Cache Memory

Chapter 17
S. Dandamudi

Outline

* Introduction
 How cache memory works
 Why cache memory works
e (Cache design basics
« Mapping function

* Direct mapping

* Associative mapping

* Set-associative mapping
« Replacement policies
« Write policies
e Space overhead

Types of cache misses
Types of caches

Example implementations
* Pentium

* PowerPC

* MIPS

Cache operation summary
Design 1ssues
* (Cache capacity

* (Cache line size

* Degree of associatively

2003 © S. Dandamudi Chapter 17: Page 2

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Introduction

 Memory hierarchy
* Registers
* Memory
* Disk

e Cache memory 1s a small amount of fast memory

* Placed between two levels of memory hierarchy
» To bridge the gap in access times
— Between processor and main memory (our focus)
— Between main memory and disk (disk cache)

* Expected to behave like a large amount of fast memory

2003 © S. Dandamudi Chapter 17: Page 3

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Introduction (cont’d)

Registers
CPU
Cache memory
Higher Faster Larger
cost Registers access Main memory S12€
CPU
Main memory Disk cache
Disk Disk
(a) (b)
2003 © S. Dandamudi Chapter 17: Page 4

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

How Cache Memory Works

* Prefetch data into cache before the processor
needs 1t

* Need to predict processor future access requirements

» Not difficult owing to locality of reference

e Important terms
* Miss penalty

* Hit ratio
* Miss ratio = (1 — hit ratio)
* Hit time
2003 © S. Dandamudi Chapter 17: Page 5

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

How Cache Memory Works (cont’d)

CPU

Cache read operation

CPU

(b) Read miiss

Address bus o o o
_______ . i -
\I EE
v Y :; 2
= .
Cache § g Main
= 3] memory
T w2 i~
Y \ % ©2
e =
— _ _ _ _ _
— v — E - — — -
Data bus
Buffers v
disabled
(a) Read hit
Address bus o o o
-— - —
_______________ | = [_ _ | |- _ =
N £ -
VI = .
k= 2 Mai
Cache 3 =] am
= S memory
n &)
e — — — — — — — _ ______ _g_ ____________
— — T | — — —
Data bus
Buffers v
enabled

2003

© S. Dandamudi

Chapter 17: Page 6

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

How Cache Memory Works (cont’d)

Address bus o o o
_______ T\T_______%______ — = — — — =
v VY g é
= Main
CPU Cache 9 .“_.E) memory
S £,
F B $
S | =2 | _ - - — — — =
Data bus
Buffers v
enabled
Cache write operation (> Write it
Address bus o o o
-— — —
——————————————— FSs{--—-—--4 |- - - — — =
&=
v 5
= = Mai
- - am
CPU Cache = g memory
2 2y
______________ £ I |
S S - | —
Data bus
Buffers v
enabled
(b) Write miss
2003 © S. Dandamudi Chapter 17: Page 7

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Why Cache Memory Works

« Example
for (i=0; i<M; i++)
for (j=0; j<N; j++)
X[i]l [j] = X[i]l [j] + K;
* Each element of X 1s double (eight bytes)
* Loop 1s executed (M=N) times
» Placing the code in cache avoids access to main memory
— Repetitive use (one of the factors)
— Temporal locality

» Prefetching data
— Spatial locality

2003 © S. Dandamudi Chapter 17: Page 8

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

How Cache Memory Works (cont’d)

300

250 1

200 - Column-order

150 1

100 -1

Execution time (ms

Row-order

50

500 600 700 800 900 1000

Matrix size

2003 © S. Dandamudi Chapter 17: Page 9

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Cache Design Basics

* On every read miss

* A fixed number of bytes are transferred
» More than what the processor needs
— Effective due to spatial locality

* Cache 1s divided into blocks of B bytes

» b-bits are needed as offset into the block
b =log,B
» Block are called cache lines
e Main memory 1s also divided into blocks of same
S1Z€
* Address 1s divided into two parts

2003 © S. Dandamudi Chapter 17: Page 10

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Cache Design Basics (cont’d)

B =4 bytes
b =2 bits

Cache
line

2047
2046

ORNW

Byte 3 Byte 2 Byte 1 Byte O

Cache memory

Memory
address

65,532

65,528

Main memory

Block
address

16,383

16,382

15 2i1 o0
Block number (igst:t
Address partition
2003 © S. Dandamudi Chapter 17: Page 11

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Cache Design Basics (cont’d)

 Transfer between main
memory and cache

* In units of blocks Registers
. . N\
%k
Implements spatial locality CPU
* Transfer between main > Word
transfer
memory and cache
* In units of words Cache memory
* Need policies for | Block
* Block placement transfer
* Mapping function /
Block replacement Main memory
* Write policies
2003 © S. Dandamudi Chapter 17: Page 12

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Cache Design Basics (cont’d)

Processor outputs
memory address A

!

Find memory block B
that contains address A

|

Is block B
in cache?

Read cycle operations

Uses mapping function

Supply the word at
address A to processor

Initiate access to
memory block B

!

Assign cache line C
for memory block B

{

Is
cache line C
free?

Uses placement policy

Uses replacement policy

Replace a cache line
to make room for block B

!

Supply the word at

address A to processor

!

I.oad memory block B

Done >

into the cache line

2003

© S. Dandamudi

Chapter 17: Page 13

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Mapping Function

e Determines how memory blocks are mapped to
cache lines

* Three types
* Direct mapping
» Specifies a single cache line for each memory block

* Set-associative mapping

» Specifies a set of cache lines for each memory block

* Assoclative mapping
» No restrictions

— Any cache line can be used for any memory block

2003 © S. Dandamudi Chapter 17: Page 14

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Mapping Function (cont’d)

Block Mapped to
address Byte 3| Byte 2i Byte 1{ Byte 0 cache line
Direct mapping example 14 | | | 2
13 : 1
12 A\ 0
, , , Cache H E E E 3
Byte 3 . Byte 2 . Byte 1 ! Byte 0 [ine 10 i : : 2
i i i 3 9 1
| | | 2 8 \\ \ \\ 0
1 7 | | | 3
LA RIEaaS 0 6 2
Cache memory 5 : : . 1
4 LAY 0
3 | | | 3
2 2
1 1
0 ALY 0
Main memory
2003 © S. Dandamudi Chapter 17: Page 15

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Mapping Function (cont’d)

* Implementing direct mapping
* Easier than the other two

* Maintains three pieces of information

» Cache data
— Actual data

» Cache tag
— Problem: More memory blocks than cache lines

= Several memory blocks are mapped to a cache line

— Tag stores the address of memory block in cache line

» Valid bit
— Indicates if cache line contains a valid block

2003 © S. Dandamudi Chapter 17: Page 16

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Mapping Function (cont’d)

Block number Byte offset
/ N/ N\
Cache tag Cache line #
/' \ /' \ /
N N N
t bits c bits b bits
(a) Address partition
Vgiltl d Cache tag Cache data Cleilgl;e
0 27? 222 10922 1 272 & ? 3
1 Valid tag 4-byt:es of valid caché data 2
1 Valid tag 4-byt:es of valid caché: data 1
1 Valid tag 4-bytes of valid cache data 0
(b) Cache memory details
2003 © S. Dandamudi Chapter 17: Page 17

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Mapping Function (cont’d)

Table 17.1 Direct-mapped cache state for Example 17.2

Block Hit or Cache Cache | Cache | Cache

accessed miss line O line 1 line 2 line 3
0 Miss | Block O 77?7 ?7?7? P77
4 Miss | Block 4 ?7?7? 77?7 ?7?7?
Direct mapplng 0 Miss Block O Yofdle Yofdle Yofdle
8 Miss | Block 8 27?77 77?77 ?7?7?
0 Miss | Block O ?7?7? 77?7 P77
Reference pattern: g Miss | Block 8 | ??? 777 277
0,4,0,8,0,8, 0 Miss | Block 0 | 72?7 277 7?27
0,4,0,4,0,4 4 Miss | Block 4 | ??? 277 ?77?
0 Miss | Block O ?7?7? 77?7 77?77
4 Miss | Block 4 77?7 77?7 77?7
Hit ratio = 0% 0 Miss | Block 0 | ??? 277 27?7
4 Miss | Block 4 77?7 7?7 ?7?7?

2003 © S. Dandamudi Chapter 17: Page 18

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Mapping Function (cont’d)

Table 17.2 Direct-mapped cache state for Example 17.3

Block Hit or | Cache Cache Cache Cache
accessed | miss line O line 1 line 2 line 3
0 Miss | Block 0 777 ?77? 777

. . 7 Miss | Block O ?77? ?7?77? Block 7
Direct mapping o Miss | Block O | Block 9 ?77? Block 7
10 Miss | Block O | Block 9 | Block 10 | Block 7
0 Hit Block 0 | Block 9 | Block 10 | Block 7
Reference pattern: 7 Hit Block 0 | Block 9 | Block 10 | Block 7
0,7,9,10,0,7, 9 Hit Block 0 | Block 9 | Block 10 | Block 7
9,10,0,7,9,10 10 Hit Block 0 | Block 9 | Block 10 | Block 7
0 Hit Block 0 | Block 9 | Block 10 | Block 7
Hit ratio = 67% 7 Hit Block 0 | Block 9 | Block 10 | Block 7
9 Hit Block 0 | Block 9 | Block 10 | Block 7
10 Hit Block 0 | Block 9 | Block 10 | Block 7

2003

© S. Dandamudi

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Chapter 17: Page 19

Mapping Function (cont’d)

Associative mapping

Block number Byte offset
/\ /\
/ N/ N\
Cache tag
(a) Address partition
Vf)liltl d Cache tag Cache data Cl?;ge
0 277 770 M M |3
1 Valid tag 4-byt:es of vaiid caché data 2
1 Valid tag 4-byt:es of Vaiid cache§ data 1
1 Valid tag 4-byt:es of Vaiid cache§ data 0
(b) Cache memory details
2003 © S. Dandamudi Chapter 17: Page 20

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Mapping Function (cont’d)

Table 17.3 Fully associative cache state for Example 17.4

Associative
mapping

Reference pattern:

0,4,0,8,0,8,
0,4,0,4,0,4

Hit ratio = 75%

Block Hit or Cache Cache Cache Cache

accessed | miss line O line 1 line 2 line 3
0 Miss | Block 0 ?7?7? 77?7 ?77?
4 Miss | Block O | Block 4 77?7 27?7
0 Hit Block O | Block 4 27?7 ?7?7?
8 Miss | Block O | Block 4 | Block 8 ?7?7?
0 Hit Block O | Block 4 | Block 8 P77
8 Hit Block 0 | Block 4 | Block 8 ?7?7?
0 Hit Block 0 | Block 4 | Block 8 ?7?7?
4 Hit Block O | Block 4 | Block 8 ?7?7?
0 Hit Block O | Block 4 | Block 8 ?77?
4 Hit Block O | Block 4 | Block 8 ?7?7?
0 Hit Block O | Block 4 | Block 8 ?707?
4 Hit Block O | Block 4 | Block 8 ?7?7?

2003

© S. Dandamudi

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Chapter 17: Page 21

Mapping Function (cont’d)

Tag address

from address bus

> Comparator

ﬁ

Tag value O
from cache

:> Comparator

i

Tag value 1
from cache

Comparator

EENy
d

Match 2C— 1

Match O
T-bit
Encoder ::> binary
output

Match 1

Address match logic for
associative mapping

ﬁ

Tag value 2¢— 1
from cache

\ Match
% found
'

output

2003

© S. Dandamudi

Chapter 17: Page 22

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Mapping Function (cont’d)

Associative cache with address match logic

VAN

Address bus
. . .
3 l
Cache %
Cache Address address Cache %
tag —®| match [data —g “
memory logic [--—---- =1 memory § —é Main
CPU ¢ i\ 'g & memory
| >
I 2 1%}
(]
Cache : %
controller : <
|
- /
|t ' - [—| -
Data bus
Buffers v
disabled
2003 © S. Dandamudi Chapter 17: Page 23

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Mapping Function (cont’d)

Block Byte 3 : Byte 2: Byte 1 : Byte 0 Set#
15 i i i 1
Set-associative mapping 14
13
12

o
[

[
o

Byte 3i Byte 2i Byte 1{ Byte 0 Line

! | i 3
Set 1

Set 0

2
1
0

Cache memory

©C R, O B O =, O B O = O = O = O

©C = N W & N N N X O

Main memory

2003 © S. Dandamudi Chapter 17: Page 24

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Mapping Function (cont’d)

Address partition 1n set-associative mapping

Block number Byte offset
/ N\ N/ N\
Cache tag Set #
(a) Address partition
Valid
lili: Cache tag Cache data
0 77 M 0 o L om |
Z : I Set 1
1 Valid tag 4-bytes of valid cache data | |
1 Valid tag 4-byt:es of vaiid cachef data) Set 0
. . . et
1 Valid tag 4-bytes of valid cache data | |
(b) Cache memory details
2003 © S. Dandamudi Chapter 17: Page 25

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Mapping Function (cont’d)

Table 17.4 Set-associative cache state for Example 17.5

Block Hit or Set 0 Set 1
accessed miss Cache Cache | Cache | Cache
line O line 1 line O line 1
0 Miss Block 0 777 ?77? ?77?
Set-associative @ 4 Miss Block 0 | Block 4 ??? ?2??
. - ?2?77? ?2?77?
mapplng 0 Hit Block O | Block 4 e 27?7
8 Miss Block O | Block 8 e ?77?
0 Hit Block O | Block 8 777 ?7?77?
8 Hit Block O | Block 8 777 777
Reference pattern: ,
0 4.0.8 0. 8 0 Hit Block O | Block 8 777 777
O’ 4’ O’ 4’ O’ 4’ 4 Miss Block 0 | Block 4 ?7?7? ?7?7?
> 2 T 0 Hit Block O | Block 4 777 777
4 Hit Block O | Block 4 777 Yofdle
. . 0 Hit Block O | Block 4 ?77? ?777?
— 4770
Hitratio=67% | Hit Block 0 | Block 4 | 2?7 277

2003

© S. Dandamudi

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Chapter 17: Page 26

Replacement Policies

 We invoke the replacement policy

* When there 1s no place in cache to load the memory
block

* Depends on the actual placement policy 1n effect

* Direct mapping does not need a special replacement
policy
» Replace the mapped cache line
* Several policies for the other two mapping functions
» Popular: LRU (least recently used)

» Random replacement
» Less interest (FIFO, LFU)

2003 © S. Dandamudi Chapter 17: Page 27

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Replacement Policies (cont’d)

« LRU

* Expensive to implement

» Particularly for set sizes more than four

e Implementations resort to approximation
* Pseudo-LRU

» Partitions sets into two groups
— Maintains the group that has been accessed recently
— Requires only one bit
» Requires only (W-1) bits (W = degree of associativity)
— PowerPC is an example
= Details later

2003 © S. Dandamudi Chapter 17: Page 28

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Replacement Policies (cont’d)

Pseudo-LRU

1mplementat10n BObit
(L0, L1) or (.2, L3)?

=

B1 bit: B2 bit:
LO or Ll‘7 L2 or L3?

//// \\Qi 1 B2=0 \\§i=1
Cache 11ne Cache line Cache line Cache line
LO L1 L2

L3

2003

© S. Dandamudi Chapter 17: Page 29
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Write Policies

 Memory write requires special attention

* We have two copies
» A memory copy
» A cached copy

* Write policy determines how a memory write operation
1s handled
» Two policies

— Write-through
= Update both copies

— Write-back
= Update only the cached copy
= Needs to be taken care of the memory copy

2003 © S. Dandamudi Chapter 17: Page 30

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Write Policies (cont’d)

Cache hit in a write-through cache

Address bus
S . .
S
e S o ----- |-----=
N &
' E
|
v Y - %
S 2 Main
S
Cache =
CPU k= 2 memory
] ’)
' &
/ S
| - _Z _ _ _____%_ _____ — - - - — - =
et} o <E P —P
Data bus
Buffers v
enabled Figure 17.3a
2003 © S. Dandamudi Chapter 17: Page 31

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Write Policies (cont’d)

Cache hit 1in a write-back cache

CPU

Address bus

A\

-

Address and data buffers
System bus

Data bus

-———

V

Buffers
disabled

Main
memory

2003

© S. Dandamudi

Chapter 17: Page 32

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Write Policies (cont’d)

* Write-back policy
* Updates the memory copy when the cache copy is

being replaced
» We first write the cache copy to update the memory copy

* Number of write-backs can be reduced 1f we write only
when the cache copy 1s different from memory copy
» Done by associating a dirty bit or update bit
— Write back only when the dirty bit is 1
» Write-back caches thus require two bits
— A valid bit
— A dirty or update bit

2003 © S. Dandamudi Chapter 17: Page 33

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Write Policies (cont’d)

- Needed only 1n write-back caches

Dirty \ Valid Cache
bit bit Cache tag Cache data line
? 0 277 227 00222 0 222 1 977 | 3
1 1 Valid tag 4-b:ytes of ufpdated data 2
0 1 Valid tag 4-bytes of valid data 1
1 1 Valid tag 4-b:ytes of ufpdated data 0
2003 © S. Dandamudi Chapter 17: Page 34

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Write Policies (cont’d)

e Other ways to reduce write traffic

* Buffered writes
» Especially useful for write-through policies
» Writes to memory are buffered and written at a later time
— Allows write combining

= Catches multiple writes in the buffer itself

* Example: Pentium
» Uses a 32-byte write buffer
» Buffer is written at several trigger points

— An example trigger point
= Buffer full condition

2003 © S. Dandamudi Chapter 17: Page 35

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Write Policies (cont’d)

* Write-through versus write-back

* Write-through
» Advantage
— Both cache and memory copies are consistent
= Important in multiprocessor systems
» Disadvantage
— Tends to waste bus and memory bandwidth

* Write-back

» Advantage
— Reduces write traffic to memory

» Disadvantages
— Takes longer to load new cache lines
— Requires additional dirty bit

2003 © S. Dandamudi Chapter 17: Page 36

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Space Overhead

e The three mapping functions introduce different
space overheads

* Overhead decreases with increasing degree of

associativity
» Several examples in the text 4 GB address space
32 KB cache
Table 17.5 Cache space overhead for the three organizations
Block size | Direct mapping | 4-way set-associative | Fully associative
(%) (%) (%)
32 bytes [7.8 11
4 bytes 56 62.5 97

2003

© S. Dandamudi

Chapter 17: Page 37

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Types of Cache Misses

* Three types

* Compulsory misses
» Due to first-time access to a block
— Also called cold-start misses or compulsory line fills
* Capacity misses
» Induced due to cache capacity limitation
» Can be avoided by increasing cache size

* Conflict misses
» Due to conflicts caused by direct and set-associative mappings
— Can be completely eliminated by fully associative
mapping
— Also called collision misses

2003 © S. Dandamudi Chapter 17: Page 38

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Types of Cache Misses (cont’d)

* Compulsory misses
* Reduced by increasing block size

» We prefetch more
» Cannot increase beyond a limit
— Cache misses increase
* (Capacity misses
* Reduced by increasing cache size
» Law of diminishing returns

e (Conflict misses

* Reduced by increasing degree of associativity
» Fully associative mapping: no conflict misses

2003 © S. Dandamudi Chapter 17: Page 39

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Types of Caches

» Separate instruction and data caches

» Initial cache designs used unified caches

» Current trend 1s to use separate caches (for level 1)

Data address Data address
> >
Data
cache
> >
Data Data .
Main
CPU memory
Instruction address Instruction address
> >
Instruction
cache
Instructions Instructions
2003 © S. Dandamudi Chapter 17: Page 40

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Types of Caches (cont’d)

* Several reasons for preferring separate caches
* Locality tends to be stronger

* Can use different designs for data and instruction
caches
» Instruction caches
— Read only, dominant sequential access
— No need for write policies
— Can use a simple direct mapped cache implementation
» Data caches
— Can use a set-associative cache
— Appropriate write policy can be implemented

* Disadvantage
» Rigid boundaries between data and instruction caches

2003 © S. Dandamudi Chapter 17: Page 41

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Types of Caches (cont’d)

« Number of cache levels _
* Most use two levels Registers
» Primary (level 1 or L1) 1
— On-chip ,
» Secondary (level 2 or L2) Prima_ry cache
— Off-chip CPU)
* Examples l
» Pentium |
— L1:32KB Secondary cache
— L2:upto2 MB
» PowerPC
— L1: 64 KB
— L2:upto1 MB Main rﬁemory
2003 © S. Dandamudi Chapter 17: Page 42

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Types of Caches (cont’d)

 Two-level caches work as follows:

* First attempts to get data from L1 cache
» If present in L1, gets data from L1 cache (“L1 cache hit”)
» If not, data must come form L2 cache or main memory (“L1
cache miss™)
* In case of L1 cache miss, tries to get from L2 cache
» If data are in L2, gets data from L2 cache (“L2 cache hit”)
— Data block 1s written to L1 cache
» If not, data comes from main memory (“L2 cache miss”)

— Main memory block is written into L1 and L2 caches

* Variations on this basic scheme are possible

2003 © S. Dandamudi Chapter 17: Page 43

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Types of Caches (cont’d)

Virtual address bus Memory Physical address bus
- management -
l unit
cache memory
Data bus -
. . (a) Virtual cache
Virtual and physical caches
Virtual address bus Memory Physical address bus
- management -
unit l
CPU Physical Main
cache memory
- Data bus -
(b) Physical cache
2003 © S. Dandamudi Chapter 17: Page 44

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Example Implementations

 We look at three processors

* Pentium
* PowerPC
* MIPS

e Pentium implementation

* Two levels
» L1 cache
— Split cache design
= Separate data and instruction caches
» L2 cache
— Unified cache design

2003 © S. Dandamudi

Chapter 17: Page 45

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Example Implementations (cont’d)

e Pentium allows each page/memory region to have
its own caching attributes

* Uncacheable
» All reads and writes go directly to the main memory
— Useful for
= Memory-mapped I/O devices
= Large data structures that are read once
= Write-only data structures

* Write combining
» Not cached

» Writes are buffered to reduce access to main memory
— Useful for video buffer frames

2003 © S. Dandamudi Chapter 17: Page 46

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Example Implementations (cont’d)

* Write-through
» Uses write-through policy

» Writes are delayed as they go though a write buffer as in write

combining mode

* Write back

» Uses write-back policy

» Writes are delayed as in the write-through mode

* Write protected
» Inhibits cache writes

» Write are done directly on the memory

2003 © S. Dandamudi Chapter 17: Page 47

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Example Implementations (cont’d)

* Two bits 1n control register CR0O determine the
mode

* Cache disable (CD) bit
w * Not write-through (NW) bit

Table 17.6 Pentium family cache operating modes

CD NW | Write policy Read miss Write miss
0 0 | Write-through | Cache line lled Cache line lled
0 1 Invalid combination—causes exception
1 0 | Write-through | No cache line lls | No cache line lIs
1 1 | Write-back | No cache linells | No cache line lls
2003 © S. Dandamudi Chapter 17: Page 48

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Example Implementations (cont’d)

PowerPC cache implementation

* Two levels
» L1 cache
— Split cache
= Each: 32 KB eight-way associative
— Uses pseudo-LRU replacement
— Instruction cache: read-only
— Data cache: read/write
= Choice of write-through or write-back
» L2 cache
— Unified cache as in Pentium

— Two-way set associative

2003 © S. Dandamudi Chapter 17: Page 49

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Example Implementations (cont’d)

* Write policy type and Table 17.7 Pseudo-LRU bit update rules for the PowerPC
caching attributes can be set Cument Change PLRU bit 0
by OS at the block or page
level “S B0 | BI | B2 | B3| B4 | B5 | BS
* L2 cache requires only a L0 LT NC) 1T NCTNC) NC
single bit to implement L1 L T INC 0 | NC|NC | NC
LRU L2 110 |[NC|NC| 1 |NC|NC
» Because it is 2-way L3 I} 0 |NC|NC| 0 NC|NC
associative L4 0 |[NC| 1T |[NC|NC| 1 |NC
* L1 cache implements a L5 0 |NC| I |[NC/NC| 0 |NC
pseudo-LRU L6 0 [NC| 0 |NC|NC|NC| I
» Each set maintains seven L7 0 INC!| 0 INCINCINCI! 0
PLRU bits (BO—B6
its () NC: No change.
2003 © S. Dandamudi Chapter 17: Page 50

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Example Implementations (cont’d)

Set =0 PowerPC placement
policy (incl. PLRU)
Is
i—i+1 No cache line Li Yes
invalid?
No Yes Allocate
S y
@,
BO=0 BO=1
() @,
B1=0 Bl=1 B2=0 B2=1
CO D D o,
B4 =0 B4=1 B6=0 B6=1
Replace Replace Replace Replace Replace Replace Replace Replace
) J) ()
2003 © S. Dandamudi Chapter 17: Page 51

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Example Implementations (cont’d)

MIPS implementation

* Two-level cache
» L1 cache

— Split organization

— Instruction cache
=) Virtual cache L1 line size: 16 or 32 bytes
= Direct mapped
= Read-only

— Data cache
- Virtual cache
= Direct mapped
= Uses write-back policy

2003 © S. Dandamudi Chapter 17: Page 52

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Example Implementations (cont’d)

» L2 cache
— Physical cache
— Either unified or split
= Configured at boot time
— Direct mapped
— Uses write-back policy
— Cache block size
> 16, 32, 64, or 128 bytes
= Set at boot time
— L1 cache line size < L2 cache size

* Direct mapping simplifies replacement

» No need for LRU type complex implementation

2003 © S. Dandamudi Chapter 17: Page 53

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Cache Operation Summary

e Various policies used by cache

* Placement of a block

» Direct mapping

» Fully associative mapping

» Set-associative mapping
* Location of a block

» Depends on the placement policy
* Replacement policy

» LRU is the most popular

— Pseudo-LRU is often implemented

* Write policy

» Write-through

» Write-back

2003 © S. Dandamudi

Chapter 17: Page 54

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Design Issues

« Several design 1ssues

* Cache capacity

» Law of diminishing
returns

* (Cache line size/block size
* Degree of associativity

* Unified/split

* Single/two-level

* Write-through/write-back

Miss rate

* Logical/physical

Cache capacity ———=

2003 © S. Dandamudi Chapter 17: Page 55

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Design Issues (cont’d)

/ Direct mapping

Fully associative mapping

Miss rate ———=
Miss rate ———=

Block size — Degree of associativity ———

Last slide

2003 © S. Dandamudi Chapter 17: Page 56

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

