
MIPS Assembly Language

Chapter 15
S. Dandamudi

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 15: Page 2

Outline

• MIPS architecture
∗ Registers
∗ Addressing modes

• MIPS instruction set
∗ Instruction format
∗ Data transfer instructions
∗ Arithmetic instructions
∗ Logical/shift/rotate/compare

instructions
∗ Branch and jump

instructions

• SPIM system calls
• SPIM assembler directive
• Illustrative examples
• Procedures
• Stack implementation
• Illustrative examples

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 15: Page 3

MIPS Processor Architecture

• MIPS follows RISC principles much more closely
than PowerPC and Itanium
∗ Based on the load/store architecture

• Registers
∗ 32-general purpose registers ($0 – $31)

» $0 – hardwired to zero
» $31 – used to store return address

∗ Program counter (PC)
» Like IP in Pentium

∗ Two special-purpose registers (HI and LO)
» Used in multiply and divide instructions

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 15: Page 4

MIPS Processor Architecture (cont’d)

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 15: Page 5

MIPS Processor Architecture (cont’d)
MIPS registers and their conventional usage

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 15: Page 6

MIPS Processor Architecture (cont’d)

MIPS addressing modes
∗ Bare machine supports only a single addressing mode

disp(Rx)

∗ Virtual machine provides several additional addressing modes

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 15: Page 7

Memory Usage

Placement of
segments allows
sharing of
unused memory
by both data and
stack segments

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 15: Page 8

Instruction Format

load, arithmetic/logical
with immediate operands

Higher order bits from PC are
added to get absolute address

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 15: Page 9

MIPS Instruction Set

• Data transfer instructions
∗ Load and store instructions have similar format

ld Rdest,address
» Moves a byte from address to Rdest as a signed number

– Sign-extended to Rdest
» Use ldu for unsigned move (zero-extended)

∗ Use lh, lhu, ld for moving halfwords
(signed/unsigned) and words

∗ Pseudoinstructions
la Rdest,address

li Rdest,imm

» Implemented as ori Rdest,$0,imm

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 15: Page 10

MIPS Instruction Set (cont’d)

∗ Store byte
sb Rsrc,address
» Use sh and sw for halfwords and words

∗ Pseudoinstruction
move Rdest,Rsrc
» Copies Rsrc to Rdest

∗ Four additional data movement instructions are
available

» Related to HI and LO registers
» Used with multiply and divide instructions

– Discussed later

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 15: Page 11

MIPS Instruction Set (cont’d)

• Arithmetic instructions
∗ Addition

add Rdest,Rsrc1,Rsrc2

– Rdest ← Rsrc1 + Rsrc2
– Numbers are treated as signed integers
– Overflow: Generates overflow exception
– Use addu if the overflow exception is not needed

addi Rdest,Rsrc1,imm
– imm: 16-bit signed number

∗ Pseudoinstruction
add Rdest,Rsrc1,Src2

Register or imm16

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 15: Page 12

MIPS Instruction Set (cont’d)

∗ Subtract
sub Rdest,Rsrc1,Rsrc2

– Rdest ← Rsrc1 − Rsrc2
– Numbers are treated as signed integers
– Overflow: Generates overflow exception
– Use subu if the overflow exception is not needed
– No immediate version

Use addi with negative imm

∗ Pseudoinstruction
sub Rdest,Rsrc1,Src2

Register or imm16

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 15: Page 13

MIPS Instruction Set (cont’d)

∗ Pseudoinstructions
neg Rdest,Rsrc

– Negates Rsrc (changes sign)
– Implemented as

sub Rdest,$0,Rsrc

abs Rdest,Rsrc

– Implemented as
bgez Rsrc,skip

sub Rdest,$0,Rsrc

skip:

Constant 8
is used

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 15: Page 14

MIPS Instruction Set (cont’d)

∗ Multiply
» mult (signed)
» multu (unsigned)

mult Rsrc1,Rsrc2
» 64-bit result in LO and HI registers
» Special data move instructions for LO/HI registers

mfhi Rdest

mflo Rdest

∗ Pseudoinstruction
mul Rdest,Rsrc1,Rsrc2

– 32-bit result in Rdest
64-bit result is not available

Register or imm

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 15: Page 15

MIPS Instruction Set (cont’d)

∗ mul is implemented as
» If Rsrc2 is a register

mult Rsrc1,Src2

mflo Rdest
» If Rsrc2 is an immediate value (say 32)

ori $1,$0,32

mult $5,$1

mflo $4

a0 = $4
a1 = $5
at = $1

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 15: Page 16

MIPS Instruction Set (cont’d)

∗ Divide
» div (signed)
» divu (unsigned)

div Rsrc1,Rsrc2
» Result = Rsrc1/Rsrc2
» LO = quotient, HI = remainder
» Result undefined if the divisor is zero

∗ Pseudoinstruction
div Rdest,Rsrc1,Src2

– quotient in Rdest
rem Rdest,Rsrc1,Src2

– remainder in Rdest

Register or imm

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 15: Page 17

MIPS Instruction Set (cont’d)

• Logical instructions
∗ Support AND, OR, XOR, NOR

and Rdest,Rsrc1,Rsrc2

andi Rdest,Rsrc1,imm16

∗ Also provides or, ori, xor, xori, nor
∗ No not instruction

» It is provided as a pseudoinstruction
not Rdest,Rsrc

» Implemented as
nor Rdest,Rsrc,$0

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 15: Page 18

MIPS Instruction Set (cont’d)

• Shift instructions
∗ Shift left logical

sll Rdest,Rsrc1,count
» Vacated bits receive zeros
» Shift left logical variable

sllv Rdest,Rsrc1,Rsrc2
» Shift count in Rsrc2

∗ Two shift right instructions
» Logical (srl, srlv)

– Vacated bits receive zeros
» Arithmetic (sra, srav)

– Vacated bits receive the sign bit (sign-extended)

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 15: Page 19

MIPS Instruction Set (cont’d)

• Rotate instructions
∗ These are pseudoinstructions

rol Rdest,Rsrc1,Src2

ror Rdest,Rsrc1,Src2

» Example:
ror $t2,$t2,31

is translated as
sll $1,$10,31

srl $10,$10,1

or $10,$10,$1
t2 = $10

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 15: Page 20

MIPS Instruction Set (cont’d)

• Comparison instructions
∗ All are pseudoinstructions

slt Rdest,Rsrc1,Rsrc2

» Sets Rdest to 1 if Rsrc1 < Rsrc2

» Unsigned version: sltu
» Others:

–seq
–sgt, sgtu
–sge, sgeu
–sle, sleu
–sne

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 15: Page 21

MIPS Instruction Set (cont’d)

• Comparison instructions
» Example:

seq $a0,$a1,$a2

is translated as
beq $6,$5,skip1

ori $4,$0,0

beq $0,$0,skip2

skip1:

ori $4,$0,1

skip2:

a0 = $4
a1 = $5
a2 = $6

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 15: Page 22

MIPS Instruction Set (cont’d)

• Branch and Jump instructions
∗ Jump instruction

j target

» Uses 26-bit absolute address

∗ Branch pseudoinstruction
b target

» Uses 16-bit relative address

∗ Conditional branches
beq Rsrc1,Rsrc2,target

» Jumps to target if Rsrc1 = Rsrc2

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 15: Page 23

MIPS Instruction Set (cont’d)

∗ Other branch instructions
bne

blt, bltu

bgt, bgtu

ble, bleu

bge, bgeu

∗ Comparison with zero
beqz Rsrc,target

» Branches to target if Rsrc = 0
» Others

– bnez, bltz, bgtz, blez, bgez

» b target is implemented as bgez $0,target

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 15: Page 24

SPIM System Calls

• SPIM supports I/O through syscall
∗ Data types:

» string, integer, float, double
– Service code: $v0
– Required arguments: $a0 and $a1
– Return value: $v0

∗ print_string
» Prints a NULL-terminated string

∗ read_string
» Takes a buffer pointer and its size n
» Reads at most n-1 characters in NULL-terminated string
» Similar to fgets

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 15: Page 25

SPIM System Calls (cont’d)

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 15: Page 26

SPIM System Calls (cont’d)
.DATA

prompt:
.ASCIIZ “Enter your name: “

in-name:
.SPACE 31
.TEXT

. . .
la $a0,prompt
li $v0,4
syscall
la $a0,in_name
li $a1,31
li $v0,8
syscall

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 15: Page 27

SPIM Assembler Directives

• Segment declaration
∗ Code: .TEXT

.TEXT <address>

∗ Data: .DATA
• String directives

∗ .ASCII
» Not NULL-terminated

∗ .ASCIIZ
» Null-terminated

• Uninitialized space
.SPACE n

Optional; if present,
segment starts at
that address

Example:
ASCII “This is a very long string”
ASCII “spread over multiple
ASCIIZ “string statements.”

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 15: Page 28

SPIM Assembler Directives (cont’d)

• Data directives
∗ Provides four directives:

.HALF, .WORD

.FLOAT, .DOUBLE

.HALF h1, h2, . . ., hn

– Allocates 16-bit halfwords
– Use .WORD for 32-bit words

» Floating-point numbers
– Single-precision

.FLOAT f1, f2, . . . , fn

– Use .DOUBLE for double-precision

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 15: Page 29

SPIM Assembler Directives (cont’d)

• Miscellaneous directives
∗ Data alignment

» Default:
– .HALF, .WORD, .FLOAT, .DOUBLE align data

» Explicit control:
.ALIGN n

aligns the next datum on a 2n byte boundary
» To turn off alignment, use

.ALIGN 0

∗ .GLOBL declares a symbol global
.TEXT
.GLOBL main

main:
. . .

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 15: Page 30

Illustrative Examples

• Character to binary conversion
∗ binch.asm

• Case conversion
∗ toupper.asm

• Sum of digits – string version
∗ addigits.asm

• Sum of digits – number version
∗ addigits2.asm

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 15: Page 31

Procedures

• Two instructions
∗ Procedure call

» jal (jump and link)
jal proc_name

∗ Return from a procedure
jr $ra

• Parameter passing
– Via registers
– Via the stack

• Examples
» min-_max.asm
» str_len.asm

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 15: Page 32

Stack Implementation

• No explicit support
» No push/pop instructions
» Need to manipulate stack pointer explicitly

– Stack grows downward as in Pentium
∗ Example: push registers a0 and ra

sub $sp,$sp,8 #reserve 8 bytes of stack
sw $a0,0($sp) #save registers
sw $ra,4($sp)

∗ pop operation
lw $a0,0($sp) #restore registers
lw $a0,4($sp)

addu $sp,$sp,8 #clear 8 bytes of stack

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 15: Page 33

Illustrative Examples

• Passing variable number of parameters to a
procedure

var_para.asm

• Recursion examples
Factorial.asm

Quicksort.asm

Last slide

