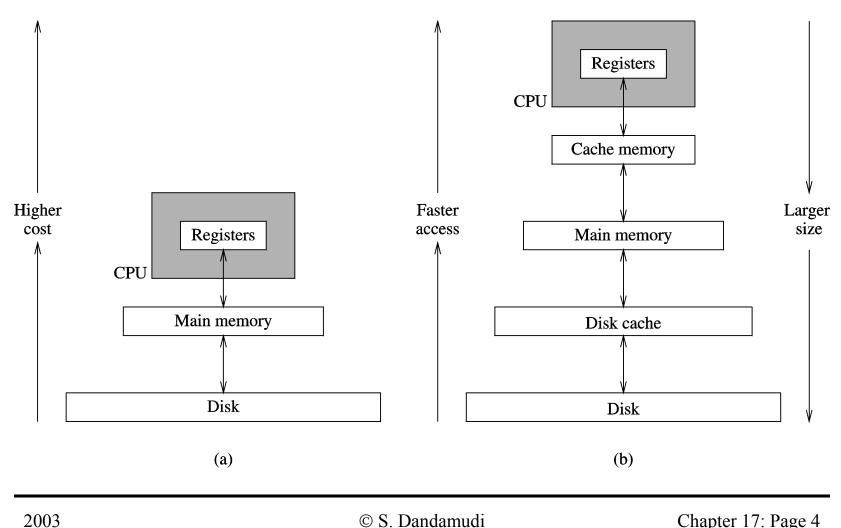
Cache Memory

Chapter 17 S. Dandamudi

Outline

- Introduction
- How cache memory works
- Why cache memory works
- Cache design basics
- Mapping function
 - * Direct mapping
 - * Associative mapping
 - * Set-associative mapping
- Replacement policies
- Write policies
- Space overhead

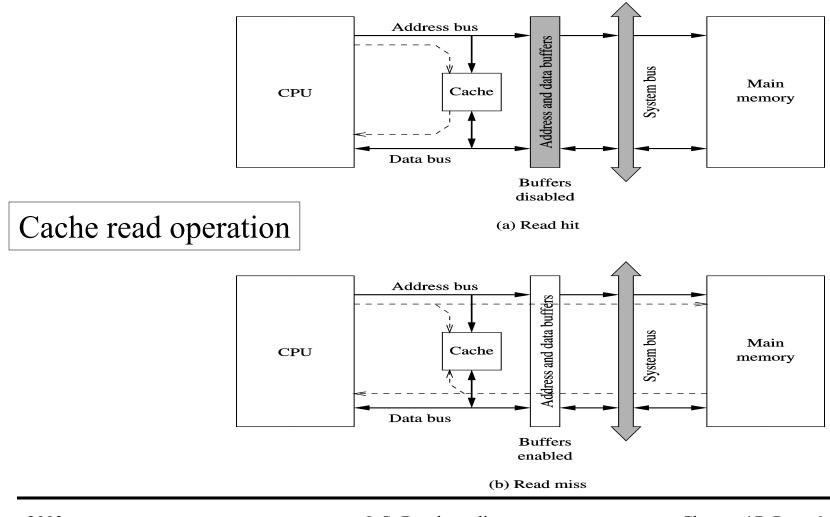

- Types of cache misses
- Types of caches
- Example implementations
 - * Pentium
 - * PowerPC
 - * MIPS
- Cache operation summary
- Design issues
 - * Cache capacity
 - * Cache line size
 - * Degree of associatively

© S. Dandamudi

Introduction

- Memory hierarchy
 - * Registers
 - * Memory
 - * Disk
 - * ...
- Cache memory is a small amount of fast memory
 - * Placed between two levels of memory hierarchy
 - » To bridge the gap in access times
 - Between processor and main memory (our focus)
 - Between main memory and disk (disk cache)
 - * Expected to behave like a large amount of fast memory

Introduction (cont'd)

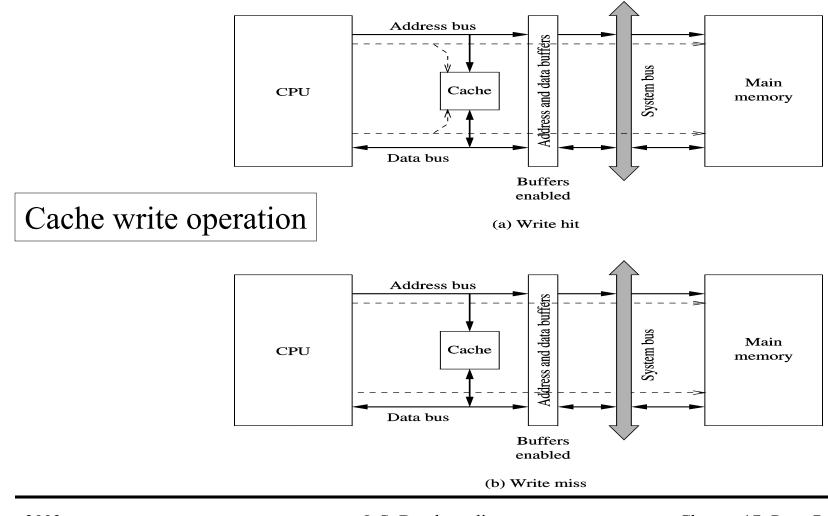

© S. Dandamudi

Chapter 17: Page 4

How Cache Memory Works

- Prefetch data into cache before the processor needs it
 - * Need to predict processor future access requirements
 - » Not difficult owing to *locality of reference*
- Important terms
 - * Miss penalty
 - * Hit ratio
 - * Miss ratio = (1 hit ratio)
 - * Hit time

How Cache Memory Works (cont'd)



2003

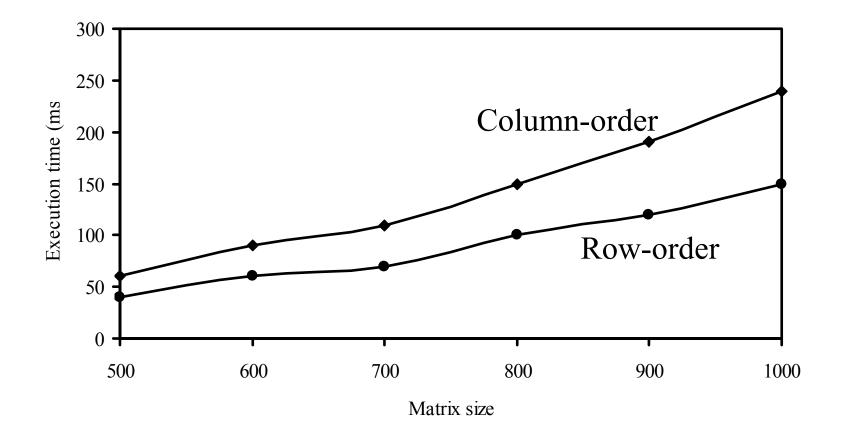
© S. Dandamudi

Chapter 17: Page 6

How Cache Memory Works (cont'd)

2003

© S. Dandamudi


Chapter 17: Page 7

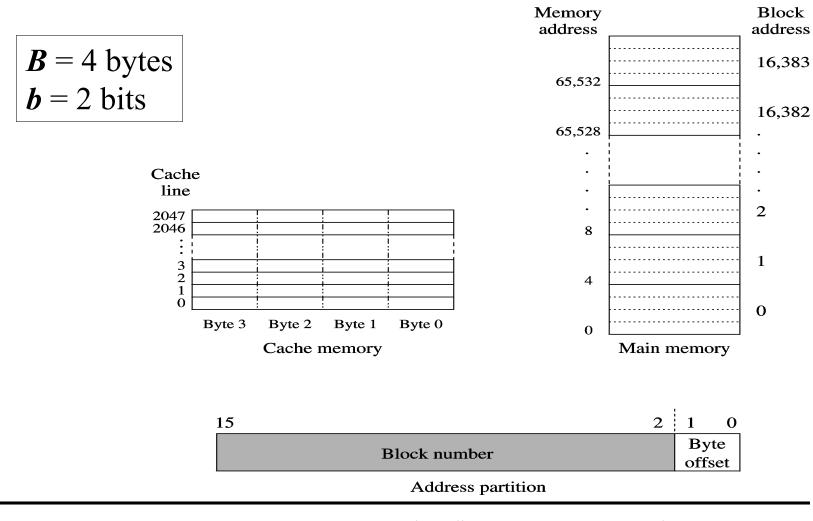
Why Cache Memory Works

• Example

- * Each element of X is **double** (eight bytes)
- * Loop is executed (M*N) times
 - » Placing the code in cache avoids access to main memory
 - Repetitive use (one of the factors)
 - Temporal locality
 - » Prefetching data
 - Spatial locality

How Cache Memory Works (cont'd)

To be used with S. Dandamudi, "Fundamentals of Computer Organization and Design," Springer, 2003.

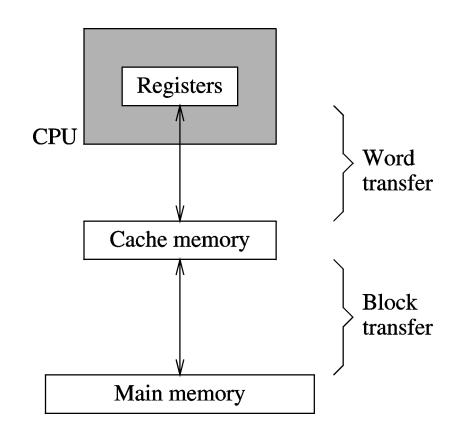

Cache Design Basics

- On every read miss
 - * A fixed number of bytes are transferred
 - » More than what the processor needs
 - Effective due to spatial locality
- Cache is divided into blocks of **B** bytes
 - » *b*-bits are needed as offset into the block

 $\boldsymbol{b} = \log_2 \boldsymbol{B}$

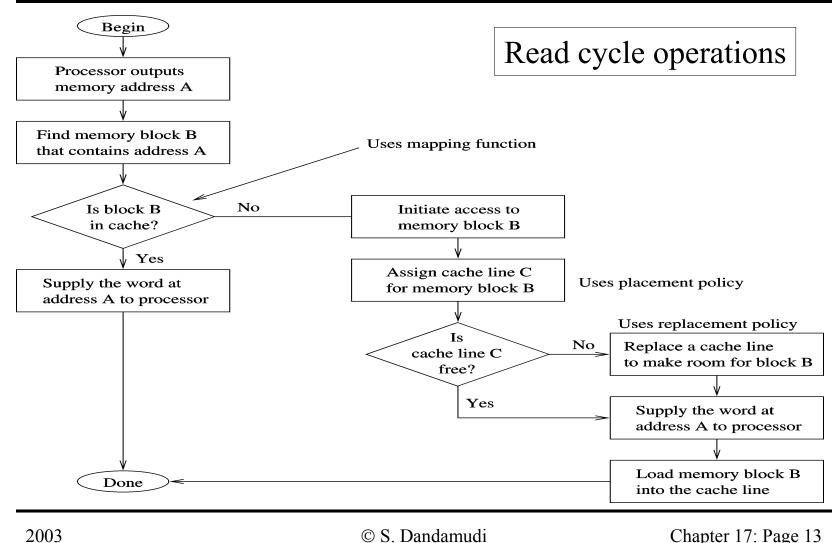
- » Block are called *cache lines*
- Main memory is also divided into blocks of same size
 - * Address is divided into two parts

Cache Design Basics (cont'd)


2003

© S. Dandamudi

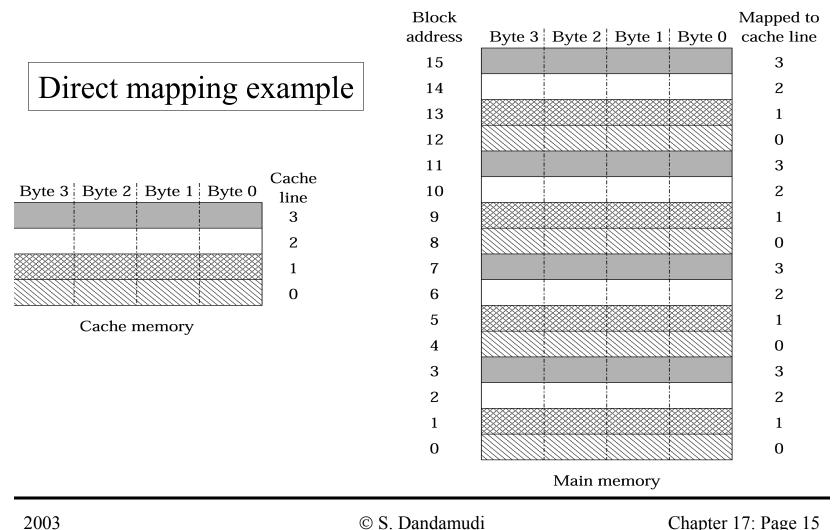
Chapter 17: Page 11


Cache Design Basics (cont'd)

- Transfer between main memory and cache
 - * In units of blocks
 - * Implements spatial locality
- Transfer between main memory and cache
 - * In units of words
- Need policies for
 - * Block placement
 - * Mapping function
 - * Block replacement
 - * Write policies

© S. Dandamudi

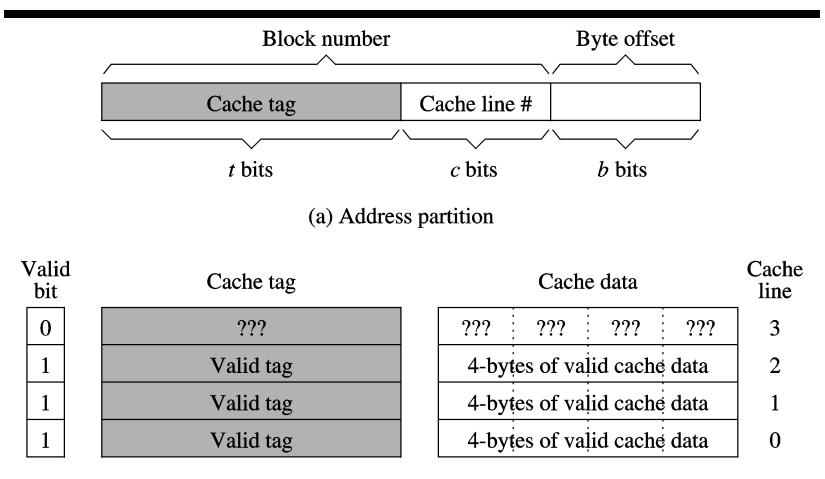
Cache Design Basics (cont'd)



To be used with S. Dandamudi, "Fundamentals of Computer Organization and Design," Springer, 2003.

2003

Mapping Function


- Determines how memory blocks are mapped to cache lines
- Three types •
 - Direct mapping *
 - » Specifies a single cache line for each memory block
 - * Set-associative mapping
 - » Specifies a set of cache lines for each memory block
 - * Associative mapping
 - » No restrictions
 - Any cache line can be used for any memory block

© S. Dandamudi

Chapter 17: Page 15

- Implementing direct mapping
 - * Easier than the other two
 - * Maintains three pieces of information
 - » Cache data
 - Actual data
 - » Cache tag
 - Problem: More memory blocks than cache lines
 - \rightarrow Several memory blocks are mapped to a cache line
 - Tag stores the address of memory block in cache line
 - » Valid bit
 - Indicates if cache line contains a valid block

(b) Cache memory details

Chapter 17: Page 17

To be used with S. Dandamudi, "Fundamentals of Computer Organization and Design," Springer, 2003.

© S. Dandamudi

2003

	Table 17.1 Direct-mapped cache state for Example 17.2					
	Block accessed	Hit or miss	Cache line 0	Cache line 1	Cache line 2	Cache line 3
_	0	Miss	Block 0	???	???	???
	4	Miss	Block 4	???	???	???
Direct mapping	g 0	Miss	Block 0	???	???	???
	8	Miss	Block 8	???	???	???
	0	Miss	Block 0	???	???	???
Reference pattern: 0, 4, 0, 8, 0, 8, 0, 4, 0, 4, 0, 4	8	Miss	Block 8	???	???	???
	0	Miss	Block 0	???	???	???
	4	Miss	Block 4	???	???	???
	0	Miss	Block 0	???	???	???
	4	Miss	Block 4	???	???	???
Hit ratio = 0%	0	Miss	Block 0	???	???	???
	4	Miss	Block 4	???	???	???

© S. Dandamudi

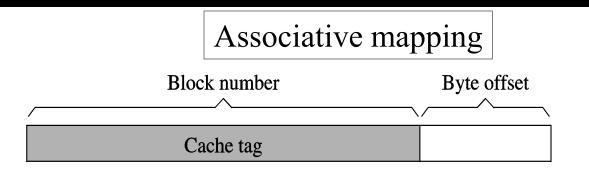
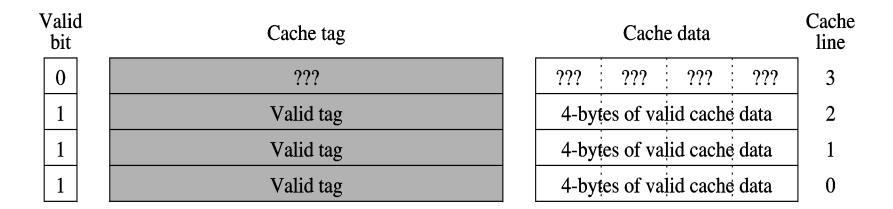

	Block accessed		Cache line 0	Cache line 1	Cache line 2	Cache line 3
_	0	Miss	Block 0	???	???	???
Direct mapping	7	Miss	Block 0	???	???	Block 7
	g 9	Miss	Block 0	Block 9	???	Block 7
	10	Miss	Block 0	Block 9	Block 10	Block 7
Reference pattern: 0, 7, 9, 10, 0, 7, 9, 10, 0, 7, 9, 10	0	Hit	Block 0	Block 9	Block 10	Block 7
	7	Hit	Block 0	Block 9	Block 10	Block 7
	9	Hit	Block 0	Block 9	Block 10	Block 7
	10	Hit	Block 0	Block 9	Block 10	Block 7
Hit ratio = 67%	0	Hit	Block 0	Block 9	Block 10	Block 7
	7	Hit	Block 0	Block 9	Block 10	Block 7
	9	Hit	Block 0	Block 9	Block 10	Block 7
	10	Hit	Block 0	Block 9	Block 10	Block 7

 Table 17.2 Direct-mapped cache state for Example 17.3


2003

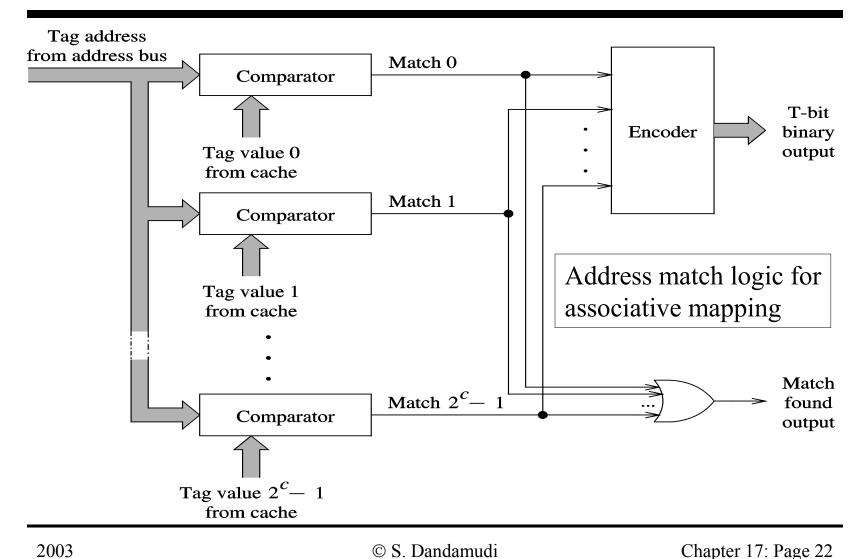
© S. Dandamudi

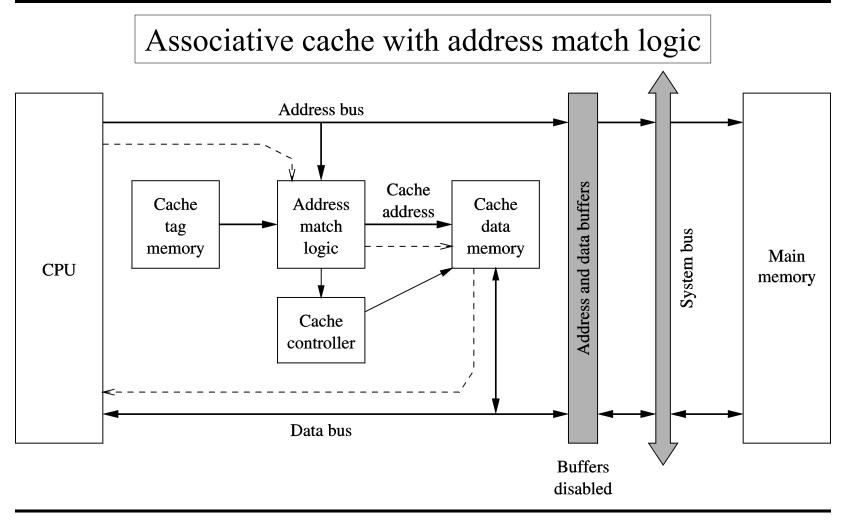
Chapter 17: Page 19

(a) Address partition

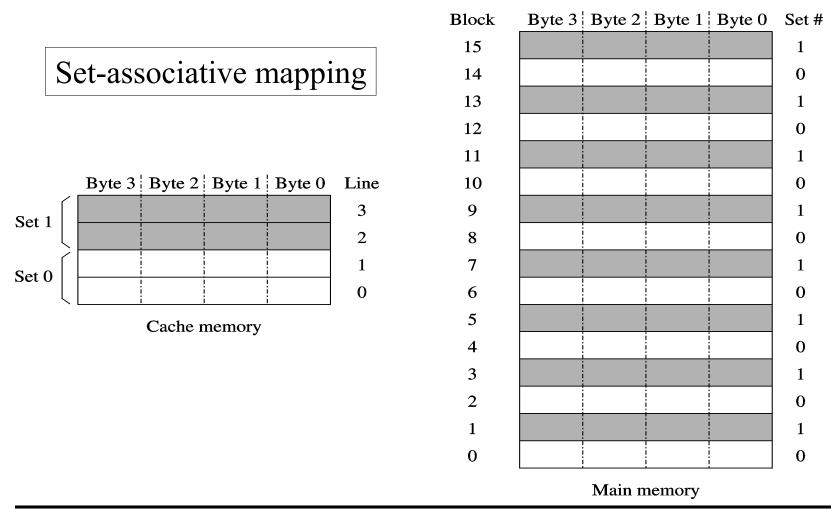
(b) Cache memory details

© S. Dandamudi

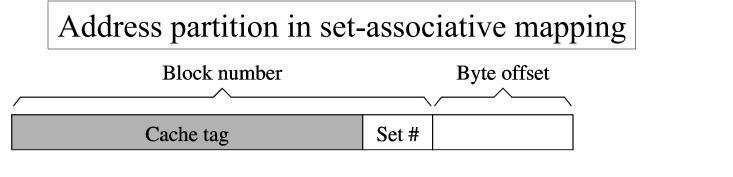

Chapter 17: Page 20

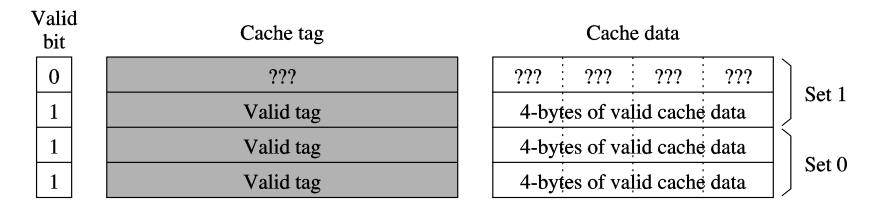

	Table 17.3 Fully associative cache state for Example 17.4					
	Block accessed	Hit or miss	Cache line 0	Cache line 1	Cache line 2	Cache line 3
	0	Miss	Block 0	???	???	???
Associative	4	Miss	Block 0	Block 4	???	???
mapping	0	Hit	Block 0	Block 4	???	???
	8	Miss	Block 0	Block 4	Block 8	???
Reference pattern: 0, 4, 0, 8, 0, 8, 0, 4, 0, 4, 0, 4	0	Hit	Block 0	Block 4	Block 8	???
	8	Hit	Block 0	Block 4	Block 8	???
	0	Hit	Block 0	Block 4	Block 8	???
	4	Hit	Block 0	Block 4	Block 8	???
[]	0	Hit	Block 0	Block 4	Block 8	???
	4	Hit	Block 0	Block 4	Block 8	???
Hit ratio = 75%	0	Hit	Block 0	Block 4	Block 8	???
	4	Hit	Block 0	Block 4	Block 8	???

2003


© S. Dandamudi

Chapter 17: Page 21




© S. Dandamudi

© S. Dandamudi

(a) Address partition

(b) Cache memory details

© S. Dandamudi

	Table 17.4 Set-associative cache state for Example 17.5						
	Block accessed		Hit or	Set 0		Set 1	
			miss	Cache	Cache	Cache	Cache
_				line 0	line 1	line 0	line 1
		0	Miss	Block 0	???	???	???
Set-associative		4	Miss	Block 0	Block 4	???	???
mapping		0	Hit	Block 0	Block 4	???	???
		8	Miss	Block 0	Block 8	???	???
		0	Hit	Block 0	Block 8	???	???
Reference pattern: 0, 4, 0, 8, 0, 8, 0, 4, 0, 4, 0, 4	rn•	8	Hit	Block 0	Block 8	???	???
	111.	0	Hit	Block 0	Block 8	???	???
		4	Miss	Block 0	Block 4	???	???
		0	Hit	Block 0	Block 4	???	???
Hit ratio = 67%		4	Hit	Block 0	Block 4	???	???
	/	0	Hit	Block 0	Block 4	???	???
	0	4	Hit	Block 0	Block 4	???	???

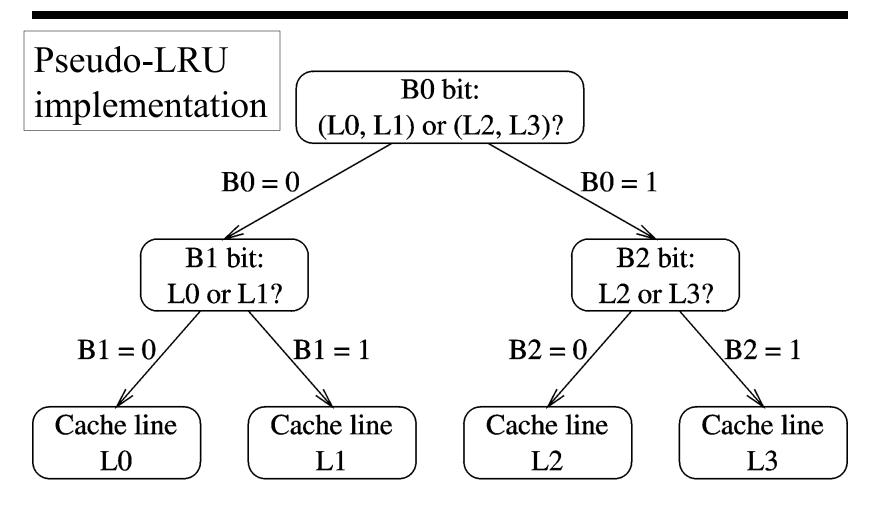
.

2003

© S. Dandamudi

Chapter 17: Page 26

Replacement Policies

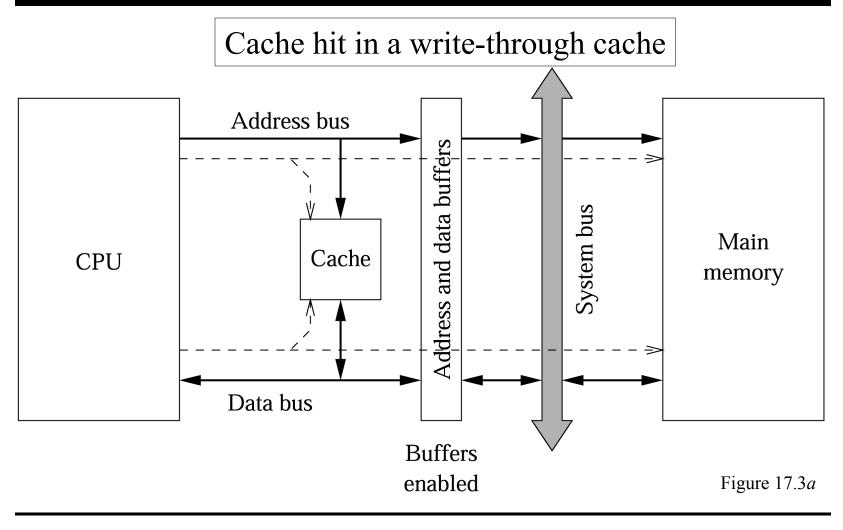

- We invoke the replacement policy
 - * When there is no place in cache to load the memory block
- Depends on the actual placement policy in effect
 - * Direct mapping does not need a special replacement policy
 - » Replace the mapped cache line
 - * Several policies for the other two mapping functions
 - » Popular: LRU (least recently used)
 - » Random replacement
 - » Less interest (FIFO, LFU)

© S. Dandamudi

Replacement Policies (cont'd)

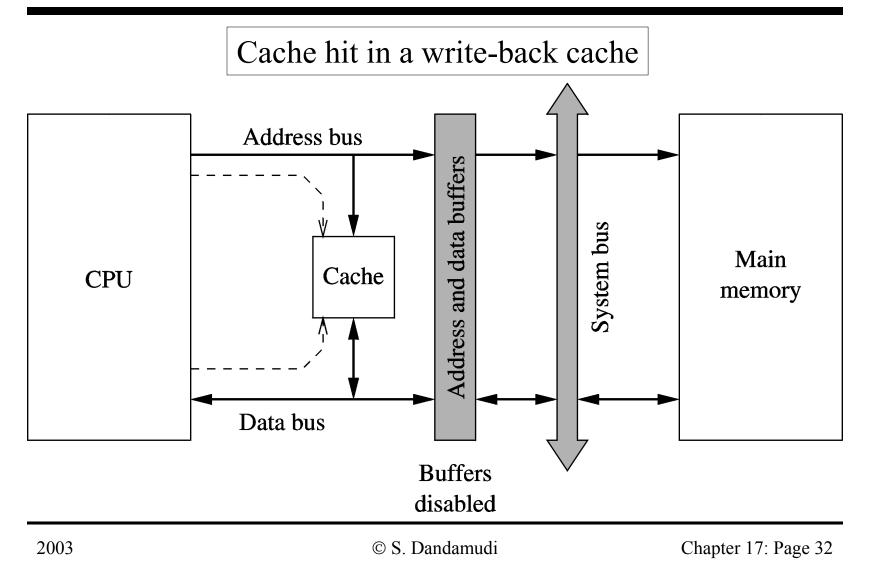
- LRU
 - * Expensive to implement
 - » Particularly for set sizes more than four
- Implementations resort to approximation
 - * Pseudo-LRU
 - » Partitions sets into two groups
 - Maintains the group that has been accessed recently
 - Requires only one bit
 - » Requires only (*W*-1) bits (W = degree of associativity)
 - PowerPC is an example
 - →Details later

Replacement Policies (cont'd)



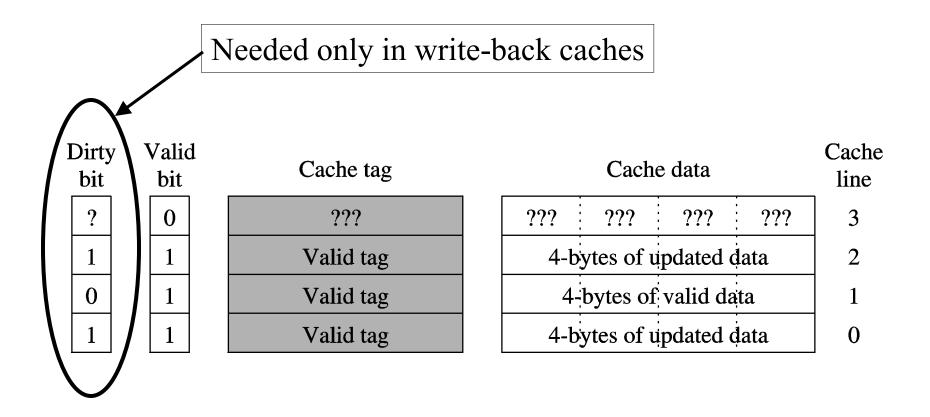
© S. Dandamudi Chapter 17: Page 29 To be used with S. Dandamudi, "Fundamentals of Computer Organization and Design," Springer, 2003.

2003


Write Policies

- Memory write requires special attention
 - * We have two copies
 - » A memory copy
 - » A cached copy
 - * Write policy determines how a memory write operation is handled
 - » Two policies
 - Write-through
 - →Update both copies
 - Write-back
 - \rightarrow Update only the cached copy
 - \rightarrow Needs to be taken care of the memory copy

© S. Dandamudi


Chapter 17: Page 31

- Write-back policy
 - * Updates the memory copy when the cache copy is being replaced
 - » We first write the cache copy to update the memory copy
 - * Number of write-backs can be reduced if we write only when the cache copy is different from memory copy
 - » Done by associating a *dirty bit* or *update bit*
 - Write back only when the dirty bit is 1
 - » Write-back caches thus require two bits
 - A valid bit
 - A dirty or update bit

To be used with S. Dandamudi, "Fundamentals of Computer Organization and Design," Springer, 2003.

© S. Dandamudi

- Other ways to reduce write traffic
 - * Buffered writes
 - » Especially useful for write-through policies
 - » Writes to memory are buffered and written at a later time
 - Allows write combining

 \rightarrow Catches multiple writes in the buffer itself

- * Example: Pentium
 - » Uses a 32-byte write buffer
 - » Buffer is written at several trigger points
 - An example trigger point

→Buffer full condition

Chapter 17: Page 35

© S. Dandamudi

- Write-through versus write-back
 - * Write-through
 - » Advantage
 - Both cache and memory copies are consistent
 - →Important in multiprocessor systems
 - » Disadvantage
 - Tends to waste bus and memory bandwidth
 - * Write-back
 - » Advantage
 - Reduces write traffic to memory
 - » Disadvantages
 - Takes longer to load new cache lines
 - Requires additional dirty bit

To be used with S. Dandamudi, "Fundamentals of Computer Organization and Design," Springer, 2003.

© S. Dandamudi

Space Overhead

- The three mapping functions introduce different space overheads
 - * Overhead decreases with increasing degree of associativity
 - » Several examples in the text

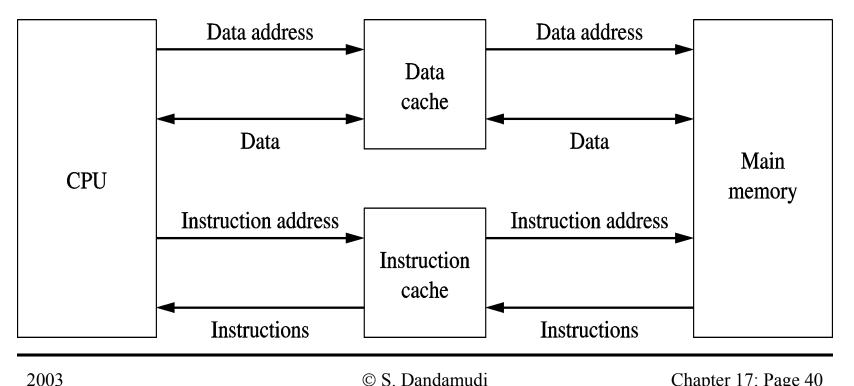
4 GB address space 32 KB cache

Block size	Direct mapping	4-way set-associative	Fully associative
	(%)	(%)	(%)
32 bytes	7	7.8	11
4 bytes	56	62.5	97

 Table 17.5 Cache space overhead for the three organizations

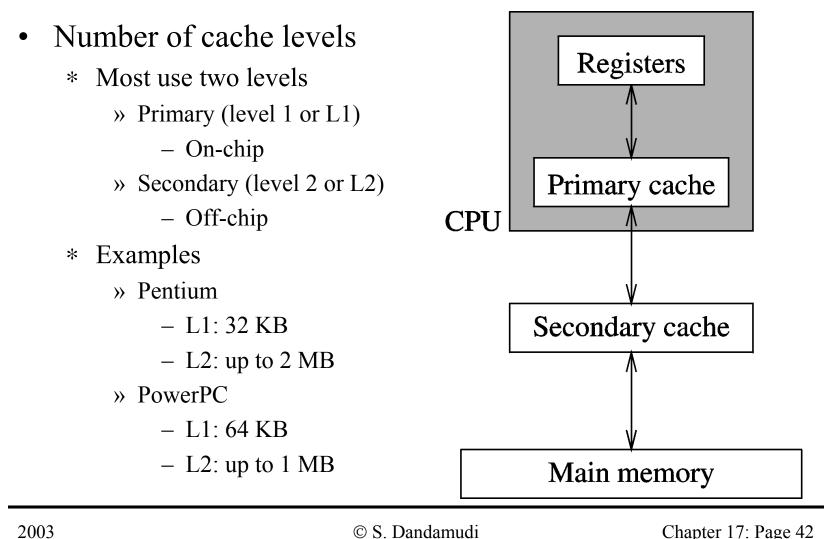
© S. Dandamudi

Types of Cache Misses

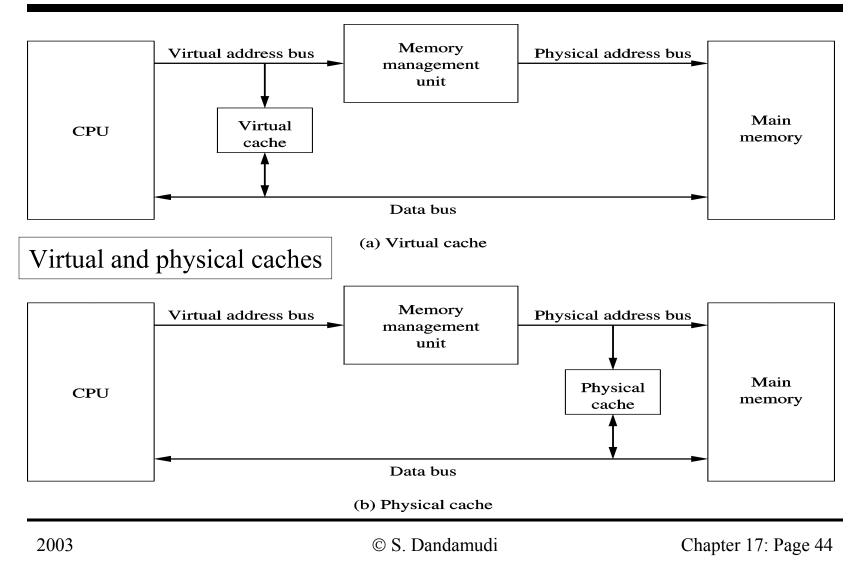

- Three types
 - * Compulsory misses
 - » Due to first-time access to a block
 - Also called *cold-start misses* or *compulsory line fills*
 - * Capacity misses
 - » Induced due to cache capacity limitation
 - » Can be avoided by increasing cache size
 - * Conflict misses
 - » Due to conflicts caused by direct and set-associative mappings
 - Can be completely eliminated by fully associative mapping
 - Also called *collision misses*

Types of Cache Misses (cont'd)

- Compulsory misses
 - * Reduced by increasing block size
 - » We prefetch more
 - » Cannot increase beyond a limit
 - Cache misses increase
- Capacity misses
 - * Reduced by increasing cache size
 - » Law of diminishing returns
- Conflict misses
 - * Reduced by increasing degree of associativity
 - » Fully associative mapping: no conflict misses


Types of Caches

- Separate instruction and data caches
 - » Initial cache designs used unified caches
 - » Current trend is to use separate caches (for level 1)



© S. Dandamudi

- Several reasons for preferring separate caches
 - * Locality tends to be stronger
 - * Can use different designs for data and instruction caches
 - » Instruction caches
 - Read only, dominant sequential access
 - No need for write policies
 - Can use a simple direct mapped cache implementation
 - » Data caches
 - Can use a set-associative cache
 - Appropriate write policy can be implemented
 - * Disadvantage
 - » Rigid boundaries between data and instruction caches

- Two-level caches work as follows:
 - * First attempts to get data from L1 cache
 - » If present in L1, gets data from L1 cache ("L1 cache hit")
 - » If not, data must come form L2 cache or main memory ("L1 cache miss")
 - * In case of L1 cache miss, tries to get from L2 cache
 - » If data are in L2, gets data from L2 cache ("L2 cache hit")
 - Data block is written to L1 cache
 - » If not, data comes from main memory ("L2 cache miss")
 - Main memory block is written into L1 and L2 caches
- Variations on this basic scheme are possible

Example Implementations

- We look at three processors
 - * Pentium
 - * PowerPC
 - * MIPS
- Pentium implementation
 - * Two levels
 - » L1 cache
 - Split cache design
 - \rightarrow Separate data and instruction caches
 - » L2 cache
 - Unified cache design

© S. Dandamudi

- Pentium allows each page/memory region to have its own caching attributes
 - * Uncacheable
 - » All reads and writes go directly to the main memory
 - Useful for
 - → Memory-mapped I/O devices
 - \rightarrow Large data structures that are read once
 - →Write-only data structures
 - * Write combining
 - » Not cached
 - » Writes are buffered to reduce access to main memory
 - Useful for video buffer frames

- * Write-through
 - » Uses write-through policy
 - » Writes are delayed as they go though a write buffer as in write combining mode
- * Write back
 - » Uses write-back policy
 - » Writes are delayed as in the write-through mode
- * Write protected
 - » Inhibits cache writes
 - » Write are done directly on the memory

- Two bits in control register CR0 determine the mode
 - * Cache disable (CD) bit
- w * Not write-through (NW) bit

Table 17.6 Pentium family cache operating modes

CD	NW	Write policy	Read miss	Write miss				
0	0	Write-through	Cache line lled	Cache line lled				
0	1	Invalid combination—causes exception						
1	0	Write-through No cache line lls No cache		No cache line lls				
1	1	Write-back	No cache line lls	No cache line lls				

PowerPC cache implementation

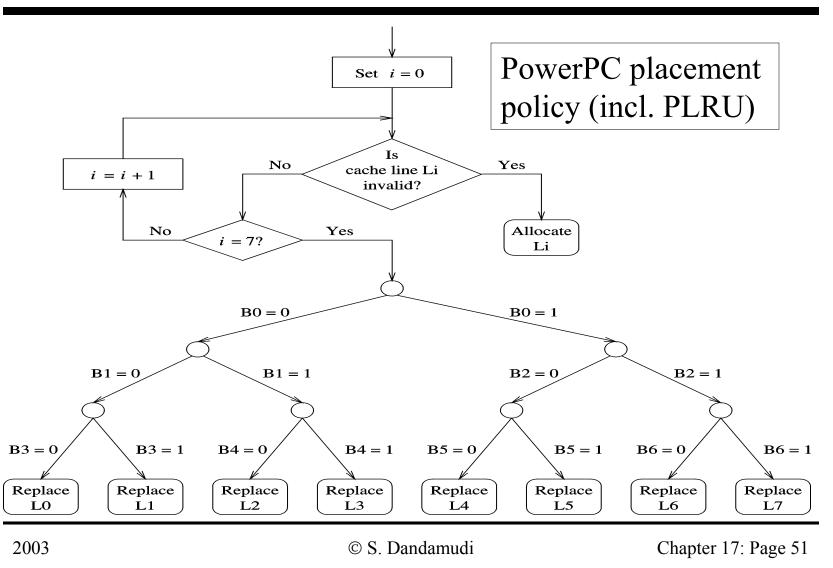
- * Two levels
 - » L1 cache
 - Split cache
 - →Each: 32 KB eight-way associative
 - Uses pseudo-LRU replacement
 - Instruction cache: read-only
 - Data cache: read/write
 - →Choice of write-through or write-back
 - » L2 cache
 - Unified cache as in Pentium
 - Two-way set associative

To be used with S. Dandamudi, "Fundamentals of Computer Organization and Design," Springer, 2003.

- Write policy type and caching attributes can be set by OS at the block or page level
- * L2 cache requires only a single bit to implement LRU
 - » Because it is 2-way associative
- * L1 cache implements a pseudo-LRU
 - » Each set maintains sevenPLRU bits (B0–B6)

 Table 17.7 Pseudo-LRU bit update rules for the PowerPC

 Current


 Change PI RU bit to:

Change PLRU bit to:							
B0	B1	B2	B3	B4	B5	B6	
1	1	NC	1	NC	NC	NC	
1	1	NC	0	NC	NC	NC	
1	0	NC	NC	1	NC	NC	
1	0	NC	NC	0	NC	NC	
0	NC	1	NC	NC	1	NC	
0	NC	1	NC	NC	0	NC	
0	NC	0	NC	NC	NC	1	
0	NC	0	NC	NC	NC	0	
	1 1 1 1 0 0 0	B0 B1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 0 NC 0 NC 0 NC 0 NC	B0 B1 B2 1 1 NC 1 1 NC 1 0 NC 0 NC 1 0 NC 1 0 NC 1 0 NC 0	B0 B1 B2 B3 1 1 NC 1 1 1 NC 0 1 0 NC NC 0 NC 1 NC 0 NC 1 NC 0 NC 1 NC 0 NC 1 NC 0 NC 0 NC	B0 B1 B2 B3 B4 1 1 NC 1 NC 1 1 NC 0 NC 1 1 NC 0 NC 1 0 NC NC 1 1 0 NC NC 1 1 0 NC NC 0 0 NC 1 NC 0 0 NC 1 NC NC 0 NC 0 NC NC	B0 B1 B2 B3 B4 B5 1 1 NC 1 NC NC 1 1 NC 0 NC NC 1 1 NC 0 NC NC 1 0 NC NC 1 NC 1 0 NC NC 1 NC 1 0 NC NC 1 NC 1 0 NC NC 0 NC 1 0 NC NC 0 NC 0 NC 1 NC NC 1 0 NC 1 NC NC 1 0 NC 1 NC NC 0 0 NC 0 NC NC NC	

NC: No change.

2003

© S. Dandamudi

MIPS implementation

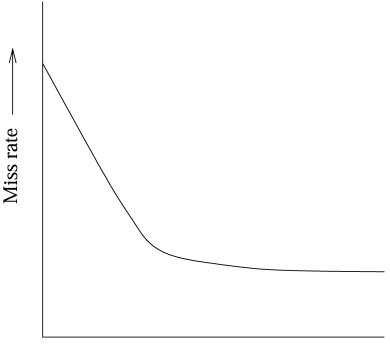
- * Two-level cache
 - » L1 cache
 - Split organization
 - Instruction cache
 - → Virtual cache
 - →Direct mapped
 - →Read-only
 - Data cache
 - → Virtual cache
 - → Direct mapped
 - →Uses write-back policy

L1 line size: 16 or 32 bytes

Chapter 17: Page 52

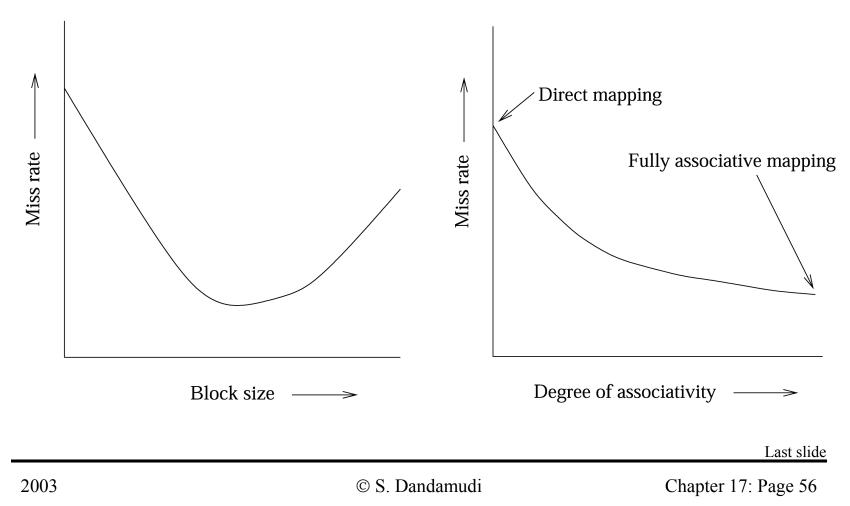
To be used with S. Dandamudi, "Fundamentals of Computer Organization and Design," Springer, 2003.

- » L2 cache
 - Physical cache
 - Either unified or split
 - →Configured at boot time
 - Direct mapped
 - Uses write-back policy
 - Cache block size
 - →16, 32, 64, or 128 bytes
 - \rightarrow Set at boot time
 - L1 cache line size \leq L2 cache size
- * Direct mapping simplifies replacement
 - » No need for LRU type complex implementation


To be used with S. Dandamudi, "Fundamentals of Computer Organization and Design," Springer, 2003.

Cache Operation Summary

- Various policies used by cache
 - * Placement of a block
 - » Direct mapping
 - » Fully associative mapping
 - » Set-associative mapping
 - * Location of a block
 - » Depends on the placement policy
 - * Replacement policy
 - » LRU is the most popular
 - Pseudo-LRU is often implemented
 - * Write policy
 - » Write-through
 - » Write-back


Design Issues

- Several design issues
 - * Cache capacity
 - » Law of diminishing returns
 - * Cache line size/block size
 - * Degree of associativity
 - * Unified/split
 - * Single/two-level
 - * Write-through/write-back
 - * Logical/physical

Cache capacity \longrightarrow

Design Issues (cont'd)

