
Chapter 19

Input/Output Organization

19–1 There are two main reasons for using an I/O controller. First, different I/O devices exhibit different
characteristics and, if these devices were connected directly, the CPU would have to understand
and respond appropriately to each I/O device. This would cause the CPU to spend a lot of time in-
teracting with I/O devices and spend less time executing user programs. If we use an I/O controller,
this controller could provide the necessary low-level commands and data for proper operation of
the associated I/O device. Often, for complex I/O devices such as disk drives, there are special I/O
controller chips available.

The second reason for using an I/O controller is that the amount of electrical power used to send
signals on the system bus is very low. This means that the cable connecting the I/O device has to
be very short (a few centimeters at most). I/O controllers typically contain driver hardware to send
current over long cables that connect I/O devices.

19–2 Memory-mapped I/O maps I/O port addresses to memory address space. Processors such as the
PowerPC and MIPS support only memory-mapped I/O. In these systems, writing to an I/O port
is similar to writing to a memory location. Memory-mapped I/O does not require any special
consideration from the processor. Thus, all processors inherently support memory-mapped I/O.

Isolated I/O maintains an I/O address space that is separate from the memory address space. The
Pentium supports isolated I/O. In these systems, special I/O instructions are needed to access the
I/O address space. The Pentium provides two basic I/O instructions—in and out—to access I/O
ports.

19–3 Memory-mapped I/O maps I/O port addresses to memory address space. Memory-mapped I/O
does not require any special consideration from the processor. However, it takes part of the memory
address space (MAS) for I/O mapping. On the other hand, isolated I/O maintains an I/O address
space that is separate from the memory address space. Thus, the complete MAS can be used for
memory. The disadvantage of isolated I/O is that they require special I/O instructions to access the
I/O address space.

1

2 Chapter 19

19–4 No. All systems support memory-mapped I/O simply because there is no extra support required.
Systems designed with processors supporting the isolated I/O have the flexibility of using either
the memory-mapped I/O or isolated I/O.

19–5 Memory-mapped I/O maps I/O port addresses to memory address space. As a consequence, it can
use the standard memory read/write instructions to access I/O devices. There is no need for special
I/O instructions.

19–6 The scan code of a key does not have any relation to the ASCII value of the corresponding char-
acter. The scan codes are assigned based where the key is located on the keyboard.

19–7 The direct addressing mode can only be used to access the first 256 ports. In this case, the I/O
port address, which is in the range 0 to FFH, is given directly in the I/O instruction. In the indirect
form, the I/O port address is given indirectly via the DX register. The contents of the DX register
are treated as the port address. This form can be used to access any I/O port.

19–8 The modified design is shown below:

To
data
bus

A15 A8

From
address
bus

8

CSA6

A5

A0 A0

A1

8255 PPI

RD

WRIOWRbus

From
control

A2 A4

D0 D7

A1

IORD

A7

19–9 No, it is not possible to the four I/O ports to 62H to 65H. The reason is that the least significant
two address lines (A1 and A0) are used to select a port, which means that the first port address
must have zeroes for these two bits. Since 62H implies that A1 = 1, we cannot map the I/O ports
to these four addresses.

19–10 Programmed I/O involves the processor in the I/O data transfer. The processor repeatedly checks
to see if a particular condition is true. Typically, it busy-waits until the condition is true. Thus,
programmed I/O mechanism wastes processor time. However, it does not require any hard-
ware/system support to implement. Direct memory access, on the other hand, relieves the pro-
cessor of the low-level data transfer chore. However, DMA needs hardware support as it is imple-
mented by using a DMA controller.

19–11 The temporary register is used to hold the data during memory-to-memory transfer of data.

Chapter 19 3

19–12 The following simple rule can used to remember the bit positions tested by each parity bit:

Parity bit P1 checks all those bits whose bit position, when expressed in binary, consists of 1 in
the least significant bit position (i.e., in 20 position).

Parity bit P2 checks all those bits whose bit position, when expressed in binary, consists of 1 in
the second least significant bit position (i.e., in 21 position).

From this description, we can generalize as follows: In general, P2k checks a bit whose bit position
has a 1 in the 2k position.

Check bit P1 looks at bit positions 1, 3, 5, 7, 9, 11, and 13. Note that all these bit positions have 1
in their least significant bit (i.e., 20 bit position).

Check bit P4 looks at bit positions 4, 5, 6, 7, 12, 13, and 14. Note that all these bit positions have
1s in their 22 bit positions (i.e., in the third bit position from right).

This verifies that our simple scheme works.

19–13 The clue comes from the following statement: The error bit position is the sum of the error parity
bits with P1 counted as 1, P2 counted as 2, P4 counted as 4, and so on.

If we have n bits, the number of parity bits p should be such that the p-bit number should be
able to point to any one of the n bits. Thus, 2p � n + 1 and 2p�1 < n + 1, which leads to
p = dlog2(n+ 1)e.

19–14 The overhead is shown in the following table:

4 Chapter 19

Data bits (n) Parity bits (p) Overhead (%)

1 1 1

1
� 100 = 100:00

2 2 2

2
� 100 = 100:00

3 2 2

3
� 100 = 67:78

4 3 3

4
� 100 = 75:00

5 3 3

5
� 100 = 60:00

6 3 3

6
� 100 = 50:00

7 3 3

7
� 100 = 42:85

8 4 4

8
� 100 = 50:00

9 4 4

9
� 100 = 44:44

10 4 4

10
� 100 = 40:00

11 4 4

11
� 100 = 36:36

12 4 4

12
� 100 = 33:33

13 4 4

13
� 100 = 39:77

14 4 4

14
� 100 = 28:57

15 4 4

15
� 100 = 26:67

16 5 5

16
� 100 = 31:25

17 5 5

17
� 100 = 29:41

18 5 5

18
� 100 = 27:78

19 5 5

19
� 100 = 26:32

20 5 5

20
� 100 = 25:00

In the above table, we used the following formula to compute p: p = dlog 2(n + 1)e. From this
data we observe that the overhead decreases as we increase n. When we plot this, we observe a
“saw-tooth” shape, with the overhead jumping whenever the number of parity bits increases by
one (for example, when n changes from 7 to 8, or from 15 to 16, and so on).

19–15 The CRC calculation is shown below:

Chapter 19 5

1 0 0 1 0 1

1 0 0 1 0 1

1 0 0 1 0 1

 1 1 0 1 0 0

Polynomial

1 0 0 0 1 0 1 1 1 0 1 0 0 0 1 1 0 0 0 0 0

 1 1 1 1 1 1

1 0 0 1 0 1

1 0 0 0 1 1

 1 0 0 1 0 1

1 1 0 0 0 0

1 0 0 1 0 1

1 0 1 0 1 1

1 0 0 1 0 1

1 1 1 0 1 0

1 0 0 1 0 1

1 1 1 1 1 0

1 0 0 1 0 1

1 1 0 1 1 0

1 0 0 1 0 1

1 0 0 1 1 0

1 0 0 1 0 1

1 1 0Remainder

The codeword is: 1000101110100011 00110

19–16 As shown below, the remainder is zero. This indicates that the codeword has been received
correctly.

6 Chapter 19

1 1 0 1 0 1

1 1 0 1 0 1

1 0 1 0 0 0 1 1 0 1 0 1 1 1 0

1 1 1 0 1 0

Polynomial 1 1 1 0 1 1

1 1 0 1 0 1

1 1 0 1 0 1

1 1 1 1 1 0

1 1 0 1 0 1

1 0 1 1 1 1

1 1 0 1 0 1

1 1 0 1 0 1

1 1 0 1 0 1

0 0 0 0 0Remainder

19–17 As shown below, the remainder is not zero. This indicates that the codeword has been received
incorrectly.

1 1 0 1 0 1

1 1 0 1 0 1

1 0 1 0 0 0 0 1 0 1 0 1 1 1 0

1 1 1 1 1 0

Polynomial 1 1 1 0 1 0

1 1 0 1 0 1

1 1 0 1 0 1

1 0 1 1 1 0

1 1 0 1 0 1

1 1 0 1 1 1

1 1 0 1 0 1

1 0 1 1 0Remainder

19–18 The circuit is shown below:

Chapter 19 7

Input
data

X1 X0X4 X3 X2

A trace of this circuit is shown below:

Clock X4 X3 X2 X1 X0 Next data bit

0 0 0 0 0 0 1

1 0 0 0 0 1 0

2 0 0 0 1 0 1

3 0 0 1 0 1 0

4 0 1 0 1 0 0

5 1 0 1 0 0 1

6 0 1 1 0 0 0

7 1 1 0 0 0 1

8 1 0 1 0 0 0

9 0 1 1 0 1 0

10 1 1 0 1 0 0

11 1 0 0 0 1 0

12 0 0 1 1 1 0

13 0 1 1 1 0 —

As shown in this trace, the remainder is 01110.

19–19 The circuit is shown below:

Input
data

X4 X1 X0X3 X2

A trace of this circuit, given below, shows that the remainder is 01110.

8 Chapter 19

Clock X4 X3 X2 X1 X0 Next data bit

0 0 0 0 0 0 1

1 0 0 0 0 1 0

2 0 0 0 1 0 1

3 0 0 1 0 1 0

4 0 1 0 1 0 0

5 1 0 1 0 0 0

6 1 1 1 0 1 1

7 0 1 1 1 0 1

8 1 1 1 0 1 0

9 0 1 1 1 1 1

10 1 1 1 1 1 0

11 0 1 0 1 1 0

12 1 0 1 1 0 0

13 1 1 0 0 1 0

14 0 0 1 1 1 0

15 0 1 1 1 0 —

As shown below, the remainder is indeed 01110:

Chapter 19 9

1 1 0 1 0 1

1 1 0 1 0 1

1 0 1 0 0 0 1 1 0 1 0 0 0 0 0

1 1 1 0 1 0

Polynomial 1 1 1 0 1 1

1 1 0 1 0 1

1 1 0 1 0 1

1 1 1 1 1 0

1 1 0 1 0 1

1 0 1 1 0 0

1 1 0 1 0 1

1 1 0 0 1 0

1 1 0 1 0 1

0 1 1 1 0Remainder

19–20 The circuit is shown below:

Q DQ DQ D

X1 X0

a 2 a 1 a 0

Data in

Clock

Xn−1

19–21 The circuit is shown below:

10 Chapter 19

4−to−16
decoder O3

O5

O6

O7

O9

O10

O11

O12

I3

I2

I1

I0B0

B1

B2

B3

D6

D4

D3

D2

D1

D0

D5

D7
D7

D6

D5

D4

D3

D2

D1

D0

Corrected
data output

Data received

Note that the circuit leaves out some unused outputs from the decoder.

19–22 When transmitting a character, the start bit pulls the communication line low. This alerts the
receiver that a byte is coming. It also identifies the bit boundary. Since the receiver knows the bit
period, it samples the transmission line in the middle of the bit cell.

19–23 The stop bit serves two purposes:

• Imagine what happens if we don’t have a stop bit. Suppose the most significant bit of the
byte is 0. Then, unless we force some idle time on the line, the start bit of the next byte will
not cause the transition to identify the start of a new byte. The stop bit forces the line to go
high between byte transmissions.

• Stop bits also give breathing time for the receiver to assemble the byte and hand it over to the
receiver system before monitoring the line for the start bit. Typically, systems can use 1, 1 1

2
,

or 2 stop bits.

Chapter 19 11

19–24 Before the USB and IEEE 1394, computer users faced several problems when attaching periph-
erals. Here we list some of these problems.

Device-Specific Interfaces: PCs tended to have various device-specific interfaces. Some example
connectors we will find on a PC include the PS/2, serial, parallel, monitor, microphone, speakers,
modem, SCSI, and Ethernet. In most cases, each connection uses its own connector and cable,
leading to cable clutter. In contrast to this scenario, USB uses a single connector type to connect
any device.

Nonshareable Interfaces: Standard interfaces support only one device. For example, we can
connect only one printer to the parallel interface. In contrast, the USB supports up to 127 devices
per USB connection. For example, we can connect a keyboard, a mouse, and speakers to a single
USB port using a single cable type.

I/O Address Space and Interrupt Request Problems: Adding a new peripheral device often
causes I/O address and interrupt request (IRQ) conflicts. One may end up spending countless
hours in debugging the conflict problem. In contrast, the USB does not require memory or address
space. There is also no need for interrupt request lines.

Installation and Configuration: Using the standard interfaces, adding a new peripheral device is
often a time-consuming and frustrating experience for novice users. It may often involve opening
the box and installing expansion cards and configuring jumpers or DIP switches. In contrast, the
USB and IEEE 1394 support true plug-and-play connectivity. It avoids unpleasant tasks such as
setting jumpers and configuring the new device.

No Hot Attachment: We are too familiar with the dreaded sequence of restarts whenever we
attach a new device. Attaching USB and IEEE 1394 devices is easy: we don’t have to turn off the
computer and restart after installing the new device. We can hot plug the device and the system
will automatically detect the device and configure it for immediate use.

19–25 In NRZ encoding, a 0 is represented by a low level and a 1 by a high level. Even though this
scheme is simple to implement, it has two serious problems:

• Signal transitions do not occur if we are transmitting long strings of zeros or ones. Signal
transitions are important for the receiver to recover data.

• In a noisy medium, it is difficult to detect zero- and one-levels. It is far easier to detect a
transition, either from 0 to 1 or 1 to 0.

NRZI encoding solves the two main problems associated with NRZ encoding. In NRZI encoding,
signal level does not play any role. It only looks for signal transitions. Thus, it improves reliability
of data transmission. Furthermore, it also solves the long strings of zeros. A long string of zeros
forces the NRZI signal to alternate. However, it does not solve the problem with long strings of
ones.

19–26 The USB does not support interrupts in the traditional sense. Instead, the USB uses polling,
which is similar to the busy-waiting used by the programmed I/O. To get acceptable performance,

12 Chapter 19

we have to select an appropriate polling frequency. If the frequency is too high, we will waste the
bandwidth. On the other hand, if we use too low a frequency, we may lose data. The frequency
of USB interrupt transfers can be adjusted to meet the device requirements. In the USB 1.1, the
polling interval can range from 1 to 255 ms, that is, from 1000 times to about 4 times a second.
The USB uses an endpoint descriptor to specify the polling interval, in increments of 1 ms.

19–27 The main difference between the UHC and OHC controllers is the policy used to schedule the four
types of transfers (interrupt, isochronous, control, and bulk transfers). Both controllers, however,
use 1 ms frames to schedule the transfers.

The UHC schedules periodic transfers—isochronous and interrupt—first. These transfers are fol-
lowed by the control and bulk transfers. The periodic transfers can take up to 90% of the bandwidth
and the control transfers are allocated a guaranteed 10% bandwidth. Bulk transfers are scheduled
only if there is bandwidth available after scheduling the other three transfers.

The OHC uses a slightly different scheduling policy. It reserves space for nonperiodic transfers
(control and bulk) at the beginning of the frame such that these transfers are guaranteed 10% of
the bandwidth. Next periodic transfers are scheduled to guarantee 90% of the bandwidth. If there
is time left in the frame, nonperiodic transfers are scheduled.

19–28 A bus-powered hub does not require an extra power supply; the hub uses the power supplied by
the USB. Bus-powered hubs can be connected to an upstream port that can supply a full 500 mA
current. The downstream ports of the hub can only provide 100 mA of current. Furthermore, the
number of ports is limited to four. For this reason, seven-port USB hubs are not bus-powered.

19–29 The USB is processor-centric (i.e., the processor initiates the transfers). The USB typically sup-
ports host-to-peripheral applications. The IEEE 1394, on the other hand, supports peer-to-peer
communication without involving the processor. Since IEEE 1394 supports peer-to-peer commu-
nication, we need a bus arbitration mechanism.

19–30 Typically the root node serves as the IRM. This determination is done as part of the self-identification
phase that configures the nodes. During this phase, self-id packets carry information about the ca-
pability of a node to become the IRM. If there is more than one contender for the IRM, the node
with the highest physical id gets to be the IRM. Since the root node has the highest id, it often acts
as the IRM for the network.

