
Cache Memory

Chapter 17
S. Dandamudi



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 2

Outline

• Introduction
• How cache memory works
• Why cache memory works
• Cache design basics
• Mapping function

∗ Direct mapping
∗ Associative mapping
∗ Set-associative mapping

• Replacement policies
• Write policies
• Space overhead

• Types of cache misses
• Types of caches
• Example implementations

∗ Pentium
∗ PowerPC
∗ MIPS

• Cache operation summary
• Design issues

∗ Cache capacity
∗ Cache line size
∗ Degree of associatively



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 3

Introduction

• Memory hierarchy
∗ Registers
∗ Memory
∗ Disk
∗ …

• Cache memory is a small amount of fast memory
∗ Placed between two levels of memory hierarchy

» To bridge the gap in access times
– Between processor and main memory (our focus)
– Between main memory and disk (disk cache)

∗ Expected to behave like a large amount of fast memory



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 4

Introduction (cont’d)



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 5

How Cache Memory Works

• Prefetch data into cache before the processor 
needs it
∗ Need to predict processor future access requirements

» Not difficult owing to locality of reference

• Important terms
∗ Miss penalty
∗ Hit ratio
∗ Miss ratio = (1 – hit ratio)
∗ Hit time



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 6

How Cache Memory Works (cont’d)

Cache read operation



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 7

How Cache Memory Works (cont’d)

Cache write operation



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 8

Why Cache Memory Works

• Example
for (i=0; i<M; i++)

for(j=0; j<N; j++)

X[i][j] = X[i][j] + K;

∗ Each element of X is double (eight bytes)
∗ Loop is executed (M*N) times

» Placing the code in cache avoids access to main memory
– Repetitive use (one of the factors)
– Temporal locality

» Prefetching data
– Spatial locality



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 9

How Cache Memory Works (cont’d)

0

50

100

150

200

250

300

500 600 700 800 900 1000

Matrix size

Ex
ec

ut
io

n 
tim

e 
(m

s

Column-order

Row-order



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 10

Cache Design Basics

• On every read miss
∗ A fixed number of bytes are transferred

» More than what the processor needs
– Effective due to spatial locality

• Cache is divided into blocks of B bytes
» b-bits are needed as offset into the block

b = log2B
» Block are called cache lines

• Main memory is also divided into blocks of same 
size
∗ Address is divided into two parts



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 11

Cache Design Basics (cont’d)

B = 4 bytes
b = 2 bits



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 12

Cache Design Basics (cont’d)

• Transfer between main 
memory and cache
∗ In units of blocks
∗ Implements spatial locality

• Transfer between main 
memory and cache
∗ In units of words

• Need policies for
∗ Block placement
∗ Mapping function
∗ Block replacement
∗ Write policies



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 13

Cache Design Basics (cont’d)

Read cycle operations



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 14

Mapping Function

• Determines how memory blocks are mapped to 
cache lines

• Three types
∗ Direct mapping

» Specifies a single cache line for each memory block

∗ Set-associative mapping
» Specifies a set of cache lines for each memory block

∗ Associative mapping
» No restrictions

– Any cache line can be used for any memory block



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 15

Mapping Function (cont’d)

Direct mapping example



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 16

Mapping Function (cont’d)

• Implementing direct mapping
∗ Easier than the other two
∗ Maintains three pieces of information

» Cache data
– Actual data

» Cache tag
– Problem: More memory blocks than cache lines

Several memory blocks are mapped to a cache line
– Tag stores the address of memory block in cache line

» Valid bit
– Indicates if cache line contains a valid block



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 17

Mapping Function (cont’d)



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 18

Mapping Function (cont’d)

Reference pattern:
0, 4, 0, 8, 0, 8, 
0, 4, 0, 4, 0, 4

Direct mapping

Hit ratio = 0%



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 19

Mapping Function (cont’d)

Reference pattern:
0, 7, 9, 10, 0, 7, 
9, 10, 0, 7, 9, 10

Direct mapping

Hit ratio = 67%



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 20

Mapping Function (cont’d)
Associative mapping



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 21

Mapping Function (cont’d)

Associative 
mapping

Reference pattern:
0, 4, 0, 8, 0, 8, 
0, 4, 0, 4, 0, 4

Hit ratio = 75%



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 22

Mapping Function (cont’d)

Address match logic for
associative mapping



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 23

Mapping Function (cont’d)

Associative cache with address match logic



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 24

Mapping Function (cont’d)

Set-associative mapping



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 25

Mapping Function (cont’d)

Address partition in set-associative mapping



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 26

Mapping Function (cont’d)

Set-associative 
mapping

Reference pattern:
0, 4, 0, 8, 0, 8, 
0, 4, 0, 4, 0, 4

Hit ratio = 67%



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 27

Replacement Policies

• We invoke the replacement policy
∗ When there is no place in cache to load the memory 

block

• Depends on the actual placement policy in effect
∗ Direct mapping does not need a special replacement 

policy
» Replace the mapped cache line

∗ Several policies for the other two mapping functions
» Popular: LRU (least recently used)
» Random replacement
» Less interest (FIFO, LFU)



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 28

Replacement Policies (cont’d)

• LRU
∗ Expensive to implement 

» Particularly for set sizes more than four

• Implementations resort to approximation
∗ Pseudo-LRU

» Partitions sets into two groups
– Maintains the group that has been accessed recently
– Requires only one bit

» Requires only (W-1) bits (W = degree of associativity) 
– PowerPC is an example

Details later



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 29

Replacement Policies (cont’d)

Pseudo-LRU 
implementation



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 30

Write Policies

• Memory write requires special attention
∗ We have two copies

» A memory copy
» A cached copy

∗ Write policy determines how a memory write operation 
is handled

» Two policies
– Write-through

Update both copies
– Write-back

Update only the cached copy
Needs to be taken care of the memory copy



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 31

Write Policies (cont’d)

Cache hit in a write-through cache

Figure 17.3a



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 32

Write Policies (cont’d)

Cache hit in a write-back cache



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 33

Write Policies (cont’d)

• Write-back policy
∗ Updates the memory copy when the cache copy is 

being replaced
» We first write the cache copy to update the memory copy

∗ Number of write-backs can be reduced if we write only 
when the cache copy is different from memory copy

» Done by associating a dirty bit or update bit
– Write back only when the dirty bit is 1

» Write-back caches thus require two bits
– A valid bit
– A dirty or update bit



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 34

Write Policies (cont’d)

Needed only in write-back caches



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 35

Write Policies (cont’d)

• Other ways to reduce write traffic
∗ Buffered writes

» Especially useful for write-through policies
» Writes to memory are buffered and written at a later time

– Allows write combining
Catches multiple writes in the buffer itself

∗ Example: Pentium
» Uses a 32-byte write buffer
» Buffer is written at several trigger points

– An example trigger point
Buffer full condition



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 36

Write Policies (cont’d)

• Write-through versus write-back
∗ Write-through

» Advantage
– Both cache and memory copies are consistent

Important in multiprocessor systems
» Disadvantage

– Tends to waste bus and memory bandwidth
∗ Write-back

» Advantage
– Reduces write traffic to memory

» Disadvantages
– Takes longer to load new cache lines
– Requires additional dirty bit



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 37

Space Overhead

• The three mapping functions introduce different 
space overheads
∗ Overhead decreases with increasing degree of 

associativity
» Several examples in the text 4 GB address space

32 KB cache



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 38

Types of Cache Misses

• Three types
∗ Compulsory misses

» Due to first-time access to a block
– Also called cold-start misses or compulsory line fills

∗ Capacity misses
» Induced due to cache capacity limitation
» Can be avoided by increasing cache size

∗ Conflict misses
» Due to conflicts caused by direct and set-associative mappings

– Can be completely eliminated by fully associative 
mapping

– Also called collision misses



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 39

Types of Cache Misses (cont’d)

• Compulsory misses
∗ Reduced by increasing block size

» We prefetch more
» Cannot increase beyond a limit

– Cache misses increase

• Capacity misses
∗ Reduced by increasing cache size

» Law of diminishing returns

• Conflict misses
∗ Reduced by increasing degree of associativity

» Fully associative mapping: no conflict misses



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 40

Types of Caches

• Separate instruction and data caches
» Initial cache designs used unified caches
» Current trend is to use separate caches (for level 1)



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 41

Types of Caches (cont’d)

• Several reasons for preferring separate caches
∗ Locality tends to be stronger
∗ Can use different designs for data and instruction 

caches
» Instruction caches

– Read only, dominant sequential access
– No need for write policies
– Can use a simple direct mapped cache implementation

» Data caches
– Can use a set-associative cache
– Appropriate write policy can be implemented

∗ Disadvantage
» Rigid boundaries between data and instruction caches



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 42

Types of Caches (cont’d)

• Number of cache levels
∗ Most use two levels

» Primary (level 1 or L1)
– On-chip

» Secondary (level 2 or L2)
– Off-chip

∗ Examples
» Pentium

– L1: 32 KB
– L2: up to 2 MB

» PowerPC
– L1: 64 KB
– L2: up to 1 MB



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 43

Types of Caches (cont’d)

• Two-level caches work as follows:
∗ First attempts to get data from L1 cache

» If present in L1, gets data from L1 cache (“L1 cache hit”)
» If not, data must come form L2 cache or main memory (“L1 

cache miss”)

∗ In case of L1 cache miss, tries to get from L2 cache
» If data are in L2, gets data from L2 cache (“L2 cache hit”)

– Data block is written to L1 cache
» If not, data comes from main memory (“L2 cache miss”)

– Main memory block is written into L1 and L2 caches

• Variations on this basic scheme are possible



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 44

Types of Caches (cont’d)

Virtual and physical caches



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 45

Example Implementations

• We look at three processors
∗ Pentium
∗ PowerPC
∗ MIPS

• Pentium implementation
∗ Two levels

» L1 cache 
– Split cache design

Separate data and instruction caches
» L2 cache 

– Unified cache design



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 46

Example Implementations (cont’d)

• Pentium allows each page/memory region to have 
its own caching attributes
∗ Uncacheable

» All reads and writes go directly to the main memory
– Useful for 

Memory-mapped I/O devices
Large data structures that are read once
Write-only data structures

∗ Write combining
» Not cached
» Writes are buffered to reduce access to main memory

– Useful for video buffer frames



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 47

Example Implementations (cont’d)

∗ Write-through
» Uses write-through policy

» Writes are delayed as they go though a write buffer as in write 
combining mode

∗ Write back
» Uses write-back policy

» Writes are delayed as in the write-through mode

∗ Write protected
» Inhibits cache writes

» Write are done directly on the memory



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 48

Example Implementations (cont’d)

• Two bits in control register CR0 determine the 
mode
∗ Cache disable (CD) bit
∗ Not write-through (NW) bitw

Write-back



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 49

Example Implementations (cont’d)

PowerPC cache implementation
∗ Two levels

» L1 cache 
– Split cache 

Each: 32 KB eight-way associative
– Uses pseudo-LRU replacement
– Instruction cache: read-only
– Data cache: read/write

Choice of write-through or write-back
» L2 cache 

– Unified cache as in Pentium
– Two-way set associative



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 50

Example Implementations (cont’d)

∗ Write policy type and 
caching attributes can be set 
by OS at the block or page 
level

∗ L2 cache requires only a 
single bit to implement 
LRU

» Because it is 2-way 
associative

∗ L1 cache implements a 
pseudo-LRU

» Each set maintains seven 
PLRU bits (B0−B6)



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 51

Example Implementations (cont’d)

PowerPC placement 
policy (incl. PLRU)



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 52

Example Implementations (cont’d)

MIPS implementation
∗ Two-level cache

» L1 cache
– Split organization
– Instruction cache

Virtual cache
Direct mapped
Read-only

– Data cache
Virtual cache
Direct mapped
Uses write-back policy

L1 line size: 16 or 32 bytes



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 53

Example Implementations (cont’d)

» L2 cache
– Physical cache
– Either unified or split

Configured at boot time
– Direct mapped
– Uses write-back policy
– Cache block size

16, 32, 64, or 128 bytes
Set at boot time

– L1 cache line size ≤ L2 cache size

∗ Direct mapping simplifies replacement
» No need for LRU type complex implementation



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 54

Cache Operation Summary

• Various policies used by cache
∗ Placement of a block

» Direct mapping
» Fully associative mapping
» Set-associative mapping

∗ Location of a block
» Depends on the placement policy

∗ Replacement policy
» LRU is the most popular

– Pseudo-LRU is often implemented
∗ Write policy

» Write-through
» Write-back



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 55

Design Issues

• Several design issues
∗ Cache capacity

» Law of diminishing 
returns

∗ Cache line size/block size
∗ Degree of associativity
∗ Unified/split
∗ Single/two-level
∗ Write-through/write-back
∗ Logical/physical



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 56

Design Issues (cont’d)

Last slide


