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Introduction

 Memory hierarchy
* Registers
* Memory
* Disk

e Cache memory 1s a small amount of fast memory

* Placed between two levels of memory hierarchy
» To bridge the gap in access times
— Between processor and main memory (our focus)
— Between main memory and disk (disk cache)

* Expected to behave like a large amount of fast memory
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Introduction (cont’d)
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How Cache Memory Works

* Prefetch data into cache before the processor
needs 1t

* Need to predict processor future access requirements

» Not difficult owing to locality of reference

e Important terms
* Miss penalty

* Hit ratio
* Miss ratio = (1 — hit ratio)
* Hit time
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How Cache Memory Works (cont’d)
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How Cache Memory Works (cont’d)
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Why Cache Memory Works

« Example
for (i=0; i<M; i++)
for (j=0; j<N; j++)
X[i]l [j] = X[i]l [j] + K;
* Each element of X 1s double (eight bytes)
* Loop 1s executed (M=N) times
» Placing the code in cache avoids access to main memory
— Repetitive use (one of the factors)
— Temporal locality

» Prefetching data
— Spatial locality
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How Cache Memory Works (cont’d)
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Cache Design Basics

* On every read miss

* A fixed number of bytes are transferred
» More than what the processor needs
— Effective due to spatial locality

* Cache 1s divided into blocks of B bytes

» b-bits are needed as offset into the block
b =log,B
» Block are called cache lines
e Main memory 1s also divided into blocks of same
S1Z€
* Address 1s divided into two parts
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Cache Design Basics (cont’d)
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Cache Design Basics (cont’d)

 Transfer between main
memory and cache

* In units of blocks Registers
. . N\
%k
Implements spatial locality CPU
* Transfer between main > Word
transfer
memory and cache
* In units of words Cache memory
* Need policies for | Block
* Block placement transfer
* Mapping function /
# Block replacement Main memory
*  Write policies
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Cache Design Basics (cont’d)
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Mapping Function

e Determines how memory blocks are mapped to
cache lines

* Three types
* Direct mapping
» Specifies a single cache line for each memory block

* Set-associative mapping

» Specifies a set of cache lines for each memory block

* Assoclative mapping
» No restrictions

— Any cache line can be used for any memory block
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Mapping Function (cont’d)
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Mapping Function (cont’d)

* Implementing direct mapping
* Easier than the other two

* Maintains three pieces of information

» Cache data
— Actual data

» Cache tag
— Problem: More memory blocks than cache lines

= Several memory blocks are mapped to a cache line

— Tag stores the address of memory block in cache line

» Valid bit
— Indicates if cache line contains a valid block
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Mapping Function (cont’d)

Block number Byte offset
/ N/ N\
Cache tag Cache line #
/' \ /' \ /
N N N
t bits c bits b bits
(a) Address partition
Vgiltl d Cache tag Cache data Cleilgl;e
0 27? 222 10922 1 272 & ? 3
1 Valid tag 4-byt:es of valid caché data 2
1 Valid tag 4-byt:es of valid caché: data 1
1 Valid tag 4-bytes of valid cache data 0
(b) Cache memory details
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Mapping Function (cont’d)

Table 17.1 Direct-mapped cache state for Example 17.2

Block Hit or Cache Cache | Cache | Cache

accessed miss line O line 1 line 2 line 3
0 Miss | Block O 77?7 ?7?7? P77
4 Miss | Block 4 ?7?7? 77?7 ?7?7?
Direct mapplng 0 Miss Block O Yofdle Yofdle Yofdle
8 Miss | Block 8 27?77 77?77 ?7?7?
0 Miss | Block O ?7?7? 77?7 P77
Reference pattern: g Miss | Block 8 | ??? 777 277
0,4,0,8,0,8, 0 Miss | Block 0 | 72?7 277 7?27
0,4,0,4,0,4 4 Miss | Block 4 | ??? 277 ?77?
0 Miss | Block O ?7?7? 77?7 77?77
4 Miss | Block 4 77?7 77?7 77?7
Hit ratio = 0% 0 Miss | Block 0 | ??? 277 27?7
4 Miss | Block 4 77?7 7?7 ?7?7?
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Mapping Function (cont’d)

Table 17.2 Direct-mapped cache state for Example 17.3

Block Hit or | Cache Cache Cache Cache
accessed | miss line O line 1 line 2 line 3
0 Miss | Block 0 777 ?77? 777

. . 7 Miss | Block O ?77? ?7?77? Block 7
Direct mapping o Miss | Block O | Block 9 ?77? Block 7
10 Miss | Block O | Block 9 | Block 10 | Block 7
0 Hit Block 0 | Block 9 | Block 10 | Block 7
Reference pattern: 7 Hit Block 0 | Block 9 | Block 10 | Block 7
0,7,9,10,0,7, 9 Hit Block 0 | Block 9 | Block 10 | Block 7
9,10,0,7,9,10 10 Hit Block 0 | Block 9 | Block 10 | Block 7
0 Hit Block 0 | Block 9 | Block 10 | Block 7
Hit ratio = 67% 7 Hit Block 0 | Block 9 | Block 10 | Block 7
9 Hit Block 0 | Block 9 | Block 10 | Block 7
10 Hit Block 0 | Block 9 | Block 10 | Block 7
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Mapping Function (cont’d)

Associative mapping

Block number Byte offset
/\ /\
/ N/ N\
Cache tag
(a) Address partition
Vf)liltl d Cache tag Cache data Cl?;ge
0 277 770 M M |3
1 Valid tag 4-byt:es of vaiid caché data 2
1 Valid tag 4-byt:es of Vaiid cache§ data 1
1 Valid tag 4-byt:es of Vaiid cache§ data 0
(b) Cache memory details
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Mapping Function (cont’d)

Table 17.3 Fully associative cache state for Example 17.4

Associative
mapping

Reference pattern:

0,4,0,8,0,8,
0,4,0,4,0,4

Hit ratio = 75%

Block Hit or Cache Cache Cache Cache

accessed | miss line O line 1 line 2 line 3
0 Miss | Block 0 ?7?7? 77?7 ?77?
4 Miss | Block O | Block 4 77?7 27?7
0 Hit Block O | Block 4 27?7 ?7?7?
8 Miss | Block O | Block 4 | Block 8 ?7?7?
0 Hit Block O | Block 4 | Block 8 P77
8 Hit Block 0 | Block 4 | Block 8 ?7?7?
0 Hit Block 0 | Block 4 | Block 8 ?7?7?
4 Hit Block O | Block 4 | Block 8 ?7?7?
0 Hit Block O | Block 4 | Block 8 ?77?
4 Hit Block O | Block 4 | Block 8 ?7?7?
0 Hit Block O | Block 4 | Block 8 ?707?
4 Hit Block O | Block 4 | Block 8 ?7?7?
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Mapping Function (cont’d)

Tag address

from address bus
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ﬁ
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from cache

:> Comparator

i

Tag value 1
from cache

Comparator

EENy
d

Match 2C— 1

Match O
T-bit
Encoder ::> binary
output

Match 1

Address match logic for
associative mapping

ﬁ

Tag value 2¢— 1
from cache

\ Match
% found
'

output

2003

© S. Dandamudi

Chapter 17: Page 22

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.



Mapping Function (cont’d)

Associative cache with address match logic
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Mapping Function (cont’d)

Block  Byte 3 : Byte 2: Byte 1 : Byte 0 Set#
15 i i i 1
Set-associative mapping 14
13
12

o
[

[
o

Byte 3i Byte 2i Byte 1{ Byte 0 Line

! | i 3
Set 1

Set 0

2
1
0

Cache memory

©C R, O B O =, O B O = O = O = O

©C = N W & N N N X O

Main memory
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Mapping Function (cont’d)

Address partition 1n set-associative mapping

Block number Byte offset
/ N\ N/ N\
Cache tag Set #
(a) Address partition
Valid
lili: Cache tag Cache data
0 77 M 0 o L om |
Z : I Set 1
1 Valid tag 4-bytes of valid cache data | |
1 Valid tag 4-byt:es of vaiid cachef data ) Set 0
. . . et
1 Valid tag 4-bytes of valid cache data | |
(b) Cache memory details
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Mapping Function (cont’d)

Table 17.4 Set-associative cache state for Example 17.5

Block Hit or Set 0 Set 1
accessed miss Cache Cache | Cache | Cache
line O line 1 line O line 1
0 Miss Block 0 777 ?77? ?77?
Set-associative @ 4 Miss Block 0 | Block 4 ??? ?2??
. - ?2?77? ?2?77?
mapplng 0 Hit Block O | Block 4 e 27?7
8 Miss Block O | Block 8 e ?77?
0 Hit Block O | Block 8 777 ?7?77?
8 Hit Block O | Block 8 777 777
Reference pattern: ,
0 4.0.8 0. 8 0 Hit Block O | Block 8 777 777
O’ 4’ O’ 4’ O’ 4’ 4 Miss Block 0 | Block 4 ?7?7? ?7?7?
> 2 T 0 Hit Block O | Block 4 777 777
4 Hit Block O | Block 4 777 Yofdle
. . 0 Hit Block O | Block 4 ?77? ?777?
— 4770
Hitratio=67% | Hit Block 0 | Block 4 | 2?7 277
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Replacement Policies

 We invoke the replacement policy

* When there 1s no place in cache to load the memory
block

* Depends on the actual placement policy 1n effect

* Direct mapping does not need a special replacement
policy
» Replace the mapped cache line
* Several policies for the other two mapping functions
» Popular: LRU (least recently used)

» Random replacement
» Less interest (FIFO, LFU)
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Replacement Policies (cont’d)

« LRU

* Expensive to implement

» Particularly for set sizes more than four

e Implementations resort to approximation
* Pseudo-LRU

» Partitions sets into two groups
— Maintains the group that has been accessed recently
— Requires only one bit
» Requires only (W-1) bits (W = degree of associativity)
— PowerPC is an example
= Details later
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Replacement Policies (cont’d)

Pseudo-LRU

1mplementat10n BObit
(L0, L1) or (.2, L3)?

=

B1 bit: B2 bit:
LO or Ll‘7 L2 or L3?

//// \\Qi 1 B2=0 \\§i=1
Cache 11ne Cache line Cache line Cache line
LO L1 L2

L3
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Write Policies

 Memory write requires special attention

* We have two copies
» A memory copy
» A cached copy

* Write policy determines how a memory write operation
1s handled
» Two policies

— Write-through
= Update both copies

— Write-back
= Update only the cached copy
= Needs to be taken care of the memory copy
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Write Policies (cont’d)

Cache hit in a write-through cache

Address bus
S . .
S
e S o ----- |-----=
N &
' E
|
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S 2 Main
S
Cache =
CPU k= 2 memory
] ’ )
' &
/ S
| - _Z _ _ _____%_ _____ — - - - — - =
et} o <E P —P
Data bus
Buffers v
enabled Figure 17.3a
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Write Policies (cont’d)

Cache hit 1in a write-back cache

CPU

Address bus

A\

-

Address and data buffers
System bus

Data bus

-———

V

Buffers
disabled

Main
memory
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Write Policies (cont’d)

* Write-back policy
* Updates the memory copy when the cache copy is

being replaced
» We first write the cache copy to update the memory copy

* Number of write-backs can be reduced 1f we write only
when the cache copy 1s different from memory copy
» Done by associating a dirty bit or update bit
— Write back only when the dirty bit is 1
» Write-back caches thus require two bits
— A valid bit
— A dirty or update bit
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Write Policies (cont’d)

- Needed only 1n write-back caches

Dirty \ Valid Cache
bit bit Cache tag Cache data line
? 0 277 227 00222 0 222 1 977 | 3
1 1 Valid tag 4-b:ytes of ufpdated data 2
0 1 Valid tag 4-bytes of valid data 1
1 1 Valid tag 4-b:ytes of ufpdated data 0
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Write Policies (cont’d)

e Other ways to reduce write traffic

* Buffered writes
» Especially useful for write-through policies
» Writes to memory are buffered and written at a later time
— Allows write combining

= Catches multiple writes in the buffer itself

* Example: Pentium
» Uses a 32-byte write buffer
» Buffer is written at several trigger points

— An example trigger point
= Buffer full condition
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Write Policies (cont’d)

* Write-through versus write-back

* Write-through
» Advantage
— Both cache and memory copies are consistent
= Important in multiprocessor systems
» Disadvantage
— Tends to waste bus and memory bandwidth

* Write-back

» Advantage
— Reduces write traffic to memory

» Disadvantages
— Takes longer to load new cache lines
— Requires additional dirty bit
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Space Overhead

e The three mapping functions introduce different
space overheads

* Overhead decreases with increasing degree of

associativity
» Several examples in the text 4 GB address space
32 KB cache
Table 17.5 Cache space overhead for the three organizations
Block size | Direct mapping | 4-way set-associative | Fully associative
(%) (%) (%)
32 bytes [ 7.8 11
4 bytes 56 62.5 97
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Types of Cache Misses

* Three types

* Compulsory misses
» Due to first-time access to a block
— Also called cold-start misses or compulsory line fills
* Capacity misses
» Induced due to cache capacity limitation
» Can be avoided by increasing cache size

* Conflict misses
» Due to conflicts caused by direct and set-associative mappings
— Can be completely eliminated by fully associative
mapping
— Also called collision misses
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Types of Cache Misses (cont’d)

* Compulsory misses
* Reduced by increasing block size

» We prefetch more
» Cannot increase beyond a limit
— Cache misses increase
* (Capacity misses
* Reduced by increasing cache size
» Law of diminishing returns

e (Conflict misses

* Reduced by increasing degree of associativity
» Fully associative mapping: no conflict misses
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Types of Caches

» Separate instruction and data caches

» Initial cache designs used unified caches

» Current trend 1s to use separate caches (for level 1)

Data address Data address
> >
Data
cache
> >
Data Data .
Main
CPU memory
Instruction address Instruction address
> >
Instruction
cache
Instructions Instructions
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Types of Caches (cont’d)

* Several reasons for preferring separate caches
* Locality tends to be stronger

* Can use different designs for data and instruction
caches
» Instruction caches
— Read only, dominant sequential access
— No need for write policies
— Can use a simple direct mapped cache implementation
» Data caches
— Can use a set-associative cache
— Appropriate write policy can be implemented

* Disadvantage
» Rigid boundaries between data and instruction caches
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Types of Caches (cont’d)

« Number of cache levels _
* Most use two levels Registers
» Primary (level 1 or L1) 1
— On-chip ,
» Secondary (level 2 or L2) Prima_ry cache
— Off-chip CPU )
* Examples l
» Pentium |
— L1:32KB Secondary cache
— L2:upto2 MB
» PowerPC
— L1: 64 KB
— L2:upto1 MB Main rﬁemory
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Types of Caches (cont’d)

 Two-level caches work as follows:

* First attempts to get data from L1 cache
» If present in L1, gets data from L1 cache (“L1 cache hit”)
» If not, data must come form L2 cache or main memory (“L1
cache miss™)
* In case of L1 cache miss, tries to get from L2 cache
» If data are in L2, gets data from L2 cache (“L2 cache hit”)
— Data block 1s written to L1 cache
» If not, data comes from main memory (“L2 cache miss”)

— Main memory block is written into L1 and L2 caches

* Variations on this basic scheme are possible
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Types of Caches (cont’d)

Virtual address bus Memory Physical address bus
- management -
l unit
cache memory
Data bus -
. . (a) Virtual cache
Virtual and physical caches
Virtual address bus Memory Physical address bus
- management -
unit l
CPU Physical Main
cache memory
- Data bus -
(b) Physical cache
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Example Implementations

 We look at three processors

* Pentium
* PowerPC
* MIPS

e Pentium implementation

* Two levels
» L1 cache
— Split cache design
= Separate data and instruction caches
» L2 cache
— Unified cache design
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Example Implementations (cont’d)

e Pentium allows each page/memory region to have
its own caching attributes

* Uncacheable
» All reads and writes go directly to the main memory
— Useful for
= Memory-mapped I/O devices
= Large data structures that are read once
= Write-only data structures

* Write combining
» Not cached

» Writes are buffered to reduce access to main memory
— Useful for video buffer frames
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Example Implementations (cont’d)

* Write-through
» Uses write-through policy

» Writes are delayed as they go though a write buffer as in write

combining mode

* Write back

» Uses write-back policy

» Writes are delayed as in the write-through mode

* Write protected
» Inhibits cache writes

» Write are done directly on the memory
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Example Implementations (cont’d)

* Two bits 1n control register CR0O determine the
mode

* Cache disable (CD) bit
w * Not write-through (NW) bit

Table 17.6 Pentium family cache operating modes

CD NW | Write policy Read miss Write miss
0 0 | Write-through | Cache line lled Cache line lled
0 1 Invalid combination—causes exception
1 0 | Write-through | No cache line lls | No cache line lIs
1 1 | Write-back | No cache linells | No cache line lls
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Example Implementations (cont’d)

PowerPC cache implementation

* Two levels
» L1 cache
— Split cache
= Each: 32 KB eight-way associative
— Uses pseudo-LRU replacement
— Instruction cache: read-only
— Data cache: read/write
= Choice of write-through or write-back
» L2 cache
— Unified cache as in Pentium

— Two-way set associative
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Example Implementations (cont’d)

* Write policy type and Table 17.7 Pseudo-LRU bit update rules for the PowerPC
caching attributes can be set Cument Change PLRU bit 0
by OS at the block or page
level “S B0 | BI | B2 | B3| B4 | B5 | BS
* L2 cache requires only a L0 LT NC) 1T NCTNC ) NC
single bit to implement L1 L T INC 0 | NC|NC | NC
LRU L2 110 |[NC|NC| 1 |NC|NC
» Because it is 2-way L3 I} 0 |NC|NC| 0 NC|NC
associative L4 0 |[NC| 1T |[NC|NC| 1 |NC
* L1 cache implements a L5 0 |NC| I |[NC/NC| 0 |NC
pseudo-LRU L6 0 [NC| 0 |NC|NC|NC| I
» Each set maintains seven L7 0 INC!| 0 INCINCINCI! 0
PLRU bits (BO—B6
its ( ) NC: No change.
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Example Implementations (cont’d)

Set =0 PowerPC placement
policy (incl. PLRU)
Is
i—i+1 No cache line Li Yes
invalid?
No Yes Allocate
S y
@,
BO=0 BO=1
() @,
B1=0 Bl=1 B2=0 B2=1
CO D D o,
B4 =0 B4=1 B6=0 B6=1
Replace Replace Replace Replace Replace Replace Replace Replace
) J ) ()
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Example Implementations (cont’d)

MIPS implementation

* Two-level cache
» L1 cache

— Split organization

— Instruction cache
=) Virtual cache L1 line size: 16 or 32 bytes
= Direct mapped
= Read-only

— Data cache
- Virtual cache
= Direct mapped
= Uses write-back policy
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Example Implementations (cont’d)

» L2 cache
— Physical cache
— Either unified or split
= Configured at boot time
— Direct mapped
— Uses write-back policy
— Cache block size
> 16, 32, 64, or 128 bytes
= Set at boot time
— L1 cache line size < L2 cache size

* Direct mapping simplifies replacement

» No need for LRU type complex implementation
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Cache Operation Summary

e Various policies used by cache

* Placement of a block

» Direct mapping

» Fully associative mapping

» Set-associative mapping
* Location of a block

» Depends on the placement policy
* Replacement policy

» LRU is the most popular

— Pseudo-LRU is often implemented

*  Write policy

» Write-through

» Write-back
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Design Issues

« Several design 1ssues

* Cache capacity

» Law of diminishing
returns

* (Cache line size/block size
* Degree of associativity

* Unified/split

*  Single/two-level

*  Write-through/write-back

Miss rate

* Logical/physical

Cache capacity ———=
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Design Issues (cont’d)

/ Direct mapping

Fully associative mapping

Miss rate ———=
Miss rate ———=

Block size — Degree of associativity ———

Last slide
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