
COMP 4109: Applied Cryptography
Assignment 4 Solutions

March 3, 2005

1. (g) Will the PKCS #1 v1.5 signature you create be identical to that created by your class-
mates? What about the PSS signature? Would they be identical if you and your classmates
used a real application (e.g. GnuPG) to generate these signatures? Explain.

The signature you generate will be identical to that created by your other classmates
for both PKCS #1 v.1.5 and PSS. In a real application, PKCS #1 v.1.5 signatures would
also be identical; because the program would choose a random salt value (instead of
“comp4109”), though, each PSS signature would be unique, even when an identical
key and document are used.

2. (a) Which inputs to the RSA key generation algorithm (Alg. 8.1) may be shared with
others? Which ones must be kept secret?

RSA key generation takes three inputs: two primes p and q, and an encryption
exponent e. The input e (the encryption exponent) may be shared with other
key pairs, and in fact it may be set to a system-wide value. p and q must not be
shared with anyone and in fact should be discarded after key generation. n (the
product of p and q) may be made public; however, it not be used to generate
other key pairs, even if a different e and d value is used.

(b) Which inputs to the ElGamal key generation algorithm (Alg. 8.17) may be shared with
others? Which ones must be kept secret?

ElGamal key generation takes three inputs: p, α, and a (also called x). p and α

may be shared, and in fact may be used to generate multiple key sets. Every
key pair, however, should use its own a value that is kept secret (and thus is
not shared).

3. (a) Why might you want to use the same RSA key for signature and encryption opera-
tions? Why might you want to use different RSA keys for signature and encryption
operations?

You might wish to use the same RSA key for signatures and encryption oper-
ations if storage space is at a premium, or if it is significantly more difficult to
manage two key pairs rather than one.

On the other hand, the biggest advantage to using separate keys for encryption
and signatures is that it enables different key management strategies for the
two roles. In particular, by changing encryption keys frequently (say, once a
month), you can ensure that the compromise of an encryption key (whether
voluntary or not) will have limited impact. On the other hand, to maintain

1



continuity of identity (and to facilitate the authentication of encryption keys),
it is advantageous to have much longer lived signature keys.

4. What is the difference between the guarantees provided by unconditional security, provable
security, computational security, and ad-hoc security? Identify what type of security each of
the following cryptographic primitives provides: one-time pads, DES, AES, SHA-1, SHA-
256, RSA, DSA. Explain your classifications.

Unconditional security means that the attacker does not have enough information
with which to compromise security. Provable security means that it can be proved
that the difficulty of breaking the system is equivalent to a known-hard problem
(typically, a hard number-theoretic problem). Computational security means that
the work required to break a system significantly exceeds the resources of a hypo-
thetical opponent using conceivable methods. Ad-hoc security means that the sys-
tem can be argued to be secure, but there are no rigorous estimates of the amount of
work that would be required by an adversary other than it exceeding a fixed bound.

One-time pads have unconditional security in the form of perfect secrecy because
an attacker with the ciphertext has no more information (in an information-theoretic
sense) than one without the ciphertext. (Here we ignore the fact that the attacker
does, in fact, know that a message was sent and that it has a known size.)

RSA offers provable security since a proof exists that its difficulty is equivalent to
that of factoring, a problem that is generally believed to be hard (Fact 8.6).

The security of DSA (as an ElGamal signature variant) is based on the discrete loga-
rithm problem; however, to my knowledge it has not been proven to be equivalent
to the discrete logarithm problem. Thus, it is probably best characterized as having
computational security, because the discrete logarithm problem takes a long time to
solve (given suitable values) and there are no other known methods for attacking
DSA.

DES offers computational security if 2
56 operations is beyond the reach of an at-

tacker; given that such computations can be done nowadays, though, it does not
offer any security in a cryptographic sense. (2 key triple DES, however, does still
offer computational security).

AES, SHA-1, and SHA-256 all offer computational security because the work re-
quired to break them still exceeds that possible through known methods. Given
advances in attack technology, though, this situation could change.

(Ad-hoc security typically is applied to protocols and not cryptographic primitives.)

2


