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Highly dynamic networks rarely offer end-to-end connectivity at a given time. Connectivity in these
networks can be established over time and space, based on temporal analogues of multi-hop paths (also
called journeys). In a seminal work, Bui-Xuan, Ferreira, and Jarry (2003) proposed a collection of
centralized algorithms to compute three types of optimal journeys in these networks – namely, shortest
(min hop), fastest (min duration), and foremost (earliest arrival) journeys – given full prediction of the
network evolution. We study the distributed counterparts of these problems, i.e. shortest, fastest, and
foremost broadcast with termination detection (TDB), with minimal knowledge on the topology. We
show that the feasibility of each variant requires distinct features on the evolution, through identifying
three classes of dynamic graphs wherein the variants become gradually feasible : graphs in which the
re-appearance of edges is recurrent (class R), bounded-recurrent (B), or periodic (P), together with
specific knowledge that are respectively n (the number of nodes), ∆ (a bound on the recurrence time),
and p (the period). To raise ambiguity, we do not require that all pairs of nodes get in contact – only a
subset of them that makes the footprint of the graph connected.

Our results, together with the strict inclusion between P , B, and R, implies a feasibility order
among the three variants of the problem, i.e. TDB[foremost] requires weaker assumptions on the
topology dynamics than TDB[shortest], which itself requires less than TDB[fastest]. Reversely,
these differences in feasibility imply that the computational powers of Rn, B∆, and Pp also form a
strict hierarchy.

Keywords: dynamic networks, distributed algorithm, time-varying graphs, delay-
tolerant broadcast, recurrent edges.

1. Introduction

Dynamic networks are widely addressed in distributed computing. Contexts of interest are
as varied as fault-tolerance, interaction scheduling, dynamic membership, planned mobil-
ity, or unpredictable mobility. The recent emergence of scenarios where entities are truly
mobile and can communicate without infrastructure (e.g. vehicles, satellites, robots, or
pedestrian smartphones) brought to the fore the most versatile of these environments. In
these highly dynamic networks, changes are not anomalies but rather integral part of the
nature of the system.

The need to categorize and understand highly dynamic networks led the engineering
community to design a variety of mobility models, each of which captures a particular con-
text by means of rules that determine how the nodes move and communicate (see e.g. [23]).

∗Preliminary results were presented at the 6th IFIP International Conference on Theoretical Computer Science.
This work has been supported in part by NSERC (Canada) and Dr. Flocchini’s University Research Chair.

1



January 13, 2015 9:24 WSPC/INSTRUCTION FILE shfafo

2

A popular example includes the well-known random waypoint model [5]. The main interest
of these models is to be able to reproduce experiments and compare different solutions on
a relatively fair basis, thereby providing a common ground for the engineering commu-
nity to solve practical challenges in highly dynamic networks, e.g. routing and broadcast-
ing [8, 21, 25, 26, 28, 31, 32].

In the same way as mobility models enable to federate practical investigations in highly
dynamic networks, logical properties on the graph dynamics, that is, classes of dynamic
graphs, have the potential to guide a more formal exploration of their analytical aspects. A
number of special classes were recently identified, for example graphs in which the nodes
interact infinitely often (e.g., uniform random scheduler for population protocols [1, 2, 12]);
graphs whose dynamics is unrestricted but remains connected at any instant [29, 16]; graphs
in which there exists a stable connected spanning subgraph in any T-time window (a.k.a.
T-interval connectivity) [27, 22]; graphs whose edges appear or disappear with given prob-
abilities [13, 4, 14, 30]; graphs that have a stable root component [6]; graphs whose sched-
ule is periodic [10, 18, 19, 20, 24] or guarantees minimal reachability properties [9]. These
classes (among others) were organized into a hierarchy in [11].

In this paper we are interested in studying specific relationship between some of these
classes, namely three subclasses of those networks called delay-tolerant networks (DTNs),
in which instant connectivity is never guaranteed, but still connectivity can be achieved
over time and space (see e.g. [3]). These classes are:

• Class R of all graphs whose edges cannot disappear forever (recurrent edges).
That is, if an edge appears once and disappears, then it will eventually re-appear
at some unknown (but finite) date. It is not required that all pairs of nodes share an
edge, but only that the footprint of all edges forms a connected graph (otherwise,
even temporal connectivity is not guaranteed). This class corresponds to Class 6
in [11].

• Class B (for bounded-recurrent edges) consisting of those graphs with recurrent
edges in which the recurrence time cannot exceed a given duration ∆. And again,
the footprint is connected. This class corresponds to Class 7 in [11].

• Class P (for periodic edges) consisting of those graphs in which all topological
events (appearance or disappearance) repeat identically modulo some period p.
And again, the footprint is connected. This class corresponds to Class 8 in [11].

As far as inclusion is concerned, it clearly holds that P ⊂ B ⊂ R, but what about the
computational relationship between these classes? Considering different types of knowl-
edge, namely the number n of nodes in the network, a bound ∆ on the recurrence time, and
(any multiple of) the period p, we look at the relationship between P(Rn), P(B∆), and
P(Pp), where P(Ck) is the set of problems one can solve in class C with knowledge k.

The investigation is carried out by studying a fundamental problem in distributed com-
puting: broadcast with termination detection at the emitter (or TDB). This problem can
have at least three distinct definitions in highly dynamic networks: TDB[foremost], in
which the date of delivery is minimized at every node; TDB[shortest], where the num-
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ber of hops used by the broadcast is minimized relative to every node; and TDB[fastest],
where the overall duration of the broadcast is minimized (however late the departure be).
These three metrics were considered in [7] as part of an offline problem where, given a
complete schedule of the network, one has to compute all shortest, fastest, and foremost
journeys (temporal paths) from a given node.

Our contribution

In this paper we examine the feasibility and reusability of the solution (and to some extent,
the complexity) of TDB[foremost], TDB[shortest], and TDB[fastest] inR and B with
knowledge ∅, n, or ∆. We additionally draw some observations from external results in P
with knowledge p [10], that complete our general picture of feasibility and reusability of
broadcast in the three classes. Here is a short summary of the main results.

Feasibility: We first show that none of these problems are solvable in any of the classes
unless additional knowledge is considered. We prove constructively that knowing n makes
it possible to solve TDB[foremost] inR, but this is not sufficient to solve TDB[shortest]

nor TDB[fastest], even in B. TDB[shortest] becomes in turn feasible in B if ∆ is known,
but this context is not sufficient to solve TDB[fastest]; this later problem being solvable
in P knowing p [10]. Put together, these results allow us to show that

P(Rn) ( P(B∆) ( P(Pp) (1)

that is, the computational relationships between these three contexts form a strict hierarchy.
Let us define a binary relation �feasibility over problems, such that for two problems

P1 and P2, P1 �feasibility P2 implies that for some class of TVG C and knowledge k
we have P1 ∈ P(Ck) while P2 /∈ P(Ck). This relation induces a partial order on the
feasibility of problems with respect to topological changes. Our results imply that

TDB[foremost] �feasibility TDB[shortest] �feasibility TDB[fastest] (2)

Reusability: Regarding the possibility to reuse a solution, that is, a same broadcast tree,
over several broadcasts, we find the intriguing fact that reusability in TDB[shortest] is
easier than that of TDB[foremost]. Precisely, when TDB[shortest] becomes feasible in
B, it enables at once reusability of the broadcast trees, whereas TDB[foremost], although
it was already feasible in R, does not enable reusability until in P [10]. Using a similar
definition as for feasibility, we consider the relation�reusability that induces a partial order
over problems with respect to the reusability of a solution. Our results imply that

TDB[shortest] �reusability TDB[foremost] (3)

Whether reusability is more or less difficult in TDB[fastest] than in TDB[foremost]

is an open question, both of them being impossible in B∆ and possible in Pp. Our results
on feasibility and reusability are summarized in Table 1.
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Metric Class Knowledge Feasibility Reusability Result from

Foremost

R ∅ no – this paper
R n yes no this paper
B ∆ yes no this paper
P p yes yes [10]

Shortest
R ∅ no – this paper
R n no – this paper
B ∆ yes yes this paper
P p yes yes (same result)

Fastest

R ∅ no – this paper
R n no – this paper
B ∆ no – this paper
P p yes yes [10]

Table 1. Feasibility and reusability of TDB in different classes of dynamic networks (with associated knowledge).

Metric Class Knowl. Time Info. msgs Control msgs Info. msgs Control msgs
(1st run) (1st run) (next runs) (next runs)

Foremost R n unbounded O(m) O(n2) O(m) O(n)

B n O(n∆) O(m) O(n2) O(m) O(n)

∆ O(n∆) O(m) O(n) O(m) 0
n&∆ O(n∆)∗ O(m) 0 O(m) 0

Shortest B ∆ O(n∆) O(m) O(n) : 2n− 2 O(n) 0

either of { n&∆ O(n∆) O(m) O(n) : n− 1 O(n) 0
n&∆ O(n∆)∗ O(m) 0 O(m) 0

Table 2. Complexity of TDB for different classes of dynamic networks and associated knowledge. (The ∗ indicates
that the emitter terminates implicitely, even in the first run.)

Complexity: Although complexity is not the main focus here, we characterize the time
complexity and message complexity of our algorithms and observe some interesting facts.
For instance, the message complexity of our algorithm to TDB[foremost] is lower know-
ing ∆ than knowing n, and even lower if both are known. These results are summarized
in Table 2. Note that TDB involves two processes: the actual dissemination of informa-
tion messages, and the exchange of typically smaller control messages (e.g. for termination
detection), both of which are separately analyzed. Regarding time complexity, we observe
that for all our algorithms (except those which terminate implicitly), the termination detec-
tion phase takes the same order of time as the dissemination phase. Thus, Table 2 does not
distinguish both phases.
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2. Model and Basic Properties

2.1. Definitions and Terminology

Consider a system composed of a finite set of n entities V (or nodes) that interact with
each other over a (possibly infinite) time span T ⊆ T called lifetime of the system, where
T is the temporal domain (typically, N or R+ for discrete and continuous-time systems,
respectively). In this paper we consider a continuous-time setting with T = R+.

Following [11], we describe the network as a time-varying graph (TVG, for short) G =

(V,E, T , ρ, ζ), where E ⊆ V × V is the set of m intermittently available undirected
edges such that (u, v) ∈ E ⇔ u and v have at least one contact over T , ρ : E × T →
{0, 1} (presence function) indicates whether a given edge is present at a given time, and
ζ : E × T → T (latency function), indicates the time it takes to cross a given edge (i.e.,
send a message) if starting at a given time. In this paper, we assume ζ to be constant over
all edges and dates, and call it the crossing delay. Thus we use the shorthand notations
G = (V,E, T , ρ). Finally, the (static) graph formed by the first two elements of G, that is
V and E is the footprint of G (also called underlying graph or interaction graph).

This formalism essentially encompasses that of evolving graphs [17], where G is repre-
sented as a sequence of graphsG1, G2, ..., Gi, ... each providing a snapshot of the system at
different times (which correspond either to discrete steps or topological events). In compar-
ison, TVGs offer an interaction-centric view of the network evolution, where the evolution
of each edge can be considered irrespective of the global time sequence, which turns out to
be convenient when dealing with locally specified properties.

A given edge e ∈ E is said to be recurrent if it appears infinitely often; that is, for any
date t, ρ(e, t) = 0 =⇒ ∃t′ > t : ρ(e, t′) = 1. When all the edges of E are recurrent,
we say that G is recurrent (keep in mind that in general E 6= V 2). Let R denote the class
of recurrent TVGs whose footprint G = (V,E) is connected. The recurrence of an edge e
is said to be time-bounded (or simply bounded), if there exists a constant ∆e such that the
time between any two successive appearances of e is at most ∆e. When the recurrence of
all the edges of a graph G ∈ R is time-bounded, we say that G is time-bounded recurrent,
call ∆ = max{∆e : e ∈ E}, and denote by B ⊂ R the class of time-bounded recurrent
TVGs. An edge e ∈ E is said to be periodic of period pe if ρ(e, t) = ρ(e, t + kpe) for
all integer k. A graph is said periodic if all its edges are periodic, and its period p is the
least common multiple of all the edges periods. We denote by P ⊂ B the class of periodic
TVGs.

Given a TVG G = (V,E, T , ρ), we consider that G = (V,E) is always simple (no
self-loop nor multiple edges) and that nodes possess unique identifiers.

The set of edges being incident to a node u at time t is noted It(u) (or simply It, when
the node is implicit). Finally, we note G[ta,tb) the temporal subgraph of a TVG G restricted
to lifetime [ta, tb).

When an edge e = (x, y) appears, the entities x and y can communicate. The time
ζ necessary to transmit a message (crossing delay) is known to the nodes. The minimal
duration of edge presence is assumed to be 2 × ζ (i.e., long enough for a back and forth
exchange of message). Algorithmically, this allows the following observations:
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1. If a message is sent just after an edge has appeared, the message and a potential answer
are guaranteed to be successfully transmitted.
2. If the recurrence of an edge is bounded by some ∆, then this edge cannot disappear for
more than ∆− 2× ζ.

The appearance and disappearance of edges are instantly detected by the two adjacent
nodes (they are notified of such an event without delay). If a message is sent less than ζ
before the disappearance of an edge, it is lost. However, since the disappearance of an edge
is detected instantaneously, and the crossing delay ζ is known, the sending node can locally
determine whether the message was successfully delivered. We thus authorize the special
primitive send retry as a facility to specify that if the message is lost, then it is automat-
ically re-sent upon next appearance of the edge, and this sending is necessarily successful
(Property 1). Note that nothing precludes this primitive to be called while the corresponding
edge is even absent (this actually simplifies the expression of some algorithms).

A sequence of couples J = {(e1, t1), (e2, t2), ..., (ek, tk)}, with ei ∈ E and ti ∈ T for
all i, is called a journey in G iff {e1, e2, ...} is a walk in G and for all ti, ρ(ei)[ti,ti+ζ) = 1

and ti+1 ≥ ti + ζ. We denote by departure(J ), and arrival(J ), the starting date t1 and
last date tk + ζ of J , respectively.

Journeys can be thought of as paths over time from a source node to a destination node
(if the journey is finite). Let us denote by J ∗G the set of all finite journeys in a graph G. We
will say that node u can reach node v in G, and note ∃J(u,v) ∈ J ∗G (or simply u  v, if
G is clear from the context), if there exists at least one possible journey from u to v in G.
Note that the notion of journey is asymmetrical (u  v < v  u), regardless of whether
edges are directed or undirected.

Because journeys take place over time, they have both a topological length and a tempo-
ral length. The topological length of J is the number k = |J |h of couples in J (i.e., num-
ber of hops), and its temporal length is its duration |J |t = arrival(J )−departure(J ) =

tk − t1 + ζ. This yields to two distinct definitions of distance in a graph G:

• The topological distance from a node u to a node v at time t, noted du,t(v), is defined
as Min{|J |h : J ∈ J ∗(u,v) ∧ departure(J ) ≥ t}. For a given date t, a journey whose
departure is t′ ≥ t and topological length is equal to du,t(v) is called shortest ;
• The temporal distance from u to v at time t, noted d̂u,t(v) is defined as
Min{arrival(J ) : J ∈ J ∗(u,v) ∧ departure(J ) ≥ t} − t. Given a date t, a journey

whose departure is t′ ≥ t and arrival is t + d̂u,t(v) is called foremost, and one whose
temporal length is Min{d̂u,t′(v) : t′ ∈ T } is called fastest.

Informally, a foremost journey is one that minimizes the date of arrival at destination; a
shortest journey is one that uses the least number of hops; and a fastest journey is one that
minimizes the time spent between departure and arrival (however late the departure be) [7].
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2.2. Problems

The problem of computing shortest, fastest, and foremost journeys in delay-tolerant net-
works was solved in [7] as a centralized (i.e., combinatorics) problem, given complete
knowledge of G. We consider a distributed variant of the problem, namely performing
broadcast with termination detection at the emitter, or TDB, according to either one of the
three metrics.

TDB in general requires all nodes to receive a message with some information initially
held by a single node x, called source or emitter, and the source to enter a terminal state
after all nodes have received the information, within finite time. A protocol solves TDB in
a graph G if it solves it for any source x ∈ V and time t ∈ T . We say that it solves TDB
in a class C if it solves TDB for any G ∈ C. We are interested in three variations of this
problem, following the optimality metrics defined above:

• TDB[foremost], where each node receives the information at the earliest possi-
ble date following its creation at the emitter;

• TDB[shortest], where each node receives the information within a minimal num-
ber of hops from the emitter;

• TDB[fastest], where the overall duration between first global emission and last
global reception is minimized.

For each of these problems, we require that the emitter detects termination, however this
detection is not subject to the same optimality constraint (it just has to be finite). TDB
thus involves two processes: the actual dissemination of information messages, and the
exchange of typically smaller control messages used for termination detection, both being
considered separately in this paper.

Finally, we call broadcast tree the (delay-tolerant) tree along which the broadcast takes
place, without consideration to the dates when the edges are used, that is, considering only
the “flattened” hierarchy of nodes the tree consists of. An optimal (i.e., foremost, fastest, or
shortest) broadcast tree is said to be reusable if this hierarchy can be purposedly followed
to perform a subsequent optimal broadcast.

3. Basic Results and Limitations

Let us first state a general property of the computational relationship between the main
three contexts of interest, namely knowing n in R (noted Rn), knowing ∆ in B (noted
B∆), and knowing p in P (noted Pp). These inclusions will be shown strict later on.

Theorem 2. P(Rn) ⊆P(B∆) ⊆P(Pp)

Proof. The right inclusion is straight from the fact that B ⊆ P and p is a valid bound
∆ on the recurrence time. The left inclusion follows from the facts that R ⊆ B and n
can be inferred in B if ∆ is already known. This can be done by performing, from any
node (say u), a depth-first token circulation that will explore the underlying graph G over
time. Having a bounded recurrence time indeed allows every node to learn the list of its
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neighbors in G within ∆ time (all incident edges must appear within this duration). As the
token is circulated to unvisited nodes, these nodes are marked as visited by u’s token and
the token is incremented. Upon returning to u, the token value is n.

We now establish a negative result that justifies the need for additional knowledge in
order to solve TDB in any of the considered contexts. In fact we have:

Theorem 3. TDB cannot be solved in P without additional knowledge.

Proof. By contradiction, letA be an algorithm that solves TDB inP . Consider an arbitrary
G = (V,E, T , ρ) ∈ P and x ∈ V . Execute A in G starting at time t0 with x as the
source. Let tf be the time when the source terminates (and thus all nodes have received the
information). Let G′ = (V ′, E′, T ′, ρ′) ∈ P such that V ′ = V ∪ {v}, E′ = E ∪ {(u, v)

for some u ∈ V }, for all t0 ≤ t < tf , ρ′(e, t) = ρ(e, t) for all e ∈ E and ρ′((u, v), t) = 0.
Now, consider ρ′((u, v), t) = 1 for some t > tf , and the period of G′ is some p′ > t− t0.
Consider the execution of A in G′ starting at time t0 with x as the source. Since (u, v)

does not appear from t0 to tf , the execution of A at every node in G′ is exactly as at the
corresponding node in G. In particular, node x will have entered a terminal state at time tf
with node v not having received the information, contradicting the correctness of A.

We thus have the following corollary, by inclusion of P .

Corollary 4. TDB cannot be solved in B norR without any additional knowledge.

Hence, additional knowledge of some kind is required to solve TDB in these classes.
We consider three types of knowledge, namely, the number of nodes n = |V |, an upper
bound ∆ on the recurrence time (when in B), or the period p (inP). We start by establishing
a general impossibility result for TDB[fastest] in B (and a fortiori in R), which cannot
be solved even if both n and ∆ are known.

Theorem 5. TDB[fastest] is not solvable in B (and a fortiori in R), regardless of the
knowledge considered.

Proof. The argument relates to the very existence of fastest journeys in an unstructured
infinite setting. Consider for example the graph G = (V,E, T , ρ) ∈ B such that V =

{v1, v2, v3}, E = {e1 = (v1, v2), e2 = (v2, v3)} and ρ is such that:

• ∀t ∈ T ,∀i ∈ N+, ρ(e1, t) = 1 ⇐⇒ i∆ ≤ t < i∆ + ζ

• ∀t ∈ T ,∀i ∈ N+, ρ(e2, t) = 1 ⇐⇒ i∆ + ζ + i−1 ≤ t < i∆ + 2ζ + i−1

for any ∆ ≥ 2ζ + 1. In such a setting, every period [i∆, (i + 1)∆) enables a journey Ji
from v1 to v3 such that |Ji|t = 2ζ + i−1. Since i−1 is decreasinga, there is an infinite
sequence of journeys J1,J2, .. such that |Ji+1|t < |Ji|t.

aWhich notation should we use among i−1 or 1/i? If the latter, please update at the four places in the
proof.
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Theorem 6. [10] TDB[fastest] is feasible in P with a known period p, and the solution
can be reused for subsequent broadcasts.

The algorithm from [10] builds fastest broadcast trees in Pp. The solution relies on learn-
ing at what time(s) in the period the temporal eccentricity of the emitter is minimum, then
building a foremost broadcast tree for such date. Note that the broadcast tree so-built re-
mains necessarily optimal in the future, since in P the whole network schedule repeats
forever. It can thus be memorized for subsequent broadcasts, i.e., the solution is reusable.

The rest of the paper focuses on TDB[foremost] and TDB[shortest] in R and B,
knowing n and/or ∆. We then draw some conclusions on the relative difficulty of these
three problems, as well as on the computational relationship between P(Rn), P(B∆),
and P(Pp).

4. TDB[foremost]

TDB[foremost] inR or B clearly requires some sort of flooding, because the very fact of
probing a neighbor to determine if it already has the information compromises the possi-
bility to send it in a foremost fashion (in addition to risking the disappearance of the edge
in-between the probe and the real sending). As a consequence of Theorem 3, this problem
cannot be solved without knowledge. In this section we first show that it becomes possi-
ble in R if the number of nodes n = |V | is known. The proof is constructive by means
of Algorithm 1, whose termination is however not bounded in time. Being in B with the
same knowledge allows its termination to be bounded. Knowing ∆ instead of n in B then
allows us to propose another solution (described in Algorithm 2) that has a lower message
complexity. This complexity can be further improved if both ∆ and n are known, as in this
case we have the possibility to terminate implicitly. Regarding reusability for the broadcast
of the information, none of the broadcast trees built in R or even B turn out to be reusable
as such, due to the inherent lack of structure of these classes.

Theorem 7. Foremost broadcast trees are not reusable as such in B∆ (and a fortiori in
Rn).

Proof (sketch). By contradiction, let a tree T be a reusable foremost tree with respect to
emission date t. Since the order in which edges re-appear in B is arbitrary (as long as they
all occur within a ∆ time window), an adversary can act on the schedule in such a way that
the edges appear in a different order as that of the hierarchy of T , contradicting the fact that
the tree is foremost.

Note that the proof argument does not relate to the non-existence of trees whose opti-
mality repeat in the future; in fact, there must be at least one tree whose optimality holds
infinitely often since there are finitely many possible trees and infinitely many time spans
of duration ∆. The argument actually relates to the non-decidability of using a given tree.
Nonetheless, observe that the knowledge acquired can be helpful to lower the complexity
of the termination detection.
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4.1. TDB[foremost] in R

In this section we only discuss the knowledge of n since ∆ is not defined forR.

4.1.1. Knowledge of n

In this section, we show how the problem is solvable when n is known.
The algorithm proceeds as follows (see Algorithm 1 for details). Every time a new

edge appears locally to an informed node, this node sends the information message onto
this edge, and remembers that this edge now leads to an informed node. The first time
a node receives the information, it records the sender as parent, transmits the informa-
tion on its available edges, and sends back a notification message to the parent. Note that
these notifications create a parent-relation and thus a converge-cast tree. Each notification
is propagated along the converge-cast tree and eventually collected at the emitter. When
the emitter has received n− 1 notifications, it knows all nodes are informed. Observe that
the notification messages are sent using the special primitive send retry discussed in Sec-
tion 2.1, to ensure that the parent eventually receives it even if the edge disappears during
the first attempt. Information messages, on the other hand, are sent using the normal send
primitive. Indeed, if the propagation of such a message fails because the corresponding
edge disappears, it simply means that this edge at that particular time did not have to be
used (i.e., it did not belong to a valid journey).

Theorem 8. When n is known, TDB[foremost] can be solved in R exchanging O(m)

information messages and O(n2) control messages, in unbounded time.

Proof. Since a node sends the information to each new appearing edge, it is easy to see, by
connectivity of the underlying graph, that all nodes will eventually receive the information.
The dissemination itself is necessarily foremost because the information is either directly
relayed on edges that are present, or sent as soon as a new edge appears. As for termi-
nation detection: every node identifies a unique parent and a converge-cast spanning tree
directed towards the source is implicitly constructed; since every node notifies the source
(through the tree) and the source knows the total number of nodes, termination is guaran-
teed. Since information messages might traverse every edge in both directions, and an edge
cannot be traversed twice in the same direction, we have that the number of information
messages is in the worst case 2m. Since every node but the emitter induces a notification
that is forwarded up the converge-cast tree to the emitter, the number of notification mes-
sages is the sum of distances in the converge-cast tree between all nodes and the emitter,∑
v∈Vr{emitter} dh tree(v, emitter). The worst case is when the graph is a line where we

have n2−n
2 control messages. Regarding time complexity, the termination of the algorithm

is unbounded due to the fact that the recurrence of the edges is itself unbounded.

Reusability for subsequent broadcasts Foremost trees are time-dependent in the sense
that they might be optimal for some emission dates and not be so for other dates. Still, they
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Algorithm 1 Foremost broadcast inR, knowing n.

1: Edge parent← nil // edge the information was received from (for non-emitter nodes).
2: Integer nbNotifications← 0 // number of notifications received (for the emitter).
3: Set<Edge> informedNeighbors← ∅ // neighbors known to have the information.
4: Status myStatus← ¬informed // status of the node (informed or non-informed).

5: initialization:

6: if isEmitter() then
7: myStatus← informed

8: send(information) on Inow() // sends the information on all present edges.
9: onAppearance of an edge e:

10: if myStatus == informed and e /∈ informedNeighbors then
11: send(information) on e
12: informedNeighbors← informedNeighbors ∪ {e} // (see Prop. 1).

13: onReception of a message msg from an edge e:

14: if msg.type == Information then
15: informedNeighbors← informedNeighbors ∪ {e}
16: if myStatus == ¬informed then
17: myStatus← informed

18: parent← e
19: send(information) on Inow() r informedNeighbors // propagates.
20: send retry(notification) on e // notifies that this node has the info.

(this message is to be resent upon the next appearance, in case of failure).
21: else if msg.type == Notification then
22: if isEmitter() then
23: nbNotifications← nbNotifications+ 1
24: if nbNotifications == n− 1 then
25: terminate // at this stage, the emitter knows that all nodes are informed.
26: else
27: send retry(notification) to parent

remain valid trees (though, possibly non-foremost ones) regardless of the considered date.
As such, they can be memorized by the nodes in order to be used as converge-cast trees for
termination detection in subsequent broadcasts. Indeed, while the broadcast is required to
be foremost, the detection of termination does not have such constraint. Hence, instead of
sending a notification each time a new node is informed (as done previously), nodes can
notify their parents (in the converge-cast tree) if and only if they are themselves informed
and have received a notification from each of their children (in the converge-cast tree). This
reduces the number of control messages from O(n2) to O(n), having only one notification
per edge of the converge-cast tree.

4.2. TDB[foremost] in B

If the recurrence time is bounded, then either the knowledge of n or an upper bound ∆ on
the recurrence time can be used to solve the problem (with various message complexities).
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4.2.1. Knowledge of n.

Since B ⊆ R, one can obviously solve TDB[foremost] in B using Algorithm 1 (and the
same observations apply regarding reusability of the converge-cast tree). Here, however,
the termination time becomes bounded due to the fact that the recurrence of edges is itself
bounded.

Theorem 9. When n is known, TDB[foremost] can be solved in B exchanging O(m)

information messages and O(n2) control messages, in O(n∆) time.

Proof. Since all edges in E are recurrent within any ∆ time window, the delivery of the
information at the last node must occur within (n − 1)∆ global time. The same property
holds for the latest notification, bounding the overall process to a duration of ∆(2n − 2).
The rest follows from Theorem 8.

4.2.2. Knowledge of ∆.

The information dissemination is performed as in Algorithm 1, but the termination detec-
tion is different. Thanks to the time-bound ∆ on edge recurrence, a node can discover all
of its neighbors within ∆ time. This fact can be used by a node to determine whether it
is a leaf in the broadcast tree (i.e., if it has not informed any other node within ∆ time
following their own reception time)b. This allows the leaves to terminate spontaneously
and notify their parent, which recursively terminate after receiving the notifications from
all their children and notifying their own parent. With this type of termination, the whole
process is in the same spirit as the Dijkstra-Scholten algorithm [15] for static graphs. In
that algorithm, a particular node initiates a task that is progressively distributed over the
network. The process then terminates recursively based on the relations created during the
distribution, each node terminating after its children have terminated.

The temporal adaption for bounded-recurrent TVGs is as follows (see Algorithm 2 for
details). First, everytime a new edge appears locally to an informed node, this node sends
the information on the edge, and records it. The first time a node receives the information,
it chooses the sender as parent, memorizes the current time (in a variable firstRD), trans-
mits the information on its available edges, and returns an affiliation message to its parent
using the send retry primitive (starting to build the converge-cast tree). This affiliation
message is not relayed upward in the tree, but is only intended to inform the direct parent
about the existence of a new child (so this parent knows it must wait for a future notification
by this node). If an informed node has not received any affiliation message after a duration
of ∆ + ζ, it sends a notification message to its parent using the send retry primitive. The
wait is bounded by ∆ + ζ for the following reasons (see also Figure 1). First note that (due
to Prop. 1) the information messages cannot be lost when they are sent on an appearing
edge, neither can their potential affiliation answer. Thus, the loss of information messages
can only occur when the information is directly relayed by a node which received it (say,

bThis is where we need 2ζ I think...
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a

b

firstRD +∆ +∆+ζ

1 2
3

Figure 1. Case when a node waits ∆ + ζ for receiving potential affiliation messages.

as per Figure 1, node a, relaying at time firstRD the information to node b). As before,
if the information message is lost, then it simply means that this edge at that time did not
have to be used. On the other hand, if the affiliation message is lost, it must be sent again
(send retry). However, in the worst case, the common edge disappears just before the
affiliation message is delivered, and reappears only ∆ − 2 × ζ later (Prop. 1). Affiliation
messages can thus be received until firstRD + ∆ + ζ.

If a node has one or more children, it waits until it receives a notification message from
each of them, then notifies its parent in the converge-cast tree (using send retry again).
Once the emitter has received a notification from each of its children, it knows that all
nodes are informed.

Theorem 10. When ∆ is known, TDB[foremost] can be solved in B exchanging O(m)

information messages and O(n) control message, in O(n∆) time.

Proof. Correctness follows the same lines of the proof of Theorem 8. However the correct
construction of a converge-cast spanning tree is guaranteed by the knowledge of ∆ (i.e.,
the nodes of the tree that are leaves detect their status because no new edges appear within
∆ time) and the notification starts from the leaves and is aggregated before reaching the
source. The number of information messages isO(m) as the exchange of information mes-
sages is the same as in Algorithm 1, but the number of notification and affiliation messages
decreases to 2(n − 1). Each node but the emitter sends a single affiliation message; as for
the notification messages, instead of sending a notification as soon as it is informed, each
node notifies its parent in the converge-cast tree if and only if it has received a notification
from each of its children resulting in one notification message per edge of the tree. The
time complexity of the dissemination itself is the same as for the foremost broadcast when
n is known. The time required for the emitter to subsequently detect termination is an ad-
ditional ∆ + ζ + ∆(n − 1) (the value ∆ + ζ corresponds to the time needed by the last
informed node to detect that it is a leaf, and ∆(n− 1) corresponds to the worst case of the
notification process, chained from that node to the emitter).

Reusability for subsequent broadcasts Clearly, the number of nodes n, which is not a
priori known here, can be obtained through the notification process of the first broadcast
(by having nodes reporting their number of descendants in the tree, while notifying hierar-
chically). All subsequent broadcasts can thus behave as if both n and ∆ were known. Next
we show this allows to solve the problem without any control messages.
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Algorithm 2 Foremost broadcast in B, knowing a bound ∆ on the recurrence time.

1: Edge parent← nil // edge the information was received from (for non-emitter nodes).
2: Integer nbChildren← 0 // number of children.
3: Integer nbNotifications← 0 // number of children that have terminated.
4: Set<Edge> informedNeighbors← ∅ // neighbors known to have the information.
5: Date firstRD ← nil // date of first reception.
6: Status myStatus← ¬informed // status of the node (informed or non-informed).

7: initialization:

8: if isEmitter() then
9: myStatus← informed

10: send(information) on Inow() // sends the information on all present edges.
11: onAppearance of an edge e:

12: if myStatus == informed and e /∈ informedNeighbors then
13: send(information) on e
14: informedNeighbors← informedNeighbors ∪ {e} // (see Prop. 1).

15: onReception of a message msg from an edge e:

16: if msg.type == Information then
17: informedNeighbors← informedNeighbors ∪ {e}
18: if myStatus == ¬informed then
19: myStatus← informed

20: firstRD ← now() // memorizes the date of first reception.
21: parent← e
22: send(information) on Inow() r informedNeighbors // propagates.
23: send retry(affiliation) on e // informs the parent that it has a new child.
24: else if msg.type == Affiliation then
25: nbChildren← nbChildren+ 1
26: informedNeighbors← informedNeighbors ∪ {e}
27: else if msg.type == Notification then
28: nbNotifications← nbNotifications+ 1
29: if nbNotifications == nbChildren then
30: if ¬isEmitter() then
31: send retry(notification) to parent // notifies the parent in turn.
32: terminate // whether emitter or not, the node has terminated at this stage.

33: when now() == firstRD + ∆ + ζ: // tests whether the underlying node is a leaf.

34: if nbChildren == 0 then
35: send retry(notification) on parent
36: terminate

4.2.3. Knowledge of both n and ∆

In this case, the emitter knows an upper bound on the broadcast termination date; in fact,
the broadcast cannot last longer than (n − 1)∆ (this worst case is when the foremost tree
is a line). Termination detection can thus become implicit after this amount of time, which
removes the need for any control message (whether of affiliation or of notification).
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Theorem 11. When ∆ and n are known, TDB[foremost] can be solved in B exchanging
O(m) information messages and no control messages, in O(n∆) time.

5. TDB[shortest]

Let us remind that the objective of TDB[shortest] is to deliver the information to each
node within a minimal number of hops from the emitter, and to have the emitter detect
termination within finite time. We show below that contrary to the foremost case, knowing
n is insufficient to perform a shortest broadcast in R or even in B. This becomes however
feasible in B when ∆ is also known. Moreover any shortest tree built at some time t will
remain optimal in B relative to any future emission date t′ > t. This feature allows the
solution to TDB[shortest] to be possibly reused in subsequent broadcasts.

5.1. TDB[shortest] in B

We first show that the knowledge of n is not sufficient to solve TDB[shortest] in B (and
thus in R), then describe how to solve the problem when ∆ is known, and finally when
both n and ∆ are known.

5.1.1. Knowledge of n

The following theorem establishes that knowing n is not sufficient to solve TDB[shortest]

in B (and thus inR).

Theorem 12. TDB[shortest] is not feasible in B (nor a fortiori inR) knowing only n.

Proof. By contradiction, let A be an algorithm that solves TDB[shortest] in B with
the knowledge of n only. Consider an arbitrary G = (V,E, T , ρ) ∈ B and x ∈ V .
Execute A in G starting at time t0 with x as the source. Let tf be the time when
the source terminates and T the shortest broadcast tree along which broadcast was per-
formed. Let G′ = (V ′, E′, T ′, ρ′) ∈ B such that V ′ = V , E′ = E ∪ {(x, v) for some
v ∈ V : (x, v) /∈ E}, ρ′(e, t) = ρ(e, t) for all e ∈ E, 0 ≤ t ≤ tf , ρ′((x, v), t) = 0 for all
t0 ≤ t < tf , and ρ′((x, v), t) = 1 for some t > tf (we can take ∆ as large as needed here).
Consider the execution ofA in G′ starting at time t0 with x as the source. Since (x, v) does
not appear between t0 and tf , the execution of A at every node in G′ will be exactly as at
the corresponding node in G and terminate with v having received the information in more
than one hop, contradicting the fact that T is a shortest tree, and thus the correctness of A.

5.1.2. Knowledge of ∆

The idea is to propagate the message along the edges of a breadth-first spanning tree of the
underlying graph. We present the pseudo-code in Algorithm 3, and provide the following
informal description.

Assuming that the message is created at some date t, the mechanism consists of au-
thorizing nodes at level i in the tree to inform new nodes only between time t + i∆ and
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t + (i + 1)∆ (doing it sooner would lead to a non-shortest tree, while doing it later is
pointless because all the edges have necessarily appeared within one ∆). So the broadcast
is confined into rounds of duration ∆ as follows: whenever a node sends the information
to another, it sends a time value that indicates the remaining duration of its round (that is,
the starting date of its own round plus ∆ minus the current time minus the crossing delay),
so the receiving node knows when to start informing new nodes in turn (if it had not the
information yet). For instance in Figure 2 when the node a attempts to become b’s parent,
node a transmits its own starting date plus ∆ minus the current date minus ζ. This duration
corresponds to the exact amount of time the child would have to wait, if the relation is es-
tablished, before integrating other nodes in turn. If a node has not informed any other node
during its round, it notifies its parent. When a node has been notified by all its children, it
notifies its parent. Note that this requires parents to keep track of the number of children
they have, and thus children need to send affiliation messages when they select a parent
(with the same constraints as already discussed in Figure 1). Finally, when the emitter has
been notified by all its children, it knows the broadcast is terminated.

Theorem 13. TDB[shortest] can be solved in B knowing ∆, exchangingO(m) info. mes-
sages and O(n) control messages, in O(n∆) time.

Proof. The fact that the algorithm constructs a breadth-first (and thus shortest) delay-
tolerant spanning tree follows from the connectivity over time of the underlying graph
and from the knowledge of the duration ∆. The bound on recurrence is used to enable a
rounded process whereby the correct distance of each node to the emitter is detected. The
number of information messages is 2m as the dissemination process exchanges at most two
messages per edge. The number of affiliation and notification messages are each of n − 1

(one per edge of the tree). The time complexity for the construction of the tree is at most
(n−1)∆ to reach the last node, plus ∆+ζ at this node, plus at most (n−1)∆ to aggregate
this node’s notification. (The additional ζ caused by waiting affiliation messages matters
only for the last round, since the construction continues in parallel otherwise.) The total is
thus at most (2n− 1)∆ + ζ.

a

b

roundStart now() roundStart+ ∆

roundStart

ζ

Figure 2. Propagation of the rounds of duration ∆.

Reusability for subsequent broadcasts Thanks to the fact that shortest trees remain short-
est regardless of the emission date, all subsequent broadcasts can be performed within the
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same, already known tree, which reduces the number of information message from O(m)

to O(n). Moreover, if the depth d of the tree is detected through the first notification pro-
cess, then all subsequent broadcasts can enjoy an implicit termination detection that is itself
optimal in time (after d∆ time). No control message is needed.

5.1.3. Knowledge of n and ∆

When both n and ∆ are known, one can apply the same dissemination procedure as in
Algorithm 3 combined with an implicit termination detection that avoids using control
messages at all. Indeed, each node learns (and possibly informs) all of its neighbors within
∆ time. Since the underlying graph is connected, the whole process must then complete
within n∆ time. Hence, if the emitter knows both ∆ and n, it can simply wait n∆ time,
then terminate implicitly.

Theorem 14. When n and ∆ are known, TDB[shortest] can be solved in B exchanging
O(m) info. messages and no control messages, in O(n∆) time.

However, such a strategy would prevent the emitter from learning the depth d of the
shortest tree, and thus prevent lowering the termination bound to d∆ time. An alternative
solution would be to achieve explicit termination for the first broadcast in order to build
a reusable broadcast tree (and learn its depth d in the process). In this case, dissemination
is achieved with O(m) information messages, termination detection is achieved similarly
to Algorithm 3 with O(n) control messages (where however affiliation messages are not
necessary, and the number of control messages would decrease to n − 1). In this way we
would have an increase in control messages, but the subsequent broadcasts could reuse the
broadcast tree for dissemination with O(n) information messages, and termination detec-
tion could be implicit with no exchange of control message at all after d∆ time. The choice
of either solution may depend on the size of an information message and on the expected
number of broadcasts planned.

6. Computational Relationship

On the basis of this paper results, we can conclude regarding the computational relationship
between P(Rn), P(B∆), and P(B∆), that is, prove the validity of Equation 1.

Theorem 15. P(Rn) ( P(B∆) ( P(Pp)

Proof. The fact that P(Rn) ⊆ P(B∆) ⊆ P(Pp) was observed in Theorem 2. To
make the left inclusion strict, one has to exhibit a problem Π such that Π ∈ P(B∆) and
Π /∈P(Rn). By Theorem 12 and Theorem 13, TDB[shortest] is one such example. The
right inclusion is similarly proven strict, based on the fact that TDB[fastest] is in P(Pp)
(Theorem 6) but it is not in P(B∆) (Theorem 5).

Now, considering the fact that TDB[foremost] ∈ P(Rn) while TDB[shortest] /∈
P(Rn), and the fact that TDB[shortest] ∈ P(B∆) while TDB[fastest] /∈ P(B∆),
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together with the inclusions of Theorem 15, we have

TDB[foremost] �feasibility TDB[shortest] �feasibility TDB[fastest]

where �feasibility is a partial order on these problems topological requirements (relative
to feasibility). The order is “only” partial here because the variations of feasibility of these
problems may be different in another set of assumptions. Following a similar reasoning
(that is the fact that the solutions to TDB[shortest] are reusable in B∆ whereas those to
TDB[foremost] are not) leads to

TDB[shortest] �reusability TDB[foremost]

where �reusability is a partial order on these problems topological requirements (relative
to reusability). This result suggests that a problem could be both easier or more difficult
than another, depending on which aspect is looked at (feasibility vs. reusability). In other
words, the difficulty of these problems seems to be multi-dimensional. Finally, whether
reusability is easier for TDB[fastest] or TDB[foremost] is an open question, both of
these problems being unsolvable in B∆ but solvable in Pp [10].

7. Concluding Remarks

In this paper we looked at three particular problems (shortest, fastest, and foremost broad-
cast) in three particular classes of dynamic graphs (recurrent, time-bounded recurrent, and
periodic graphs). By comparing the feasibility of these problems within each class, we
came to observe both requirement relationships between the problems and computational
relationships between the classes.

The methodology exploited here goes certainly beyond the scope of these problems
and graph classes. In general terms, the principle here is to connect problems through their
feasibility in a set of hierarchized classes of dynamic graphs. One can take two problems
P1 and P2 that are respectively feasible in classes C1 and C2, then show that both C1 ⊆ C2

and P1 is not feasible in C2, to finally conclude that P1 is at least as difficult as P2 in
terms of topological requirements. As we have shown, such characterizations can also be
used reversely to exhibit computational relationship between several classes/assumptions.
We hope and believe this approach could be used as a generic mean to explore further
distributed algorithms in a dynamic context.
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Algorithm 3 Shortest broadcast in B, knowing a bound ∆ on the recurrence.

1: Edge parent← nil // edge the information was received from (for non-emitter nodes).
2: Date roundStart← +∞ // date when the underlying node starts informing new

nodes.
3: Set <Edge> children← ∅ // set of children from which a notification is expected.
4: Integer nbNotifications← 0 // number of children that have sent their notification.
5: Set<Edge> informedNeighbors← ∅ // set of neighbors known to have the info.
6: Status myStatus← ¬informed // status of the node (informed or non-informed).

7: initialization:
8: if isEmitter() then
9: roundStart← now() // causes the procedure ”when

now() == roundStart:” (below) to execute.

10: onAppearance of an edge e:
11: if myStatus == informed then
12: if e /∈ informedNeighbors then
13: send(roundStart+ ∆− now()− ζ) on e // time until the end of the round.
14: informedNeighbors← informedNeighbors ∪ {e} // (see Prop. 1).

15: onReception of a message msg from an edge e:
16: if msg.type == Duration then
17: informedNeighbors← informedNeighbors ∪ {e}
18: if parent == nil then
19: parent← e

20: roundStart← now() +msg

21: send retry(affiliation) on e

22: else if msg.type == Affiliation then
23: children← children ∪ {e}
24: else if msg.type == Notification then
25: nbNotifications← nbNotifications+ 1

26: if nbNotifications == |children| then
27: if ¬isEmitter() then
28: send retry(notification) on parent

29: terminate

30: when now() == roundStart:
31: myStatus← informed

32: send(∆-ζ) on Inow() r informedNeighbors // nodes that receive this message
and

have no parent yet will take this node as parent and wait ∆-ζ before informing new
nodes.

33: when now() == roundStart+ ∆ + ζ: // tests whether the underlying node is a leaf.

34: if |children| == 0 then
35: send retry(notification) on parent


