
Addressing Modes

Chapter 5

S. Dandamudi

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Addressing modes: Page 2

Outline

• Addressing modes
• Simple addressing modes

∗ Register addressing mode
∗ Immediate addressing mode

• Memory addressing modes
∗ 16-bit and 32-bit addressing

» Operand and address size
override prefixes

∗ Direct addressing

∗ Indirect addressing

∗ Based addressing

∗ Indexed addressing

∗ Based-indexed addressing

• Examples
∗ Sorting (insertion sort)

∗ Binary search

• Arrays
∗ One-dimensional arrays

∗ Multidimensional arrays

∗ Examples
» Sum of 1-d array

» Sum of a column in a 2-d
array

• Performance: Usefulness of
addressing modes

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Addressing modes: Page 3

Addressing Modes

• Addressing mode refers to the specification of the
location of data required by an operation

• Pentium supports three fundamental addressing
modes:
∗ Register mode
∗ Immediate mode
∗ Memory mode

• Specification of operands located in memory can
be done in a variety of ways
∗ Mainly to support high-level language constructs and

data structures

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Addressing modes: Page 4

Pentium Addressing Modes (32-bit Addresses)

Addressing Modes

Register Immediate Memory

IndirectDirect
[disp]

IndexedRegister Indirect Based-Indexed

Based-Indexed

[(Index * scale) + disp][Base]

with scale factor
[Base + (Index * scale) + disp]

Based
[Base + disp]

Based-Indexed
with no scale factor

[Base + Index + disp]

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Addressing modes: Page 5

Memory Addressing Modes (16-bit Addresses)

Based-Indexed
with displacement
[BX + SI + disp]
[BX + DI + disp]
[BP + SI + disp]
[BP + DI + disp]

Based-Indexed
with no displacement
[BX + SI] [BP + SI]
[BX + DI] [BP + DI]

Based-IndexedRegister Indirect
[BX] [BP] [SI] [DI]

Memory

IndirectDirect
[disp]

Based

[BP + disp]

Indexed

[DI + disp]
[BX + disp] [SI + disp]

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Addressing modes: Page 6

Simple Addressing Modes

Register Addressing Mode

• Operands are located in registers

• It is the most efficient addressing mode
∗ No memory access is required

∗ Instructions tend to be shorter
» Only 3 bits are needed to specify a register as opposed to at

least 16 bits for a memory address

• An optimization technique:
∗ Place the frequently accesses data (e.g., index variable

of a big loop) in registers

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Addressing modes: Page 7

Simple Addressing Modes (cont’d)

Immediate Addressing Mode
• Operand is stored as part of the instruction
• This mode is used mostly for constants
• It imposes several restrictions:

∗ Typically used in instructions that require at least two
operands (exceptions like push exist)

∗ Can be used to specify only the source operands (not
the destination operand)

∗ Another addressing mode is required for specifying the
destination operand

• Efficient as the data comes with the instructions
(instructions are generally prefetched)

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Addressing modes: Page 8

Memory Addressing Modes

• Pentium offers several addressing modes to access
operands located in memory

» Primary reason: To efficiently support high-level language
constructs and data structures.

• Available addressing modes depend on the address
size used
∗ 16-bit modes (shown before)

» same as those supported by 8086

∗ 32-bit modes (shown before)
» supported by Pentium

» more flexible set

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Addressing modes: Page 9

32-Bit Addressing Modes

• These addressing modes use 32-bit registers

Segment + Base + (Index * Scale) + displacement

CS EAX EAX 1 no displacement
SS EBX EBX 2 8-bit displacement
DS ECX ECX 4 32-bit displacement
ES EDX EDX 8
FS ESI ESI
GS EDI EDI

EBP EBP
ESP

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Addressing modes: Page 10

Differences between 16- and 32-bit Modes

16-bit addressing 32-bit addressing

Base register BX, BP EAX, EBX, ECX,
EDX, ESI, EDI,
EBP, ESP

Index register SI, DI EAX, EBX, ECX,
EDX, ESI, EDI,
EBP

Scale factor None 1, 2, 4, 8

Displacement 0, 8, 16 bits 0, 8, 32 bits

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Addressing modes: Page 11

16-bit or 32-bit Addressing Mode?

• How does the processor know?
• Uses the D bit in the CS segment descriptor

D = 0
» default size of operands and addresses is 16 bits

D = 1
» default size of operands and addresses is 32 bits

• We can override these defaults
∗ Pentium provides two size override prefixes

66H operand size override prefix
67H address size override prefix

• Using these prefixes, we can mix 16- and 32-bit
data and addresses

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Addressing modes: Page 12

Examples: Override Prefixes

• Our default mode is 16-bit data and addresses

Example 1: Data size override
mov AX,123 ==> B8 007B

mov EAX,123 ==> 66 | B8 0000007B

Example 2: Address size override
mov AX,[EBX*ESI+2] ==> 67 | 8B0473

Example 3: Address and data size override
mov EAX,[EBX*ESI+2] ==> 66 | 67 | 8B0473

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Addressing modes: Page 13

Direct Addressing

• Offset (i.e., effective address) is specified as part of
the instruction

» The assembler replaces variable names by their offset values
during the assembly process

» Useful to access only simple variables

Example
total_marks =

assign_marks + test_marks + exam_marks
translated into

mov EAX,assign_marks

add EAX,test_marks

add EAX,exam_marks

mov total_marks,EAX

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Addressing modes: Page 14

Register Indirect Addressing

• Effective address is placed in a general-purpose
register

• In 16-bit segments
∗ only BX, SI, and DI are allowed to hold an effective

address
add AX,[BX] is valid
add AX,[CX] is NOT allowed

• In 32-bit segments
∗ any of the eight 32-bit registers can hold an effective

address
add AX,[ECX] is valid

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Addressing modes: Page 15

Register Indirect Addressing (cont’d)

Default Segments
• 16-bit addresses

∗ BX, SI, DI : data segment
∗ BP, SP : stack segment

• 32-bit addresses
∗ EAX, EBX, ECX, EDX, ESI, EDI: data segment
∗ EBP, ESP : stack segment

• Possible to override these defaults
∗ Pentium provides segment override prefixes

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Addressing modes: Page 16

Register Indirect Addressing (cont’d)

Overriding Default Segments

• Use CS, SS, DS, ES, FS, or GS as in
add AX,SS:[BX]; uses stack segment

add AX,DS:[BP]; uses data segment

• You cannot use these segment override prefixes
to affect the default segment association in the
following cases:
∗ Destination of string instructions: always ES

∗ Stack push and pop operations: always SS

∗ Instruction fetch: always CS

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Addressing modes: Page 17

Based Addressing

• Effective address is computed as
base + signed displacement

∗ Displacement:
– 16-bit addresses: 8- or 16-bit number
– 32-bit addresses: 8- or 32-bit number

• Useful to access fields of a structure or record
» Base register ==> points to the base address of the structure

» Displacement ==> relative offset within the structure

• Useful to access arrays whose element size is not
2, 4, or 8 bytes

» Displacement ==> points to the beginning of the array

» Base register ==> relative offset of an element within the array

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Addressing modes: Page 18

Based Addressing (cont’d)

displacement
46 bytes

(50 bytes)
First course record

(50 bytes)
Second course record

Enrollment

registered

Room #

Title

Course #

2

2

5

1

38

2

Enrollment

registered

Room #

Title

Course #

2

2

5

1

38

2

Term

Term

SSA + 50

SSA + 100

SSA
Structure Starting Address

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Addressing modes: Page 19

Indexed Addressing

• Effective address is computed as
(Index * scale factor) + signed displacement

∗ 16-bit addresses:
– displacement: 8- or 16-bit number
– scale factor: none (i.e., 1)

∗ 32-bit addresses:
– displacement: 8- or 32-bit number
– scale factor: 2, 4, or 8

• Useful to access elements of an array (particularly
if the element size is 2, 4, or 8 bytes)

» Displacement ==> points to the beginning of the array

» Index register ==> selects an element of the array (array index)

» Scaling factor ==> size of the array element

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Addressing modes: Page 20

Indexed Addressing (cont’d)

Examples
add AX,[DI+20]

– We have seen similar usage to access parameters off the
stack (in Chapter 4)

add AX,marks_table[ESI*4]
– Assembler replaces marks_table by a constant (i.e.,

supplies the displacement)

– Each element of marks_table takes 4 bytes (the scale
factor value)

– ESI needs to hold the element subscript value

add AX,table1[SI]

– SI needs to hold the element offset in bytes
– When we use the scale factor we avoid such byte counting

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Addressing modes: Page 21

Based-Indexed Addressing

Based-indexed addressing with no scale factor
• Effective address is computed as

Base + Index + signed displacement

• Useful in accessing two-dimensional arrays
» Displacement ==> points to the beginning of the array

» Base and index registers point to a row and an element within
that row

• Useful in accessing arrays of records
» Displacement ==> represents the offset of a field in a record

» Base and index registers hold a pointer to the base of the array
and the offset of an element relative to the base of the array

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Addressing modes: Page 22

Based-Indexed Addressing (cont’d)

• Useful in accessing arrays passed on to a
procedure

» Base register ==> points to the beginning of the array

» Index register ==> represents the offset of an element relative
to the base of the array

Example
Assuming BX points to table1

mov AX,[BX+SI]

cmp AX,[BX+SI+2]

compares two successive elements of table1

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Addressing modes: Page 23

Based-Indexed Addressing (cont’d)

Based-indexed addressing with scale factor
• Effective address is computed as

Base + (Index * scale factor) + signed displacement

• Useful in accessing two-dimensional arrays when
the element size is 2, 4, or 8 bytes

» Displacement ==> points to the beginning of the array

» Base register ==> holds offset to a row (relative to start of array)

» Index register ==> selects an element of the row

» Scaling factor ==> size of the array element

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Addressing modes: Page 24

Illustrative Examples

• Insertion sort
∗ ins_sort.asm

∗ Sorts an integer array using insertion sort algorithm
» Inserts a new number into the sorted array in its right place

• Binary search
∗ bin_srch.asm

∗ Uses binary search to locate a data item in a sorted
array

» Efficient search algorithm

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Addressing modes: Page 25

Arrays

One-Dimensional Arrays
• Array declaration in HLL (such as C)

int test_marks[10];

specifies a lot of information about the array:
» Name of the array (test_marks)

» Number of elements (10)

» Element size (2 bytes)
» Interpretation of each element (int i.e., signed integer)

» Index range (0 to 9 in C)

• You get very little help in assembly language!

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Addressing modes: Page 26

Arrays (cont’d)

• In assembly language, declaration such as
test_marks DW 10 DUP (?)

only assigns name and allocates storage space.

• You, as the assembly language programmer, have
to “properly” access the array elements by taking
element size and the range of subscripts.

• Accessing an array element requires its
displacement or offset relative to the start of the
array in bytes

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Addressing modes: Page 27

Arrays (cont’d)

• To compute displacement,
we need to know how the
array is laid out

» Simple for 1-D arrays

• Assuming C style
subscripts (i.e., subscript
starts at zero)
displacement = subscript *

 element size in bytes

• If the element size is 2, 4,
or 8 bytes, a scale factor
can be used to avoid
counting displacement in
bytes

high memory

low memory

test_marks[9]

test_marks[8]

test_marks[7]

test_marks[6]

test_marks[5]

test_marks[4]

test_marks[3]

test_marks[2]

test_marks[1]

test_marks[0] test_marks

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Addressing modes: Page 28

Multidimensional Arrays

• We focus on two-dimensional arrays
» Our discussion can be generalized to higher dimensions

• A 5�3 array can be declared in C as
int class_marks[5][3];

• Two dimensional arrays can be stored in one of
two ways:
∗ Row-major order

– Array is stored row by row
– Most HLL including C and Pascal use this method

∗ Column-major order
– Array is stored column by column
– FORTRAN uses this method

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Addressing modes: Page 29

Multidimensional Arrays (cont’d)

class_marks[0,0]

low memory

high memory

class_marks[0,1]

class_marks[0,2]

class_marks[1,0]

class_marks[1,1]

class_marks[1,2]

class_marks[2,0]

class_marks[2,1]

class_marks[2,2]

class_marks[3,0]

class_marks[3,1]

class_marks[3,2]

class_marks[4,0]

class_marks[4,1]

class_marks[4,2]

class_marks class_marks class_marks[0,0]

low memory

high memory

class_marks[2,1]

class_marks[4,2]

class_marks[1,0]

class_marks[2,0]

class_marks[3,0]

class_marks[4,0]

class_marks[0,1]

class_marks[1,1]

class_marks[3,1]

class_marks[4,1]

class_marks[0,2]

class_marks[1,2]

class_marks[2,2]

class_marks[3,2]

(a) Row-major order (b) Column-major order

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Addressing modes: Page 30

Multidimensional Arrays (cont’d)

• Why do we need to know the underlying storage
representation?

» In a HLL, we really don’t need to know

» In assembly language, we need this information as we have to
calculate displacement of element to be accessed

• In assembly language,
class_marks DW 5*3 DUP (?)

 allocates 30 bytes of storage

• There is no support for using row and column
subscripts

» Need to translate these subscripts into a displacement value

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Addressing modes: Page 31

Multidimensional Arrays (cont’d)

• Assuming C language subscript convention, we
can express displacement of an element in a 2-D
array at row i and column j as

displacement = (i * COLUMNS + j) * ELEMENT_SIZE

where
COLUMNS = number of columns in the array

 ELEMENT_SIZE = element size in bytes

Example: Displacement of

class_marks[3,1]

element is (3*3 + 1) * 2 = 20

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Addressing modes: Page 32

Examples of Arrays

Example 1
• One-dimensional array

» Computes array sum (each element is 4 bytes long e.g., long
integers)

» Uses scale factor 4 to access elements of the array by using a
32-bit addressing mode (uses ESI rather than SI)

» Also illustrates the use of predefined location counter $

Example 2
• Two-dimensional array

» Finds sum of a column

» Uses “based-indexed addressing with scale factor” to access
elements of a column

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Addressing modes: Page 33

Performance: Usefulness of Addressing Modes

Experiment 1
• 16-bit addressing modes

» Performance impact on insertion sort:

– Only indirect mode vs. all addressing modes

» Shows the usefulness of providing more flexible addressing
modes than the basic indirect addressing mode

Experiment 2
• Impact of mixing 16- and 32-bit addressing modes

» Brings out the overheads involved with using mixed
addressing modes (size override prefix takes a clock cycle)

» Tradeoff: convenience vs. performance

» Try not to use mixed addressing modes

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Addressing modes: Page 34

Experiment 1

0

2

4

6

8

10

1000 2000 3000 4000 5000 6000 7000 8000

Number of elements

So
rt

 ti
m

e
(s

ec
on

ds
)

only in
dire

ct
mode

all 1
6-bit m

odes

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Addressing modes: Page 35

Experiment 2

0

2

4

6

8

10

1000 2000 3000 4000 5000 6000 7000 8000

Number of elements

So
rt

 ti
m

e
(s

ec
on

ds
)

16- a
nd 32-bit m

odes

only 16-bit m
odes

