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Outline

• MIPS architecture
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• MIPS instruction set
∗ Instruction format
∗ Data transfer instructions
∗ Arithmetic instructions
∗ Logical/shift/rotate/compare 

instructions
∗ Branch and jump 
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• SPIM system calls
• SPIM assembler directive
• Illustrative examples
• Procedures
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• Illustrative examples
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MIPS Processor Architecture

• MIPS follows RISC principles much more closely 
than PowerPC and Itanium
∗ Based on the load/store architecture

• Registers
∗ 32-general purpose registers ($0 – $31)

» $0 – hardwired to zero
» $31 – used to store return address

∗ Program counter (PC)
» Like IP in Pentium

∗ Two special-purpose registers (HI and LO)
» Used in multiply and divide instructions
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MIPS Processor Architecture (cont’d)
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MIPS Processor Architecture (cont’d)
MIPS registers and their conventional usage
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MIPS Processor Architecture (cont’d)

MIPS addressing modes
∗ Bare machine supports only a single addressing mode

disp(Rx)

∗ Virtual machine provides several additional addressing modes
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Memory Usage

Placement of 
segments allows 
sharing of 
unused memory 
by both data and 
stack segments
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Instruction Format

load, arithmetic/logical 
with immediate operands

Higher order bits from PC are 
added to get absolute address



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 15: Page 9

MIPS Instruction Set

• Data transfer instructions
∗ Load and store instructions have similar format

ld    Rdest,address
» Moves a byte from address to Rdest as a signed number

– Sign-extended to Rdest
» Use ldu for unsigned move (zero-extended)

∗ Use lh, lhu, ld for moving halfwords
(signed/unsigned) and words

∗ Pseudoinstructions
la    Rdest,address

li    Rdest,imm     

» Implemented as ori  Rdest,$0,imm
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MIPS Instruction Set (cont’d)

∗ Store byte
sb    Rsrc,address
» Use sh and sw for halfwords and words

∗ Pseudoinstruction
move    Rdest,Rsrc
» Copies Rsrc to Rdest

∗ Four additional data movement instructions are 
available

» Related to HI and LO registers
» Used with multiply and divide instructions

– Discussed later
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MIPS Instruction Set (cont’d)

• Arithmetic instructions
∗ Addition

add    Rdest,Rsrc1,Rsrc2

– Rdest ← Rsrc1 + Rsrc2
– Numbers are treated as signed integers
– Overflow: Generates overflow exception
– Use addu if the overflow exception is not needed

addi    Rdest,Rsrc1,imm
– imm: 16-bit signed number 

∗ Pseudoinstruction
add    Rdest,Rsrc1,Src2

Register or imm16
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MIPS Instruction Set (cont’d)

∗ Subtract
sub    Rdest,Rsrc1,Rsrc2

– Rdest ← Rsrc1 − Rsrc2
– Numbers are treated as signed integers
– Overflow: Generates overflow exception
– Use subu if the overflow exception is not needed
– No immediate version

Use addi with negative imm

∗ Pseudoinstruction
sub    Rdest,Rsrc1,Src2

Register or imm16
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MIPS Instruction Set (cont’d)

∗ Pseudoinstructions
neg    Rdest,Rsrc

– Negates Rsrc (changes sign)
– Implemented as

sub    Rdest,$0,Rsrc

abs    Rdest,Rsrc

– Implemented as
bgez    Rsrc,skip

sub     Rdest,$0,Rsrc

skip:

Constant 8 
is used
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MIPS Instruction Set (cont’d)

∗ Multiply
» mult (signed)
» multu (unsigned)

mult    Rsrc1,Rsrc2
» 64-bit result in LO and HI registers
» Special data move instructions for LO/HI registers

mfhi    Rdest

mflo    Rdest

∗ Pseudoinstruction
mul   Rdest,Rsrc1,Rsrc2

– 32-bit result in Rdest
64-bit result is not available

Register or imm
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MIPS Instruction Set (cont’d)

∗ mul is implemented as
» If Rsrc2 is a register

mult    Rsrc1,Src2

mflo    Rdest
» If Rsrc2 is an immediate value (say 32)

ori     $1,$0,32

mult    $5,$1

mflo    $4

a0 = $4
a1 = $5
at = $1
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MIPS Instruction Set (cont’d)

∗ Divide
» div (signed)
» divu (unsigned)

div    Rsrc1,Rsrc2
» Result = Rsrc1/Rsrc2
» LO = quotient, HI = remainder
» Result undefined if the divisor is zero

∗ Pseudoinstruction
div   Rdest,Rsrc1,Src2

– quotient in Rdest
rem   Rdest,Rsrc1,Src2

– remainder in Rdest

Register or imm
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MIPS Instruction Set (cont’d)

• Logical instructions
∗ Support AND, OR, XOR, NOR

and    Rdest,Rsrc1,Rsrc2

andi   Rdest,Rsrc1,imm16

∗ Also provides or, ori, xor, xori, nor
∗ No not instruction

» It is provided as a pseudoinstruction
not    Rdest,Rsrc

» Implemented as
nor    Rdest,Rsrc,$0
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MIPS Instruction Set (cont’d)

• Shift instructions
∗ Shift left logical

sll    Rdest,Rsrc1,count
» Vacated bits receive zeros
» Shift left logical variable

sllv    Rdest,Rsrc1,Rsrc2
» Shift count in Rsrc2

∗ Two shift right instructions
» Logical (srl, srlv)

– Vacated bits receive zeros
» Arithmetic (sra, srav)

– Vacated bits receive the sign bit (sign-extended)
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MIPS Instruction Set (cont’d)

• Rotate instructions
∗ These are pseudoinstructions

rol    Rdest,Rsrc1,Src2

ror    Rdest,Rsrc1,Src2

» Example:
ror    $t2,$t2,31

is translated as
sll    $1,$10,31

srl    $10,$10,1

or     $10,$10,$1
t2 = $10
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MIPS Instruction Set (cont’d)

• Comparison instructions
∗ All are pseudoinstructions

slt    Rdest,Rsrc1,Rsrc2

» Sets Rdest to 1 if Rsrc1 < Rsrc2

» Unsigned version: sltu
» Others:

–seq
–sgt, sgtu
–sge, sgeu
–sle, sleu
–sne
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MIPS Instruction Set (cont’d)

• Comparison instructions
» Example:

seq    $a0,$a1,$a2

is translated as
beq    $6,$5,skip1

ori    $4,$0,0

beq    $0,$0,skip2

skip1:

ori    $4,$0,1

skip2:

a0 = $4
a1 = $5
a2 = $6
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MIPS Instruction Set (cont’d)

• Branch and Jump instructions
∗ Jump instruction

j    target

» Uses 26-bit absolute address

∗ Branch pseudoinstruction
b    target

» Uses 16-bit relative address

∗ Conditional branches
beq    Rsrc1,Rsrc2,target

» Jumps to target if Rsrc1 = Rsrc2
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MIPS Instruction Set (cont’d)

∗ Other branch instructions
bne

blt, bltu

bgt, bgtu

ble, bleu

bge, bgeu

∗ Comparison with zero
beqz    Rsrc,target

» Branches to target if Rsrc = 0
» Others 

– bnez, bltz, bgtz, blez, bgez

» b target is implemented as   bgez  $0,target
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SPIM System Calls

• SPIM supports I/O through syscall
∗ Data types: 

» string, integer, float, double
– Service code: $v0
– Required arguments: $a0 and $a1
– Return value: $v0

∗ print_string
» Prints a NULL-terminated string

∗ read_string
» Takes a buffer pointer and its size n
» Reads at most n-1 characters in NULL-terminated string
» Similar to fgets
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SPIM System Calls (cont’d)
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SPIM System Calls (cont’d)
.DATA

prompt:
.ASCIIZ  “Enter your name: “

in-name:
.SPACE    31
.TEXT

. . .
la    $a0,prompt
li    $v0,4
syscall
la    $a0,in_name
li    $a1,31
li    $v0,8
syscall
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SPIM Assembler Directives

• Segment declaration
∗ Code: .TEXT

.TEXT <address>

∗ Data: .DATA
• String directives

∗ .ASCII
» Not NULL-terminated

∗ .ASCIIZ
» Null-terminated

• Uninitialized space
.SPACE     n

Optional; if present, 
segment starts at 
that address

Example:
ASCII   “This is a very long string”
ASCII    “spread over multiple
ASCIIZ  “string statements.”
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SPIM Assembler Directives (cont’d)

• Data directives
∗ Provides four directives:

.HALF, .WORD

.FLOAT, .DOUBLE

.HALF   h1, h2, . . ., hn

– Allocates 16-bit halfwords
– Use .WORD for 32-bit words

» Floating-point numbers
– Single-precision

.FLOAT    f1, f2, . . . , fn

– Use .DOUBLE for double-precision
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SPIM Assembler Directives (cont’d)

• Miscellaneous directives
∗ Data alignment

» Default: 
– .HALF, .WORD, .FLOAT, .DOUBLE align data

» Explicit control:
.ALIGN    n

aligns the next datum on a 2n byte boundary
» To turn off alignment, use

.ALIGN    0

∗ .GLOBL declares a symbol global
.TEXT
.GLOBL   main

main:
. . .
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Illustrative Examples

• Character to binary conversion
∗ binch.asm

• Case conversion
∗ toupper.asm

• Sum of digits – string version
∗ addigits.asm

• Sum of digits – number version
∗ addigits2.asm
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Procedures

• Two instructions
∗ Procedure call

» jal (jump and link)
jal    proc_name

∗ Return from a procedure
jr    $ra

• Parameter passing
– Via registers
– Via the stack

• Examples
» min-_max.asm
» str_len.asm
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Stack Implementation

• No explicit support
» No push/pop instructions
» Need to manipulate stack pointer explicitly

– Stack grows downward as in Pentium
∗ Example: push registers a0 and ra

sub  $sp,$sp,8 #reserve 8 bytes of stack
sw   $a0,0($sp) #save registers
sw   $ra,4($sp)

∗ pop operation
lw   $a0,0($sp) #restore registers
lw   $a0,4($sp)

addu $sp,$sp,8  #clear 8 bytes of stack
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Illustrative Examples

• Passing variable number of parameters to a 
procedure

var_para.asm

• Recursion examples
Factorial.asm

Quicksort.asm

Last slide


