MIPS Assembly Language

Chapter 15
S. Dandamudi

Outline

e MIPS architecture e SPIM system calls

* Registers SPIM assembler directive

* Addressing modes Illustrative examples

e MIPS instruction set

* Instruction format

 Procedures

. . o Stack implementation
* Data transfer instructions P

* Arithmetic instructions * Illustrative examples

* Logical/shift/rotate/compare
instructions

* Branch and jump
Instructions

2003 © S. Dandamudi Chapter 15: Page 2

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

MIPS Processor Architecture

« MIPS follows RISC principles much more closely

than PowerPC and Itanium
* Based on the load/store architecture

* Registers
% 32-general purpose registers ($0 — $31)

» $0 — hardwired to zero
» $31 — used to store return address

* Program counter (PC)
» Like IP in Pentium

* Two special-purpose registers (HI and LO)

» Used in multiply and divide instructions

2003 © S. Dandamudi Chapter 15: Page 3

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

MIPS Processor Architecture (cont’d)

31 (o]
Zero (0]

at 1
vO 2
vl 3

a0 4

al 5

a2 6

a3 7

t0 8

tl 9

2 10 31 o
3 11 HI

t4 12 Lo

tS 13 Multiply and divide registers
t6 14

t7 15

sO 16

sl 17

s2 18 31 o
s3 19 PC

s4 20

s5 21 Program counter

s6 22

s7 23

8 24

t9 25
kO 26

k1 27

gp 28

sp 29

fp 30

ra 31

General-purpose registers
2003 © S. Dandamudi Chapter 15: Page 4

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

MIPS Processor Architecture (cont’d)

MIPS registers and their conventional usage

Register name | Number Intended usage

Zero 0 Constant 0

at 1 Reserved for assembler

v0, vl 2,3 Results of a procedure

a0, al, a2, a3 4-7 Arguments 1-4

t0—t7 8-15 Temporary (not preserved across call)

s0-s7 16-23 | Saved temporary (preserved across call)

t8, t9 24,25 | Temporary (not preserved across call)

kO, k1 26, 27 | Reserved for OS kernel

gp 28 Pointer to global area

Sp 29 Stack pointer

fp 30 Frame pointer (if needed);

otherwise, a saved register $s8

ra 31 Return address (used by a procedure call)

2003 © S. Dandamudi Chapter 15: Page 5

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

MIPS Processor Architecture (cont’d)

MIPS addressing modes
* Bare machine supports only a single addressing mode
disp (Rx)

* Virtual machine provides several additional addressing modes

Format Address computed as
(Rx) Contents of register Rx
imm Immediate value imm
imm(Rx) imm + contents of Rx
symbol Address of symbol
symbol + imm Address of symbol “+imm
symbol 4+ imm(Rx) Address of symbol =+ (imm + contents of Rx)

2003 © S. Dandamudi Chapter 15: Page 6

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Memory Usage

Memory addresses

7FFFFFFFH
Stack segment
Placement of l
segments allows
sharing of
unused memory T
by both data and Dynamic area
Data segment
stack segments Static area
10000000H
Text segment
4000000H
Reserved
0
2003 © S. Dandamudi Chapter 15: Page 7

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Instruction Format

31 26 25 21 20 16 15 0

op IS rt 16-bit immediate value

load, arithmetic/logical

with immediate operands I-Type (Immediate)

31 26 25 0

op 26-bit target

Higher order bits from PC are
J-Type (Jump) ydded to get absolute address

31 26 25 21 20 16 15 10 11 6 5 0
op 1S 1t rd sa function
R-Type (Register)
2003 © S. Dandamudi Chapter 15: Page 8

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

MIPS Instruction Set

e Data transfer instructions

* [Load and store instructions have similar format

1d Rdest, address

» Moves a byte from address to Rdest as a signed number
— Sign-extended to Rdest
» Use 1du for unsigned move (zero-extended)

* Use 1h, 1hu, 1d for moving halfwords
(signed/unsigned) and words

* Pseudoinstructions
la Rdest, address

1i Rdest, imm
» Implemented as ori Rdest, $0, imm

2003 © S. Dandamudi Chapter 15: Page 9

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

MIPS Instruction Set (cont’d)

* Store byte
sb Rsrc,address

» Use sh and sw for halfwords and words

* Pseudoinstruction
move Rdest, Rsrc

» Copies Rsrc to Rdest

* Four additional data movement instructions are
available
» Related to HI and LO registers
» Used with multiply and divide instructions
— Discussed later

2003 © S. Dandamudi Chapter 15: Page 10

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

MIPS Instruction Set (cont’d)

 Arithmetic instructions

* Addition
add Rdest,Rsrcl,Rsrc2

— Rdest «— Rsrcl + Rsrc2

— Numbers are treated as signed integers

— Overflow: Generates overflow exception

— Use addu if the overflow exception is not needed

addi Rdest,Rsrcl, imm
— imm: 16-bit signed number : :
, , Register or imm16
% Pseudoinstruction /
add Rdest,Rsrcl, Src2
2003 © S. Dandamudi Chapter 15: Page 11

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

MIPS Instruction Set (cont’d)

* Subtract
sub Rdest,Rsrcl,Rsrc2

— Rdest <~ Rsrcl — Rsrc2

— Numbers are treated as signed integers

— Overflow: Generates overflow exception

— Use subu if the overflow exception is not needed

— No immediate version
= Use addi with negative imm

* Pseudoinstruction
sub Rdest, Rsrcl, Src2

N

Register or imm16

2003 © S. Dandamudi Chapter 15: Page 12

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

MIPS Instruction Set (cont’d)

* Pseudoinstructions
neg Rdest,Rsrc

— Negates Rsrc (changes sign)
— Implemented as

sub Rdest, $0,Rsrc
abs Rdest, Rsrc Constant 8
— Implemented as / is used
bgez Rsrc, skip
sub Rdest, $0, Rsrc
skip:
2003 © S. Dandamudi Chapter 15: Page 13

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

MIPS Instruction Set (cont’d)

* Multiply
» mult (signed)

» multu (unsigned)

mult Rsrcl,Rsrc2
» 64-bit result in LO and HI registers

» Special data move instructions for LO/HI registers
mfhi Rdest

mflo Rdest

Pseudoinstruction e Register or imm
mul Rdest,Rsrcl,Rsrc?2

— 32-bit result in Rdest
= 64-bit result is not available

2003 © S. Dandamudi Chapter 15: Page 14

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

MIPS Instruction Set (cont’d)

* mul 1s implemented as

» If Rsrc2 is aregister

a0 = $4
al =935
at=9$1

mult Rsrcl,Src2
mflo Rdest

» If Rsrc2 is an immediate value (say 32)
ori $1,50,32
mult $5,51
mflo S4

2003

© S. Dandamudi

Chapter 15: Page 15

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

MIPS Instruction Set (cont’d)

* Divide
» diwv (signed)
» divu (unsigned)
div Rsrcl,Rsrc2
» Result=Rsrcl/Rsrc2
» LO = quotient, HI = remainder
» Result undefined if the divisor is zero

div Rdest,Rsrcl, Src2

— quotient in Rdest

rem Rdest,Rsrcl, Src2

— remainder in Rdest

2003 © S. Dandamudi Chapter 15: Page 16

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

MIPS Instruction Set (cont’d)

» Logical instructions

* Support AND, OR, XOR, NOR
and Rdest,Rsrcl, Rsrc2

andi Rdest,Rsrcl, imml6
* Also provides or, ori, xor, xori, nor

* NO not instruction

» It 1s provided as a pseudoinstruction

not Rdest, Rsrc
» Implemented as
nor Rdest,Rsrc, $0
2003 © S. Dandamudi Chapter 15: Page 17

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

MIPS Instruction Set (cont’d)

e Shift instructions

* Shift left logical

sll Rdest,Rsrcl, count
» Vacated bits receive zeros
» Shift left logical variable

sllv Rdest,Rsrcl,Rsrc2
» Shift count in Rsrc2

* Two shift right instructions
» Logical (srl, srlv)

— Vacated bits receive zeros
» Arithmetic (sra, srav)

— Vacated bits receive the sign bit (sign-extended)

2003 © S. Dandamudi Chapter 15: Page 18

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

MIPS Instruction Set (cont’d)

 Rotate instructions

* These are pseudoinstructions

rol Rdest,Rsrcl, Src2
ror Rdest,Rsrcl, Src2
» Example:
ror s$t2,5t2,31
1s translated as

sll $1,$10,31

srl $10,510,1 t2 =310
or $10,$10, 51

2003 © S. Dandamudi Chapter 15: Page 19

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

MIPS Instruction Set (cont’d)

e Comparison 1nstructions

* All are pseudoinstructions
slt Rdest,Rsrcl,Rsrc2

» Sets Rdest to 1 if Rsrcl < Rsrc2
» Unsigned version: s1ltu
» Others:

- seq

— sgt, sgtu

- sge, sgeu

—-s8le, sleu

- sne

2003 © S. Dandamudi Chapter 15: Page 20

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

MIPS Instruction Set (cont’d)

e Comparison instructions
» Example:
seq sal, $al, sa2

1s translated as
beq $6,55,skipl

ori $4,$0,0 a0 = $4
beq $0,$0, skip?2 al =385
skipl: a2 = $6
ori $4,50,1
skip2:
2003 © S. Dandamudi Chapter 15: Page 21

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

MIPS Instruction Set (cont’d)

* Branch and Jump instructions

* Jump 1nstruction
J target
» Uses 26-bit absolute address
* Branch pseudoinstruction
b target
» Uses 16-bit relative address
% Conditional branches
beq Rsrcl,Rsrc2, target

» Jumps to target if Rsrcl = Rsrc2

2003 © S. Dandamudi Chapter 15: Page 22

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

MIPS Instruction Set (cont’d)

% QOther branch 1nstructions
bne
blt, bltu
bgt, bgtu
ble, bleu
bge, bgeu
* Comparison with zero
beqz Rsrc, target
» Branches to target if Rsrc =0
» Others
— bnez, bltz, bgtz, blez, bgez
» b target is implemented as bgez $0,target

2003 © S. Dandamudi Chapter 15: Page 23

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

SPIM System Calls

* SPIM supports I/O through syscall
* Data types:

» string, integer, float, double
— Service code: $v0
— Required arguments: $a0 and $al
— Return value: $v0
* print string
» Prints a NULL-terminated string
* read string
» Takes a buffer pointer and its size n

» Reads at most n-1 characters in NULL-terminated string
» Similar to £gets

2003 © S. Dandamudi Chapter 15: Page 24

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

SPIM System Calls (cont’d)

Service System call code Arguments Result
print_int 1 $a0 = integer
print_float 2 $f12 = oat
print_double 3 $f12 = double
print_sting 4 Sa0 = string address
read_int 5 Integer in SvO
read_float 6 Float in $f0
read_double 7 Double in $f0
read_string 8 Sa0 = buffer address
$al = buffer size

sbrk 9 Address in $v0
exit 10

2003 © S. Dandamudi Chapter 15: Page 25

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,”

Springer, 2003.

SPIM System Calls (cont’d)

.DATA
prompt:

.ASCIIZ “Enter your name: "“
in-name:

.SPACE 31

. TEXT

la $al,prompt

1i s$v0,4

syscall

la $al0,in name

1i $al,31l

1i $v0,8

syscall
2003 © S. Dandamudi Chapter 15: Page 26

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

SPIM Assembler Directives

* Segment declaration Optional; if present,

* Code: . TEXT / segment starts at
. TEXT <address that address
* Data: . DATA

* String directives

* JASCII Example:

» Not NULL-terminated ASCII “This is a very long string”
% _ASCIIY ASCII “spread over multiple

ASCIIZ “string statements.”
» Null-terminated

e Uninitialized space
.SPACE n

2003 © S. Dandamudi Chapter 15: Page 27

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

SPIM Assembler Directives (cont’d)

e Data directives

* Provides four directives:
> .HALF, .WORD
= .FLOAT, .DOUBLE
.HALF hl, h2, . . ., hn
— Allocates 16-bit halfwords
— Use .WORD for 32-bit words
» Floating-point numbers
— Single-precision
. FLOAT £1, £2, . . . , fn
— Use .DOUBLE for double-precision

2003 © S. Dandamudi Chapter 15: Page 28

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

SPIM Assembler Directives (cont’d)

 Miscellaneous directives

* Data alignment
» Default:

- .HALF, .WORD, .FLOAT, .DOUBLE align data

» Explicit control:
+ALIGN n

aligns the next datum on a 2" byte boundary

» To turn off alignment, use
+ALIGN 0

* ., GLOBL declares a symbol global

. TEXT
.GLOBL main
main:

2003 © S. Dandamudi

Chapter 15: Page 29

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

[llustrative Examples

e Character to binary conversion

* binch.asm

e (Case conversion

* toupper.asm

* Sum of digits — string version
* addigits.asm

* Sum of digits — number version
* addigits2.asm

2003 © S. Dandamudi Chapter 15: Page 30

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Procedures

 Two Instructions
* Procedure call
» jal (jump and link)
jal proc name

* Return from a procedure
jr Sra

« Parameter passing
— Via registers
— Via the stack

« Examples
» min- max.asm
» str len.asm

2003 © S. Dandamudi Chapter 15: Page 31

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Stack Implementation

* No explicit support
» No push/pop instructions
» Need to manipulate stack pointer explicitly
— Stack grows downward as in Pentium
* Example: push registers a0 and ra
sub $sp,$sp,8 #Hreserve 8 bytes of stack
SW $a0, 0 ($sp) #save registers
sw $ra,4($sp)
* pop operation
1w $a0, 0 ($sp) #Hrestore registers
1w $al0,4 ($sp)
addu $sp, $sp,8 f#clear 8 bytes of stack

2003 © S. Dandamudi Chapter 15: Page 32

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

[llustrative Examples

» Passing variable number of parameters to a
procedure

var para.asm

e Recursion examples
Factorial.asm

Quicksort.asm

Last slide

2003 © S. Dandamudi Chapter 15: Page 33

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

