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Outline

• Basic concepts
• Handling resource 

conflicts
• Data hazards
• Handling branches
• Performance 

enhancements
• Example implementations

∗ Pentium
∗ PowerPC
∗ SPARC
∗ MIPS

• Vector processors
∗ Architecture
∗ Advantages
∗ Cray X-MP
∗ Vector length
∗ Vector stride
∗ Chaining

• Performance
∗ Pipeline
∗ Vector processing
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Basic Concepts

• Pipelining allows overlapped execution to 
improve throughput
∗ Introduction given in Chapter 1
∗ Pipelining can be applied to various functions

» Instruction pipeline
– Five stages
– Fetch, decode, operand fetch, execute, write-back

» FP add pipeline
– Unpack: into three fields
– Align: binary point
– Add: aligned mantissas
– Normalize: pack three fields after normalization

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 4

Basic Concepts (cont’d)
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Basic Concepts (cont’d)

Serial execution: 20 cycles

Pipelined execution: 8 cycles
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Basic Concepts (cont’d)

• Pipelining requires buffers
∗ Each buffer holds a single value
∗ Uses just-in-time principle

» Any delay in one stage affects the entire pipeline flow
∗ Ideal scenario: equal work for each stage

» Sometimes it is not possible
» Slowest stage determines the flow rate in the entire pipeline
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Basic Concepts (cont’d)

• Some reasons for unequal work stages
∗ A complex step cannot be subdivided conveniently
∗ An operation takes variable amount of time to execute

» EX: Operand fetch time depends on where the operands are 
located

– Registers 
– Cache 
– Memory

∗ Complexity of operation depends on the type of 
operation

» Add: may take one cycle
» Multiply: may take several cycles
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Basic Concepts (cont’d)

• Operand fetch of I2 takes three cycles
∗ Pipeline stalls for two cycles

» Caused by hazards
∗ Pipeline stalls reduce overall throughput
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Basic Concepts (cont’d)

• Three types of hazards
∗ Resource hazards

» Occurs when two or more instructions use the same resource
» Also called structural hazards

∗ Data hazards
» Caused by data dependencies between instructions

– Example: Result produced by I1 is read by I2

∗ Control hazards
» Default: sequential execution suits pipelining
» Altering control flow (e.g., branching) causes problems

– Introduce control dependencies
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Handling Resource Conflicts

• Example
∗ Conflict for memory in clock cycle 3

» I1 fetches operand
» I3 delays its instruction fetch from the same memory
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Handling Resource Conflicts (cont’d)

• Minimizing the impact of resource conflicts
∗ Increase available resources
∗ Prefetch

» Relaxes just-in-time principle
» Example: Instruction queue
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Data Hazards

• Example
I1: add    R2,R3,R4 /* R2 = R3 + R4 */
I2: sub    R5,R6,R2 /* R5 = R6 – R2 */

• Introduces data dependency between I1 and I2
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Data Hazards (cont’d)

• Three types of data dependencies require attention
∗ Read-After-Write (RAW)

» One instruction writes that is later read by the other instruction
∗ Write-After-Read (WAR)

» One instruction reads from register/memory that is later written
by the other instruction

∗ Write-After-Write (WAW)
» One instruction writes into register/memory that is later written 

by the other instruction

∗ Read-After-Read (RAR)
» No conflict
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Data Hazards (cont’d)

• Data dependencies have two implications
∗ Correctness issue

» Detect dependency and stall
– We have to stall the SUB instruction

∗ Efficiency issue
» Try to minimize pipeline stalls

• Two techniques to handle data dependencies
∗ Register interlocking

» Also called bypassing

∗ Register forwarding
» General technique
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Data Hazards (cont’d)

• Register interlocking
∗ Provide output result as soon as possible

• An Example
∗ Forward 1 scheme

» Output of I1 is given to I2 as we write the result into 
destination register of I1

» Reduces pipeline stall by one cycle

∗ Forward 2 scheme
» Output of I1 is given to I2 during the IE stage of I1
» Reduces pipeline stall by two cycles
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Data Hazards (cont’d)
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Data Hazards (cont’d)

• Implementation of 
forwarding in hardware
∗ Forward 1 scheme

» Result is given as input 
from the bus

– Not from A

∗ Forward 2 scheme
» Result is given as input 

from the ALU output

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 18

Data Hazards (cont’d)

• Register interlocking
∗ Associate a bit with each register

» Indicates whether the contents are correct
– 0 : contents can be used
– 1 : do not use contents

∗ Instructions lock the register when using
∗ Example

» Intel Itanium uses a similar bit
– Called NaT (Not-a-Thing)
– Uses this bit to support speculative execution
– Discussed in Chapter 14
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Data Hazards (cont’d)

• Example
I1: add    R2,R3,R4 /* R2 = R3 + R4 */
I2: sub    R5,R6,R2 /* R5 = R6 – R2 */

• I1 locks R2 for clock cycles 3, 4, 5
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Data Hazards (cont’d)

• Register forwarding vs. Interlocking
∗ Forwarding works only when the required values are in 

the pipeline
∗ Intrerlocking can handle data dependencies of a general 

nature
∗ Example

load   R3,count ; R3 = count
add    R1,R2,R3 ; R1 = R2 + R3

» add cannot use R3 value until load has placed the count
» Register forwarding is not useful in this scenario
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Handling Branches

• Braches alter control flow
∗ Require special attention in pipelining
∗ Need to throw away some instructions in the pipeline

» Depends on when we know the branch is taken
» First example (next slide)

– Discards three instructions I2, I3 and I4
» Pipeline wastes three clock cycles

– Called branch penalty

∗ Reducing branch penalty
» Determine branch decision early

– Next example: penalty of one clock cycle
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Handling Branches (cont’d)
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Handling Branches (cont’d)

• Delayed branch execution
∗ Effectively reduces the branch penalty
∗ We always fetch the instruction following the branch

» Why throw it away?
» Place a useful instruction to execute
» This is called delay slot

add     R2,R3,R4

branch  target

sub     R5,R6,R7

. . .

branch  target

add     R2,R3,R4

sub     R5,R6,R7

. . .

Delay slot
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Branch Prediction

• Three prediction strategies
∗ Fixed

» Prediction is fixed
– Example: branch-never-taken

Not proper for loop structures

∗ Static
» Strategy depends on the branch type

– Conditional branch: always not taken
– Loop: always taken

∗ Dynamic
» Takes run-time history to make more accurate predictions
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Branch Prediction (cont’d)

• Static prediction
∗ Improves prediction accuracy over Fixed
Instruction type Instruction 

Distribution 
(%) 

Prediction: 
Branch 
taken? 

Correct 
prediction 

(%) 
Unconditional 
branch 

70*0.4 = 28 Yes 28 

Conditional 
branch 

70*0.6 = 42 No 42*0.6 = 25.2 

Loop 10 Yes 10*0.9 = 9 

Call/return 20 Yes 20 

  Overall prediction accuracy = 82.2% 
 

 

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 26

Branch Prediction (cont’d)

• Dynamic branch prediction
∗ Uses runtime history

» Takes the past n branch executions of the branch type and 
makes the prediction

∗ Simple strategy
» Prediction of the next branch is the majority of the previous n

branch executions
» Example: n = 3

– If two or more of the last three branches were taken, the 
prediction is “branch taken”

» Depending on the type of mix, we get more than 90% 
prediction accuracy
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Branch Prediction (cont’d)

• Impact of past n branches on prediction accuracy

 Type of mix 
n Compiler Business Scientific
0 64.1 64.4 70.4 
1 91.9 95.2 86.6 
2 93.3 96.5 90.8 
3 93.7 96.6 91.0 
4 94.5 96.8 91.8 
5 94.7 97.0 92.0 
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Branch Prediction (cont’d)
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Branch Prediction (cont’d)
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Performance Enhancements

• Several techniques to improve performance of a 
pipelined system
∗ Superscalar

» Replicates the pipeline hardware

∗ Superpipelined
» Increases the pipeline depth

∗ Very long instruction word (VLIW)
» Encodes multiple operations into a long instruction word
» Hardware schedules these instructions on multiple functional 

units
– No run-time analysis
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Performance Enhancements

• Superscalar
∗ Dual pipeline design

» Instruction fetch unit gets two instructions per cycle
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Performance Enhancements (cont’d)

• Dual pipeline design assumes that instruction 
execution takes the same time
∗ In practice, instruction execution takes variable amount 

of time
» Depends on the instruction

∗ Provide multiple execution units
» Linked to a single pipeline
» Example (next slide) 

– Two integer units
– Two FP units

• These designs are called superscalar designs
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Performance Enhancements (cont’d)
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Performance Enhancements (cont’d)

• Superpipelined processors
∗ Increases pipeline depth

» Ex: Divide each processor cycle into two or more subcycles
∗ Example: MIPS R40000

» Eight-stage instruction pipeline
» Each stage takes half the master clock cycle

IF1 & IF2: instruction fetch, first half & second half
RF : decode/fetch operands
EX : execute
DF1 & DF2: data fetch (load/store): first half and second half
TC : load/store check
WB : write back
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Performance Enhancements (cont’d)
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Performance Enhancements (cont’d)

• Very long instruction word (VLIW)
∗ With multiple resources, instruction scheduling is 

important to keep these units busy
∗ In most processors, instruction scheduling is done at 

run-time by looking at instructions in the instructions 
queue

» VLIW architectures move the job of instruction scheduling 
from run-time to compile-time

– Implies moving from hardware to software
– Implies moving from online to offline analysis

More complex analysis can be done
Results in simpler hardware
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Performance Enhancements (cont’d)

• Out-of-order execution
add   R1,R2,R3 ;R1 = R2 + R3
sub   R5,R6,R7 ;R5 = R6 – R7
and   R4,R1,R5 ;R4 = R1 AND R5
xor   R9,R9,R9 ;R9 = R9 XOR R9
∗ Out-of-order execution allows executing XOR before 

AND
» Cycle 1: add, sub, xor
» Cycle 2: and

∗ More on this in Chapter 14
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Performance Enhancements (cont’d)

• Each VLIW instruction consists of several 
primitive operations that can be executed in 
parallel
∗ Each word can be tens of bytes wide
∗ Multiflow TRACE system: 

» Uses 256-bit instruction words
» Packs 7 different operations
» A more powerful TRACE system

– Uses 1024-bit instruction words
– Packs as many as 28 operations

∗ Itanium uses 128-bit instruction bundles
» Each consists of three 41-bit instructions
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Example Implementations

• We look at instruction pipeline details of four 
processors
∗ Cover both RISC and CISC
∗ CISC

» Pentium
∗ RISC

» PowerPC
» SPARC
» MIPS
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Pentium Pipeline

• Pentium
∗ Uses dual pipeline design to achieve superscalar 

execution
» U-pipe

– Main pipeline
– Can execute any Pentium instruction

» V-pipe
– Can execute only simple instructions

∗ Floating-point pipeline
∗ Uses the dynamic branch prediction strategy
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Pentium Pipeline (cont’d)
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Pentium Pipeline (cont’d)

• Algorithm used to schedule the U- and V-pipes
∗ Decode two consecutive instructions I1 and I2
IF (I1 and I2 are simple instructions) AND

(I1 is not a branch instruction) AND
(destination of I1 ≠ source of I2) AND
(destination of I1 ≠ destination of I2)

THEN
Issue I1 to U-pipe and I2 to V-pipe

ELSE
Issue I1 to U-pipe
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Pentium Pipeline (cont’d)

• Integer pipeline
∗ 5-stages

• FP pipeline
∗ 8-stages
∗ First 3 stages are common
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Pentium Pipeline (cont’d)

• Integer pipeline
∗ Prefetch (PF)

» Prefetches instructions and stores in the instruction buffer
∗ First decode (D1)

» Decodes instructions and generates 
– Single control word (for simple operations)

Can be executed directly
– Sequence of control words (for complex operations)

Generated by a microprogrammed control unit
∗ Second decode (D2)

» Control words generated in D1 are decoded
» Generates necessary operand addresses
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Pentium Pipeline (cont’d)

∗ Execute (E)
» Depends on the type of instruction

– Accesses either operands from the data cache, or
– Executes instructions in the ALU or other functional units

» For register operands
– Operation is performed during E stage and results are 

written back to registers
» For memory operands

– D2 calculates the operand address
– E stage fetches the operands
– Another E stage is added to execute in case of cache hit

∗ Write back (WB)
» Writes the result back
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Pentium Pipeline (cont’d)

• 8-stage FP Pipeline
∗ First three stages are the same as in the integer 

pipeline
∗ Operand fetch (OF)

» Fetches necessary operands from data cache and FP 
registers

∗ First execute (X1)
» Initial operation is done
» If data fetched from cache, they are written to FP 

registers
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Pentium Pipeline (cont’d)

∗ Second execute (X2)
» Continues FP operation initiated in X1

∗ Write float (WF)
» Completes the FP operation
» Writes the result to FP register file

∗ Error reporting (ER)
» Used for error detection and reporting
» Additional processing may be required to complete 

execution
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PowerPC Pipeline

• PowerPC 604 processor
∗ 32 general-purpose registers (GPRs)
∗ 32 floating-point registers (FPRs)
∗ Three basic execution units

» Integer
» Floating-point
» Load/store

∗ A branch processing unit
∗ A completion unit
∗ Superscalar

» Issues up to 4 instructions/clock
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PowerPC Pipeline (cont’d)
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PowerPC Pipeline (cont’d)

• Integer unit
∗ Two single-cycle units (SCIU)

» Execute most integer instructions
» Take only one cycle to execute

∗ One multicycle unit (MCIU)
» Executes multiplication and division
» Multiplication of two 32-bit integers takes 4 cycles
» Division takes 20 cycles

• Floating-point unit (FPU)
∗ Handles both single- and double precision FP 

operations
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PowerPC Pipeline (cont’d)
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PowerPC Pipeline (cont’d)

• Load/store unit (LSU)
∗ Single-cycle, pipelined access to cache
∗ Dedicated hardware to perform effective address 

calculations
∗ Performs alignment and precision conversion for FP 

numbers
∗ Performs alignment and sign-extension for integers
∗ Uses 

» a 4-entry load miss buffer
» 6-entry store buffer
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PowerPC Pipeline (cont’d)

• Branch processing unit (BPU)
∗ Uses dynamic branch prediction
∗ Maintains a 512-entry branch history table with two 

prediction bits
∗ Keeps a 64-entry branch target address cache

• Instruction pipeline
∗ 6-stage
∗ Maintains 8-entry instruction buffer between the fetch 

and dispatch units
» 4-entry decode buffer
» 4-entry dispatch buffer
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PowerPC Pipeline (cont’d)

• Fetch (IF)
∗ Instruction fetch

• Decode (ID)
∗ Performs instruction decode
∗ Moves instructions from decode buffer to dispatch 

buffer as space becomes available

• Dispatch (DS)
∗ Determines which instructions can be scheduled
∗ Also fetches operands from registers
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PowerPC Pipeline (cont’d)

• Execute (E)
∗ Time in the execution stage depends on the operation
∗ Up to 7 instructions can be in execution

• Complete (C)
∗ Responsible for correct instruction order of execution

• Write back (WB)
∗ Writes back data from the rename buffers
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SPARC Processor

• UltraSPARC
∗ Superscalar

» Executes up to 4 instructions/cycle

∗ Implements 64-bit SPARC-V9 architecture
• Prefetch and dispatch unit (PDU)

∗ Performs standard prefetch and dispatch functions
∗ Instruction buffer can store up to 12 instructions
∗ Branch prediction logic implements dynamic branch 

prediction
» Uses 2-bit history
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SPARC Processor (cont’d)
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SPARC Processor (cont’d)

• Integer execution
∗ Has two ALUs
∗ A multicycle integer multiplier
∗ A multicycle divider

• Floating-point unit
∗ Add, multiply, and divide/square root subunits
∗ Can issue two FP instructions/cycle
∗ Divide and square root operations are not pipelined

» Single precision takes 12 cycles
» Double precision takes 22 cycles
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SPARC Processor (cont’d)

• 9-stage instruction pipeline
∗ 3 stages are added to the integer pipeline to synchronize with FP 

pipeline
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SPARC Processor (cont’d)

• Fetch and Decode
∗ Standard fetch and decode operations

• Group
∗ Groups and dispatches up to 4 instructions per cycle
∗ Grouping stage is also responsible for 

» Integer data forwarding 
» Handling pipeline stalls due to interlocks

• Cache
∗ Used  by load/store operations to get data from the data 

cache
∗ FP and graphics instructions start their execution
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SPARC Processor (cont’d)

• N1 and N2
∗ Used to complete load and store operations

• X2 and X3
∗ FP operations continue their execution initiated in X1 

stage
• N3

∗ Used to resolve traps
• Write

∗ Write the results to the integer and FP registers
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MIPS Processor 

• MIPS R4000 processor
∗ Superpipelined design

» Instruction pipeline runs at twice the processor clock
– Details discussed before

∗ Like SPARC, uses 8-stage instruction pipeline for both 
integer and FP instructions

∗ FP unit has three functional units
» Adder, multiplier, and divider
» Divider unit is not pipelined

– Allows only one operation at a time
» Multiplier unit is pipelined

– Allows up to two instructions
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MIPS Processor 
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Vector Processors

• Vector systems provide instructions that operate at 
the vector level
∗ A vector instruction can replace a loop

» Example: Adding vectors A and B and storing the result in C
– n elements in each vector

» We need a loop that iterates n times
for(i=0; i<n; i++)

C[i] = A[i] + B[i]

» This can be done by a single vector instruction
V3  V2+V1

Assumes that A is in V2 and B in V1
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Vector Processors (cont’d)

• Architecture
∗ Two types

» Memory-memory
– Input operands are in memory

Results are also written back to memory
– First vector machines are of this type

CDC Star 100
» Vector-register

– Similar to RISC
– Load/store architecture
– Input operands are taken from registers

Result go into registers as well
– Modern machines use this architecture
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Vector Processors (cont’d)

• Vector-register architecture
∗ Five components

» Vector registers
– Each can hold a small vector

» Scalar registers
– Provide scalar input to vector operations

» Vector functional units
– For integer, FP, and logical operations

» Vector load/store unit
– Responsible for movement of data between vector 

registers and memory
» Main memory
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Vector Processors (cont’d)

Based on 
Cray 1
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Vector Processors (cont’d)

• Advantages of vector processing
∗ Flynn’s bottleneck can be reduced

» Due to vector-level instructions
∗ Data hazards can be eliminated

» Due to structured nature of data
∗ Memory latency can be reduced

» Due to pipelined load and store operations
∗ Control hazards can be reduced

» Due to specification of large number of iterations in one 
operation

∗ Pipelining can be exploited
» At all levels



35

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 69

Cray X-MP

• Supports up to 4 processors
∗ Similar to RISC architecture

» Uses load/store architecture

∗ Instructions are encoded into a 16- or 32-bit format
» 16-bit encoding is called one parcel
» 32-bit encoding is called two parcels

• Has three types of registers
∗ Address
∗ Scalar
∗ Vector

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 70

Cray X-MP (cont’d)

• Address registers
∗ Eight 24-bit addresses (A0 – A7)

» Hold memory address for load and store operations

∗ Two functional units to perform address arithmetic 
operations

24-bit integer ADD               2 stages
24-bit integer MULTIPLY    4 stages

∗ Cray assembly language format
Ai  Aj+Ak     (Ai = Aj+Ak)

Ai Aj*Ak     (Ai = Aj*Ak)
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Cray X-MP (cont’d)

• Scalar registers
∗ Eight 64-bit scalar registers (S0 – S7)
∗ Four types of functional units
Scalar functional unit                    # of stages
Integer add (64-bit)      3
64-bit shift                    2
128-bit shift                  3
64-bit logical                  1
POP/Parity (population/parity)   4
POP/Parity (leading zero count) 3
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Cray X-MP (cont’d)

• Vector registers
∗ Eight 64-element vector registers

» Each holds 64 bits
∗ Each vector instruction works on the first VL elements

» VL is in the vector length register
∗ Vector functional units

» Integer ADD
» SHIFT
» Logical
» POP/Parity
» FP ADD
» FP MULTIPLY
» Reciprocal
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Cray X-MP (cont’d)

Vector functional units
Vector functional unit    #stages  Avail. to chain     Results
64-bit integer ADD            3                   8            VL + 8
64-bit SHIFT 3                   8            VL + 8
128-bit SHIFT 4                   9            VL + 9
Full vector LOGICAL         2                   7            VL + 7
Second vector LOGICAL    4                   9            VL + 9
POP/Parity 5                  10         VL + 10
Floating ADD          6                  11        VL + 11
Floating MULTIPLY           7                  12         VL + 12
Reciprocal approximation 14                19           VL + 19
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Cray X-MP (cont’d)

• Sample instructions
1. Vi  Vj+Vk    ;Vi = Vj+Vk integer add
2. Vi Sj+Vk    ;Vi = Sj+Vk   integer add
3. Vi Vj+FVk   ;Vi = Vj+Vk FP add
4. Vi Sj+FVk   ;Vi = Vj+Vk FP add
5. Vi ,A0,Ak   ;Vi = M(A0;Ak)  

Vector load with stride Ak
6. ,A0,Ak Vi   ;M(A0;Ak) = Vi 

Vector store with stride Ak



38

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 75

Vector Length

• If the vector length we are dealing with is equal to 
VL, no problem
∗ What if vector length < VL

» Simple case
» Store the actual length of the vector in the VL register

A1  40

VL  A1

V2  V3+FV4

» We use two instructions to load VL as 
VL   40

is not allowed
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Vector Length

∗ What if vector length > VL
» Use strip mining technique
» Partition the vector into strips of VL elements
» Process each strip, including the odd sized one, in a loop
» Example: Vector registers are 64 elements long

– Odd size strip size = N mod 64
– Number of strips = (N/64) + 1
– If N = 200

Four strips: 64, 64, 64, 8 elements
In one iteration, we set VL = 8
Other three iterations VL = 64
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Vector Stride

• Refers to the difference between elements 
accessed

• 1-D array
∗ Accessing successive elements

» Stride = 1

• Multidimensional arrays are stored in
∗ Row-major
∗ Column-major
∗ Accessing a column or a row needs a non-unit stride
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Vector Stride (cont’d)

Stride = 4 to access a column, 1 to access a row

Stride = 4 to access a row, 1 to access a column
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Vector Stride (cont’d)

• Cray X-MP provides instructions to load and store 
vectors with non-unit stride
∗ Example 1: non-unit stride load

Vi  ,A0,Ak

Loads vector register Vi with stride Ak

∗ Example 2: unit stride load
Vi  ,A0,1

Loads vector register Vi with stride 1
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Vector Operations on X-MP

• Simple vector ADD
∗ Setup phase takes 3 clocks
∗ Shut down phase takes 3 clocks
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Vector Operations on X-MP (cont’d)

• Two independent vector operations
» FP add
» FP multiply

∗ Overlapped execution is possible
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Vector Operations on X-MP (cont’d)

• Chaining example
∗ Dependency from FP add to FP multiply

» Multiply unit is kept on hold
» X-MP allows using the first result after 2 clocks
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Performance

• Pipeline performance
non-pipelined execution time

pipelined execution time

• Ideal speedup: 
∗ n stage pipeline should give a speedup of n

• Two factors affect pipeline performance
∗ Pipeline fill
∗ Pipeline drain

Speedup =
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Performance (cont’d)

• N computations on a n-stage pipeline
∗ Non-pipelined: (N * n * T) time units
∗ Pipelined: (n + N – 1) T time units

N * n
n + N – 1

Rewriting
1

1/N + 1/n – 1/(n * N)
Speedup reaches the ideal value of n as N → ∞

Speedup  =

Speedup  =
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Performance (cont’d)
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Performance (cont’d)
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Performance (cont’d)

• Vector processing performance
∗ Impact of vector register length

» Exhibits saw-tooth shaped performance
– Speedup increases as the vector size increases to VL

Due to amortization of pipeline fill cost
– Speedup drops as we increase the vector length to VL+1

We need one more strip to process the vector
Speedup increases as we increase the vector length 
beyond

– Speedup peaks at vector lengths that are a multiple of the 
vector register length
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Performance (cont’d)

Last slide


