
1

Pipelining and Vector Processing

Chapter 8
S. Dandamudi

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 2

Outline

• Basic concepts
• Handling resource

conflicts
• Data hazards
• Handling branches
• Performance

enhancements
• Example implementations

∗ Pentium
∗ PowerPC
∗ SPARC
∗ MIPS

• Vector processors
∗ Architecture
∗ Advantages
∗ Cray X-MP
∗ Vector length
∗ Vector stride
∗ Chaining

• Performance
∗ Pipeline
∗ Vector processing

2

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 3

Basic Concepts

• Pipelining allows overlapped execution to
improve throughput
∗ Introduction given in Chapter 1
∗ Pipelining can be applied to various functions

» Instruction pipeline
– Five stages
– Fetch, decode, operand fetch, execute, write-back

» FP add pipeline
– Unpack: into three fields
– Align: binary point
– Add: aligned mantissas
– Normalize: pack three fields after normalization

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 4

Basic Concepts (cont’d)

3

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 5

Basic Concepts (cont’d)

Serial execution: 20 cycles

Pipelined execution: 8 cycles

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 6

Basic Concepts (cont’d)

• Pipelining requires buffers
∗ Each buffer holds a single value
∗ Uses just-in-time principle

» Any delay in one stage affects the entire pipeline flow
∗ Ideal scenario: equal work for each stage

» Sometimes it is not possible
» Slowest stage determines the flow rate in the entire pipeline

4

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 7

Basic Concepts (cont’d)

• Some reasons for unequal work stages
∗ A complex step cannot be subdivided conveniently
∗ An operation takes variable amount of time to execute

» EX: Operand fetch time depends on where the operands are
located

– Registers
– Cache
– Memory

∗ Complexity of operation depends on the type of
operation

» Add: may take one cycle
» Multiply: may take several cycles

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 8

Basic Concepts (cont’d)

• Operand fetch of I2 takes three cycles
∗ Pipeline stalls for two cycles

» Caused by hazards
∗ Pipeline stalls reduce overall throughput

5

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 9

Basic Concepts (cont’d)

• Three types of hazards
∗ Resource hazards

» Occurs when two or more instructions use the same resource
» Also called structural hazards

∗ Data hazards
» Caused by data dependencies between instructions

– Example: Result produced by I1 is read by I2

∗ Control hazards
» Default: sequential execution suits pipelining
» Altering control flow (e.g., branching) causes problems

– Introduce control dependencies

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 10

Handling Resource Conflicts

• Example
∗ Conflict for memory in clock cycle 3

» I1 fetches operand
» I3 delays its instruction fetch from the same memory

6

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 11

Handling Resource Conflicts (cont’d)

• Minimizing the impact of resource conflicts
∗ Increase available resources
∗ Prefetch

» Relaxes just-in-time principle
» Example: Instruction queue

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 12

Data Hazards

• Example
I1: add R2,R3,R4 /* R2 = R3 + R4 */
I2: sub R5,R6,R2 /* R5 = R6 – R2 */

• Introduces data dependency between I1 and I2

7

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 13

Data Hazards (cont’d)

• Three types of data dependencies require attention
∗ Read-After-Write (RAW)

» One instruction writes that is later read by the other instruction
∗ Write-After-Read (WAR)

» One instruction reads from register/memory that is later written
by the other instruction

∗ Write-After-Write (WAW)
» One instruction writes into register/memory that is later written

by the other instruction

∗ Read-After-Read (RAR)
» No conflict

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 14

Data Hazards (cont’d)

• Data dependencies have two implications
∗ Correctness issue

» Detect dependency and stall
– We have to stall the SUB instruction

∗ Efficiency issue
» Try to minimize pipeline stalls

• Two techniques to handle data dependencies
∗ Register interlocking

» Also called bypassing

∗ Register forwarding
» General technique

8

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 15

Data Hazards (cont’d)

• Register interlocking
∗ Provide output result as soon as possible

• An Example
∗ Forward 1 scheme

» Output of I1 is given to I2 as we write the result into
destination register of I1

» Reduces pipeline stall by one cycle

∗ Forward 2 scheme
» Output of I1 is given to I2 during the IE stage of I1
» Reduces pipeline stall by two cycles

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 16

Data Hazards (cont’d)

9

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 17

Data Hazards (cont’d)

• Implementation of
forwarding in hardware
∗ Forward 1 scheme

» Result is given as input
from the bus

– Not from A

∗ Forward 2 scheme
» Result is given as input

from the ALU output

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 18

Data Hazards (cont’d)

• Register interlocking
∗ Associate a bit with each register

» Indicates whether the contents are correct
– 0 : contents can be used
– 1 : do not use contents

∗ Instructions lock the register when using
∗ Example

» Intel Itanium uses a similar bit
– Called NaT (Not-a-Thing)
– Uses this bit to support speculative execution
– Discussed in Chapter 14

10

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 19

Data Hazards (cont’d)

• Example
I1: add R2,R3,R4 /* R2 = R3 + R4 */
I2: sub R5,R6,R2 /* R5 = R6 – R2 */

• I1 locks R2 for clock cycles 3, 4, 5

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 20

Data Hazards (cont’d)

• Register forwarding vs. Interlocking
∗ Forwarding works only when the required values are in

the pipeline
∗ Intrerlocking can handle data dependencies of a general

nature
∗ Example

load R3,count ; R3 = count
add R1,R2,R3 ; R1 = R2 + R3

» add cannot use R3 value until load has placed the count
» Register forwarding is not useful in this scenario

11

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 21

Handling Branches

• Braches alter control flow
∗ Require special attention in pipelining
∗ Need to throw away some instructions in the pipeline

» Depends on when we know the branch is taken
» First example (next slide)

– Discards three instructions I2, I3 and I4
» Pipeline wastes three clock cycles

– Called branch penalty

∗ Reducing branch penalty
» Determine branch decision early

– Next example: penalty of one clock cycle

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 22

Handling Branches (cont’d)

12

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 23

Handling Branches (cont’d)

• Delayed branch execution
∗ Effectively reduces the branch penalty
∗ We always fetch the instruction following the branch

» Why throw it away?
» Place a useful instruction to execute
» This is called delay slot

add R2,R3,R4

branch target

sub R5,R6,R7

. . .

branch target

add R2,R3,R4

sub R5,R6,R7

. . .

Delay slot

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 24

Branch Prediction

• Three prediction strategies
∗ Fixed

» Prediction is fixed
– Example: branch-never-taken

Not proper for loop structures

∗ Static
» Strategy depends on the branch type

– Conditional branch: always not taken
– Loop: always taken

∗ Dynamic
» Takes run-time history to make more accurate predictions

13

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 25

Branch Prediction (cont’d)

• Static prediction
∗ Improves prediction accuracy over Fixed
Instruction type Instruction

Distribution
(%)

Prediction:
Branch
taken?

Correct
prediction

(%)
Unconditional
branch

70*0.4 = 28 Yes 28

Conditional
branch

70*0.6 = 42 No 42*0.6 = 25.2

Loop 10 Yes 10*0.9 = 9

Call/return 20 Yes 20

 Overall prediction accuracy = 82.2%

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 26

Branch Prediction (cont’d)

• Dynamic branch prediction
∗ Uses runtime history

» Takes the past n branch executions of the branch type and
makes the prediction

∗ Simple strategy
» Prediction of the next branch is the majority of the previous n

branch executions
» Example: n = 3

– If two or more of the last three branches were taken, the
prediction is “branch taken”

» Depending on the type of mix, we get more than 90%
prediction accuracy

14

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 27

Branch Prediction (cont’d)

• Impact of past n branches on prediction accuracy

 Type of mix
n Compiler Business Scientific
0 64.1 64.4 70.4
1 91.9 95.2 86.6
2 93.3 96.5 90.8
3 93.7 96.6 91.0
4 94.5 96.8 91.8
5 94.7 97.0 92.0

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 28

Branch Prediction (cont’d)

15

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 29

Branch Prediction (cont’d)

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 30

Performance Enhancements

• Several techniques to improve performance of a
pipelined system
∗ Superscalar

» Replicates the pipeline hardware

∗ Superpipelined
» Increases the pipeline depth

∗ Very long instruction word (VLIW)
» Encodes multiple operations into a long instruction word
» Hardware schedules these instructions on multiple functional

units
– No run-time analysis

16

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 31

Performance Enhancements

• Superscalar
∗ Dual pipeline design

» Instruction fetch unit gets two instructions per cycle

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 32

Performance Enhancements (cont’d)

• Dual pipeline design assumes that instruction
execution takes the same time
∗ In practice, instruction execution takes variable amount

of time
» Depends on the instruction

∗ Provide multiple execution units
» Linked to a single pipeline
» Example (next slide)

– Two integer units
– Two FP units

• These designs are called superscalar designs

17

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 33

Performance Enhancements (cont’d)

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 34

Performance Enhancements (cont’d)

• Superpipelined processors
∗ Increases pipeline depth

» Ex: Divide each processor cycle into two or more subcycles
∗ Example: MIPS R40000

» Eight-stage instruction pipeline
» Each stage takes half the master clock cycle

IF1 & IF2: instruction fetch, first half & second half
RF : decode/fetch operands
EX : execute
DF1 & DF2: data fetch (load/store): first half and second half
TC : load/store check
WB : write back

18

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 35

Performance Enhancements (cont’d)

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 36

Performance Enhancements (cont’d)

• Very long instruction word (VLIW)
∗ With multiple resources, instruction scheduling is

important to keep these units busy
∗ In most processors, instruction scheduling is done at

run-time by looking at instructions in the instructions
queue

» VLIW architectures move the job of instruction scheduling
from run-time to compile-time

– Implies moving from hardware to software
– Implies moving from online to offline analysis

More complex analysis can be done
Results in simpler hardware

19

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 37

Performance Enhancements (cont’d)

• Out-of-order execution
add R1,R2,R3 ;R1 = R2 + R3
sub R5,R6,R7 ;R5 = R6 – R7
and R4,R1,R5 ;R4 = R1 AND R5
xor R9,R9,R9 ;R9 = R9 XOR R9
∗ Out-of-order execution allows executing XOR before

AND
» Cycle 1: add, sub, xor
» Cycle 2: and

∗ More on this in Chapter 14

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 38

Performance Enhancements (cont’d)

• Each VLIW instruction consists of several
primitive operations that can be executed in
parallel
∗ Each word can be tens of bytes wide
∗ Multiflow TRACE system:

» Uses 256-bit instruction words
» Packs 7 different operations
» A more powerful TRACE system

– Uses 1024-bit instruction words
– Packs as many as 28 operations

∗ Itanium uses 128-bit instruction bundles
» Each consists of three 41-bit instructions

20

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 39

Example Implementations

• We look at instruction pipeline details of four
processors
∗ Cover both RISC and CISC
∗ CISC

» Pentium
∗ RISC

» PowerPC
» SPARC
» MIPS

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 40

Pentium Pipeline

• Pentium
∗ Uses dual pipeline design to achieve superscalar

execution
» U-pipe

– Main pipeline
– Can execute any Pentium instruction

» V-pipe
– Can execute only simple instructions

∗ Floating-point pipeline
∗ Uses the dynamic branch prediction strategy

21

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 41

Pentium Pipeline (cont’d)

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 42

Pentium Pipeline (cont’d)

• Algorithm used to schedule the U- and V-pipes
∗ Decode two consecutive instructions I1 and I2
IF (I1 and I2 are simple instructions) AND

(I1 is not a branch instruction) AND
(destination of I1 ≠ source of I2) AND
(destination of I1 ≠ destination of I2)

THEN
Issue I1 to U-pipe and I2 to V-pipe

ELSE
Issue I1 to U-pipe

22

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 43

Pentium Pipeline (cont’d)

• Integer pipeline
∗ 5-stages

• FP pipeline
∗ 8-stages
∗ First 3 stages are common

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 44

Pentium Pipeline (cont’d)

• Integer pipeline
∗ Prefetch (PF)

» Prefetches instructions and stores in the instruction buffer
∗ First decode (D1)

» Decodes instructions and generates
– Single control word (for simple operations)

Can be executed directly
– Sequence of control words (for complex operations)

Generated by a microprogrammed control unit
∗ Second decode (D2)

» Control words generated in D1 are decoded
» Generates necessary operand addresses

23

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 45

Pentium Pipeline (cont’d)

∗ Execute (E)
» Depends on the type of instruction

– Accesses either operands from the data cache, or
– Executes instructions in the ALU or other functional units

» For register operands
– Operation is performed during E stage and results are

written back to registers
» For memory operands

– D2 calculates the operand address
– E stage fetches the operands
– Another E stage is added to execute in case of cache hit

∗ Write back (WB)
» Writes the result back

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 46

Pentium Pipeline (cont’d)

• 8-stage FP Pipeline
∗ First three stages are the same as in the integer

pipeline
∗ Operand fetch (OF)

» Fetches necessary operands from data cache and FP
registers

∗ First execute (X1)
» Initial operation is done
» If data fetched from cache, they are written to FP

registers

24

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 47

Pentium Pipeline (cont’d)

∗ Second execute (X2)
» Continues FP operation initiated in X1

∗ Write float (WF)
» Completes the FP operation
» Writes the result to FP register file

∗ Error reporting (ER)
» Used for error detection and reporting
» Additional processing may be required to complete

execution

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 48

PowerPC Pipeline

• PowerPC 604 processor
∗ 32 general-purpose registers (GPRs)
∗ 32 floating-point registers (FPRs)
∗ Three basic execution units

» Integer
» Floating-point
» Load/store

∗ A branch processing unit
∗ A completion unit
∗ Superscalar

» Issues up to 4 instructions/clock

25

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 49

PowerPC Pipeline (cont’d)

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 50

PowerPC Pipeline (cont’d)

• Integer unit
∗ Two single-cycle units (SCIU)

» Execute most integer instructions
» Take only one cycle to execute

∗ One multicycle unit (MCIU)
» Executes multiplication and division
» Multiplication of two 32-bit integers takes 4 cycles
» Division takes 20 cycles

• Floating-point unit (FPU)
∗ Handles both single- and double precision FP

operations

26

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 51

PowerPC Pipeline (cont’d)

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 52

PowerPC Pipeline (cont’d)

• Load/store unit (LSU)
∗ Single-cycle, pipelined access to cache
∗ Dedicated hardware to perform effective address

calculations
∗ Performs alignment and precision conversion for FP

numbers
∗ Performs alignment and sign-extension for integers
∗ Uses

» a 4-entry load miss buffer
» 6-entry store buffer

27

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 53

PowerPC Pipeline (cont’d)

• Branch processing unit (BPU)
∗ Uses dynamic branch prediction
∗ Maintains a 512-entry branch history table with two

prediction bits
∗ Keeps a 64-entry branch target address cache

• Instruction pipeline
∗ 6-stage
∗ Maintains 8-entry instruction buffer between the fetch

and dispatch units
» 4-entry decode buffer
» 4-entry dispatch buffer

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 54

PowerPC Pipeline (cont’d)

• Fetch (IF)
∗ Instruction fetch

• Decode (ID)
∗ Performs instruction decode
∗ Moves instructions from decode buffer to dispatch

buffer as space becomes available

• Dispatch (DS)
∗ Determines which instructions can be scheduled
∗ Also fetches operands from registers

28

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 55

PowerPC Pipeline (cont’d)

• Execute (E)
∗ Time in the execution stage depends on the operation
∗ Up to 7 instructions can be in execution

• Complete (C)
∗ Responsible for correct instruction order of execution

• Write back (WB)
∗ Writes back data from the rename buffers

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 56

SPARC Processor

• UltraSPARC
∗ Superscalar

» Executes up to 4 instructions/cycle

∗ Implements 64-bit SPARC-V9 architecture
• Prefetch and dispatch unit (PDU)

∗ Performs standard prefetch and dispatch functions
∗ Instruction buffer can store up to 12 instructions
∗ Branch prediction logic implements dynamic branch

prediction
» Uses 2-bit history

29

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 57

SPARC Processor (cont’d)

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 58

SPARC Processor (cont’d)

• Integer execution
∗ Has two ALUs
∗ A multicycle integer multiplier
∗ A multicycle divider

• Floating-point unit
∗ Add, multiply, and divide/square root subunits
∗ Can issue two FP instructions/cycle
∗ Divide and square root operations are not pipelined

» Single precision takes 12 cycles
» Double precision takes 22 cycles

30

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 59

SPARC Processor (cont’d)

• 9-stage instruction pipeline
∗ 3 stages are added to the integer pipeline to synchronize with FP

pipeline

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 60

SPARC Processor (cont’d)

• Fetch and Decode
∗ Standard fetch and decode operations

• Group
∗ Groups and dispatches up to 4 instructions per cycle
∗ Grouping stage is also responsible for

» Integer data forwarding
» Handling pipeline stalls due to interlocks

• Cache
∗ Used by load/store operations to get data from the data

cache
∗ FP and graphics instructions start their execution

31

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 61

SPARC Processor (cont’d)

• N1 and N2
∗ Used to complete load and store operations

• X2 and X3
∗ FP operations continue their execution initiated in X1

stage
• N3

∗ Used to resolve traps
• Write

∗ Write the results to the integer and FP registers

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 62

MIPS Processor

• MIPS R4000 processor
∗ Superpipelined design

» Instruction pipeline runs at twice the processor clock
– Details discussed before

∗ Like SPARC, uses 8-stage instruction pipeline for both
integer and FP instructions

∗ FP unit has three functional units
» Adder, multiplier, and divider
» Divider unit is not pipelined

– Allows only one operation at a time
» Multiplier unit is pipelined

– Allows up to two instructions

32

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 63

MIPS Processor

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 64

Vector Processors

• Vector systems provide instructions that operate at
the vector level
∗ A vector instruction can replace a loop

» Example: Adding vectors A and B and storing the result in C
– n elements in each vector

» We need a loop that iterates n times
for(i=0; i<n; i++)

C[i] = A[i] + B[i]

» This can be done by a single vector instruction
V3 V2+V1

Assumes that A is in V2 and B in V1

33

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 65

Vector Processors (cont’d)

• Architecture
∗ Two types

» Memory-memory
– Input operands are in memory

Results are also written back to memory
– First vector machines are of this type

CDC Star 100
» Vector-register

– Similar to RISC
– Load/store architecture
– Input operands are taken from registers

Result go into registers as well
– Modern machines use this architecture

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 66

Vector Processors (cont’d)

• Vector-register architecture
∗ Five components

» Vector registers
– Each can hold a small vector

» Scalar registers
– Provide scalar input to vector operations

» Vector functional units
– For integer, FP, and logical operations

» Vector load/store unit
– Responsible for movement of data between vector

registers and memory
» Main memory

34

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 67

Vector Processors (cont’d)

Based on
Cray 1

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 68

Vector Processors (cont’d)

• Advantages of vector processing
∗ Flynn’s bottleneck can be reduced

» Due to vector-level instructions
∗ Data hazards can be eliminated

» Due to structured nature of data
∗ Memory latency can be reduced

» Due to pipelined load and store operations
∗ Control hazards can be reduced

» Due to specification of large number of iterations in one
operation

∗ Pipelining can be exploited
» At all levels

35

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 69

Cray X-MP

• Supports up to 4 processors
∗ Similar to RISC architecture

» Uses load/store architecture

∗ Instructions are encoded into a 16- or 32-bit format
» 16-bit encoding is called one parcel
» 32-bit encoding is called two parcels

• Has three types of registers
∗ Address
∗ Scalar
∗ Vector

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 70

Cray X-MP (cont’d)

• Address registers
∗ Eight 24-bit addresses (A0 – A7)

» Hold memory address for load and store operations

∗ Two functional units to perform address arithmetic
operations

24-bit integer ADD 2 stages
24-bit integer MULTIPLY 4 stages

∗ Cray assembly language format
Ai Aj+Ak (Ai = Aj+Ak)

Ai Aj*Ak (Ai = Aj*Ak)

36

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 71

Cray X-MP (cont’d)

• Scalar registers
∗ Eight 64-bit scalar registers (S0 – S7)
∗ Four types of functional units
Scalar functional unit # of stages
Integer add (64-bit) 3
64-bit shift 2
128-bit shift 3
64-bit logical 1
POP/Parity (population/parity) 4
POP/Parity (leading zero count) 3

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 72

Cray X-MP (cont’d)

• Vector registers
∗ Eight 64-element vector registers

» Each holds 64 bits
∗ Each vector instruction works on the first VL elements

» VL is in the vector length register
∗ Vector functional units

» Integer ADD
» SHIFT
» Logical
» POP/Parity
» FP ADD
» FP MULTIPLY
» Reciprocal

37

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 73

Cray X-MP (cont’d)

Vector functional units
Vector functional unit #stages Avail. to chain Results
64-bit integer ADD 3 8 VL + 8
64-bit SHIFT 3 8 VL + 8
128-bit SHIFT 4 9 VL + 9
Full vector LOGICAL 2 7 VL + 7
Second vector LOGICAL 4 9 VL + 9
POP/Parity 5 10 VL + 10
Floating ADD 6 11 VL + 11
Floating MULTIPLY 7 12 VL + 12
Reciprocal approximation 14 19 VL + 19

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 74

Cray X-MP (cont’d)

• Sample instructions
1. Vi Vj+Vk ;Vi = Vj+Vk integer add
2. Vi Sj+Vk ;Vi = Sj+Vk integer add
3. Vi Vj+FVk ;Vi = Vj+Vk FP add
4. Vi Sj+FVk ;Vi = Vj+Vk FP add
5. Vi ,A0,Ak ;Vi = M(A0;Ak)

Vector load with stride Ak
6. ,A0,Ak Vi ;M(A0;Ak) = Vi

Vector store with stride Ak

38

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 75

Vector Length

• If the vector length we are dealing with is equal to
VL, no problem
∗ What if vector length < VL

» Simple case
» Store the actual length of the vector in the VL register

A1 40

VL A1

V2 V3+FV4

» We use two instructions to load VL as
VL 40

is not allowed

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 76

Vector Length

∗ What if vector length > VL
» Use strip mining technique
» Partition the vector into strips of VL elements
» Process each strip, including the odd sized one, in a loop
» Example: Vector registers are 64 elements long

– Odd size strip size = N mod 64
– Number of strips = (N/64) + 1
– If N = 200

Four strips: 64, 64, 64, 8 elements
In one iteration, we set VL = 8
Other three iterations VL = 64

39

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 77

Vector Stride

• Refers to the difference between elements
accessed

• 1-D array
∗ Accessing successive elements

» Stride = 1

• Multidimensional arrays are stored in
∗ Row-major
∗ Column-major
∗ Accessing a column or a row needs a non-unit stride

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 78

Vector Stride (cont’d)

Stride = 4 to access a column, 1 to access a row

Stride = 4 to access a row, 1 to access a column

40

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 79

Vector Stride (cont’d)

• Cray X-MP provides instructions to load and store
vectors with non-unit stride
∗ Example 1: non-unit stride load

Vi ,A0,Ak

Loads vector register Vi with stride Ak

∗ Example 2: unit stride load
Vi ,A0,1

Loads vector register Vi with stride 1

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 80

Vector Operations on X-MP

• Simple vector ADD
∗ Setup phase takes 3 clocks
∗ Shut down phase takes 3 clocks

41

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 81

Vector Operations on X-MP (cont’d)

• Two independent vector operations
» FP add
» FP multiply

∗ Overlapped execution is possible

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 82

Vector Operations on X-MP (cont’d)

• Chaining example
∗ Dependency from FP add to FP multiply

» Multiply unit is kept on hold
» X-MP allows using the first result after 2 clocks

42

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 83

Performance

• Pipeline performance
non-pipelined execution time

pipelined execution time

• Ideal speedup:
∗ n stage pipeline should give a speedup of n

• Two factors affect pipeline performance
∗ Pipeline fill
∗ Pipeline drain

Speedup =

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 84

Performance (cont’d)

• N computations on a n-stage pipeline
∗ Non-pipelined: (N * n * T) time units
∗ Pipelined: (n + N – 1) T time units

N * n
n + N – 1

Rewriting
1

1/N + 1/n – 1/(n * N)
Speedup reaches the ideal value of n as N → ∞

Speedup =

Speedup =

43

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 85

Performance (cont’d)

1
2
3
4
5
6
7
8
9

0 20 40 60 80 100 120 140 160

Number of elements, N

Sp
ee

du
p

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 86

Performance (cont’d)

44

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 87

Performance (cont’d)

• Vector processing performance
∗ Impact of vector register length

» Exhibits saw-tooth shaped performance
– Speedup increases as the vector size increases to VL

Due to amortization of pipeline fill cost
– Speedup drops as we increase the vector length to VL+1

We need one more strip to process the vector
Speedup increases as we increase the vector length
beyond

– Speedup peaks at vector lengths that are a multiple of the
vector register length

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

 S. Dandamudi Chapter 8: Page 88

Performance (cont’d)

Last slide

