shown in
the figure, GA and GRG has nearly the same performance in
a small-sized network, and they deviate from each other asn

goes up. GRG-CV is below GA in all cases because rotation
helps to reduce retreat-related collision. GRG-CW is first
above GA because it generates a large proportion of greedy-
rotation collisions in a sparse network with concentrating
behavior, and then gets below GA (aftern = ν(6)) because the
proportion of greedy-rotation collision diminishes, and that of
retreat-related collision avoided by rotation contrarilyemerges.

Figure 6(e) illustratesP as a result ofn. The curves
corresponding to GA and the two versions of GRG are all
in a “V” shape with the lowest point rooted aroundn = ν(7).
They imply that this particular value ofn makes the network
reach a saturated status, namelyDini is roughly equal toDfin

such that nodes make no (large) progress during the course of
self-deployment. Such a network shows a rotating behavior
in general. Whenn deviates more and more fromν(7), the
difference betweenDini andDfin becomes bigger and bigger,
resulting in the rise ofC. With no difficulty, we can see that
the network shows a concentrating behavior whenn < ν(7)
and an expending behavior whenn > ν(7).

Figure 6(f) exhibitsR versusn. It is observed thatR is
lower than10 and very close to1 for both GA and GRG
almost for all the values ofn. In the figure,R reaches its peak
value aroundn = ν(7). In fact,R can go to infinity in the case
of P = 0. Although this extreme situation may not come into
reality, but it is possible in theory, for example, when all the
nodes are by any chance located at the right deployment points
at initiation. Additionally, it is observed thatR decreases and
approaches1 closer and closer asn increases or decreases
toward the two end values. Through a comparative study on the
two figures 6(c) and Fig. 6(e), the reason for this phenomenon
becomes fairly obvious:P has a way smaller value (nearly
equal to0) thanM roundn = ν(7) and it climbs at a much
faster speed thanM with increased/decreasedn.

VII. C ONCLUSIONS ANDFUTURE WORK

Research on sensor self-deployment is still on its initial
stage, where defining the problem and finding basic self-
deployment techniques extendable to more complex protocols
are the main tasks. In this paper, we pinpointed a new sensor
self-deployment problem,focused coverage formation and in-
troduced an evaluation metric,coverage radius. By converting

area coverage problem to vertex coverage problem on a virtual
equilateral triangulation (TT), we proposed the first localized
solutions, Greedy Advance (GA) and Greedy-Rotation-Greedy
(GRG) with desired coverage guarantee. We proved their
correctness, and studied their properties and performanceby
throughout analysis and extensive simulation.

The two proposed algorithms GA and GRG were described
in the context of a single point of interest (POI). However,
there are complex scenarios where a series of POIs form a
Line of Interest (LOI), representing an object like the trace
of certain event or the border of a landmark. The combined
greedy-rotation technique (GRG) presented here is extendable
to LOI case as follows: each sensor takes a common point on
LOI as reference and builds a TT graph, and independently
finds the smallest set of successive vertices that best represent
LOI; these vertices form acoverage backbone, and sensors
self-deploy around the coverage backbone following the same
philosophy as GRG. Detailed algorithmic design of this ex-
tension is not trivial. We leave it for future work.
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