
High-Level Language Interface

Chapter 13

S. Dandamudi

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi HLL Interface: Page 2

High-Level Language Interface

• Why program in mixed-
mode?
∗ Focus on C and assembly

• Overview of compiling
mixed-mode programs

• Calling assembly
procedures from C
∗ Parameter passing
∗ Returning values
∗ Preserving registers
∗ Publics and externals
∗ Examples

• Calling C functions from
assembly

• Simplified calling
mechanisms
∗ The ARG directive

∗ Avoiding explicit
specification of underscores

∗ Extended CALL instruction

• Inline assembly code

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi HLL Interface: Page 3

Why Program in Mixed-Mode?

• Pros and cons of assembly language programming
∗ Advantages:

» Access to hardware

» Time-efficiency

» Space-efficiency

∗ Problems:
» Low productivity

» High maintenance cost

» Lack of portability

• As a result, some programs are written in mixed-
modem (e.g., system software)

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi HLL Interface: Page 4

Compiling Mixed-Mode Programs

• We use C and assembly
mixed-mode programming

• Our emphasis is on the
principles

• Can be generalized to any
type of mixed-mode
programming

• To compile
bcc sample1.c sample.asm

COMPILER ASSEMBLER

LINKER

Object file

C source file Assembly source file

Object file

Executable file

sample1.c sample2.asm

sample1.obj sample2.obj

sample1.exe

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi HLL Interface: Page 5

Calling Assembly Procedures from C

Parameter Passing
• Stack is used for parameter passing

• Two ways of pushing arguments onto the stack
∗ Left-to-right

» Most languages including Basic, Fortran, Pascal use this
method

» These languages are called left-pusher languages

∗ Right-to-left
» C uses this method

» These languages are called right-pusher languages

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi HLL Interface: Page 6

Calling Assembly Procedures from C (cont’d)

Example:

sum(a,b,c,d)

a

b

c

d

IP

. . .

TOS, SP IP

. . .

SP, TOS

d

c

b

a

Right-pusherLeft-pusher

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi HLL Interface: Page 7

Calling Assembly Procedures from C (cont’d)

Returning Values
• Registers are used to return values

Return value type Register used

char, short, int AX
(signed/unsigned)

long DX:AX
(signed/unsigned)

near pointer AX
far pointer DX:AX

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi HLL Interface: Page 8

Calling Assembly Procedures from C (cont’d)

Preserving Registers
• The following registers must be preserved

BP, SP, CS, DS, SS

• In addition, if register variables are enabled,

SI and DI

should also be preserved.

• Since we never know whether register variables
are enabled or not, it is a good practice to preserve

BP, SP, CS, DS, SS, SI and DI

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi HLL Interface: Page 9

Calling Assembly Procedures from C (cont’d)

Publics and External
• Mixed-mode programming involves at least two

program modules
» One C module and one assembly module

• We have to declare those functions and procedures
that are not defined in the same module as external

» extern in c

» extrn in assembly

• Those procedures that are accessed by another
modules as public

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi HLL Interface: Page 10

Calling Assembly Procedures from C (cont’d)

Underscores
• In C, all external labels start with an underscore

» C and C++ compilers automatically append the required
underscore on all external functions and variables

• You must make sure that all assembly references
to C functions and variables begin with
underscores

• Also, you should begin all assembly functions and
variables that are made public and referenced by C
code with underscores

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi HLL Interface: Page 11

Calling C Functions from Assembly

• Stack is used to pass parameters (as in our
previous discussion)

• Similar mechanism is used to pass parameters and
to return values

• Since C makes the calling procedure responsible
for clearing the stack of the parameters, make sure
to clear the parameters after the call instruction
as in

add SP,4

on line 45 in the example program

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi HLL Interface: Page 12

Simplified Calling Mechanisms

The ARG Directive
• By using ARG directive, we can let the assembler

calculate the offset values of the parameters on the
stack

• Arguments in ARG directive are listed in the same
order as in the C call
∗ All arguments should be listed in a single line

∗ If necessary, use ‘\’ to extend the ARG line beyond 80
characters

∗ If type is not specified, TASM assumes WORD for 16-
bit models, DWORD for 32-bit models

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi HLL Interface: Page 13

Simplified Calling Mechanisms (cont’d)

Avoiding explicit specification of underscores
• We can let the assembler prefix the required

underscore on all external functions and variables
• We need to let the assembler know that we are

using C language
» We do this by using

PUBLIC C

instead of PUBLIC (see line 10 in the example program)

• We can use a similar method for EXTRN as well
(i.e., EXTRN C)

» see line 8 in the example program

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi HLL Interface: Page 14

Simplified Calling Mechanisms (cont’d)

Extended CALL Instruction
• This instruction relieves us from pushing the

arguments onto the stack before a procedure call
» Assembler will insert the necessary push instructions

• The syntax is
CALL destination [language[,arg1]…]

 language is C, CPP, Pascal, Fortran, etc.
• Extended CALL does three things:

» Pushes the arguments in the correct order (right or left pushing
based on the language specified)

» Prefixes an underscore if required (as in C)
» Clears the stack of the arguments if needed (as in C)

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi HLL Interface: Page 15

Inline Assembly Code

• Assembly language statements are embedded into
the C code

» Separate assembly module is not necessary

• Assembly statements are identified by placing the
keyword asm

asm xor AX,AX; mov AL,DH

• We can use braces to compound several assembly
statements

asm {
 xor AX,AX
 mov AL,DH
}

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi HLL Interface: Page 16

Inline Assembly Code (cont’d)

Example
Get date interrupt service

∗ Uses interrupt 21H service
∗ Details:

Input:
AH = 2AH

Returns:
AL = day of the week (0=Sun, 1=Mon,…)
CX = year (1980 - 2099)
DH = month (1=Jan, 2=Feb, …)
DL = day of the month (1-31)

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi HLL Interface: Page 17

Inline Assembly Code (cont’d)

Compiling inline Assembly Programs
Two ways:

∗ TASM method
» Convert C code into assembly language and then invoke

TASM to produce .OBJ file
» Can use -B compiler option to generate assembly file
» Alternatively, can include

#pragma inline
at the beginning of the C file to instruct the compiler to use the
-B option

∗ BASM method
» Uses the built-in assembler (BASM) to assemble asm

statements
» Restricted to 16-bit instructions (i.e., cannot use 486 or

Pentium instructions)

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi HLL Interface: Page 18

Inline Assembly Code (cont’d)

LINKER

Object file

Executable file

COMPILER

BASM method TASM method

COMPILER

LINKER

ASSEMBLER

Object file

Executable file

C source file

C source file

sample.c

sample.obj

sample.exe

sample.c

sample.asm

sample.obj

sample.exe

Assembly file

