
AN INTRUSION-DETECTION MODEL

Dorothy E. Denning

SRI International
333 Ravenswood Ave.

Menlo Park, CA 94025.

A model of a real-time intrusion-detection expert

system capable of detecting break-ins, penetrations, and

other forms of computer abuse is described. The model is
based on the hypothesis that security violations can be

detected by monitoring a system’s audit records for

abnormal patterns of system usage. The model includes
profiles for representing the behavior of subjects with
respect to objects in terms of metrics and statistical
models, and rules for acquiring knowledge about this
behavior from audit records and for detecting anomalous

behavior. The model is independent of any particular
system, application environment, system vulnerability, or
type of intrusion, thereby providing a framework for a
general-purpose intrusion-detection expert system.

1. Introduction

This paper describes a model for a real-time
intrusion-detection expert system that aims to detect a

wide range of security violations ranging from attempted

break-ins by outsiders to system penetrations and abuses
by insiders. The development of a real-time intrusion-

detection system is motivated by four factors: (1) most

existing systems have security flaws that render them
susceptible to intrusions, penetrations, and other forms of
abuse; finding and fixing all these deficiencies is not
feasible for technical and economic reasons; (2) existing

systems with known flaws are not easily replaced by
systems that are more secure -- mainly because the
systems have attractive features that are missing in the
more-secure systems, or else they cannot be replaced for
economic reasons; (3) developing systems that are
absolutely secure is extremely difficult, if not generally

impossible; and (4) even the most secure systems are
vulnerable to abuses by insiders who misuse their
privileges.

The model is based on the hypothesis that
exploitation of a system’s vulnerabilities involves
abnormal use of the system; therefore, security violations
could be detected from abnormal patterns of system
usage. The following examples illustrate:

● Attempted break-in -- Someone attempting to

break into a system might generate an
abnormally high rate of password failures with

respect to a single account or the system as a
whole.

● Masquerading or successful break-in --
Someone logging into a system through an
unauthorized account and password might
have a different login time, location, or

connection type from that of the account’s

legitimate user. In addition, the penetrator’s
behavior may differ considerably from that of
the legitimate user; in particular, he might
spend most of his time browsing through
directories and executing system status
commands, whereas the legitimate user might
concentrate on editing or compiling and
linking programs. Many break-ins have been
discovered by security officers or other users
on the system who have noticed the alleged
user behaving strangely.

● Penetration by legitimate user -- A user

attempting to penetrate the security
mechanisms in the operating system might
execute different programs or trigger more
protection violations from attempts to access
unauthorized files or programs. If his attempt
succeeds, he will have access to commands and
files not normaily permitted to him.

o Leakage by legitimate user -- A user trying to
leak sensitive documents might log into the
system at unusual times or route data to
remote printers not normally used.

● Inference by legitimate user -- A user
attempting to obtain unauthorized data from
a database through aggregation and inference

might retrieve more records than usual.

CH2292-l/86/OOOO/Ol 18$01.0001986 IEEE
118

c Trojan horse -- The behavior of a Trojan

horse planted in or substituted for a program

may differ from the legitimate program in

terms of its CPU time or 1/0 activity.

● T4rus -- A virus planted in a system might

cause an increase in the frequency of

executable files rewritten, storage used by
executable files, or a particular program being
executed as the virus spreads.

● Denial-of-Service -- An intruder able to

monopolize a resource (e.g., network) might
have abnormally high activity with respect to
the resource, while activity for all other users

is abnormally low.

Of course, the above forms of aberrant usage can
also be linked with actions unrelated to security. They

could be a sign of a user changing work tasks, acquiring
new skills, or making typing mistakes; software updates;

or changing workload on the system. An important
objective of our current research is to determine what

activities and statistical measures provide the best
discriminating power; that is, have a high rate of

detection and a low rate of false alarms.

2. Overview of Model

The model is independent of any particular system,

application environment, system vulnerability, or type of
intrusion, thereby providing a framework for a general-
purpose intrusion-detection expert system, which we have
called IDES. A more detailed description of the design

and application of IDES is given in our final reportl.

The model has six main components:

● Subjects -- initiators of activity on a target

system -- normally users.

● Objects -- resources managed by the system --

files, commands, devices, etc..

● Audit records -- generated by the target

system in response to actions performed or

attempted by subjects on objects -- user Iogin,

command execution, file access, etc.

e Profiles -- structures that characterize the

behavior of subjects with respect to objects in
terms of statistical metrics and models of
observed activity. Profiles are automatically
generated and initialized from templates.

● Anomaly records -- generated when abnormal

behavior is detected.

o Activity rules -- actions taken when some
condition is satisfied, which update profiles,

detect abnormal behavior, relate anomalies to

suspected intrusions, and produce reports.

The model can be regarded as a rule-baaed pattern

matching system. When an audit record is generated, it

is matched against the profiles. Type information in the

matching profiles then determines what rules to apply to
update the profiles, check for abnormal behavior, and
report anomalies detected. The security officer assists in

establishing profile templates for the activities to monitor,
but the rules and profile structures are largely system-
independent.

The basic idea is to monitor the standard operations

on a target system: logins, command and program
executions, file and device accesses, etc., looking only for

deviations in usage. The model does not contain any
special features for dealing with complex actions that
exploit a known or suspected security flaw in the target
system; indeed, it has no knowledge of the target system’s

security mechanisms or its deficiencies. Although a flaw-
based detection mechanism may have some value, it
would be considerably more complex and would be unable

to cope with intrusions that exploit deficiencies that are
not suspected or with personnel-related vulnerabilities.
By detecting the intrusion, however, the security officer
may be better able to locate vulnerabilities.

The remainder of this paper describes the

components of the model in more detail.

3. Subjects and Objects

Subjects are the initiators of actions in the target
system. A subject is typically a terminal user, but might
also be a process acting on behalf of users or groups of
users, or might be the system itself. All activity arises
through commands initiated by subjects. Subjects may be

grouped into different classes (e.g., user groups) for the
purpose of controlling access to objects in the system.

User groups mty overlap.

Object.e are the receptors of actions and typically

include such entities as files, programs, messages, records,
terminals, printers, and user- or program-created
structures. When subjects can be recipients of actions

(e.g., electronic mzi]), then those subjects are also
considered to be objects in the model. Objects are
grouped into classes by type (program, text file, etc.).
Additional structure may also be imposed, e.g., records
nmy be grouped into files or database relations; files may
be grouped into directories. Different environments may
require different object granularity; e.g., for some

database applications, granularity at the record level may

119

be desired, whereas for most applications, granularity at
the file or directory level may suffice.

4. Audit Records

Audit Records are 6-tuples representing actions
performed by subjects on objects:

<Subject, Action, Objcct, Exception-Condition,
Resource-Usage, Time-stamp>

where

● Action -- operation performed by the subject

on or with the object, e.g., login, logout, read,
execute.

● Exception -Condit ion-- denotes which, if any,

exception condition is raised on the return.
This should be the actual exception condition

raised by the system, not just the apparent
exception condition returned to the subject.

● Resource-l[sage -- list of quantitative elements,

where each element gives the amount used of
some resource, e.g., number of lines or pages
printed, number of records read or written,
CPU time or 1/0 units used, session elapsed
time.

● Time-stamp -- unique time/date stamp

identifying when the action took place.

We assume that each field is self-identifying, either
implicitly or explicitly; e.g., the action field either implies
the type of the expected object field or else the object
field itself specifies its type. If audit records are collected

for multiple systems, then an additional field is needed for
a system identifier.

Since each audit record specifies a subject and
object, it is conceptually associated with some cell in an

‘(audit matrix” whose rows correspond to subjects and
columns to objects. The audit, matrix is analogous to the
“access-matrix” protect ion model, which specifies the
rights of subjects to access objects; that is, the actions

that each subject is authorized to perform on each object.
Our intrusion-detection model differs from the access-
matrix model by substituting the concept of “action
performed” (as evidenced by an audit record associated
with a cell in th~ matrix) for “action authorized” (as
specified by an access right in the matrix cell). indeed,
since activity is observed without regard for
authorization, there is an implicit assumption that the
access controls in the system permitted an action to
occur. The task of intrusion detection is to determine
whether activity is unusual enough to suspect an
intrusion. Every statistical measure used for this purpose
is computed from audit records associated with one or
more cells in the matrix.

Most operations on a system involve multiple
objects. For example, file copying involves the copy
program, the original file, and the copy. Compiling
involves the compiler, a source program file, an object
program file, and possibly intermediate files and
additional source files referenced through “include”
statements. Sending an electronic mail message involves
the mail program, possibly multiple destinations in the
“To” and “cc” fields, and possibly “include” files.

Our model decomposes all activity into single-object

actions so that each audit record references only one

object. File copying, for example, is decomposed into an
execute operation on the copy command, a read operation
on the source file, and a write operation on the
destination file. The following illustrates the audit
records generated in response to a command

COPYGAME.EXETO <Library> GAME.EXE

issued by user Smith to copy an executable GAME file

into the <Library > directory; the copy is aborted

because Smith does not have write permission to

<Library >:

(Smith, execute, tLibrary>COPY. EXE, O,
CPU=OOO02, 11058521678)

(Smith, read, zSmith>GAME.EXE, O,
RECORDS=O, 11058521679)

(Smith, write, fLibraryJGAME.EXE, write-viol,
RECORDS=O,11058521680)

Decomposing complex actions has three advantages:

First, since objects are the protectable entities of a
system, the decomposition is consistent with the
protectio:l mechanisms of systems. Thus, IDES can
potentially discover both attempted subversions of the
access controls (by noting an abnormality in the number
of exception conditions returned) and successful
subversions (by noting an abnormality in the set of
objects accessible to the subject). Second, single-object
audit records greatly simplify the model and its

application. Third, the audit records produced by
existing systems generally contain a single object, though

some systems provide a way of linking together the audit
records associated with a “job step” (e.g., copy or

compile) so that all files accessed during execution of a
program can be identified.

The target system is responsible for auditing and for
transmitting audit records to the intrusion-detection

system for analysis (it may also keep an independent
audit trail). The time at which anlit records are
generated determines what type of data is available. If
the audit record for some action is generated at the time
an action is requested, it is possible to measure both
successful and unsuccessful attempts to perform the
activity, even if the action should abort (e.g., because of a
protection violation) or cause a system crash. If it is
generated when the action completes, it is possible to
meaaure the resources consumed by the action and
exception conditions that may cause the action to

120

terminate abnormally (e.g., because of resource overflow).

Thus, auditing an activity after it completes has the

advantage of providing more information, but the

disadvantage of not allowing immediate detection of

abnormalities, especially those related to break-ins and

system crashes. Thus, activities such as login, execution
of high risk commands (e. g., to acquire special
“superuser” privileges), or access to sensitive data should
be audited when they are attempted so that penetrations
can be detected immediately; if resource-usage data are

also desired, additional auditing can be performed on
completion as well. For example, access to a database

containing highly sensitive data may be monitored when
the access is attempted and then again when it completes

to report the number of records retrieved or updated.
Most existing audit systems monitor session activity at
both initiation (login), when the time and location of login
are recorded, and termination (logout), when the
resources consumed during the session are recorded.
They do not, however, monitor both the start and finish

of command and program execution or file accesses.

IBM’s System h[anagernent Facilities (SMF)2, for example,

audit only the completion of these activities.

Although the auditing mechanisms of existing

systems approximate the model, they are typically
deficient in terms of the activities monitored and record

structures generated. For example, Berkeley 4.2 UNfX3

monitors command usage but not file accesses or file

protection violations. Some systems do not record all
login failures. Programs, including system programs,
invoked below the command level are not explicitly
monitored (their activity is included in that for the main

program). The level at which auditing should take place,

however, is unclear, since too much auditing could
severely degrade performance on the target system or
overload the intrusion-detection system.

Deficiencies in the record structures are also present.

h40st SMF audit records, for example, do not contain a
subject field; the subject must be reconstructed by linking
together the records associated with a given job.
Protection violations are sometimes provided through
separate record formats rather than as an exception
condition in a common record; VM password failures at
login, for example, are handled this way (there are
separate records for successful Iogins and password
failures).

Another problem with existing audit records is that

they contain little or no descriptive information to
identify the values contained therein. Every record type
has its own structure, and the exact format of each record
type must be known to interpret the values. A uniform

record format with self-identifying data would be
preferable so that the intrusion-detection software can be
system-independent. This could be achieved either by

modifying the software that produces the audit records in

the target system, or by writing a filter that translates the

records into a standard format.

5. Profiles

An activity profile characterizes the behavior of a
given subject (or set of subjects) with respect to a given
object (or set thereof), thereby serving as a signature or
description of normal activity for its respective subject(s)

and object(s). Observed behavior is characterized in

terms of a statistical metric and model. A metric is a
random variable x representing a quantitative measure

accumulated over a period. The period may be a fixed

interval of time (minute, hour, day, week, etc.), or the
time between two audit-related events (i.e., between login

and Iogout, program initiation and program termination,
file open and file close, etc.). Observations (sample

points) xi of s obtained from the audit records are used

together with a statistical model to determine whether a

new observation is abnormal. The statistical model

makes no assumptions about the underlying distribution

of ~; all knowledge about x is obtained from observations.

Before describing the structure, generation, and
application of profiles, wc shall first discuss statistical

metrics and models.

5.1. Metrics

\Ve define three types of metrics:

● Event Counter -- x is the number of audit

records satisfying some property occurring
during a period (each audit record corresponds
to an event). Examples are number of Iogins
during an hour, number of times some
command is executed during a login session,
and number of password failures during a
minute.

● Interval Timer -- x is the length of time
between two related events; i.e., the difference
between the time-stamps in the respective
audit records. An example is the length of
time between successive logins into an
account.

. Resource Measure -- x is the quantity of

resources consumed by some action during a

period as specified in the Resource-Usage field
of the audit records. Examples are the total
number of pages printed by a user per day
and total amount of CPU time consumed by
some program during a single execution. Note
that a resource measure in our intrusion-

121

detection model is implemented as an event
counter or interval timer on the target system.

For example, the number of pages printed
during a login session is implemented on the

target system as an event counter that counts
the number of print events between login and
logout; CPU time consumed by a program as
an interval timer that runs between program
initiation and termination. Thus, whereas

event counters and interval timers measure
events at the audit-record level, resource
measures acquire data from events on the
target system that occur at a level below the

audit records. The ltesource-Usage field of

audit records thereby provides a means of
data reduction so that fewer events need be

explicitly recorded in audit records.

5.2. Statistical Models

Given a metric for a random variable x and n

observations Zl, Zn, the purpose of a statistical model

of ~ is t,. determine whet, her a new observation ZtL+l is

abnormal with respect to the previous observations. The
following models may be included in IDES:

1. Operational Mode!. This model is based on
the operational assumption that abnormality

can be decided by comparing a new
observation of z against fixed limits.
Although the previous sample points for z are
not used, presumably the limits are
determined from prior observations of the
same type of variable. The operational model
is most applicable to metrics where experience
has shown that certain values are frequently
linked with intrusions. An example is an
event counter for the number of password
failures during a brief period, where more than
10, say, suggests an attempted break-in.

2. Mean and Standard Deviation Model. This
model is based on the assumption that all we
know about xl, Xn are mean and standard

deviation as determined from its first two

moments:

sum = xl + ... + xn

sumsquares = x; + ... + x:

mean = sumjn

sumsquares

‘tdev = ‘qrt((n-1) - ‘ean2)

A new observation Z%+l is defined to be

abnormal if it falls outside a confidence
internal that is d standard deviations from the

mean for some parameter d:

mean + dx stdev

By Chebyshev’s inequality, the probability of
a value falling outside this interval is at. most

l/d2; for d = 4, for example, it is at most

.0625. Note that O (or null) occurrences
should be included so as not to bias the data.

This model is applicable to event counters,
interval timers, and resource measures
accumulated over a fixed time interval or
between two related events. It has two
advantages over an operational model: First,

it requires no prior knowledge about normal
activity in order to set limits; instead, it learns
what constitutes normal activity from its

observations, and the confidence intervals
automatically reflect this increased knowledge.
%cond, because the confidence intervals
depend on observed data, what is considered
to be normai for one user can be considerably

different from another.

A slight variation on the mean and standard
dev; ation model is to weight the computations,

with greater weights placed on more recent
values.

3. Multivariafe ,Ifodel. This model is similar to
the mean and standard deviation model except
that it is based on correlations among two or

more metrics. This model would be useful if
experimental data show that better
discriminating power can be obtained from

combinations of related measures rather than
individually -- e.g., CPU time and 1/0 units

used by a program, login frequency and
session elapsed time (which may be inversely
related).

4. Markov Process Model. This model, which
applies only to event counters, regards each
distinct type of event (audit record) as a state
variable, and uses a state transition matrix to
characterize the transition frequencies between
states (rather than just the frequencies of the

individual states -- i.e., andit records -- taken
separately). A new observation is defined to
be abnormal if its probability as determined
by the previous state and the transition matrix
is too low. This model might be useful for
looking at transitions between certain
commands where command sequences were
important.

122

5. Time Series Model. This model, which uses

an interval timer together with an event

counter or resource measure, takes into
account the order and inter-arrival times of

the observations xl, Zn, as well as their

values. A new observation is abnormal if its
probability of occurring at that time is too

low. A time series has the advantage of
measuring trends of behavior over time and
detecting gradual but significant shifts in
behavior, but the disadvantage of being more

costly than mean and standard deviation.

Other statistical models can be considered, for

example, models that use more than the first two

moments but less than the full set of values.

5.3. Profile Structure

An activity profile contains information that

identifies the statistical model and metric of a random
variable, as well as the set of audit events measured by
the variable. The structure of a profile contains 10
components, the first 7 of which are independent of the

specific subjects and objects measured:
<Variable-Name, Action-Pattern, Exception-Pattern,

Resource-Usage-Pattern, Period, Variable-Type,
Threshold, Sub j ect-Pattern, Object-Pattern, Value>

Subject- and Object-Independent Components:

● Variable-Name -- name of variable.

● Action-Pattern -- pattern that matches zero or

more actions in the audit records, e.g., ‘login’,
‘read’, ‘execute’.

● Exception-Pattern -- pattern that matches on

the Exception-Condition field of an audit
record.

● Resource-Usage-Pattern -- pattern that

matches on the itesource-Usage field of an

audit record.

● Period -- time interval for measurement, e.g.,

day, hour, minute (expressed in terms of clock
units). This component is null if there is no
fixed time interval; i.e., the period is the
duration of the activity.

● Variable-Type -- name of abstract data type

that defines a particular type of metric and

statistical model, e.g., event counter with
mean and standard deviation model.

e Threshold -- parameter(s) defining limit(s)

used in statistical test to determine

abnormality. This field and its interpretation

is determined by the statistical model
(Variable-Type). For the operational model, it

is an upper (and possibly lower) bound on the
value of an observation; for the mean and

standard deviation model, it is the number of

standard deviations from the mean.

Subject- and Object-Dependent Components:

● Svbject-Pattern -- pattern that matches on the
Subject field of audit records.

● Object-Pattern -- pattern that matches on the

Object field of audit records.

● Value -- value of current (most recent)

observation and parameters used by the

statistical model to represent distribution of

previous values. For the mean and standard

deviation model, these parameters are count,
sum, and sum-of-squares (first two moments).

The operational model requires no parameters.

A profile is uniquely identified by Variable-Name,

Subject-Pattern, and Object-Pattern. All components of

a profile are invariant except for Value.

Although the model leaves unspecified the exact

format for patterns, we have identified the following

SNOBOL-like constructs as being useful:

‘string’ string of characters
* wild card matching any string

match any numeric string.
IN(list) match any string in list.
p + name the string matched by p is

associated with name
pl p2 match pattern pl followed by p2.
pl / p2 match pattern pl or p2.
pl , p2 match pattern pl and p2.

1P match anything but pattern p.

Examples of patterns are:

‘Smith’
* -i User -- match any string and assign to User
‘ <Library>* ‘ -- match files m <Library> directory
IN(Speclal-Files) -- match files in Special-Files
‘ CPU.’ // + Amount -- match string ‘ CPU=’ followed

by Integer; assign integer to Amount

The following is a sample profile for measuring the

quantity of output to user Smith’s terminal on a session

basis. The variable type ResourceByActivity denotes a
resource measure using the mean and standard deviation
model.

123

Variable-Name:
Action-Pattern:
Exception-Pattern:
Resource-Usage-Pattern:
Period:
Variable-Type:
Threshold:
Subject-Pattern:

Object-Pattern:
Value:

SessionOutput
‘logout ‘
o
‘SessionOutput=’ # + amount

ResourceByActivity
4
‘Smith’
*

record of . . .

Whenever the intrusion-detection system receives an
audit record that matches a variable’s patterns, it updates
the variable’s distribution and checks for abnormality.
The distribution of values for a variable is thus derived --
i.e., learned -- as audit records matching the profile
patterns are processed.

5.4. Profiles for Classes

Profiles can bc defined for individual subject-object
pairs (i.e., where the Subject and Object patterns match
specific names, e.g, Subject ‘Smith’ and Object ‘Foo’), or
for aggregates of subjects and objects (i.e., where the
Subject and Object patterns match sets of names) as
shown in Figure 5-1. For example, file-activity profiles

could be created for pairs of individual users and files, for
groups of users with respect to specific files, for individual
users with respect to classes of files, or for groups of users
with respect to file classes. The nodes in the lattice are
interpreted as follows:

Figure 5-1: Hierarchy of Subjects and Objects.

System

/ \

/ \
Subj ectClass ObjectClass

I \ / I

I \/ I
Subject \/ Object

I \/ I

I \/ I

I SubjectClass-ObjectClass I
I /\ I
I l\ I

Subject-ObjectClass SubjectClass-Object

\ /
\ /

Subject-Object

● Subject -Object: actions performed by single

subject on single object -- e.g., user Smith-
file Foo.

● Subject -Object Class: actions performed by
single subject aggregated over all objects in

the class. Theclass ofobjectsmightbe

represented as a pattern match on a subfield

of the Object field thatspecifies theobject’s

type (class), as a pattern match directly on the
object’s name (e. g., the pattern ‘*.EXE’ for all
executable files), or as a pattern match that
tests whether the object is in some list (e.g.,
“IN(hit-list)”).

● Subject Class - Object: actions performed on

single object aggregated over all subjects in
the class-- e.g., privileged users- directory file

<Library >, nonprivileged users - directory

file <Library>.

o Subject Class - Object Class: actions
aggregated over all subjects in the class and

objects in the class -- privileged users - system

files, nonprivileged users - systemfiles.

● Sz/bject: actions performed by single subject
aggregated over all objects -- e.g., user session

activity.

● Object: actions performed on a single object

aggregated over all subjects -- e.g., password

file activity.

● Subject Class: actions aggregated over all

subjects in the class -- e.g., privileged user
activity, nonprivileged user activity.

● Object Class: actions aggregated over all

objects in the class -- e.g., executable file
activity.

● System: actions aggregated over all subjects

and objects.

Tbe random variable represented by a profile for a
class can aggregate activity for the class in two ways:

● Class-as-a-u,hole activity -- The set of all
subjects or objects in the class is treated as a
single entity, and each observation of the
randomvariable represents aggregate activity
for the entity. Anexample isaprofile for the
class of all users representing the average
number of logins into the system per day,
where all users are treated as a single entity.

124

● Ag~reyate individual actizity-- The subjects

or objects in the class are treated as distinct

entities, and each observation of the random
variable represents activity for some member

of the class, An exarnpleis a profile for the

class of all users characterizing the average

number of logins by any one user per day.

Thus, theprofile represents a’typical’mernber
of the class.

Whereas class-as-a-whole activity can be defined by
an eventl counter, interval timer, or resource measure for

the class, aggregate individual activity requires separate
metrics for each member of the class. Thus, it is defined

in terms of the lower-level profiles (in the sense of the
lattice) fortheindividual class members. For example,
average login frequency per day is defined as the average
of the daily total frequencies in the individual user Iogin

profiles. Ameasure foraclass~as-a-whole could also be

defined in terms of lower-level profiles, but this is not
necessary.

The two methods of aggregation serve different

purposes with respect to intrusion detection. Class-as-a-
whole activity reveals whether some general pattern of

behavior isnormal wit,h respect to a class. A variable
that gives the frequency with which the class of
executable program files are updated in the system per
day, for example, might be useful for detecting the

injection of a virus into the system (which causes
executable files to be rewritten aathe virus spreads). A

frequency distribution of remote logins into the class of
dial-up lines might be useful for detecting attempted
break-ins.

Aggregate individual activity reveals whether the
behavior of a given user (or object) is consistent with that

of other users (or objects). This may be useful for

detecting intrusions by new users who have deviant
behavior from the start.

5.5. Profile Templates

When user accounts and objects can be created
dynamically, a mechanism is needed to generate activity
profiles for new subjects and objects. Three approaches
are possible:

1. Manual create -- the security officer explicitly
creates all profiles.

2. Automatic explicit create -- All profiles for a

new user or object are generated in response
to a ‘create’ record in the audit trail.

3, First use -- A profile is automatically
generated when a subject (new or old) first

uses an object (new or old).

The first approach has the obvious disadvantage of

requiring manual intervention on the part of the security

officer, The second approach overcomes this

disadvantage, but introduces two others. The first is that

it does not automatically deal with startup conditions,
where there will be many existing subjects and objects.

The second is that it requires a subject-object profile to
be generated for any pair that is a candidate for
monitoring, even if the subject never uses the particular
object. This could cause many more profiles than
necessary to be generated. For example, suppose file

accesses are monitored at the level of individual users and
files. Consider a system with 1000 users, where each user
has an average of 200 files, giving 200,000 files total and
200,000,000 possible combinations of user-file pairs. If
each user accesses at most 300 of those f]les, however,
only 300,000 profiles are needed.

The IDES model follows the third approach, which

overcomes the disadvantages of the others by generating
profiles when they are needed from templates. A profile
template has the same structure as the profile it
generates, except that the subject and object patterns

define both a matching pattern (on the audit records) and

a replacement pattern (to place in the generated profile).

The format for the fields Subject-Pattern and Object-
Pattern is thus:

matching-pattern <- replacement-pattern

where the patterns are defined dynamically during

pattern matching, The Value component of a template

profile contains the initial values for the variable, as
specified by its type.

lVhen a new audit record is received, a process

matches the record against both activity profiles and
template profiles, obtaining existing profiles and new

profiles generated from the matching templates. The
subject and object patterns in a generated profile contain
the replacement patterns defined during the match; all
other fields are copied exactly from the template. If a
new profile has the same patterns (for all components) as
an existing activity profile, it is discarded; otherwise, it is
added to the set of activity profiles. The process then
returns the activity profiles matching the audit record.

Separate matching and replacement patterns are

needed so that a template can match a wide range of
subjects and objects, yet generate a profde for specific

subjects, objects, and classes thereof. For examle,
consider the following patterns:

Sub j ect-Pattern: * + user <- user

Object-Pattern: IN(Special-Files) + file <- file

The subject pattern will match any user name and

generate a replacement pattern with that name.
Similarly, the object pattern will match any file in the list
Special-Files and generate a replacement pattern with
that name. Now, suppose the list Special-Files contains
the file names Pasword and Accounts. The following

125

shows a sequence of audit records and the profiles that a
templfite with these matching and replacement patterns
will generate:

Audit Records Cenerated Profiles
Subject Object Sub j ect-Pattern Object-Pattern
------- ---------- --------------- --------------

‘Smith’ ‘Password’ ‘Smith’ ‘Password’

‘ Jones’ ‘Accounts ‘ ‘ Jones’ ‘Accounts’

‘Smith’ ‘Foo’ no match, so no profile

The subject and object patterns for a template can
be mutually dependcmt as in following patterns:

Sub j ect-Pattern: * -+ user <- user

Object-Pattern: “<’ user 1>*1 <- ‘<’ user l>*!

Ilere, the object pattern will match any file in the user’s
directory and generate a profile for the user’s directory (if
one does not already exist). The following shows a
sequence of audit records and the profiles that would be

generated from a template containing these patterns:

Audit Records Generated Profiles

Subject Object Sub j ect-Pattern Object-Pattern
------- ------------ --------------- --------------

{Smith’ ‘<Smith> Game’ ‘Smith’ 4<Smith>*’

‘Smith’ ‘<Smith>Let’ no new profile generated
‘ Jones’ ‘<Jones >Foo’ ‘ Jones’ ‘<Jones>*’

‘Smith’ ‘< Jones>Foo’ no match so no profile

5.6. New Users and Objects

Introducing new users (and objects) into the target
system potentially raises two problems. The first, which
is caused by the lack of profile information about the

user’s behavior as well as by the user’s own inexperience
with the system, is generating an excessive number of
anomaly records. This problem could be solved by
ignoring anomalies for new users were it not for the
second problem: failing to detect an intrusion by the new

user. We would like a solution that minimizes false
alarms without overlooking actual intrusions.

False alarms can be controlled by an appropriate
choice of statistical model for the activities causing the
alarms and by an appropriate choice of profiles. With the
mean and standard deviation model, for example, the
confidence intervals are initially large so that more
diversity is tolerated while data are being collected about
a user’s behavior; the intervals then shrink as the number
of observations increases. This reduces false alarms
caused by an individual user profile, but does not protect
the system agsinst new users (or infrequent users) whose
behavior is devious, or against users who establish unusual
behavior from the beginning, as a cover. To deal with
this problem, current activity can be compared with that

in aggregate individual profiles or with the set of profiles
for all users or all users in some group.

Although the operational model does not

automatically adapt to an individual user (because it uses
fixed thresholds to determine abnormality), the problem
can be solved by using more lenient bounds with new
users, and adjusting the bounds as the user gains
e~perience.

5.7. Possible Profiles

We shall now describe candidate profiles for
measuring Iogin and session activity, command and
program usage, and file accesses. For each profile, we
suggest a metric and statistical model for measuring the
activity. More complete profile specifications are given in

the IDES final reportl.

5.7.1. Login and Session Activity
Login and session activity is represented in audit

records where the subject is a user, the object is the user’s

loginlocation (terminal, workstation, network, remote
host, port, etc., or some combination), and action is ‘login’
or’logout’. Locations rnaybegroupe dint oclassesby
properties such as type of connection: hard-wired, dial-up,

network, etc. or type of location: dumb terminal,
intelligent workstation, network host, etc. The following
is a list of possible profiles:

● LoginFrequency -- event counter that

measures login frequency by day and time
using the mean and standard deviation model.
Since a user’s login behavior may vary

considerably during a work week, login

occurrences may be represented by an array of
event counters parameterized by day of week
(specific day or weekday v. weekend) and time
of day (hour or shift) (Another possible
breakdown is: weekday, evening, weekend,
night.) Profiles for Iogin frequencies may be

especially useful for detecting masqueraders,
who are likely to log into an unauthorized

account during off-hours when the legitimate
user is not expected to be using the account.

Login profles might be defined for individual
users (and user groups) but classes of locations
-- either all locations taken together or

aggregated by type of location or connection.

. LocationFrequency -- event counter that
measures the frequency of login at different
locations using the mean and standard

deviation model. This measure could be

broken down by day of week and time of day

since a user may login from one location

during normal working hours and another

during non-working hours. Because the

126

variable relates to specific objects, it should be

defined for individual locations or location
types. It may be useful for detecting

masqueraders -- e.g., if someone logs into an
account from a location that the legitimate

user never uses, or penetration attempts by
legitimate users -- e.g., if someone who
normally works from an unprivileged local
terminal logs in from a highly privileged
terminal.

o LastLogin -- interval timer measuring time

since last login using the operational model.

This type of profile could be defined for

individual users but location classes, since the
exact location seems less relevant than the

lapse of time. It would be particularly useful
for detecting a break-in on a “dead” account.

● SessionElapsedTime -- resource measure of

elapsed time per session using the mean and
standard deviation model. This type of profile

could be defined for individual users or groups,

but object classes. Deviations might signify

masqueraders.

● SessionOutput -- resource measure of quantity

of output to terminal per session using mean
and standard deviation model (output might

also be measured on a daily basis). Defining
this type of profile for individual locations or
classes thereof may be useful for detecting
excessive amounts of data being transmitted to

remote locations, which could signify leakage
of sensitive data.

● SessionCPUJ SessionIO, SessionPages, etc. --
resource measures accumulated on a daily
bases (or session basis) using the mean and
standard deviation model. These profiles may
be useful for detecting masqueraders.

● Passu>ordFails -- event counter that measures

password failures at login using the
operational model. This type of profile is
extremely useful for detecting attempted
break-ins, and should be defined both for
individual users and all users taken together.

An attack involving many trial passwords on a
particular account would show up as an
abnormally high number of password failures
with respect to a profile for the individual

account (user); an attack involving a single
trial password over many accounts would
show up as an abnormally high number of

password failures with respect to a profile for
all users. Password failures might be recorded
over a fairly short period of time, say at most

a few minutes, since break-ins are usually
attempted in a burst of activity.

● Location Fails -- event counter measuring
failures to Iogin from specified terminals based
on operational model. This type of profile
might be defined for individual users, but

aggregates of locations since the exact location
is less significant than that it was
unauthorized. It may be used to detect

attempted break-ins or attempts to log into
privileged terminals.

5.7.2. Command or Program Execution
6!ommand or program execution activity is

represented in audit records where the subject is a user,

the object is the n~me of a program (for simplicity, we
will assume that all commands are programs and not

distinguish between the two), and action is ‘execute’.
Programs may be classified and aggregated by whether
they are privileged (executable only by privileged users or

in privileged mode) or nonprivileged, by whether they are

system programs or user programs, or by some other
property.

● ExecutionFrequenc~ -- event counter
measuring the number of times a program is
executed during some time period using the

mean and standard deviation model. This
type of profile may be defined for individual

users and programs or classes thereof. A
profile for individual users and commands may
be useful for detecting masqueraders, who are

likely to use different commands from the

legitimate users; or for detecting a successful

penetration by a legitimate user, who will then
have access to privileged commands that were

previously disallowed. A profile for individual

programs but all users may be useful for
detecting substitution of a Trojan horse in an

experimental library that is searched before
the standard library, since the frequency of
executing the original program would drop off.

e ProgamCPU, ProgramIO, etc. -- resource
measures per execution of a program using the
mean and standard deviation model. This
type of profile may be defined for individual
users and programs or classes thereof. An
abnormal value for one of these measures
applied to the aggregate of all users might
suggest injection of a Trojan horse or virus in

the original program, which performs side-
effects that increase its 1/0 or CPU usage.

● E:ecutionDenied -- event counter for number
of attempts to execute an unauthorized

program during a day using the operational

127

model. Defining this type of profile for
individual users might be useful for detecting a
penetration attempt by some particular user.
This type of profile might also be defined for
individual programs that are highly sensitive,
in which case a threshold of 1 may be
appropriate.

. ProgramResourceExhaustion -- event counter

for the number of times a program terminates
abnormally during a day because of
inadequate resources using the operational
model. This type of profile might be defined
for individual programs or classes of programs
to detect a program that consistently aborts

(e.g., because it is leaking data to the user
through a covert channel based on resource

usage).

5.7.3. File-Access Activity
File-access activity is represented in audit records

where the subject is a user, the object is the name of a
file, and action is ‘read’, ‘write’, ‘create’, ‘delete’, or
‘append’. Files may be classified by type: text, executable

program, directory, etc.; by whether they are system files

or user files; or by some other property. Since a program
is a file, it can be monitored both with respect to its

execution activity and its file-access activity.

The following measures are candidates for profiles:

● ReadFrequency, WriteFrequency,
CreateFrequency, DeleteFrequency -- event

counters that measure the number of accesses
of their respective types during a day (or some
other period) using the mean and standard
deviation model. Read and write access
frequency profiles may be defined for
individual users and files or classes thereof.
Create and delete access profiles, however,
only make sense for aggregate file activity
since any individual file is created and deleted
at most once. Abnormalities for read and
write access frequencies for individual users
may signify masquerading or browsing. They
may also indicate a successful penetration,
since the user would then have access to files
that were previously disallowed.

● RecordsRead, RecordsWritten -- resource
measures for the number of records read or
written per access (measurements could also
be made on a daily basis) using the mean and
standard deviation model. This type of profile
might be defined for individual users and files
or classes thereof. An abnormality could
signify an attempt to obtain sensitive data by

inference and aggregation (e.g., by obtaining
vast amounts of related data).

● Rea dFai[s, WriteFails, Delete Fails,
CreateFails -- event counters that measure the
number of access violations per day using the
operational model. This type of profile might
be defined for individual users and files or

classes thereof. Profiles for individual users
and the class of all files could be useful for
detecting users who persistently attempt to

access unauthorized files. Profiles for

individua! files and the class of all users could

be useful for detecting any unauthorized
access to highly sensitive files (the threshold
may be set to 1 in that case).

● FileResourceExhaustion -- event counter that

measures the number failures caused by

attempts to overflow the quota of available

space using the operational model. This type
of profile may be defined for individual users
aggregated over all files. An abnormality
might signify a covert channel, where the
signaling process consumes all available disk

space to signal a ‘1’ bit.

6. Anomaly F?,ecords

Through its activity rules (next Section), IDES

updates activity profiles and checks for anomalous

behavior whenever an audit record is generated or a
period terminates. If abnormal behavior is detected, an
anomaly record is generated having three components:

<Event, Time-stamp, Profile>

where

● Event -- indicates the event giving rise to the

abnormality and is either ‘audit’, meaning the
data in an audit record was found abnormal,
or ‘period’, meaning the data accumulated
over the current interval was found abnormal.

● Time-stamp -- either the time-stamp in the

audit record or interval stop time (since we
assume that. audit records have unique time-

stamps, this provides a means of tying an
anomaly back to an audit record).

● Profile -- activity profile with respect to which

the abnormality was detected (rather than

including the complete profile, IDES might
include a ‘key’ field, which identifies the
profile in the database, and the current state
of the Value field).

7. Activity Rules

An activity rule specifies an,action to be taken
when an audit record or anomaly record is generated, or a
time period ends. It consists of two parts a condition

128

that, when satisfied, causes the rule to be ‘fired’, and a

body. We will use the term ‘body’ rather than ‘action’ to
avoid confusion with the actions monitored by IDES. The
condition is specified as a pattern match on an event.
There are four types of rules:

● Audit-record rvde, triggered by a match

between a new audit record and an activity
profile, updates the profile and checks for

anomalous behavior.

● Periodic-activity-update rule, triggered by the

end of an interval matching the period

component of an activity profile, updates the

profile and checks for anomalous behavior.

● Anomaly-record rules, triggered by the

generation of an anomaly record, brings the
anomaly to the immediate attention of the
security officer.

● Periodic-anomaly-analysis rule, triggered by

7.1.

the end of an interval, generates summary
reports of the anomalies during the current
period.

Audit-Record Rules

An audit-record rule is triggered whenever a new
audit record matches the patterns in an activity profile.

It updates the profile to reflect the activity reported in
the record and checks for deviant behavior. If an

abnormality is detected, it generates an anomaly record.

Since the algorithm for updating the profile and checking
for abnormality depends only on the type tof variable
(statistical metric and model) represented by the profile,

but not on the profile’s other components (e.g., subject,

object, action, etc.), it can be encoded in a procedure

AuditProcesst (see the IDES final reportl for example

procedures). Thus, all audit record rules are represented
by the following generic rule:

AUDIT-RECORDRULE
Condition: new Audit .Record

Audit .Record matches Profile
Profile .Variable-Type = t

Body : AuditProcess~(Audit-Record, Profile);

END

7.2. Periodic-Activity-Update Rules

This type of rule, which is also parameterized by the
type tof statistical measure, is triggered whenever the
clock implies a period of length p completes, the Period
component of a profile is p, and the Variable-Type
component is t. The rule updates the matching profile,
checks for abnormal behavior, and generates an anomaly
record if an abnormality is detected. (It may also produce
a summary activity report.)

PERIODIC-VARIABLE-UPDATERULE

Condition ~ Clock mod p = O
Pro file. Period = p
Profile .Variable-Type = f

Body : PeriodProcess~(Clock, Profile) ;

END

7.3. Anomaly-Record Rules

Each anomaly-record rule is triggered whenever a
new anomaly record matches patterns given in the rule
for its components Event and Profile. Thus, a rule may
be conditioned on a particular variable, a particular

subject or object, on the audit action that was found to
be anomalous, and so forth. For those components of a

Profile that are also patterns (e.g., the subject and object
components), the patterns given in an anomaly rule must
be identical for a match to occur; that is, one pattern
matches another only if the patterns are identical. The
matching record is brought to the immediate attention of
the security officer, with an indication of the suspected
type of intrusion. The general form of such a rule is as
follows:

ANOMALY-RECORDRULE
Condition: new Anomaly-Record

Anomaly-Record. Profile matches profile-pattern
Anomaly-Record. Event matches event-pattern

Body: PrintAlert (‘ Suspect intrusion of type ‘,
Anomaly-record);

ENO

Unfortunately, we have very little knowledge about

the exact relationship between certain types of

abnormalities and intrusions. In those cases where we do

have experience, we can write rules that incorporate our

knowledge. An example is with password failures, where
the security officer should be notified immediately of a
possible break-in attempt if the number of password

failures on the system during some interval of time is
abnormal. Other abnormalities that are candidates for
immediate notification include an abnormal lapse since
last Iogin or an abnormal login time or place -- e.g., the
user has never previously logged in late at night -- both of
which could indicate masquerading.

7.4. Periodic-Anomaly-Analysis Rules

‘This type of rule is triggered by the end of an
interval. It analyzes some set of anomaly records for the
period and generates a report summarizing the anomalies
to the security officer. Its generic form is

PERIODIC-ANOMALY-ANALYSISRULE
Condition: Clock mod p = O
Body: Start = Clock - p;

A . SELECT FROMAnomaly-Records
WERE Anomaly-Record Time-stamp > Start;

generate summary report of A;
END

129

The rule selects all anomaly records belonging to the

period from the set (relation) of all anomaly records.

Rules that process anomaly records might produce
summary tables of statistics broken down by one br more
categories or graphs of abnormalities. They might
compute statistical functions over anomalies in order to

link them to possible intrusions. Thus far, we do not
have enough experience with on-line intrusion detection to
know exactly what reports will be the most useful.

To facilitate the reporting of anomalies, the model
might be enhanced to include anomaly profiles. An

anomaly profile would be similar to an activity profile
except that updates would be triggered by the generation
of an anomaly record within IDES rather than an audit
record from the target system. Whether such a structure
would be useful, however, is unclear.

8. Conclusions

We believe the IDES model provides a sound basis

for developing a powerful real-time intrusion detection
capable of detecting a wide range of intrusions related to
attempted break-ins, masquerading (successful break-ins),
system penetrations, Trojan horses, viruses, leakage and

other abuses by legitimate users, and certain covert
channels. Moreover, the model allows intrusions to be

detected without knowing about the flaws in the target
system that allowed the intrusion to take place, and
without necessarily observing the particular action that
exploits the flaw.

There are several open questions:

● Soundness oj Approach -- Does the approach
actually detect intrusions? Is it possible to
distinguish anomalies related to intrusions
from those related to other factors?

● Completeness of Approach -- Does the

approach detect most, if not all, intrusions, or

is a significant proportion of intrusions
undetectable by this method?

● Timeliness of Approach -- Can we detect

most intrusions before significant damage is
done?

● Choice of Metrics, Statistical Models, and
Profiles -- What metrics, models, and profiles
provide the best discriminating power? Which
are cost-effective? What are the relationships
between certain types of anomalies and
different methods of intrusion?

● System Design -- How should a system based

on the model be designed and implemented?

● Feedback -- What effect should detection of an

intrusion have on the target system? Should
IDES automatically direct the system to take
certain actions?

● Social Implications -- How will an intrusion-

detection system affect the user community it

monitors? Will it deter intrusions? Will the
users feel their data are better protected? Will
it be regarded as a step towards ‘big brother’?

Will its capabilities be misused to that end?

Although we believe that the approach can detect
most intrusions, it may be possible for a person to escape
detection through gradual modifications of behavior or
though subtle forms of intrusion that use low-level

features of the target system that :we not monitored
(because they would produce too much data). For
example, because it is not practical to monitor individual

page faults, a program that leaks data covertly by
controlling page faults would not be detected -- at least

by its page-fault activity.

It is important, however, to distinguish between
detecting a low-level action that exploits a particular flaw

in a system and detecting the related intrusion. As an

example, consider an operating system penetration based
on trying supervisor calls with slight variants of the

calling parameters until arguments are found that allow
the user to run his own programs in supervisor mode.

Detecting the actual penetration would be impossible
without monitoring all supervisor calls, which is generally
not practical. The intrusion, however, may be detected
once the penetration succeeds if the intruder begins to
access objects he could not access before. Thus, the
important question is not whether we can detect a
particular low-level action that exploits a system flaw, but
whether intrusions are manifest by activity that can be

practically monitored.

Even if we can detect most intrusions, we do not
propose to replace any security controls with JD13S.
Doing so could leave the target system vulnerable to such
attacks as a swift one-shot penetration that exploits a
system flaw and then destroys all files with a single ‘delete
all’ command. Our concept for IDES is an extra layer of
protection that enhances the overall security of the target
system.

Acknowledgments

I especially thank Peter Denning for stimulating and
helpful discussions on statistical modeling while hiking
through the redwoods, and Peter Neumann for working
with me on the IDES project and helping me clarify my
ideas. I also thank Hal Javitz and Karl Levitt for many
useful comments and suggestions. Finally, I wish to
acknowledge the Space and Naval Warfare Command

130

(SPAWAR) for funding the research under contract
83F8301OO, and the NSF for their support under grant
MCS-8313650.

References

1. Denning, D. E. and Neumann, P. G.,
“Requirements and Model for IDES -- a Real-Time
Intrusion Detection System”, Tech. report,

Computer Science Lab, SRI International, 1985.

2. IBM Corp., System Management Facilities,
BC28-0706-1 cd., 1977.

3. Dept. EECS, LJniv. of Calif., Berkeley, UNIX
Programmer’s Manual, 4.2 Berkeley Software
Distribution cd., 1983.

131

