
Cache Memory

Chapter 17
S. Dandamudi



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 2

Outline

• Introduction
• How cache memory works
• Why cache memory works
• Cache design basics
• Mapping function

∗ Direct mapping
∗ Associative mapping
∗ Set-associative mapping

• Replacement policies
• Write policies
• Space overhead

• Types of cache misses
• Types of caches
• Example implementations

∗ Pentium
∗ PowerPC
∗ MIPS

• Cache operation summary
• Design issues

∗ Cache capacity
∗ Cache line size
∗ Degree of associatively



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 3

Introduction

• Memory hierarchy
∗ Registers
∗ Memory
∗ Disk
∗ …

• Cache memory is a small amount of fast memory
∗ Placed between two levels of memory hierarchy

» To bridge the gap in access times
– Between processor and main memory (our focus)
– Between main memory and disk (disk cache)

∗ Expected to behave like a large amount of fast memory



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 4

Introduction (cont’d)



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 5

How Cache Memory Works

• Prefetch data into cache before the processor 
needs it
∗ Need to predict processor future access requirements

» Not difficult owing to locality of reference

• Important terms
∗ Miss penalty
∗ Hit ratio
∗ Miss ratio = (1 – hit ratio)
∗ Hit time



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 6

How Cache Memory Works (cont’d)

Cache read operation



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 7

How Cache Memory Works (cont’d)

Cache write operation



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 8

Why Cache Memory Works

• Example
for (i=0; i<M; i++)

for(j=0; j<N; j++)

X[i][j] = X[i][j] + K;

∗ Each element of X is double (eight bytes)
∗ Loop is executed (M*N) times

» Placing the code in cache avoids access to main memory
– Repetitive use (one of the factors)
– Temporal locality

» Prefetching data
– Spatial locality



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 9

How Cache Memory Works (cont’d)

0

50

100

150

200

250

300

500 600 700 800 900 1000

Matrix size

Ex
ec

ut
io

n 
tim

e 
(m

s

Column-order

Row-order



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 10

Cache Design Basics

• On every read miss
∗ A fixed number of bytes are transferred

» More than what the processor needs
– Effective due to spatial locality

• Cache is divided into blocks of B bytes
» b-bits are needed as offset into the block

b = log2B
» Block are called cache lines

• Main memory is also divided into blocks of same 
size
∗ Address is divided into two parts



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 11

Cache Design Basics (cont’d)

B = 4 bytes
b = 2 bits



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 12

Cache Design Basics (cont’d)

• Transfer between main 
memory and cache
∗ In units of blocks
∗ Implements spatial locality

• Transfer between main 
memory and cache
∗ In units of words

• Need policies for
∗ Block placement
∗ Mapping function
∗ Block replacement
∗ Write policies



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 13

Cache Design Basics (cont’d)

Read cycle operations



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 14

Mapping Function

• Determines how memory blocks are mapped to 
cache lines

• Three types
∗ Direct mapping

» Specifies a single cache line for each memory block

∗ Set-associative mapping
» Specifies a set of cache lines for each memory block

∗ Associative mapping
» No restrictions

– Any cache line can be used for any memory block



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 15

Mapping Function (cont’d)

Direct mapping example



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 16

Mapping Function (cont’d)

• Implementing direct mapping
∗ Easier than the other two
∗ Maintains three pieces of information

» Cache data
– Actual data

» Cache tag
– Problem: More memory blocks than cache lines

Several memory blocks are mapped to a cache line
– Tag stores the address of memory block in cache line

» Valid bit
– Indicates if cache line contains a valid block



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 17

Mapping Function (cont’d)



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 18

Mapping Function (cont’d)

Reference pattern:
0, 4, 0, 8, 0, 8, 
0, 4, 0, 4, 0, 4

Direct mapping

Hit ratio = 0%



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 19

Mapping Function (cont’d)

Reference pattern:
0, 7, 9, 10, 0, 7, 
9, 10, 0, 7, 9, 10

Direct mapping

Hit ratio = 67%



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 20

Mapping Function (cont’d)
Associative mapping



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 21

Mapping Function (cont’d)

Associative 
mapping

Reference pattern:
0, 4, 0, 8, 0, 8, 
0, 4, 0, 4, 0, 4

Hit ratio = 75%



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 22

Mapping Function (cont’d)

Address match logic for
associative mapping



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 23

Mapping Function (cont’d)

Associative cache with address match logic



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 24

Mapping Function (cont’d)

Set-associative mapping



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 25

Mapping Function (cont’d)

Address partition in set-associative mapping



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 26

Mapping Function (cont’d)

Set-associative 
mapping

Reference pattern:
0, 4, 0, 8, 0, 8, 
0, 4, 0, 4, 0, 4

Hit ratio = 67%



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 27

Replacement Policies

• We invoke the replacement policy
∗ When there is no place in cache to load the memory 

block

• Depends on the actual placement policy in effect
∗ Direct mapping does not need a special replacement 

policy
» Replace the mapped cache line

∗ Several policies for the other two mapping functions
» Popular: LRU (least recently used)
» Random replacement
» Less interest (FIFO, LFU)



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 28

Replacement Policies (cont’d)

• LRU
∗ Expensive to implement 

» Particularly for set sizes more than four

• Implementations resort to approximation
∗ Pseudo-LRU

» Partitions sets into two groups
– Maintains the group that has been accessed recently
– Requires only one bit

» Requires only (W-1) bits (W = degree of associativity) 
– PowerPC is an example

Details later



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 29

Replacement Policies (cont’d)

Pseudo-LRU 
implementation



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 30

Write Policies

• Memory write requires special attention
∗ We have two copies

» A memory copy
» A cached copy

∗ Write policy determines how a memory write operation 
is handled

» Two policies
– Write-through

Update both copies
– Write-back

Update only the cached copy
Needs to be taken care of the memory copy



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 31

Write Policies (cont’d)

Cache hit in a write-through cache

Figure 17.3a



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 32

Write Policies (cont’d)

Cache hit in a write-back cache



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 33

Write Policies (cont’d)

• Write-back policy
∗ Updates the memory copy when the cache copy is 

being replaced
» We first write the cache copy to update the memory copy

∗ Number of write-backs can be reduced if we write only 
when the cache copy is different from memory copy

» Done by associating a dirty bit or update bit
– Write back only when the dirty bit is 1

» Write-back caches thus require two bits
– A valid bit
– A dirty or update bit



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 34

Write Policies (cont’d)

Needed only in write-back caches



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 35

Write Policies (cont’d)

• Other ways to reduce write traffic
∗ Buffered writes

» Especially useful for write-through policies
» Writes to memory are buffered and written at a later time

– Allows write combining
Catches multiple writes in the buffer itself

∗ Example: Pentium
» Uses a 32-byte write buffer
» Buffer is written at several trigger points

– An example trigger point
Buffer full condition



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 36

Write Policies (cont’d)

• Write-through versus write-back
∗ Write-through

» Advantage
– Both cache and memory copies are consistent

Important in multiprocessor systems
» Disadvantage

– Tends to waste bus and memory bandwidth
∗ Write-back

» Advantage
– Reduces write traffic to memory

» Disadvantages
– Takes longer to load new cache lines
– Requires additional dirty bit



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 37

Space Overhead

• The three mapping functions introduce different 
space overheads
∗ Overhead decreases with increasing degree of 

associativity
» Several examples in the text 4 GB address space

32 KB cache



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 38

Types of Cache Misses

• Three types
∗ Compulsory misses

» Due to first-time access to a block
– Also called cold-start misses or compulsory line fills

∗ Capacity misses
» Induced due to cache capacity limitation
» Can be avoided by increasing cache size

∗ Conflict misses
» Due to conflicts caused by direct and set-associative mappings

– Can be completely eliminated by fully associative 
mapping

– Also called collision misses



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 39

Types of Cache Misses (cont’d)

• Compulsory misses
∗ Reduced by increasing block size

» We prefetch more
» Cannot increase beyond a limit

– Cache misses increase

• Capacity misses
∗ Reduced by increasing cache size

» Law of diminishing returns

• Conflict misses
∗ Reduced by increasing degree of associativity

» Fully associative mapping: no conflict misses



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 40

Types of Caches

• Separate instruction and data caches
» Initial cache designs used unified caches
» Current trend is to use separate caches (for level 1)



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 41

Types of Caches (cont’d)

• Several reasons for preferring separate caches
∗ Locality tends to be stronger
∗ Can use different designs for data and instruction 

caches
» Instruction caches

– Read only, dominant sequential access
– No need for write policies
– Can use a simple direct mapped cache implementation

» Data caches
– Can use a set-associative cache
– Appropriate write policy can be implemented

∗ Disadvantage
» Rigid boundaries between data and instruction caches



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 42

Types of Caches (cont’d)

• Number of cache levels
∗ Most use two levels

» Primary (level 1 or L1)
– On-chip

» Secondary (level 2 or L2)
– Off-chip

∗ Examples
» Pentium

– L1: 32 KB
– L2: up to 2 MB

» PowerPC
– L1: 64 KB
– L2: up to 1 MB



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 43

Types of Caches (cont’d)

• Two-level caches work as follows:
∗ First attempts to get data from L1 cache

» If present in L1, gets data from L1 cache (“L1 cache hit”)
» If not, data must come form L2 cache or main memory (“L1 

cache miss”)

∗ In case of L1 cache miss, tries to get from L2 cache
» If data are in L2, gets data from L2 cache (“L2 cache hit”)

– Data block is written to L1 cache
» If not, data comes from main memory (“L2 cache miss”)

– Main memory block is written into L1 and L2 caches

• Variations on this basic scheme are possible



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 44

Types of Caches (cont’d)

Virtual and physical caches



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 45

Example Implementations

• We look at three processors
∗ Pentium
∗ PowerPC
∗ MIPS

• Pentium implementation
∗ Two levels

» L1 cache 
– Split cache design

Separate data and instruction caches
» L2 cache 

– Unified cache design



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 46

Example Implementations (cont’d)

• Pentium allows each page/memory region to have 
its own caching attributes
∗ Uncacheable

» All reads and writes go directly to the main memory
– Useful for 

Memory-mapped I/O devices
Large data structures that are read once
Write-only data structures

∗ Write combining
» Not cached
» Writes are buffered to reduce access to main memory

– Useful for video buffer frames



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 47

Example Implementations (cont’d)

∗ Write-through
» Uses write-through policy

» Writes are delayed as they go though a write buffer as in write 
combining mode

∗ Write back
» Uses write-back policy

» Writes are delayed as in the write-through mode

∗ Write protected
» Inhibits cache writes

» Write are done directly on the memory



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 48

Example Implementations (cont’d)

• Two bits in control register CR0 determine the 
mode
∗ Cache disable (CD) bit
∗ Not write-through (NW) bitw

Write-back



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 49

Example Implementations (cont’d)

PowerPC cache implementation
∗ Two levels

» L1 cache 
– Split cache 

Each: 32 KB eight-way associative
– Uses pseudo-LRU replacement
– Instruction cache: read-only
– Data cache: read/write

Choice of write-through or write-back
» L2 cache 

– Unified cache as in Pentium
– Two-way set associative



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 50

Example Implementations (cont’d)

∗ Write policy type and 
caching attributes can be set 
by OS at the block or page 
level

∗ L2 cache requires only a 
single bit to implement 
LRU

» Because it is 2-way 
associative

∗ L1 cache implements a 
pseudo-LRU

» Each set maintains seven 
PLRU bits (B0−B6)



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 51

Example Implementations (cont’d)

PowerPC placement 
policy (incl. PLRU)



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 52

Example Implementations (cont’d)

MIPS implementation
∗ Two-level cache

» L1 cache
– Split organization
– Instruction cache

Virtual cache
Direct mapped
Read-only

– Data cache
Virtual cache
Direct mapped
Uses write-back policy

L1 line size: 16 or 32 bytes



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 53

Example Implementations (cont’d)

» L2 cache
– Physical cache
– Either unified or split

Configured at boot time
– Direct mapped
– Uses write-back policy
– Cache block size

16, 32, 64, or 128 bytes
Set at boot time

– L1 cache line size ≤ L2 cache size

∗ Direct mapping simplifies replacement
» No need for LRU type complex implementation



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 54

Cache Operation Summary

• Various policies used by cache
∗ Placement of a block

» Direct mapping
» Fully associative mapping
» Set-associative mapping

∗ Location of a block
» Depends on the placement policy

∗ Replacement policy
» LRU is the most popular

– Pseudo-LRU is often implemented
∗ Write policy

» Write-through
» Write-back



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 55

Design Issues

• Several design issues
∗ Cache capacity

» Law of diminishing 
returns

∗ Cache line size/block size
∗ Degree of associativity
∗ Unified/split
∗ Single/two-level
∗ Write-through/write-back
∗ Logical/physical



2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 17: Page 56

Design Issues (cont’d)

Last slide


