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Abstract—Communication in networks suffers if a link fails.
When the links are edges of a tree that has been chosen from
an underlying graph of all possible links, a broken link even
disconnects the network. Most often, the link is restored rapidly.
A good policy to deal with this sort of transient link failures is
swap rerouting, where the temporarily broken link is replaced
by a single swap link from the underlying graph. A rapid
replacement of a broken link by a swap link is only possible if all
swap links have been precomputed. The selection of high quality
swap links is essential; it must follow the same objective as the
originally chosen communication subnetwork. We are interested
in a minimum diameter tree in a graph with edge weights (so as
to minimize the maximum travel time of messages). Hence, each
swap link must minimize (among all possible swaps) the diameter
of the tree that results from swapping. We propose a distributed
algorithm that efficiently computes all of these swap links, and
we explain how to route messages across swap edges with a
compact routing scheme. Finally, we consider the computation
of swap edges in an arbitrary spanning tree, where swap edges
are chosen to minimize the time required to adapt routing in
case of a failure, and give efficient distributed algorithms for
two variants of this problem.

Index Terms—Fault-tolerant routing, swap edges, minimum
diameter spanning tree, distributed algorithms.

I. INTRODUCTION

For communication in computer networks, often only a
subset of the available connections is used to communicate
at any given time. If all nodes are connected using the
smallest number of links, the subset forms a spanning tree
of the network. This has economical benefits compared to
using the entire set of available links, assuming that merely
keeping a link active for potentially sending messages induces
some cost. Furthermore, as only one path exists between
any communication pair, a spanning tree simplifies routing
and allows small routing tables. Depending on the purpose
of the network, there is a variety of desirable properties of
a spanning tree. We are interested in a Minimum Diameter
Spanning Tree (MDST), i.e., a tree that minimizes the largest
distance between any pair of nodes, thus minimizing the worst
case length of any transmission path, even if edge lengths are
not uniform. The importance of minimizing the diameter of
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a spanning tree has been widely recognized (see e.g. [2]);
essentially, the diameter of a network provides a lower bound
(and often even an exact one) on the computation time of most
algorithms in which all nodes participate.

One downside of using a spanning tree is that a single link
failure disconnects the network. Whenever link failures are
transient, i.e., a failed link soon becomes operational again, the
momentarily best possible way of reconnecting the network
is to replace the failed link by a single other link, called a
swap link. Among all possible swap links, one should choose
a best swap w.r.t. the original objective [3], [4], [5], [6], that
is in our case, a swap that minimizes the diameter of the
resulting swap tree. Note that the swap tree is different from
a minimum diameter spanning tree of the underlying graph
that does not use the failed link. The reason for preferring the
swap tree to the latter lies in the effort that a change of the
current communication tree requires: If we were to replace the
original MDST by a tree whose edge set can be very different,
we would need to put many edges out of service, many new
edges into service, and adjust many routing tables substantially
— and all of this for a transient situation. For a swap tree,
instead, only one new edge goes into service, and routing can
be adjusted with little effort (as we will show). Interestingly,
this choice of swapping against adjusting an entire tree even
comes at a moderate loss in diameter: The swap tree diameter
is at most a factor of 2.5 larger than the diameter of an entirely
adjusted tree [4].

In order to keep the required time for swapping small,
we advocate to precompute for each edge of the tree a best
swap edge. We show in the following that the distributed
computation of all best swaps has the further advantage of
gaining efficiency (against computing swap edges individ-
ually), because dependencies between the computations for
different failing edges can be exploited.

Related Work: Nardelli et al. [4] describe a centralized
(i.e., non-distributed) algorithm for computing all best swaps
of a MDST in O(n

√
m) time and O(m) space, where the

given underlying communication network G = (V,E) has
n = |V | vertices and m = |E| edges. For shortest paths
trees (as opposed to minimum diameter spanning trees), an
earlier centralized algorithm [5] has been complemented by a
distributed algorithm using techniques for finding all best swap
edges for several objectives [7], [8]. Using techniques that are
quite different from the techniques we propose in this paper,
these algorithms require either O(n) messages of size O(n)
(i.e., a message contains O(n) node labels, edge weights, etc.)
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each, or O(n∗) short messages with size O(1) each, where
n∗ denotes the size of the transitive closure of the tree if
edges are viewed to be directed away from the root. In a so-
called preprocessing phase of this algorithm, some information
is computed along with the spanning tree construction using
O(m) messages. A distributed algorithm for computing a
MDST in a graph G(V,E) in an asynchronous setting has
O(n) time complexity (in the standard sense, as explained
in Section III) and uses O(nm) messages [2]. However, no
efficient distributed algorithm to compute the best swaps of a
MDST had been found to date.

Our Contribution: In this paper, we propose a distributed
algorithm for computing all best swaps of a MDST using no
more than O(n∗ + m) messages of size O(1) each. The size
of a message denotes the number of atomic values that it con-
tains, such as node labels, edge weights, path lengths etc., and
n∗ is the size of the transitive closure of the MDST with edges
directed away from a center of the tree (i.e., n∗ is essentially
the same as above). Both n∗ and m are very natural bounds:
When each subtree triggers as many messages as there are
nodes in the subtree, the size of the transitive closure describes
the total number of messages. Furthermore, it seems inevitable
that each node receives some information from each of its
neighbors in G, taking into account each potential swap edge,
totalling to Ω(m) messages. Our algorithm runs in O(‖D‖)
time (in the standard sense, as explained in Section III), where
‖D‖ is the hop-length of the diameter path of G; note that this
is asymptotically optimal. The message and time costs of our
algorithm are easily subsumed by the costs of constructing
a MDST distributively using the algorithm from [2]. Thus,
it is cheap to precompute all the best swaps in addition to
constructing a MDST initially.

Just like the best swaps algorithms for shortest paths trees
([7], [8]), our algorithm (like many fundamental distributed
algorithms) exploits the structure of the tree under considera-
tion. The minimum diameter spanning tree, however, is sub-
stantially different from shortest paths trees in that it requires a
significantly more complex invariant to be maintained during
the computation: We need to have just the right collection
of pieces of information available so that on the one hand,
these pieces can be maintained efficiently for changing failing
edges, and on the other hand, they can be composed to reveal
the diameter at the corresponding steps in the computation.

To complement our distributed algorithm, we propose a
compact routing scheme for trees which can quickly and
inexpensively adapt routing when a failing edge is replaced
by a best swap edge. Notably, our scheme does not require an
additional full backup table, but assigns a label of c log n bits
to each node (for some small constant c); a node of degree δ
stores the labels of all its neighbors (and itself), which amounts
to δc log n bits per node, or 2mc log n bits in total1. We will
show how given this labeling, knowledge of the labels of both
adjacent nodes of a failing edge and the labels of both adjacent
nodes of its swap edge is sufficient to adjust routing.

Motivated by this routing scheme, we further consider a

1As customary, we measure the memory requirement of the routing scheme
in bits.

different variant of the swap edge computation problem, where
instead of optimizing the quality of the resulting tree, the time
required for the routing adaptation is minimized. This is useful
whenever recovery of a failed edge is so quick that the speed
of adjusting the routing tables takes priority. This boils down
to replacing each failing edge by a swap edge whose endpoints
are close to the endpoints of the failing edge. For two different
variants of this problem (depending on whether an edge failure
is detected at both of its endpoints or only at one), we give a
distributed algorithm with running time O(‖D‖) and message
complexity O(n∗ + m).

In Section II, we formally define the distributed all best
swaps problem. Section III states our assumptions about the
distributed setting and explains the basic idea of our algorithm.
In Section IV, we study the structure of diameter paths after
swapping, and we propose an algorithm for finding best
swaps. The algorithm uses information that is computed in
a preprocessing phase, described in Section V. Our routing
scheme is presented in Section VI, and Section VII contains
the algorithms for computing swaps closest to the failing
edges. Section VIII concludes the paper.

II. PROBLEM STATEMENT AND TERMINOLOGY

A communication network is an undirected graph G =
(V,E), with n = |V | vertices and m = |E| edges. Each
edge e ∈ E has a non-negative real length l(e). The length
|P| of a path P = 〈p1, . . . , pr〉 is the sum of the lengths
of its edges, and the distance d(x, y) between two vertices
x, y is the length of a shortest path between x and y. Note
that throughout the paper, we measure distances in the given
spanning tree T , not in the underlying graph G itself. The hop-
length ‖P‖ := r − 1 of a path P is the number of edges that
P contains. Throughout the paper, we are only dealing with
simple paths. Given a spanning tree T = (V,E(T )) of G, let

d1

dk

dc

dc+1
dc−1

T

VC
VRVL

Fig. 1. A minimum diameter spanning tree T .
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Fig. 2. A swap edge f = (z, z′) for e = (x, p(x)).

D(T ) := 〈d1, d2, . . . , dk〉 denote a diameter of T , that is, a
longest path in T (see Fig. 1). Where no confusion arises, we
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abbreviate D(T ) with D. Furthermore, define the center dc of
D as a node such that the lengths of DL := 〈d1, d2, . . . , dc〉
and DR := 〈dc, dc+1, . . . , dk〉 satisfy |DL| ≥ |DR| and have
the smallest possible difference |DL| − |DR|. The set of
neighbors of a node z (excluding z itself) in G and in T
is written as NG(z) and NT (z) ⊆ NG(z), respectively.

Let T be rooted at dc, and let, for each node x 6= dc, node
p(x) be the parent of x and C(x) the set of its children.
Furthermore, let Tx = (V (Tx), E(Tx)) be the subtree of T
rooted at x, including x. Let VL (L stands for “left”) be the
set of nodes in the subtree rooted at dc−1, VR the set of nodes
in the subtree rooted at dc+1, and VC all other nodes.

Now, the removal of any edge e = (x, p(x)) of T partitions
the spanning tree into two trees Tx and T\Tx (see Fig. 2),
where T\Tx denotes the graph with vertex set V (T )\V (Tx)
and edge set E(T )\E(Tx)\{(x, p(x))}. Note that T\Tx does
not contain the node x. A swap edge f for e is any edge
in E\E(T ) that (re-)connects Tx and T\Tx, i.e., for which
Te/f := (V (T ), E(T )\{e} ∪ {f}) is a spanning tree of
G\{e} := (V,E\{e}).

Let S(e) be the set of swap edges for e. A best swap edge
for e is any edge f ∈ S(e) for which |D(Te/f )| is minimum.
A local swap edge of node z for some failing edge e is an
edge in S(e) adjacent to z. The distributed all best swaps
problem for a MDST is the problem of finding for every edge
e ∈ E(T ) a best swap edge (with respect to the diameter), or
to determine that no swap edge for e exists. Throughout the
paper, let e = (x, p(x)) denote a failing edge and f = (z, z′)
a swap edge, where z is a node inside Tx, and z′ a node in
T\Tx.

III. ALGORITHMIC SETTING AND BASIC IDEA

In our setting, nodes have unique identifiers that possess a
linear order. Each node knows its own neighbors in T and
in G, and for each neighbor the length of the corresponding
edge. At the end of the distributed computation, for every
edge e = (x, p(x)) of T , the selected best swap edge f (if
any exists) must be known to the nodes x and p(x) (but
not necessarily to any other nodes). We assume port-to-port
communication between neighbouring nodes. The distributed
system of nodes is totally asynchronous. Each message sent
from some node to one of its neighbors arrives eventually
(there is no message loss). As usual, we define the asyn-
chronous time complexity of an algorithm as the longest
possible execution time assuming that sending a message
requires at most one time unit. Furthermore, nodes do not need
to know the total number of nodes in the system (although it
is easy to count the nodes in T using a convergecast).

A. The Basic Idea

Our goal is to compute, for each edge of T , a best swap
edge. A swap edge for a given failing edge e = (x, p(x))
must connect the subtree of T rooted at x to the part of the
tree containing p(x). Thus, a swap edge must be adjacent to
some node inside Tx. If each node in Tx considers its own
local swap edges for e, then in total all swap edges for e
are considered. Therefore, each node inside Tx finds a best

local swap edge, and then participates in a minimum finding
process that computes a (globally) best swap edge for e. The
computation of the best local swap edges is composed of
three main phases: In a first (preprocessing) phase, a root
of the MDST is chosen, and various pieces of information
(explained later) are computed for each node. Then, in a
second (top-down) phase each node computes and forwards
some “enabling information” (explained later) for each node
in its own subtree. This information is collected and merged
in a third (bottom-up) phase, during which each node obtains
its best local swap edge for each (potentially failing) edge on
its path to the root. The efficiency of our algorithm will be
due to our careful choice of the various pieces of information
that we collect and use in these phases.

To give an overview, we now briefly sketch how each node
computes a best local swap edge. First observe that after
replacing edge e by f , the resulting diameter is longer than
the previous diameter only if there is a path through f which
is longer than the previous diameter, in which case the path
through f is the new diameter. In this case, the length of
the diameter equals the length of a longest path through f in
the new tree. For a local swap edge f = (z, z′) connecting
nodes z ∈ V (Tx) and z′ ∈ V \V (Tx), such a path consists of

(i) a longest path inside T\Tx starting in z′,
(ii) edge f , and

(iii) a longest path inside Tx starting in z.
Part (i) is computed in a preprocessing phase, as described
in Section V. Part (ii) is by assumption known to z, because
f is adjacent to z. Part (iii) is inductively computed by a
process starting from the root x of Tx, and stopping in the
leaves, as follows. A path starting in z and staying inside Tx

either descends to a child of z (if any), or goes up to p(z)
(if p(z) is still in Tx) and continues within Tx\Tz . For the
special case where z = x, node x needs to consider only the
weighted heights of the subtrees rooted at its children, where
the weighted height of a subtree denotes the maximum length
of any path from the subtree root to a leaf in the subtree. All
other nodes z in Tx additionally need to know the length of
a longest path starting at p(z) and staying inside Tx\Tz . This
additional enabling information will be computed by p(z) and
then be sent to z.

Once the best local swap edges are known, a best (global)
swap edge is identified by a single minimum finding process
that starts at the leaves of Tx and ends in node x. To compute
all best swap edges of T , this procedure is executed separately
for each edge of T . This approach will turn out to work with
the desired efficiency:

Main Theorem. All best swap edges of a MDST can be com-
puted in an asynchronous distributed setting with O(n∗ + m)
messages of constant size, and in O(‖D‖) time.

Note that a naive algorithm, in which each node sends
its topology information to the root, where the solution is
computed and then broadcast to all nodes, would be a lot less
efficient than the above bounds in several respects: Since the
root must receive Θ(m) edge weights in this naive algorithm,
possibly through only a constant number of edges (e.g. if
the MDST has constant degree), its running time would be
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Ω(m), possibly much higher than O(‖D‖) (which is O(n)).
Furthermore, sending information about the m edges to the
root would require Ω(mn) constant size messages in some
cases, as the information might have to travel through Ω(n)
intermediate nodes. Reducing the number of messages to
O(n) would be possible by increasing the message size from
constant to O(m), which however does not seem practical.

We will prove the above theorem in the next sections, by
proving that the preprocessing phase can be realized with
O(m) messages, and after that the computation of all best
swap edges requires at most O(n∗) additional messages.

Our algorithm requires that each node knows which of its
neighbors are children and which neighbor is its parent in
T . Although this information is not known a priori, it can
be easily computed in a preprocessing phase, during which a
diameter and a root of T are selected.

IV. HOW TO PICK A BEST SWAP EDGE

In our distributed algorithm, we compute for each (poten-
tially) failing edge the resulting new diameter for each possible
swap edge candidate. This approach can be made efficient by
exploiting the structure of changes of the diameter path, as
described in the following.

A. The Structure of Changes of the Diameter Path

For a given failing edge e, let Pf be a longest path in
Te/f that goes through swap edge f for e. Then, we have
the following:

Lemma 1: The length of the diameter of Te/f is
|D(Te/f )| = max{|D(T )|, |Pf |}.

Proof: Let T1 and T2 be the parts into which T is split
if e is removed. It is easy to see that

|D(Te/f )| = max{|D(T1)|, |D(T2)|, |Pf |}. (1)

Since T is a MDST, we have

|D(Te/f )| ≥ |D(T )|. (2)

Because T1 and T2 are contained in T ,

|D(T1)| ≤ |D(T )| and |D(T2)| ≤ |D(T )|. (3)

If |Pf | ≥ |D(T )|, it is clear that |Pf | is a largest term in
(1), so the claim holds. On the other hand, if |Pf | < |D(T )|,
then either T1 or T2 must contain a diameter of length exactly
|D(T )| (otherwise, either (2) or (3) would be violated). Thus,
the claim holds also in this case.

That is, for computing the resulting diameter length for a
given swap edge f = (z, z′) for e, we only need to compute
the length of a longest path in Te/f that goes through f . For
node z in the subtree Tx of T rooted in x, and z′ outside this
subtree, such a path Pf consists of three parts. To describe
these parts, let L(H, r) denote a longest path starting in node r
and staying inside the graph H . The first part is a longest
path L(T\Tx, z′) in T\Tx that starts in z′. The second part
is the edge f itself. The third part is a longest path L(Tx, z)
starting in z and staying inside Tx. This determines the length
of a longest path through f as |Pf | = |L(Tx, z)| + l(f) +
|L(T\Tx, z′)|.

B. Distributed Computation of |L(Tx, z)|
For a given failing edge e = (x, p(x)), each node z

in Tx needs its |L(Tx, z)| value to check for the new di-
ameter when using a swap edge. This is achieved by a
distributed computation, starting in x. As x knows the heights
of the subtrees of all its children (from the preprocessing),
it can locally compute the height of its own subtree Tx as
|L(Tx, x)| = maxq∈C(x){l(x, q) + height(Tq)}, where C(x)
is the set of children of x. For a node z in the subtree rooted
at x, a longest simple path either goes from z to its parent and
hence has length |L(Tx\Tz ∪{(z, p(z))}, z)|, or goes into the
subtree of one of its children and hence has length |L(Tz, z)|
(see Fig. 3). The latter term has just been described, and the
former can be computed by induction by the parent r of z
and can be sent to z. This inductive step is identical to the
step just described, except that z itself is no candidate subtree
for a path starting at r in the induction. In total, each node r
computes, for each of its children q ∈ C(r), the value of

|L(Tx\Tq ∪ {(q, r)}, q)| = l(q, r) +
max

{
|L(Tx\Tr ∪ {(r, p(r))}, r)|,

max
s∈C(r),s6=q

{l(r, s) + height(Ts)}
}

,

and sends it to q, where we assume that the value |L(Tx\Tr ∪
{(r, p(r))}, r)| was previously sent to r by p(r).

A bird’s eye view of the process shows that each node z first
computes |L(Tx, z)|, and then computes and sends |L(Tx\Tq∪
{(q, z)}, q)| to each of its children q ∈ C(z). Computation of
the |L(Tx, z)| values finishes in Tx’s leaves. Note that a second
value will be added to the enabling information if (x, p(x)) ∈
D, for reasons explained in the next section.

C. Distributed Computation of |L(T\Tx, z′)|
In the following, we explain how z can compute

|L(T\Tx, z′)| for a given swap edge f = (z, z′). In case the
failing edge e = (x, p(x)) /∈ D, we show below that the
information obtained in the preprocessing phase is sufficient.

For the sake of clarity, we analyze two cases separately,
starting with the simpler case.
Case 1: The removed edge e is not on the diameter. For this
case, we know from [4] that at least one of the longest paths
in T\Tx starting from z′ contains dc. If z′ ∈ VL, we get a
longest path from z′ through dc by continuing on the diameter
up to dk, and hence we have |L(T\Tx, z′)| = d(z′, dc)+|DR|.
If z′ is in VC or VR, some longest path from z′ through dc

continues on the diameter up to d1, yielding |L(T\Tx, z′)| =
d(z′, dc) + |DL|. Remarkably, in this case |L(T\Tx, z′)| does
not depend on the concrete failing edge e = (x, p(x)), apart
from the fact that (z, z′) must be a swap edge for e.
Case 2: The removed edge e is on the diameter. We analyze
the case e ∈ DL, and omit the symmetric case e ∈ DR. If
z′ ∈ VL or z′ ∈ VC , we know from [4] that again, one of
the longest paths in T\Tx starting at z′ contains dc. Thus, for
z′ ∈ VL we are in the same situation as for the failing edge not
on the diameter, leading to |L(T\Tx, z′)| = d(z′, dc) + |DR|.
For z′ ∈ VC , after dc a longest path may continue either on
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DR, or continue to nodes in VL
2. In the latter case, the path

now cannot continue on DL until it reaches d1, because edge e
lies on DL. Instead, we are interested in the length of a longest
path that starts at dc, proceeds into VL, but does not go below
the parent p(x) of x on DL; let us call this length λ(p(x)). As
announced before, we include the λ(p(x)) value as a second
value into the enabling information received by p(x); then,
we get |L(T\Tx, z′)| = d(z′, dc) + max{|DR|, λ(p(x))}. The
remaining case is z′ ∈ VR. For this case (see Fig. 4), we
know (from [4]) that at least one of the longest paths in T\Tx

starting at z′ passes through the node u′ closest to z′ on D(T ).
After u′, this path may either

(i) continue on DR up to dk, or
(ii) continue through dc going inside VC , or

(iii) continue through dc going inside VL (without crossing
e = (x, p(x))), or

(iv) continue towards dc only up to some node di on DR,
going further on non-diameter edges inside VR.

Option (i) yields a length of d(z′, dk) = d(z′, u′)+d(u′, dk) =
d(z′, u′) + (|DR| − d(dc, u

′)). Option (ii) requires the term
γ, denoting the length of a longest path starting in dc and
consisting only of nodes in VC . The length of the path using
this option is then d(z′, dc) + γ. Option (iii) yields the length
d(z′, dc) + λ(p(x)).

It remains to show how the length of a longest path of the
last type (Option (iv)) can be found efficiently. We propose
to combine three lengths, in addition to the length of the path
from z′ to u′. The first is the length of a longest path inside
VR that starts at dk; let us call this length µR. In general,
this path goes up the diameter path DR for a while, and then
turns down into a subtree of VR, away from the diameter, at
a diameter node that we call ρR (see Fig. 4). Given µR, the
distance from u′ to ρR, and the distance from ρR to dk, the
desired path length of an upwards turning path inside VR is
d(z′, u′)+d(u′, ρR)+µR −d(dk, ρR). Note that while it may
seem that ρR needs to lie above u′ on DR, this is not really
needed in our computation, because the term above will not
be larger than Option (i) if ρR happens to be at u′ or below.
Furthermore, in this case Option (iv) cannot be better than
Option (i) and thus need not be considered.

In total, we get

|L(T\Tx, z′)| = max
{

d(z′, dk), d(z′, dc) + γ,

d(z′, dc) + λ(p(x)),
d(z′, u′) + d

(
u′, ρR

)
+ µR − d

(
dk, ρR

)}
.

All of these path length computations can be carried out
locally with no message exchanges, if the constituents of these
sums are available locally at a node. We will show in the next
section how to achieve this in an efficient preprocessing phase.

D. The BESTDIAMSWAP Algorithm

For a given edge e = (x, p(x)) that may fail, each node z
in the subtree Tx rooted at x executes the following steps:

2The option of going back into VC can be ignored because it cannot yield
a path longer than DR.

Tx\Tz ∪ {(z, p(z))}
x

p(z)

z

Tz

Tx\Tz

Fig. 3. Illustration of the tree Tx\Tz ∪ {(z, p(z))}.
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Fig. 4. Computing |L(T\Tx, z′)| if e ∈ DL, z ∈ VL and z′ ∈ VR.

(i) Wait for the enabling information from the parent (unless
x = z), and then compute |L(Tx, z)|. Compute the
enabling information for all children and send it.

(ii) For each local swap edge f = (z, z′), compute
|L(T\Tx, z′)| as described in Section IV-C.

(iii) For each local swap edge f = (z, z′), locally compute

|D(Te/f )| = max
{
|D(T )|,

|L(Tx, z)| + l(f) + |L(T\Tx, z′)|
}

.

Among these, choose a best swap edge f∗
local and store

the resulting new diameter as |D(Te/f∗
local

)|. If no local
swap edge exists, then create a “dummy” candidate
whose diameter length is ∞.

(iv) From each child q ∈ C(z), receive the node label of a
best swap edge candidate f∗

q and its resulting diameter
|D(Te/f∗

q
)|. Pick a best swap edge candidate f∗

b among
these, i.e., choose b := arg minq∈C(z) |D(Te/f∗

q
)|. Com-

pare the resulting diameter of f∗
b and f∗

local, and define
fbest as the edge achieving the smaller diameter (or any
of them if their length is equal), and its diameter as
|D(Te/fbest

)|.
(v) Send the information fbest, |D(Te/fbest

)| to the parent.
The above algorithm computes the best swap edge for one
(potentially) failing edge e, based on the information available
after the preprocessing phase. In order to compute all best
swap edges of T , we execute this algorithm for each edge of T
independently. A pseudocode description of Algorithm BEST-
DIAMSWAP is given in Fig. 5. BESTDIAMSWAP in turn uses
Algorithm LONGEST, which is described in Fig. 6.

Analysis of the Algorithm: We now show that the proposed
algorithm indeed meets our efficiency requirements:

Theorem 1: After preprocessing, executing the BESTDI-
AMSWAP algorithm independently for each and every edge
e ∈ E(T ) costs at most O(n∗) messages of size O(1) each,
and O(‖D‖) time.

Proof: Correctness follows from the preceding discussion.
Preprocessing ensures that all precomputed values defined for
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Algorithm: BESTDIAMSWAP(x, z).
Describes how node z computes a best swap for
e = (x, p(x)). Note that BESTDIAMSWAP(x, z) is
executed for each tree edge e ∈ E(T ) separately, using a
farthest-first contention resolution policy.
if z = x then

m = 0
else

{ z 6= x }
Wait until information m = L(Tx\Tz, z) is received
from parent.
if x ∈ D then wait for the information λ(p(x)) from
parent.

end
L(Tx, z) = max

{
m,maxq∈C(z){l(z, q) + height(Tq)}

}
for each local swap edge f = (z, z′) do

|Pf | = L(Tx, z) + l(f)+ LONGEST(e, f)
|D(Te/f )| = max{|Pf |, |D(T )|}

end
for each child q ∈ C(z) do

compute the enabling information:
L(Tx\Tq ∪ {(q, z)}, q) = l(z, q) +
max

{
m, maxs∈C(z),s6=q{l(z, s) + height(Ts)}

}
if x ∈ D then append λ(p(x)) to the enabling
information and
send it to q.

end
wait until all children have sent back their best swap
candidate
select one best of these and the local swap candidates
if there is no swap candidate then

{ all children have sent a “dummy” candidate, and
there are no local swap candidates }
create a “dummy” candidate whose diameter length is
∞.

if z = x then
store that swap edge as the best swap edge for e
inform p(x) about the best swap edge.

else
{ z 6= x }
send that swap edge to p(z)

end

Fig. 5. Algorithm BESTDIAMSWAP(x, z).

the other end z′ of a candidate swap edge are available locally
at z (these values are required to compute, e.g., |L(T\Tx, z′)|).
As to the message complexity, consider the execution of
the BESTDIAMSWAP algorithm for one particular edge e =
(x, p(x)). Starting in node x ∈ V \{dc}, each node in Tx

sends a message containing the “enabling information” (i.e.,
L(Tx\Tq, q) and possibly λ(p(x))) containing O(1) items to
each of its children. Furthermore, each node in Tx (including
finally x) sends another message with size O(1) up to its
parent in the minimum finding process. Hence, two messages
of size O(1) are sent across each edge of Tx, and one message
is sent across e. Thus, the computation of a best swap for e

Algorithm: LONGEST(e = (x, p(x)), f = (z, z′)).
Returns the length |L(T\Tx, z′)| of a longest path in
T\Tx that starts in z′.
Input: an edge e = (x, p(x)) whose best swap edge shall

be computed, and a local swap edge f = (z, z′).
if e is on the diameter (i.e., x ∈ D(T )) then

if x ∈ VL then { e ∈ VL }
if z′ ∈ VL then

{ since one longest path through f goes
through dc: }
return d(z′, dc) + |DR|

else if z′ ∈ VC then
{ since one longest path through f goes
through dc: }
return d(z′, dc) + max{|DR|, λ(p(x))}

else if z′ ∈ VR then
{ Let u′ be the nearest ancestor of z′ on the
diameter. One longest path from z′ must go
through u′. }
d(dk, ρR) = |DR| − d(ρR, dc)
d(u′, ρR) = |d(u′, dc) − d(ρR, dc)|
d(u′, dk) = |DR| − d(u′, dc)
d(z′, u′) = d(z′, dc) − d(u′, dc)
from-u′ = µR − d(dk, ρR) + d(u′, ρR)
return d(z′, u′) + max{d(u′, dk), d(u′, dc) +
λ(p(x)), from-u′}

end
else {x ∈ VR : symmetric to x ∈ VL }

{ code omitted because it is completely
symmetric to the above case }

else { e not on the diameter }
if z′ ∈ VL then

return d(z′, dc) + |DR|
else { z′ ∈ VC or VL, and |DL| ≥ |DR| }

return d(z′, dc) + |DL|
end

Fig. 6. Algorithm LONGEST(e = (x, p(x)), f = (z, z′)).

requires 2 · |E(Tx)| + 1 = 2 · |V (Tx)| − 1 messages. The
number of messages exchanged for computing a best swap
edge for each and every edge (x, p(x)) where x ∈ V \{dc} is∑

x (2 · |V (Tx)| − 1) = 2n∗ − (n − 1).
As to the time complexity, note that the best swap com-

putation of a single edge according to the BESTDIAMSWAP
algorithm requires at most O(‖D‖) time. Now note that this al-
gorithm can be executed independently (and thus concurrently)
for each potential failing edge: In this fashion, each node x
in T sends exactly one message to each node in Tx during
the top-down phase. Symmetrically, in the bottom-up phase,
each node u in T sends exactly one message to each node
on its path to the root. The crucial point here is to avoid that
some of these messages block others for some time (as only
one message can traverse a link at a time). Indeed, one can
ensure that each message reaches its destination in O(‖D‖)
time as follows. A node z receiving a message with destination
at distance d from z forwards it only after all messages of
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the protocol with a destination of distance more than d from
z have been received and forwarded. By induction over the
distance of a message from its destination, this “farthest-first”
contention resolution policy (see also [9]) allows each message
to traverse one link towards its destination after at most one
time unit of waiting. Thus, the O(‖D‖) time complexity also
holds for the entire algorithm.
Instead of sending many small messages individually, we can
choose to sequence the process of message sending so that
messages for different failing edges are bundled before sending
(see also [7], [8] for applications of this idea). This leads to
an alternative with fewer but longer messages:

Corollary 1: After preprocessing, the distributed all best
swaps problem can be solved using O(n) messages of size
O(n) each, and in O(‖D‖) time.

V. THE PREPROCESSING PHASE

The preprocessing phase serves the purpose of making the
needed terms in the sums described in the previous section
available at the nodes of the tree. Details of this phase can be
found in the pseudocode given as Algorithm Preprocessing 1
and Algorithm Preprocessing 2 in Figs. 7, 8 and 9.

A. Algorithms

In the preprocessing phase, a diameter D of T is chosen, and
its two ends d1 and dk as well as its center dc are identified.
This can be done essentially by a convergecast, followed
by a broadcast to distribute the result (see e.g. [10]); the
details are standard and therefore omitted. After preprocessing
exchanges O(n) messages, each node knows the information
that is requested in (A) and (C) below. It is crucial that
during preprocessing, each node obtains enough information
to later carry out all computational steps to determine path
components (i), (ii) and (iii). More precisely, each node gets
the following global information (the same for all nodes):
(A) The endpoints d1 and dk of the diameter, the length |D|

of the diameter, and the lengths |DL| and |DR|.
(B) The length µR of a longest path starting in dk that is

fully inside Tdc+1 , together with the node ρR on D
where this path leaves the diameter, and the distance
d(ρR, dc). Fig. 10 illustrates such a longest path µR.
Symmetrically, the values µL, ρL and d(ρL, dc) are also
required.

In addition, each node z obtains the following information that
is specific for z:
(C) For each child q ∈ C(z) of its children, the weighted

height of q’s subtree Tq.
(D) Whether z is on the diameter D or not.
(E) The distance d(z, dc) from z to dc.
(F) The identification of the parent p(z) of z in T .
(G) To which of VL, VC and VR does z belong.
(H) If z /∈ D, the closest ancestor u of z on the diameter;

the distance d(u, dc) from u to dc.
(I) If z is on the left (right) diameter DL (DR), with z = di,

the length λ(di) of a longest path in T starting at dc and
neither containing the node dc+1 (dc−1) nor the node
di−1 (di+1), nor any node from VC (see Fig. 10).

Algorithm: Preprocessing 1 for node z: Finding a
diameter.
{ Let T̃s be the subgraph of T that would stay connected
to s if edge (s, z) were removed. Each message
Ms = (deepestnode, height, source, diamLen, d1, dk)
from neighbor s contains the identifier of a deepest node
in T̃s, height(T̃s) + l(s, z), the neighbor s that sent the
message, the length of a diameter of T̃s, and its two
endpoints d1 and dk. }
Diams = {}; Heights = {}
if z is a leaf then

last = the only node in NT (z)
Send (z, l(z, last), z, 0, z, z) to last.

else { z not a leaf }
Wait until at least |NT (z)| − 1 neighbors’ messages
have been received.
last = node in NT (z) whose message has not yet
been received, or was received last.
for each message Ms from neighbor
s ∈ NT (z)\{last} do

(deepestnode, height, s, diamLen, d1, dk) = Ms

Insert (deepestnode, height, s) into Heights.
Insert (diamLen, d1, dk) into Diams.

end
(diamLen∗, d∗1, d

∗
k) = Update(Heights, Diams)

(a, heighta, sa) = a tuple in Heights with highest
heighta.
Send (a, heighta + l(z, last), sa, diamLen∗, d∗1, d

∗
k)

to last.
end
Wait until a message (from last) is received.
if the message is Mlast from last and id(z) < id(last)
then

{ Locally compute the global diameter of T : }
Insert the (deepestnode, height) tuple from Mlast

into Heights
Insert the (diamLen, d1, dk) tuple from Mlast into
Diams
(diamLen∗, d∗1, d

∗
k) = Update(Heights, Diams)

Send “D = (d∗
1, d

∗
k, diamLen∗)” to all neighbors.

else if the message is “D = (d1, dk, |D|)” then
Forward the message “D = (d1, dk, |D|)” to all other
neighbors.

end
Start Preprocessing 2.

Fig. 7. Algorithm Preprocessing 1

Procedure: Update(Heights, Diams)
(a, heighta, sa) = a tuple in Heights with highest
heighta.
(b, heightb, sb) = a tuple in Heights\{(a, heighta, sa)}
with highest heightb.
Insert (heighta + heightb, a, b) into Diams.
return (diamLen∗, d∗1, d

∗
k) = a triple in Diams with

highest diamLen∗.
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Algorithm: Preprocessing 2 for node z: Computing
information about the diameter.
{ Determine if z is itself on the diameter D:
If no message containing d1 (dk) as the deepest node
was received, then d1 (dk) must be in T̃last: }
Find (d1, height1, s1) tuple in Heights, set s1 = last if
none found.
Find (dk, heightk, sk) tuple in Heights, set sk = last if
none found.
if (s1 == sk) then { z is not on D }

Upon receiving
M∗ = (µL, ρL, d(ρL, dc), µR, ρR, d(ρR, dc),
|DL|, |DR|, V∗, d(z, dc), u, d(u, dc)) from

neighbor q, where V∗ ∈ {VL, VC , VR}, set
parent = q, and send
M∗ = (µL, ρL, d(ρL, dc), µR, ρR, d(ρR, dc),
|DL|, |DR|, V∗, d(z, dc) + d(z, r), u, d(u, dc)) to

every neighbor r ∈ NT (z)\{parent}.
{ Send the message M ′ across each non-tree edge: }
Send M ′ = (d(z, dc), V∗, u

′, d(u′, dc)) to all
neighbors z′ ∈ NG(z)\NT (z).
return

end
{ z is on D. In this case, z knows at least one of the
distances d(z, d1) = height(T̃d1) and
d(z, dk) = height(T̃dk

). }
if s1 == last then height1 = |D| − heightk
if sk == last then heightk = |D| − height1
{ height1 = d(z, d1) and heightk = d(z, dk). }

Fig. 8. Algorithm Preprocessing 2

(J) For each of the neighbors z′ of z in G, which of VL,
VC and VR contains z′; the distance d(z′, dc) from z′

to dc; the nearest ancestor u′ of z′ on D, the distance
d(u′, dc).

Computing the Additional Information: Recall that the first
preprocessing part ends with a broadcast that informs all nodes
about the information described in (A) and (C). The second
part of the preprocessing phase follows.

A node z receiving the message about D can infer from the
previous convergecast whether it belongs to D itself by just
checking whether the paths from z to d1 and dk go through
the same neighbor of z.

Information (E) is obtained by having the center node
send a “distance from dc” message to both neighbors dc+1

and dc−1 on D, which is forwarded and updated on the
diameter3. This information is used by the diameter nodes
for computing λ(di), required in (I). The center initiates the
inductive computation of λ(di):

• λ(dc) = 0.

3The message is updated as follows: when forwarded through an edge on
the diameter, the length of this edge is added to the forwarded distance. This
ensures that each node which receives the message obtains its own distance
from dc. Details are described in Figure 9.

if
(
height1 ≥ heightk

)
∧

(
height1 − l(z, s1) <

heightk + l(z, s1)
)

then { z is dc }
λ(dc) = 0
Send

(
λ(dc), l(s1, z)

)
to s1 and

(
λ(dc), l(sk, z)

)
to

sk

|DL| = height1; |DR| = heightk
Receive

(
µ, ρ, d(ρ, dc), d1

)
from s1 and(

µ′, ρ′, d(ρ, dc)′, d′k
)

from sk, and set
(µL, ρL, d(ρL, dc) =

(
µ, ρ, d(ρ, dc), d1

)
,

(µR, ρR, d(ρR, dc) =
(
µ, ρ, d(ρ, dc), dk

)
.

Forward M∗ = (µL, ρL, d(ρL, dc), µR, ρR, d(ρR, dc),
|DL|, |DR|, VL, 0) to dc−1.

Forward M∗ = (µL, ρL, d(ρL, dc), µR, ρR, d(ρR, dc),
|DL|, |DR|, VR, 0) to dc+1.

Forward M∗ = (µL, ρL, d(ρL, dc), µR, ρR, d(ρR, dc),
|DL|, |DR|, VC , 0) to

all neighbors in NT (dc)\{dc−1, dc+1}.
else

Wait for the message containing λ and d(z, dc).
(i, heighti, si) = a tuple in
Heights\{(s1, ·, ·), (sk, ·, ·)} with largest heighti.
Compute λ(z) = max{λ, d(z, dc) + heighti}.
Send

(
λ(z), d(z, dc) + l(z, s1)

)
to s1, and(

λ(z), d(z, dc) + l(z, sk)
)

to sk.
if z is d1 then µ(d1) = 0; Send(
µ(d1), d1, d(d1, dc), d1

)
to sk

else if z is dk then µ(dk) = 0; Send(
µ(dk), dk, d(dk, dc), dk

)
to s1.

else { z is on D, but z /∈ {d1, dc, dk} }
Upon receiving

(
µ, ρ, d(ρ, dc), d∗

)
, where

d∗ ∈ {d1, dk}, compute
µ(z) = max{µ, d(d∗, z) + heighti} and set
ρ(z) = z and dist = d(z, dc) if µ(z) > µ, and
ρ(z) = ρ and dist = d(ρ, dc) otherwise.
Forward

(
µ(z), ρ(z), dist

)
along the diameter.

Upon receiving
M∗ = (µL, ρL, d(ρL, dc), µR, ρR, d(ρR, dc),

|DL|, |DR|, V∗, d(z, dc)) from one neighbor on
the diameter, where V∗ ∈ {VL, VC , VR}, send
M∗ = (µL, ρL, d(ρL, dc), µR, ρR, d(ρR, dc),

|DL|, |DR|, V∗, d(z, dc) + d(z, q)) to the other
neighbor q on the diameter, and send
M∗ = (µL, ρL, d(ρL, dc), µR, ρR, d(ρR, dc),

|DL|, |DR|, V∗,
d(z, dc) + d(z, r), u, d(u, dc)) to all other
neighbors r ∈ NT (z)\{q}

end
Send M ′ = (d(z, dc), V∗, u

′, d(u′, dc)) to all neighbors
z′ ∈ NG(z)\NT (z).

Fig. 9. Algorithm Preprocessing 2, continued



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 9

• For each dj , 1 ≤ j < c,

λ(dj) = max{λ(dj+1), d(dc, dj) + h2(dj)},

h2 being the weighted height of a highest subtree of dj

apart from the diameter subtree.
• For each dj , c < j ≤ k,

λ(dj) = max{λ(dj−1), d(dc, dj) + h2(dj)}.

In order to compute µL and µR as required in (B), we define
µ(di) for each node di on DL as the length of a longest path
starting in d1 that is fully inside Tdi

, together with the node
ρ(di) on DL where such a path leaves the diameter. For di on
DR, the definition is symmetric. We then have µL = µ(dc−1)
and µR = µ(dc+1). The inductive computation of µ(di) is
started by d1 and dk, and then propagated along the diameter:

• µ(d1) = µ(dk) = 0;
• for each dj , 1 < j < c,

µ(dj) = max{µ(dj−1), d(d1, dj) + h2(dj)};

• for each dj , c < j < k,

µ(dj) = max{µ(dj+1), d(dk, dj) + h2(dj)}.

Along with µ(dj), ρ(dj) and d(ρ(dj), dc) can be com-
puted as well. The computation stops in dc, which re-
ceives the messages (µ(dc−1), ρ(dc−1), d(ρ(dc−1), dc)) =
(µL, ρL, d(ρL, dc)) and (µ(dc+1), ρ(dc+1), d(ρ(dc+1), dc)) =
(µR, ρR, d(ρR, dc)).
Altogether, this second preprocessing part operates along the
diameter and takes O(‖D(T )‖) = O(n) messages.

Distributing the Information: When the computation of the
two triples (µL, ρL, d(ρL, dc)) and (µR, ρR, d(ρR, dc)) com-
pletes in dc, the center packs these values plus the values |DL|
and |DR| into one message M∗. It adds the appropriate one
of the labels “VL”,“VR” and “VC” to M∗, before forwarding
M∗ to dc−1, dc+1 and any other neighbor of dc in T and
then flooding the tree. Additionally, M∗ contains the “distance
from dc” information which is updated on forwarding, such
that all nodes know their distance to the center4. When M∗
is forwarded from a node u ∈ D to a node not on D, it is
extended by the “distance from u” information, which is also
updated on forwarding. In addition, d(u, dc) is appended to
M∗. Finally, if node z receives M∗ from node v, then z learns
that v is its parent.

At the end of this second part of the preprocessing phase,
each node z′ sends a message M ′ to each of its neighbors z
in G\T . Note that this is the only point in our solution where
messages need to be sent over edges in G\T . M ′ contains
d(z′, dc) and exactly one of { “z′ ∈ VL”, “z′ ∈ VC” , “z′ ∈
VR” }, whichever applies. Furthermore, let u′ be the nearest
ancestor of z′ on D; the distance d(u′, dc) is also appended
to M ′.

As a consequence, after each node has received its version
of the message M∗, the information stated in (B), (E), (F), (G),
(H) is known to each node. Furthermore, each node that has
received M ′ from all its neighbors in G knows the information

4The nodes on D already have that information at this point, but all other
nodes still require it.

stated in (J). The distribution of this information requires
O(‖D(T )‖) time and O(m) messages. Let us summarize.

Lemma 2: After the end of the two parts of the pre-
processing phase, which requires O(‖D‖) time, all nodes
know all information (A)–(J), and O(m) messages have been
exchanged.

Recognizing Swap Edges Using Labels: A node v ∈ Tx

must be able to tell whether an incident edge f = (v, w) is
a swap edge for e = (x, p(x)) or not. We achieve this by the
folklore method of attaching two labels to each node: The first
label is the node’s number in a preorder traversal, while the
second is its number in a reverse preorder traversal. For any
two nodes, a simple comparison of both respective labels tells
whether one node lies in the subtree of the other node (see,
e.g., [7], [8]).

d1

dk

dc

dc+1

dc−1

di

λ(di)
µR

ρR

T

Fig. 10. Definition of λ(di), µR and ρR.

VI. ROUTING ISSUES

A natural question arises concerning routing in the presence
of a failure: After replacing the failing edge e by a best swap
edge f , how do we adjust our routing mechanism in order to
guide messages to their destination in the new tree Te/f ? And
how is routing changed back again after the failing edge has
been repaired? Clearly, it is desirable that the adaptation of
the routing mechanism is as fast and inexpensive as possible.

Existing Approaches: The simplest routing scheme uses a
routing table of n entries at each node, which contains, for
each possible destination node, the link that should be chosen
for forwarding. This approach can be modified to allow swaps
by storing additional n entries for the swap links at each node
[7]. In [3] a scheme is proposed that stores only one swap
entry, at the cost of choosing suboptimal swap edges. All these
approaches require O(n2) routing entries in total.

In the following, we propose to use a compact routing
scheme for arbitrary trees (shortest paths, minimum diameter,
or any other) which requires only δ entries, i.e. δc log n bits,
at a node of degree δ, thus n entries or 2mc log n bits in total,
which is the same amount of space that the interval routing
scheme of [11] requires. The header of a message requires
c log n bits to describe its destination.

Our Routing Scheme: Our routing scheme for trees is based
on the labeling γ : V → {1, . . . , n}2 described at the end of
Section V-A. Recall that γ allows to decide in constant time
whether a is in the subtree of b (i.e., a ∈ Tb) for any two
given nodes a and b.
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Basic Routing Algorithm:
A node s routes message M with destination d as follows:

(i) If d = s, M has arrived at its destination.
(ii) If d /∈ Ts, s sends M to p(s).

(iii) Otherwise, s sends M to the child q ∈ C(s) for
which d ∈ Tq.

This algorithm clearly routes each message directly on its
(unique) path in T from s to d. Before describing the adap-
tation in the presence of a swap, observe that a node s which
receives a message M with destination d can locally decide
whether M traverses a given edge e = (x, p(x)): edge e is
used by M if and only if exactly one of s and d is in the subtree
Tx of x, i.e., if (s ∈ Tx) 6= (d ∈ Tx). Thus, it is enough to
adapt routing if all nodes are informed about a failing edge
(and later the repair) by two broadcasts starting at its two
incident nodes (the points of failure). However, the following
lemma shows that optimal rerouting is guaranteed even if only
those nodes which lie on the two paths between the points
of failure and the swap edge’s endpoints are informed about
failures.

Lemma 3: Let e = (x, p(x)) be a failing edge, and f =
(z, z′) a best swap of e, where z is in Tx and z′ in T\Tx, as
shown in Fig. 11. If all nodes on the path from x to z know
that e is unavailable and that f = (z, z′) is a best swap edge,
then any message originating in s ∈ Tx will be routed on the
direct path from s to its destination d. Symmetrically, if all
nodes on the path from p(x) to z′ know about e and f , then
any message originating in s′ ∈ T\Tx will be routed on the
direct path from s′ to its destination d′.

Proof: Let M be any message with source s ∈ Tx. If
d ∈ Tx, then trivially M will be routed on its direct path,
because it does not require edge e. If d ∈ T\Tx, consider the
path PT from s to d in T , and the path PTe/f

from s to d
in Te/f . Consider the last common node i of PT and PTe/f

in Tx. The path composed of the paths 〈x, . . . , i〉, 〈i, . . . , z〉
is exactly the unique path in T from x to z, so node i lies
on that path. Obviously, M will be routed on the direct path

z

f

e

x

p(x)

z′
Tx

s

d

i

T

d′

s′

Fig. 11. Only some nodes need to know about failure of edge e = (x, p(x)).

towards d up to i. As i lies on the path from x to z, it knows
about the failure and the swap, and will route M towards z.
Because each node on the path from i to z also knows about
the swap M will proceed on the direct path to z. At z, M
will be routed over the swap edge f , and from z′ onwards M
is forwarded on the direct path from z′ to d.
Given Lemma 3, we propose the following “lazy update”
procedure for informing nodes about an edge failure:

Algorithm SWAP:
If an edge fails, no action is taken as long as no message
needs to cross the failed edge. As soon as a message M
which should be routed over the failing edge arrives at the
point of failure, information about the failure and its best
swap is attached to message M , and M is routed towards
the swap edge. On its way, all nodes which receive M
route it further towards the swap edge, and remember for
themselves the information about the swap.

Observation (Adaptivity). After one message M has been
rerouted from the point of failure to the swap edge, all
messages originating in the same side of T as M (with respect
to the failing edge) will be routed to their destination on the
direct path in the tree (i.e., without any detour via the point
of failure).

If a failing edge has been replaced by a swap edge, then all
nodes which know about that swap must be informed when
the failure has been repaired. Therefore, a message is sent
from the point of failure to the swap edge (on both sides if
necessary), to inform these nodes, and to deactivate the swap
edge.

Remark: The above routing scheme has the disadvantage
that each node must know the labels of all its neighbors.
Thus, an individual node is potentially required to store much
more than O(log n) bits. This drawback could be removed by
combining the above scheme with a compact routing scheme
for the designer-port model, see e.g. [12]: Such a routing
scheme assigns a label of O(log n) bits to every node, such
that the correct forwarding port for a given destination can
be computed solely on the basis of the labels of the current
position and of the destination. The labels we introduced in
our scheme are then only used to determine whether a message
needs to be rerouted (because it would otherwise need to use
the failing edge). As this is possible solely on the basis of the
labels of the message’s current position and its destination,
this combination yields a compact routing scheme which can
efficiently adapt to swaps.

VII. FINDING SWAPS CLOSE TO THE FAILURE

In the routing scheme described in Section VI, the time
required to adapt to an edge failure by activating a swap edge
depends on the lengths of the paths between the two points
of failure and the corresponding two endpoints of the swap
edges. Two different possible models of failure detection seem
reasonable:

1. The failure of an edge is detected at both of its endpoints
concurrently.

2. The failure of an edge is detected at one of its endpoints
only.

Of course, in some systems it might be unknown in advance
whether one or both endpoints will detect a given failure. In
such a system, the latter of the above variants would minimize
the worst case time to adapt routing.

If the prime goal is to reconnect the network quickly after
an edge failure, and the quality of the resulting tree is less
important, then one should precompute swap edges which are
“closest” to the failing edge. In the following, we present
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two efficient distributed algorithms for computing such swap
edges in both models of failure detection. Both of these
algorithms employ the same basic principle as the algorithm
BESTDIAMSWAP described in Section IV-D: for each failing
edge e = (x, p(x)), first all nodes in the subtree Tx compute
their locally best swap edge, and then a minimum finding
process finds a globally best swap edge for e. The difference
lies in the means of computing the quality of a given swap
edge candidate f , given a failing edge e.

A. An edge failure is detected at both endpoints

If an edge failure is detected at both endpoints of the failing
edge, then the fastest way of informing all nodes which need
to be informed in order to readjust routing, as identified by
Lemma 3, is to send two messages, each starting at one end-
point of the failing edge e = (x, p(x)), to the two respective
endpoints of the swap edge f = (z, z′). Thus, the time until
this message reaches both destinations is the maximum length
of the two paths connecting f ’s endpoints with e’s endpoints,
i.e., max{d(x, z), d(p(x), z′)} (see Fig. 12).

e

f

x

p(x)

z

z′

root

ncaf

Fig. 12. Illustration of the distances d(x, z) and d(p(x), z′).

In order to evaluate a local swap edge candidate f = (z, z′)
for a given failing edge e, a node z ∈ Tx must compute
max{d(x, z), d(p(x), z′)}. For a given edge f = (z, z′), let
ncaf denote the node closest to the root among all nodes
on the path from z to z′ in T . It is easy to see that
d(p(x), z′) = d(p(x), ncaf ) + d(z′,ncaf ). We propose to use
again the folklore labeling described at the end of Section V.
Using this labeling, there is a simple solution for providing z
and z′ with all the information required to compute the terms

d(z′, ncaf ), d(p(x), ncaf ) and d(x, z), (4)

respectively: The root r sends its own label to all nodes in its
subtree Tr. Each other node v sends the two labels of v and
p(v) and the distance d(v, p(v)) to all nodes in its subtree Tv .
In total, each node in the tree then knows its entire path to
the root, including the labels of all nodes and all distances.
This process clearly terminates in O(‖D‖) time and requires
O(n∗) messages.

Given this information, a node can compute distances be-
tween two arbitrary ancestors of itself. Hence, node z can
compute d(x, z), and if ncaf were known to both z and
z′, then in the same way the other terms in (4) could also

be computed: z computes d(p(x), ncaf ), and z′ computes
d(z′, ncaf ).

It remains to show how ncaf can be computed locally. This
is where we make use of the labeling scheme once again: as
z′ knows the label of p(x), it can determine in constant time
whether a given node t is an ancestor of p(x). Since z′ knows
all nodes on the path from z′ to the root (and all their labels),
one of which is ncaf , it just needs to find the lowest node on
its path to the root which is still an ancestor of p(x). Similarly,
z can also compute ncaf locally.

As a second step, each node z′ incident to some swap edge
candidate f = (z, z′) sends d(z′, ncaf ) to node z across the
edge f (note that ncaf depends only on the swap edge, not on
the failing edge). This step requires two messages per non-tree
edge, thus O(m) additional messages. Then, node z knows
all the terms in (4), and can evaluate the quality of swap
edge f = (z, z′) for the given failing edge e = (x, p(x)) as
max{d(z′, ncaf )+d(p(x), ncaf ), d(z, x)}. Let us summarize.

Theorem 2: In a network where the failure of an edge
is detected at both endpoints concurrently, all closest swap
edges of a spanning tree can be computed in an asynchronous
distributed setting with O(n∗ +m) messages of constant size,
and in O(‖D‖) time.

B. An edge failure is detected at one endpoint only

If the failure of an edge is detected at one of its endpoints
only, then the fastest way of informing all nodes as identified
by Lemma 3 is to send one message from the point where
the failure is detected to the endpoint of its swap edge on the
corresponding side. The message then must cross the swap
edge and continue towards the other endpoint of the failing
edge. Thus, the time used by the message to inform all required
nodes is proportional to d(x, z)+|f |+d(z′, p(x)), irrespective
of which side of the failing edge detects the failure. Note
that an algorithm for computing the distances d(x, z) and
d(z′, p(x)) = d(z′, ncaf ) + d(p(x), ncaf ) has already been
described in Section VII-A. A slight modification of this
algorithm thus computes all best swap edges in this scenario,
using O(n∗ + m) messages and O(||D||) time.

Theorem 3: In a network where the failure of an edge
is only detected at one of its endpoints, all closest swap
edges of a spanning tree can be computed in an asynchronous
distributed setting with O(n∗ +m) messages of constant size,
and in O(‖D‖) time.

VIII. DISCUSSION

We have presented a distributed algorithm for computing all
best swap edges for a minimum diameter spanning tree. Our
solution is asynchronous, requires unique identifiers from a
linearly ordered universe (but only for tiebreaking to determine
a center node), and uses O(‖D‖) time and O(n∗ + m) small
messages, or O(n) messages of size O(n). It remains an
open problem to extend our approach to subgraphs with other
objectives; for instance, can we efficiently compute swap edges
for failing edges in a spanner?
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