Overview of Assembly Language

Chapter 3
S. Dandamudi
Outline
* Assembly language * Overview of assembly
statements language instructions
 Data allocation 0 Arithmetic
O Conditional

* Where are the operands?

i O Logical
O Addresglng modes 0 Shift
> Register 0 Rotate
» Immediate o
» Direct » Defining constants
» Indirect O EQU and = directives

 Data transfer instructions * lllustrative examples

0 mov, xchg , andxlat Performance: When to use
0 PTR directive thexlat instruction

1998 0 S. Dandamudi Introduction: Page 2

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Assembly Language Statements

» Three different classes

O Instructions

» Tell CPU what to do

» Executable instructions with an op-code
[Directives (or pseudo-ops)

» Provide information to assembler on various aspects of the
assembly process

» Non-executable
— Do not generate machine language instructions
(0 Macros

» A shorthand notation for a group of statements
» A sophisticated text substitution mechanism with parameters

1998 0 S. Dandamudi Introduction: Page 3

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Assembly Language Statements (cont’d)

* Assembly language statement format:
[label] mnemonic [operands] [;comment]

O Typically one statement per line

O Fields in [] are optional

[label serves two distinct purposes:
» To label an instruction

— Can transfer program execution to the labeled instruction
» To label an identifier or constant

[0 mnemonic identifies the operation (e.gdd, or)
[operands specify the data required by the operation
» Executable instructions can have zero to three operands

1998 0 S. Dandamudi Introduction: Page 4

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Assembly Language Statements (cont’d)

[J comments

» Begin with a semicolon (;) and extend to the end of the line

Examples
repeat: inc result : incrementesult
CR EQU ODH ; carriage return character

* White space can be used to improve readability
repeat:

inc result ; incrementesult

1998 0 S. Dandamudi Introduction: Page 5

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Data Allocation

» Variable declaration in a high-level language such
as C
char response
int value
float total
double average value

specifies
» Amount storage required (1 byte, 2 bytes, ...)
» Label to identify the storage allocated (response, value, ...)
» Interpretation of the bits stored (signed, floating point, ...)
— Bit pattern1000 1101 1011 1001 is interpreted as

= —29,255 as a signed number
= 36,281 as an unsigned number

1998 0 S. Dandamudi Introduction: Page 6

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Data Allocation (cont’d)

* In assembly language, we use tiedinedirective

[0 Define directive can be used
» To reserve storage space
» To label the storage space
» To initialize
» Butno interpretationis attached to the bits stored
— Interpretation is up to the program code
[1 Define directive goes into the .DATA part of the
assembly language program

» Define directive format

[var-name] D? init-value [,init-valuel],...

1998 0 S. Dandamudi Introduction: Page 7
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Data Allocation (cont’d)

 Five define directives
DB Define Byte ;allocates 1 byte
DW Define Word ;allocates 2 bytes
DD Define Doubleword ;allocates 4 bytes
DQ Define Quadword ;allocates 8 bytes
DT Define Ten bytes ;allocates 10 bytes

Examples
sorted DB 'y
response DB ? ;no initialization
value DW 25159
floatl DQ 1.234

1998 0 S. Dandamudi Introduction: Page 8
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Data Allocation (cont’d)

» Multiple definitions can be abbreviated

Example

message DB 'B’
DB 1y1
DB e’
DB ODH
DB OAH

can be written as

message DB 'B’,'y’,’e’,0DH,0AH

* More compactly as
message DB ’'Bye’,0DH,0AH

1998 0 S. Dandamudi Introduction: Page 9

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Data Allocation (cont’d)

» Multiple definitions can be cumbersome to
initialize data structures such as arrays

Example
To declare and initialize an integer array of 8 elements
marks DW 0,0,0,0,0,0,0,0

 What if we want to declare and initialize to zero

an array of 200 elements?

[0 There is a better way of doing this than repeating zero
200 times in the above statement
» Assembler provides a directive to do this (DUP directive)

1998 0 S. Dandamudi Introduction: Page 10

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Data Allocation (cont’d)

» Multiple initializations
[0 The DUP assembler directive allows multiple
initializations to the same value

O Previous marks array can be compactly declared as
marks DW 8 DUP (0)

Examples
tablel DW 10 DUP (?) ;10 words, uninitialized
message DB 3 DUP ('Bye!’);12 bytes, initialized

;as ByelBye!Bye!
Namel DB 30 DUP ('?") ;30 bytes, each
; initialized to ?
1998 0 S. Dandamudi Introduction: Page 11

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Data Allocation (cont’d)

» The DUP directive may also be nested
Example
stars DB 4 DUP(3 DUP (*),2 DUP ('?"),5 DUP ("))

Reserves 40-bytes space and initializes it as

s 1 S T i T s T
Example
matrix DW 10 DUP (5 DUP (0))
defines a 10X5 matrix and initializes its elements to zero

This declaration can also be done by
matrix DW 50 DUP (0)

1998 0 S. Dandamudi Introduction: Page 12

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Data Allocation (cont’d)

Symbol Table

0 Assembler builds a symbol table so we can refer to the
allocated storage space by the associated label

Example

.DATA name offset
value DW 0 value 0

sum DD 0 sum 2

marks DW 10 DUP (?) marks 6

message DB ‘The grade is:’,0 message 26

charl DB ? charl 40

1998 0 S. Dandamudi Introduction: Page 13

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Data Allocation (cont’d)

Correspondence to C Data Types

Directive C data type
DB char
DW int, unsigned
DD float, long
DQ double
DT internal intermediate

float value
1998 0 S. Dandamudi Introduction: Page 14

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Data Allocation (cont’d)

LABEL Directive

O LABEL directive provides another way to name a
memory location

O Format:
name LABEL type

type can be
BYTE 1 byte
WORD 2 bytes

DWORD 4 bytes
QWORD 8 bytes
TWORD 10 bytes

1998 0 S. Dandamudi Introduction: Page 15

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Data Allocation (cont’d)

LABEL Directive
Example
.DATA

count LABEL WORD

Lo-count DB 0O

Hi_count DB 0
.CODE

mov Lo_count,AL
mov Hi_count,CL

00 count refers to the 16-bit value

O Lo_count refers to the low byte
[0 Hi_count refers to the high byte

1998 0 S. Dandamudi Introduction: Page 16

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Where Are the Operands?

» Operands required by an operation can be
specified in a variety of ways

» A few basic ways are:
[J operand in a register
— register addressing mode
[0 operand in the instruction itself
— immediate addressing mode
[0 operand in memory
— variety of addressing modes
~direct and indirect addressing modes

[J operand at an 1/O port

1998 0 S. Dandamudi Introduction: Page 17

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Where Are the Operands? (cont’d)

Register addressing mode

[0 Most efficient way of specifying an operand
» operand is in an internal register

Examples
mov EAX,EBX
mov BX,CX

[0 Themov instruction
mov destination,source
copies data frorsource to destination

1998 0 S. Dandamudi Introduction: Page 18

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Where Are the Operands? (cont’d)

Immediate addressing mode

[Data is part of the instruction

» operand is located in the code segment along with the
instruction

» Efficient as no separate operand fetch is needed
» Typically used to specify a constant

Example
mov AL,75
O This instruction uses register addressing mode for

specifying thedestinationand immediate addressing
mode to specify theource

1998 0 S. Dandamudi Introduction: Page 19

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Where Are the Operands? (cont’d)

Direct addressing mode

[Data is in the data segment
» Need a logical address to access data
— Two components: segment:offset
» Various addressing modes to specify the offset component
— offset part is referred to as tatfective address

[0 The offset is specified directly as part of the instruction
0 We write assembly language programs using memory
labels (e.g., declared using DB, DW, LABEL,...)
» Assembler computes the offset value for the label
— Uses symbol table to compute the offset of a label

1998 0 S. Dandamudi Introduction: Page 20

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

10

Where Are the Operands? (cont’d)

Direct addressing mode

Examples
mov AL,response
» Assembler replacessponse by its effective address (i.e., its
offset value from the symbol table)
mov tablel,56
» tablel is declared as
tablel DW 20 DUP (0)

» Since the assembler replatalslel by its effective address,
this instruction refers to the first elementaiblel

— In C, itis equivalent to
tablel[0] = 56

1998 0 S. Dandamudi Introduction: Page 21

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Where Are the Operands? (cont’d)

Direct addressing mode

* Problem with direct addressing
[0 Useful only to specify simple variables

[0 Causes serious problems in addressing data types such

as arrays
» As an example, consider adding elements of an array

— Direct addressing does not facilitate using a loop structure

to iterate through the array

— We have to write an instruction to add each element of the

array

 Indirect addressing mode remedies this problem

1998 0 S. Dandamudi Introduction: Page 22

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

11

Where Are the Operands? (cont’d)

Indirect addressing mode

» The offset is specified indirectly via a register
[0 Sometimes calletegister indirectaddressing mode

O For 16-bit addressing, the offset value can be in one of
the three registers: BX, SlI, or DI

O For 32-bit addressing, all 32-bit registers can be used
Example
mov AX,[BX]

[0 Square brackets [] are used to indicate that BX is
holding an offset value

» BX contains a pointer to the operand, not the operand itself

1998 0 S. Dandamudi Introduction: Page 23

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Where Are the Operands? (cont’d)

» Using indirect addressing mode, we can process
arrays using loops

Example: Summing array elements

[0 Load the starting address (i.e., offset) of the array into
BX

[Loop for each element in the array
» Get the value using the offset in BX
— Use indirect addressing
» Add the value to the running total

» Update the offset in BX to point to the next element of the
array

1998 0 S. Dandamudi Introduction: Page 24

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

12

Where Are the Operands? (cont’d)

Loading offset value into a register

» Suppose we want to load BX with the offset value
of tablel

* We cannot write
mov BX,tablel

» Two ways of loading offset value
» Using OFFSET assembler directive
— Executed only at the assembly time
» Usinglea instruction
— This is a processor instruction
— Executed at run time

1998 0 S. Dandamudi Introduction: Page 25

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Where Are the Operands? (cont’d)

Loading offset value into a register

» Using OFFSET assembler directive

[1 The previous example can be written as
mov BX,OFFSET tablel

« Usinglea (load effective address) instruction
[0 The format oflea instruction is
lea register,source

[0 The previous example can be written as
lea BX,tablel

1998 0 S. Dandamudi Introduction: Page 26

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

13

Where Are the Operands? (cont’d)

Loading offset value into a register

Which one to use -- OFFSET lea ?

0 Use OFFSET if possible
» OFFSET incurs only one-time overhead (at assembly time)

» lea incurs run time overhead (every time you run the program)

[0 May have to uséea in some instances
» When the needed data is available at run time only
— An index passed as a parameter to a procedure
» We can write
lea BX,tablel[SlI]

to load BX with the address of an elementatflel whose
index is in Sl register

» We cannot use the OFFSET directive in this case

1998 0 S. Dandamudi Introduction: Page 27

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Data Transfer Instructions

* We will look at three instructions
O mov (move)
» Actually copy
[O0xchg (exchange)
» Exchanges two operands
Oxlat (translate)
» Translates byte values using a translation table
e Other data transfer instructions such as
[0 movsx (move sign extended)
[0 movzx (move zero extended)

are discussed in Chapter 6

1998 0 S. Dandamudi Introduction: Page 28

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

14

Data Transfer Instructions (cont’d)

The mov instruction

[The format is
mov destination,source
» Copies the value frodource todestination
» Source is not altered as a result of copying
» Both operands should be of same size
» source anddestination cannot both be in memory

— Most Pentium instructions do not allow both operands to
be located in memory

— Pentium provides special instructions to facilitate
memory-to-memory block copying of data

1998 0 S. Dandamudi Introduction: Page 29

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Data Transfer Instructions (cont’d)

The mov instruction
O Five types of operand combinations are allowed:

Instruction type Example
mov register,register mov |DX,CX

mov register,immediate mov| BL,100

mov register,memory mov BX,count

mov memory,register mov count,SI

mov memory,immediate mov count,23

[1 The operand combinations are valid for all instructions
that require two operands

1998 0 S. Dandamudi Introduction: Page 30
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

15

Data Transfer Instructions (cont’d)

Ambiguous moves: PTR directive

» For the following data definitions
.DATA
tablel DW 20 DUP (0)
status DB 7 DUP (1)

the last twamov instructions are ambiguous
mov BX,0OFFSET tablel
mov SI,OFFSET status
mov [BX],100
mov [SI],100

[J Not clear whether the assembler should use byte or
word equivalent of 100

1998 0 S. Dandamudi Introduction: Page 31

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Data Transfer Instructions (cont’d)

Ambiguous moves: PTR directive

» The PTR assembler directive can be used to
clarify

e The last twdnov instructions can be written as
mov WORD PTR [BX],100
mov BYTE PTR [SI],100

[0 WORD and BYTE are calletype specifiers

» We can also use the following type specifiers:
DWORDor doubleword values
QWORDor quadword values
TWORDfor ten byte values

1998 0 S. Dandamudi Introduction: Page 32

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

16

Data Transfer Instructions (cont’d)

The xchg instruction

* The syntax is

xchg operandl,operand?

Exchanges the values gperandl andoperand2

Examples

xchg EAX,EDX

xchg response,CL

xchg total,DX
« Without thexchg instruction, we need a

temporary register to exchange values using only
themov instruction

1998 0 S. Dandamudi Introduction: Page 33

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Data Transfer Instructions (cont’d)

The xchg instruction

e Thexchg instruction is useful for conversion of
16-bit data between little endian and big endian
forms

0 Example:
mov AL,AH
converts the data in AX into the other endian form

» Pentium providebswap instruction to do similar

conversion on 32-bit data
bswap 32-bit register
[0 bswap works only on data located in a 32-bit register

1998 0 S. Dandamudi Introduction: Page 34

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

17

Data Transfer Instructions (cont’d)

The xlat instruction
» Thexlat instruction translates bytes

e The format is
xlatb

e« Tousexlat instruction
» BX should be loaded with the starting address of the
translation table
» AL must contain an index in to the table
— Index value starts at zero

» The instruction reads the byte at this index in the translation
table and stores this value in AL

— The index value in AL is lost
» Translation table can have at most 256 entries (due to AL)

1998 0 S. Dandamudi Introduction: Page 35
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Data Transfer Instructions (cont’d)

The xlat instruction
Example: Encrypting digits
Input digits:0123456789
Encrypted digits:469503187 2

.DATA
xlat_table DB '4695031872'

.CODE

mov BX,0OFFSET xlat_table
GetCh AL
sub AL,O; converts input character to index
xlatb ; AL = encrypted digit character
PutCh AL
1998 0 S. Dandamudi Introduction: Page 36

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

18

Overview of Assembly Instructions

» Pentium provides several types of instructions

 Brief overview of some basic instructions:
O Arithmetic instructions
0 Jump instructions
O Loop instruction
O Logical instructions
O Shift instructions
[J Rotate instructions

* These sample instructions allows you to write
reasonable assembly language programs

1998 0 S. Dandamudi Introduction: Page 37

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Overview of Assembly Instructions (cont’d)

Arithmetic Instructions
INC and DEC instructions

0 Format:
inc destination dec destination

[0 Semantics:
destination := destination +/- 1

» destination can be 8-, 16-, or 32-bit operand, in memory
or register

=No immediate operand
 Examples
inc BX ;BX:=BX+1
dec value ;value :=value-1

1998 0 S. Dandamudi Introduction: Page 38

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

19

Overview of Assembly Instructions (cont’d)

Arithmetic Instructions
ADD Iinstruction

[0 Format:
add destination,source
[0 Semantics:
destination := (destination)+(source)
» Examples
add EBX,EAX
add value,35
Oinc EAX is better than add EAX,1

—inc takes less space
— Both execute at about the same speed

1998 0 S. Dandamudi Introduction: Page 39

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Overview of Assembly Instructions (cont’d)

Arithmetic Instructions
SUB instruction

[Format:
sub destination,source
[0 Semantics:
destination := (destination)-(source)
» Examples
sub EBX,EAX

sub value,35
O dec EAX is better than sub EAX,1
— dec takes less space
— Both execute at about the same speed

1998 0 S. Dandamudi Introduction: Page 40

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

20

Overview of Assembly Instructions (cont’d)

Arithmetic Instructions
CMP instruction

[Format:
cmp destination,source
[0 Semantics:
(destination)-(source)
O destination andsource are not altered
[Useful to test relationship (>, =) between two operands
[0 Used in conjunction with conditional jump instructions
for decision making purposes

o Examples
cmp EBX,EAX cmp count,100

1998 0 S. Dandamudi Introduction: Page 41

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Overview of Assembly Instructions (cont’d)

Jump Instructions
Unconditional Jump

[J Format:
jmp label
[0 Semantics:
» Execution is transferred to the instruction identifieddbel

» Examples:Infinite loop
mov EAX,1
inc_again:
inc EAX
jmp inc_again
mov EBX,EAX ; never executes this

1998 0 S. Dandamudi Introduction: Page 42

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

21

Overview of Assembly Instructions (cont’d)

Jump Instructions
Conditional Jump
[Format:
j<cond> label
[0 Semantics:
» Execution is transferred to the instruction identifieddbel
only if <cond> is met
» Examples:Testing for carriage return

GetCh AL
cmp AL,0DH ; ODH = ASCII carriage return
i CR_received
inc CL
CR_'r'éceived:
1998 0 S. Dandamudi Introduction: Page 43

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Overview of Assembly Instructions (cont’d)

Jump Instructions
Conditional Jump
[0 Some conditional jump instructions
— Treats operands of the CMP instruction as signed numbers

je jump if equal
i9 jump if greater
1 jump if less
jge jump if greater or equal
jle jump if less or equal
jne jump if not equal
1998 0 S. Dandamudi Introduction: Page 44

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

22

Overview of Assembly Instructions (cont’d)

Jump Instructions
Conditional Jump
[Conditional jump instructions can also test values of the
individual flags

jz jump if zero (i.e., if ZF = 1)

jnz jump if not zero (i.e.,if ZF = 0)
ic jump if carry (i.e., if CF =1)

jnc jump if not carry (i.,e.,if CF=0)

Ojz is synonymous foje
[Ojnz is synonymous fomne

1998 0 S. Dandamudi Introduction: Page 45
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Overview of Assembly Instructions (cont’d)

Loop Instruction
LOOP Instruction
[Format:
loop target
[0 Semantics:
» Decrements CX and jumps to target if €X
— CX should be loaded with a loop count value
« Example: Executesoop body 50 times
mov CX,50
repeat:
<loop body>
loop repeat

1998 0 S. Dandamudi Introduction: Page 46
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

23

Overview of Assembly Instructions (cont’d)

Loop Instruction
» The previous example is equivalent to
mov CX,50
repeat:
<loop body>

dec CX

jnz repeat
O Surprisingly,

dec CX

jnz repeat

executes faster than
loop repeat

1998 0 S. Dandamudi Introduction: Page 47

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Overview of Assembly Instructions (cont’d)

Logical Instructions
[0 Format:
and destination,source
or destination,source
not destination
0 Semantics:
» Performs the standard bitwise logical operations
— result goes tdestination

00 TEST is a non-destructive AND instruction
test destination,source

O Performs logical AND but the result is not stored in
destination (like the CMP instruction)

1998 0 S. Dandamudi Introduction: Page 48

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

24

Overview of Assembly Instructions (cont’d)

Logical Instructions
Example: Testing the value in AL for odd/even number

test AL,01H ; test the least significant bit
jz even_number
odd_number:
<process odd number>
jmp skip
even_number:
<process even number>
skip:

1998 0 S. Dandamudi Introduction: Page 49

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Overview of Assembly Instructions (cont’d)

Shift Instructions
(1 Format:
Shift left
shl destination,count
shl destination,CL

Shift right
shr destination,count
shr destination,CL

[0 Semantics:

» Performs left/right shift oflestination by the value in
count or CL register

— CLregister contents are not altered

1998 0 S. Dandamudi Introduction: Page 50

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

25

Overview of Assembly Instructions (cont’d)

Shift Instructions

 Bit shifted out goes into the carry flag
» Zero bit is shifted in at the other end

SHL CF -— e - e e =1 =1 =1 (
Bit Position: 7 6 5 4 3 2 1 0

SHR o 1= 1= T —I> —1> 1> —1> -1 CF

Bit Position: 7 6 5 4 3 2 1 0

1998 0 S. Dandamudi Introduction: Page 51

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Overview of Assembly Instructions (cont’d)

Shift Instructions
[Jcount is an immediate value
shl AX,5
[Specification ocount greater than 31 is not allowed
» If a greater value is specified, only the least significant 5 bits
are used
O CL version is useful if shift count is known at run time
» E.g. when the shift count value is passed as a parameter in a
procedure call
» Only the CL register can be used
= Shift count value should be loaded into CL
mov CL,5
shl AX,CL

1998 0 S. Dandamudi Introduction: Page 52
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

26

Overview of Assembly Instructions (cont’d)

Rotate Instructions
O Two types of ROTATE instructions

0 Rotate without carry
» rol (ROtate Left)
» ror (ROtate Right)

[0 Rotate with carry
» rcl (Rotate through Carry Left)
» rcr (Rotate through Carry Right)

O Format of ROTATE instructions is similar to the
SHIFT instructions
» Supports two versions
— Immediate count value
— Count value in CL register

1998 0 S. Dandamudi Introduction: Page 53

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Overview of Assembly Instructions (cont’d)

Rotate Instructions
[Bit shifted out goes into the carry flag as in SHIFT

instructions
|
ROL CF -1 <= <« <= <=1 <=i— <
Bit Position: 7 6 5 4 3 2 1 0
|
ROR _ 1 e 1 e 1 1 CF
Bit Position: 7 6 5 4 3 2 1 0
1998 0 S. Dandamudi Introduction: Page 54

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

27

Overview of Assembly Instructions (cont’d)

Rotate Instructions
O Bit shifted out goes into the carry flag as in SHIFT

instructions
|
RCL CF - <« <=1 <= <=1 <=1 <1
Bit Position: 7 6 5 4 3 2 1 0
|
RCR _ 1 1 1 1 T T CF
Bit Position: 7 6 5 4 3 2 1 0
1998 0 S. Dandamudi Introduction: Page 55

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Defining Constants

» Assembler provides two directives:
» EQU directive
— No reassignment
— String constants can be defined
» = directive
— Can be reassigned
— No string constants

» Defining constants has two advantages:
O Improves program readability
[0 Helps in software maintenance
» Multiple occurrences can be changed from a single place

« Convention
» We use all upper-case letters for names of constants

1998 0 S. Dandamudi Introduction: Page 56

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

28

Defining Constants

The EQU directive
e Syntax:
name EQU expression
[Assigns the result agfxpression to name
[0 Theexpression s evaluatect assembly time
= Similar to#define inC
Examples
NUM_OF ROWS EQU 50
NUM_OF _COLS EQU 10
ARRAY_SIZE EQU NUM_OF_ROWS * NUM_OF_COLS

[0 Can also be used to define string constants
JUMP EQU jmp

1998 0 S. Dandamudi Introduction: Page 57

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Defining Constants

The = directive
e Syntax:
name = expression
O Similar to EQU directive
O Two key differences:
» Redefinition is allowed
count=0
count = 99
is valid
» Cannot be used to defistring constant®r to redefine
keywordsor instruction mnemonics
Example: JUMP = jmp is notallowed

1998 0 S. Dandamudi Introduction: Page 58

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

29

lllustrative Examples

* Five examples are presented:

[Conversion of ASCII to binary representation
(BINCHAR.ASM)

[Conversion of ASCII to hexadecimal by character
manipulation (HEX1CHAR.ASM)

[Conversion of ASCII to hexadecimal using the XLAT
instruction (HEX2CHAR.ASM)

[0 Conversion of lowercase letters to uppercase by
character manipulation (TOUPPER.ASM)

[0 Sum of individual digits of a number
(ADDIGITS.ASM)

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

0 S. Dandamudi Introduction: Page 59

Performance: When to Use XLAT

 Lowercase to uppercase conversion
— XLAT is bad for this application

Conversion time (seconds)

)
o

S
awos”

60 80 100 120 140 160 180 200

Number of calls (in thousands)

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

0 S. Dandamudi Introduction: Page 60

30

Performance: When to Use XLAT (cont’d)

* Hex conversion

10

— XLAT is better for this application

Conversion time (seconds)

A
as

kg

T T T T T T T
20 40 60 80 100 120 140 160 180 200

Number of calls (in thousands)

1998

0 S. Dandamudi Introduction: Page 61

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

31

