
Introduction

Chapter 1

S. Dandamudi

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 2

Outline

• A user’s view of computer
systems

• What is assembly
language?
∗ Relationship to machine

language

• Advantages of high-level
languages
∗ Faster program

development

∗ Easier maintenance

∗ Portability

• Why program in assembly
language?
∗ Time-efficiency

∗ Space-efficiency

∗ Accessibility to hardware

• Typical applications

• Why learn assembly
language?

• Performance: C versus
assembly language
∗ Bubble sort example

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 3

A User’s View of Computer Systems

• Depends on the degree of abstraction provided by
the underlying software

• We consider a hierarchy of five levels
∗ Moving to the top of hierarchy shields the user from the

lower-level details

∗ The top two levels are system independent

∗ The other lower four levels are system dependent
» Assembly and machine languages are specific to a particular

processor

» One-to-one correspondence between assembly language and
machine language

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 4

A User’s View of Computer Systems (cont’d)

(C, PASCAL, FORTRAN)

High-level language level

Application program level

Assembly language level

Machine language level

Operating system level

Hardware level

(Spreadsheet, Word Processor)

Increased
level of

abstraction

independent
System

System
dependent

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 5

What is Assembly Language?

• Low-level language
» Each instruction performs a much lower-level task compared

to a high-level language instruction

• One-to-one correspondence between assembly
language and machine language instructions

» For most assembly language instructions, there is a machine
language equivalent

» Assembler translates assembly language instructions to
machine language instructions

• Directly influenced by the instruction set and
architecture of the processor (CPU)

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 6

What is Assembly Language? (cont’d)

• Some example assembly language instructions:
inc result

mov class_size,45

and mask1,128

add marks,10

• Some points to note:
» Assembly language instructions are cryptic

» Mnemonics are used for operations
– inc for increment, mov for move (i.e., copy)

» Assembly language instructions are low level

– Cannot write instructions such as
mov marks, value

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 7

What is Assembly Language? (cont’d)

• Some simple high-level language instructions can
be expressed by a single assembly instruction

Assembly Language C

inc result result++;

mov size,45 size = 45;

and mask1,128 mask1 &= 128;

add marks,10 marks += 10;

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 8

What is Assembly Language? (cont’d)

• Most high-level language instructions need more
than one assembly instruction

C Assembly Language

size = value; mov AX,value

mov size,AX

sum += x + y + z; mov AX,sum

add AX,x

add AX,y

add AX,z

mov sum,AX

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 9

What is Assembly Language? (cont’d)

• Readability of assembly language instructions is
much better than the machine language instructions

» Machine language instructions are a sequence of 1s and 0s

Assembly Language Machine Language
(in Hex)

inc result FF060A00

mov class_size,45 C7060C002D00

and mask,128 80260E0080

add marks,10 83060F000A

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 10

Advantages of High-Level Languages

• Program development is faster
» High-level instructions

– Fewer instructions to code

• Programs maintenance is easier
» For the same reasons as above

• Programs are portable
» Contain few machine-dependent details

– Can be used with little or no modifications on different
types of machines

» Compiler translates to the target machine language

» Assembly language programs are not portable

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 11

Why Program in Assembly Language?

• Two main reasons:
∗ Efficiency

» Space-efficiency

» Time-efficiency

∗ Accessibility to system hardware

• Space-efficiency
∗ Assembly code tends to be compact

• Time-efficiency
∗ Assembly language programs tend to run faster

» Only a well-written assembly language program runs faster

– Easy to write an assembly program that runs slower than
its high-level language equivalent

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 12

Typical Applications

• Application that need one of the three advantages
of the assembly language

• Time-efficiency
∗ Time-convenience

» Good to have but not required for functional correctness
– Graphics

∗ Time-critical
» Necessary to satisfy functionality
» Real-time applications

– Aircraft navigational systems
– Process control systems
– Robot control software
– Missile control software

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 13

Typical Applications (cont’d)

• Accessibility to system hardware
∗ System software typically requires direct control of the

system hardware devices
» Assemblers, linkers, compilers

» Network interfaces, device drivers

» Video games

• Space-efficiency
∗ Not a big plus point for most applications

∗ Code compactness is important in some cases
– Portable and hand-held device software

– Spacecraft control software

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 14

Why Learn Assembly language?

• Some applications require programming in
assembly language

» Typically only a small part of an application is coded in
assembly language (rest written in a high-level language)

– Such programs are called mixed mode programs

• Assembly language can be used as a tool to learn
computer organization

» You will know more about the organization and internal
workings of a computer system

• Personal satisfaction of learning something
something complicated and useful

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 15

Performance: C versus Assembly Language

• We use bubble sort as an example

• Executable file size (space-efficiency)
∗ C version: 50,256 bytes

∗ Assembly version: 50,208 bytes

∗ Negligible difference (only 48 bytes)

• Bubble sort procedure source code length
∗ C version: 1,340 bytes

∗ Assembly version: 1,851 bytes

∗ Shows the low-level nature of the assembly code

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 16

Performance: C versus Assembly Language
(cont’d)

0

5

10

15

20

25

1000 2000 3000 4000 5000 6000 7000 8000

So
rt

 ti
m

e
(s

ec
on

ds
)

Number of elements

AL versio
n

C vers
ion

