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ABSTRACT

A intrusion detection evaluation test bed was developed
which generated normal traffic similar to that on a
government site containing 100’s of users on 1000’s of
hosts. More than 300 instances of 38 different
automated attacks were launched against victim UNIX
hosts in seven weeks of training data and two weeks of
test data. Six research groups participated in a blind
evaluation and results were analyzed for probe, denial-
of-service (DoS), remote-to-local (R2L), and user to
root (U2R) attacks. The best systems detected old
attacks included in the training data, at moderate
detection rates ranging from 63% to 93% at a false
alarm rate of 10 false alarms per day. Detection rates
were much worse for new and novel R2L and DoS
attacks included only in the test data. The best systems
failed to detect roughly half these new attacks which
included damaging access to root-level privileges by
remote users. These results suggest that further
research should focus on developing techniques to find
new attacks instead of extending existing rule-based
approaches.

1. Introduction

Heavy reliance on the internet and worldwide connectivity
has greatly increased the potential damage that can be inflicted
by attacks launched over the internet against remote systems. It
is difficult to prevent such attacks by the use of security

policies, firewalls, or other mechanisms because system and
application software always contains unknown weaknesses or
bugs. In addition, complex, often unforeseen, interactions
between software components and/or network protocols are
continually exploited by attackers. Successful attacks inevitably
occur despite the best security precautions. Intrusion detection
systems have become an essential component of computer
security to detect these attacks before they inflict widespread
damage. A review of current approaches to intrusion detection
is available in [1]. Some approaches detect attacks in real time
and can stop an attack in progress. Others provide after-the-fact
information about attacks and can help repair damage,
understand the attack mechanism, and reduce the possibility of
future attacks of the same type. More advanced intrusion
detection systems detect never-before-seen, new, attacks, while
the more typical systems detect previously seen, known attacks.

Evaluations of developing technologies such as those used
for intrusion detection are essential to focus effort, document
existing capabilities, and guide research. For example, yearly
DARPA-sponsored evaluations in the speech recognition area
have contributed substantially to rapid technical progress [2].
Periodic speech evaluations have focused research on difficult
technical problems, motivated researchers to build advanced
systems, facilitated information sharing, provided common
corpora, and made it easier for new researchers to enter this
field and explore alternate approaches [2].

Despite the importance of intrusion detection systems in
limiting the damage inflicted by new attacks, we are aware of
no evaluations prior to 1998 that (1) Generated an intrusion
detection evaluation corpus which could be shared by many



researchers, (2) Evaluated many intrusion detection systems,
(3) Included a wide variety of attacks, and (4) Measured both
attack detection rates and false alarm rates for realistic normal
traffic. Most prior research in this area evaluated individual
systems using a small number of attacks and little background
traffic (e.g. [3,4,5]) or evaluated systems using confidential in-
house red-teaming experiments where attacks are launched by
teams of experts against a test or operational network. An
evaluation of many systems with a shared corpus is difficult for
many reasons. First, operational networks can not normally be
used for evaluations due to service disruptions caused by
attacks and the need to maintain privacy and security which
mitigates the possibility of sharing network traffic data with
others. Second, intrusion detection systems use a variety of
non-standardized input data sources including host-based audit
data and network traffic data. Finally, existing and new attacks
must be developed and successfully launched against a wide
range of hardware and software. The goal of the research
reported in this paper was to address these issues and perform
careful evaluations in support of the DARPA Information
Survivability and Information Assurance Programs which have
been developing new approaches to intrusion detection [6].
These evaluations were planned to serve the same role for the
field of intrusion detection that the DARPA Speech
Recognition evaluations serve in the field of speech
recognition. The remainder of this paper focuses on the 1998
off-line intrusion detection evaluation. The design goals of this
evaluation are reviewed, the approach taken to develop an
evaluation test bed is described, the approach taken to
developing attacks on this test bed is presented, and results of
the 1998 off-line evaluation are then reviewed. A summary and
discussion of future plans follow.

2. GOALS AND OVERVIEW

The 1998 off-line intrusion detection evaluation was the first
in a planned series of annual evaluations conducted by MIT
Lincoln Laboratory under DARPA sponsorship. These
evaluations are designed to focus research efforts on core
technical issues and provide unbiased measurement of current
performance levels. The primary purpose of the evaluations is
to drive iterative performance improvements in participating
systems by revealing strengths and weaknesses and helping
researchers focus on eliminating weaknesses. To insure that the
greatest numbers of researchers can participate, common
shared corpora are created that can be distributed and used by a
wide range of researchers. Such corpora simplify entrance into
this field and make it possible to compare alternate approaches.
To make sure the evaluation could uncover weaknesses in
many types of intrusion detection systems, widely varied
attacks were developed that span the types of attacks which
might be used by both novice and highly skilled attackers.
Efforts were also made to keep the evaluation simple and to

encourage the widest participation possible by eliminating
security and privacy concerns and providing data types used by
the majority of intrusion detection systems. Simplicity and
more widespread participation were obtained in the first 1998
evaluation by focusing on UNIX hosts and outside attacks
originating from remote hosts.

A novel feature of this evaluation is the use of receiver
operating characteristic (ROC) techniques to evaluate intrusion
detection systems. The ROC approach analyzes the tradeoff
between false alarm and detection rates for detection systems.
ROC analysis was originally developed in the field of signal
detection [7,8]. More recently, it has become the standard
approach to evaluate detection systems and have been used in
fields as diverse as language and speaker identification [9] and
medical risk prediction [10]. ROC curves for intrusion
detection indicate how the detection rate changes as internal
thresholds are varied to generate more or fewer false alarms to
tradeoff detection accuracy against analyst workload.
Measuring the detection rate alone only indicates the types of
attacks that an intrusion detection system may detect. Such
measurements do not indicate the human workload required to
analyze false alarms generated by normal background traffic.
False alarm rates above 100’s per day make a system almost
unusable, even with high detection accuracy, because putative
detections or alerts generated can not be believed and security
analysts must spend many hours each day dismissing false
alarms. Low false alarm rates combined with high detection
rates, however, mean that the putative detection outputs can be
trusted and that the human labor required to confirm detections
is minimized.

Most intrusion detection systems provide some degree of
configuration to allow experts to customize the system to a
given environment. To avoid learning how to run and
customize each intrusion detection system, to reduce the time
required to perform the evaluation, and to perform a fair
comparison, we elected to perform an off-line blind evaluation
of all systems. Two sets of data were provided to partipants.
First, seven weeks of training data were provided from July to
mid September 1998. This training data contained normal
background traffic and labeled attacks. Expert users or system
developers configured their systems and trained any learning
algorithms to achieve the highest detection rates and the lowest
false alarm rates on this training data. Then two weeks of
unlabeled test data was provided at the end of October.
Participants ran their intrusion detection systems on this test
data and returned a list of all attacks detected, without
knowledge of the locations or of the types of attacks. This
approach made it easy to participate, ensured that all
participants are evaluated fairly and with minimum bias, and
lead to the development of evaluation corpora that can be used
by many researches for system design and refinement. Practical



concerns such as memory requirements, system processor
requirements, and ease of use were not measured. A second
real-time evaulation was performed in tandem with this off-line
evaluation to address these practical issues. This real-time
evaluation used four hours of background traffic and included a
smaller number of complete packaged systems that could be
delivered and run on a test network [11]. It made use of many
of the traffic generation tools and attacks developed for the off-
line evaluation.

3. Evaluation Test Bed

Three approaches were initially explored to generate a
corpus that could be widely distributed and that included both
background traffic and attacks. The first proposal was to
capture operational traffic both during normal operations and
with controlled live attacks against selected components of an
actual network. This was not possible because it would release
private information, compromise security, and it could damage
systems and stop important network activities. A second
proposal was to sanitize sampled operational data and insert
attacks into this sanitized data. A few simple analyses showed
that this again was not possible due to the difficulty of
removing all security-related and private information from
network traffic and the complexity of preventing the
introduction of artifacts when attacks are inserted. Sanitization
alone would require examining every email message, file
transfer, and browser interaction to eliminate private or
confidential information. It would also require changing all
user names, IP addresses, file names, system names, and any
other site-specific information. The final proposal, which we
followed, was to recreate normal and attack traffic on a private

network using real hosts, live attacks, and live background
traffic.

Figure 1 shows a conceptual view of the evaluation test bed
that was created. This test bed generates live traffic similar to
that seen between a small Air Force base and the Internet.
Custom software automata simulate hundreds of programmers,
secretaries, managers, and other types of users running
common UNIX application programs. In addition, custom
software allows a small number of actual hosts to appear as if
they were 1000’s of hosts with different IP addresses. Many
types of traffic are generated which use a variety of network
services. User automata send and receive mail, browse web
sites, send and receive files using FTP, use telnet to log into
remote computers and perform work, send and receive IRC
messages, monitor the router remotely using SNMP, and
perform other tasks. The overall proportion of traffic from
different services and the variability of traffic with time of day
are similar to that observed on Air Force Bases. Protective
devices such as firewalls were omitted because the focus was
on detecting attacks, and not preventing attacks. All attacks are
launched from the outside of the simulated base and thus
evidence of each attack is available in the network traffic
captured by the sniffer positioned at the entrance to the base.

Figure 2 shows a more detailed block diagram of the evaluation
test bed. The inside of the simulated Air Force base contains
three machines which are the most frequent victims of attacks
(Linux 2.0.27, SunOS 4.1.4, Sun Solaris 2.5.1), and a gateway
to hundreds of other inside emulated PCs and workstations.
The outside of the simulated base simulates the Internet. It
contains a sniffer to capture traffic, a gateway to hundreds of
emulated workstations on many other subnets and a second
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Figure 1. The evaluation test bed creates many types of live traffic using 1000’s of virtual hosts and 100’s of user
automata to simulate a small Air Force base separated by a router from the Internet.



gateway to thousands of emulated web servers. Data collected
to evaluate intrusion detection systems include network sniffing
data from the outside sniffer, Sun Basic Security Module
(BSM) audit data collected from the Solaris host, and nightly
full disk dumps from the three UNIX victim machines. In
addition to automatic traffic, human actors sometimes generate
background traffic and attacks from the gateways when the
traffic or attack is too complex to automate.

4. Background Traffic Generation

Background traffic was necessary to determine the false
alarm rates of intrusion detection systems. A large amount of
web, telnet, and mail traffic was generated between the inside
PC’s and workstations and the outside workstations and web
sites. In addition, there are many user automata of various types
(e.g. secretaries, programmers, managers) on outside
workstations who perform work using telnet and other services
on the three inside victim machines and the other inside
workstations. The three gateway machines contain operating
system kernel modifications similar to those used in [11] in
conjunction with custom software web, mail, telnet, and other
servers to allow a small number of actual hosts to appear as if
they were 1000’s of hosts with different IP addresses. The
contents of network traffic such as SMTP, HTTP, and FTP file
transfers are either statistically similar to live traffic, or
sampled from public-domain sources. For example, some email
message contents are created using statistical bigrams
frequencies to preserve word and two-word sequence statistics
from a sampling of roughly 10,000 actual email messages to
and from computer professionals filtered using a 40,000 word
dictionary to remove names and other private information.
Other email messages are actual messages from a variety of
public-domain mail list servers. Similar approaches were used
to produce content for FTP file transfers.

Content of the web servers was initially captured using a
custom web automaton that was run on the real Internet. This
automaton was programmed to visit thousands of web sites
popular with university and government personnel with a
frequency that depended on the site’s popularity and to visit a
random number of links at each site before traversing to
another site. It generated a large database of public-domain site
content, which was transferred to the evaluation test bed. This
was necessary because the evaluation test bed was
disconnected from the Internet for security reasons and live
web sites could thus not be accessed. When the test bed was
run, browsing automata accessed web pages through the
outside web gateway. This gateway used custom software to
emulate thousands of web sites. Telnet sessions were generated
from statistical profiles of user types that were used to generate
interactive sessions. These statistical profiles indicated the
frequency of occurrence of different UNIX commands (e.g.
mail, lynx, ls, cd, vi, cc, and man), typical login times and
telnet session durations, typical source and destination
machines, and other information. For example, programmers
primarily edited C programs, compiled these programs, sent
mail, read UNIX manual pages, and ran programs. Secretaries
edited documents, and sent mail. There were also a large
number of users who primarily sent and received mail and
browsed web sites. Public domain sources were used to obtain
software programs created by simulated programmers,
documents created by secretaries, and other content. As
suggested in [3], a modified version of theexpectlanguage was
used to create user automata which behaved as if they were
users typing at keyboards. Human actors performed more
complex tasks. They upgraded software, added users, changed
passwords, remotely accessed programs with graphical user
interfaces, and performed other system administration tasks.
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Figure 2. Detailed block diagram of test bed with three inside victims, gateways, and three types of collected data.



5. Attacks

The 32 different attack types shown in Table 1 were used in the
evaluation. Attacks used during both training and testing are
shown using normal type. New and novel never-before-seen
attacks used only in the test data are shown in bold. Detailed
information on these attacks is available in [12]. Attacks were
selected to permit evaluation of UNIX intrusion detection
systems that protect Sun Solaris, SunOS, and Linux hosts and
routers. The attacks had a variety of goals. The upper row of
Table 1 contains denial of service (DoS) attacks designed to
disrupt a host or network service. Some DoS attacks (e.g.
smurf) exessively load a legitimate network service, others (e.g.
teardrop, Ping of Death) create malformed packets which are
incorrectly handled by the victim machine, and others (e.g.
apache2, back, syslogd) take advantage of software bugs in
network daemon programs. The second row of Table 1
contains Remote to Local (R2L) attacks. In these attacks, an
attacker who does not have an account on a victim machine,
sends packets to that machine and gains local access. Some
R2L attacks exploit buffer overflows in network server
software (e.g. imap, named, sendmail), others exploit weak or
misconfigured security policies (e.g. dictionary, ftp-write,
guest) and one (xsnoop) is a trojan password capture program.
The snmp-get R2L attack against the router is a password

guessing attack where the community password of the router is
guessed and an attacker then uses SNMP to monitor the router.

The third row of Table 1 contains user to root (U2R) attacks
where a local user on a machine is able to obtain privileges
normally reserved for the UNIX root or super user. Some U2R
attacks exploit poorly written system programs that run at root
level which are susceptible to buffer overflows (e.g. eject,
ffbconfig, fdformat), others exploit weaknesses in path name
verification (e.g. loadmodule), bugs in some versions of
suidperl (e.g. perl), and other software weaknesses. The bottom
row of Table 1 contains probe or scan attacks. These include
many programs that can automatically scan a network of
computers to gather information or find known vulnerabilities.
Such probes are often precursors to more dangerous attacks
because they provide a map of machines and services and
pinpoint weak points in a network. Some of these scanning
tools (e.g. satan, saint, and mscan) enable even an unskilled
attacker to check hundreds of machines on a network for
known vulnerabilities.

Attack development was a major effort that involved many
components. First the attack mechanism was analyzed and a
working attack was developed on the evaluation test bed for
analysis and tuning. This analysis was performed to determine
whether the attacked worked in the test bed or whether new
software and/or services are required to support the attack. It

Table 1. Attack types used in the evaluation. New attacks that occurred only in the test data are bold.
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enabled us to capture the types of network traffic generated by
the attack, to develop stealthy versions of the attack, and to
design additional background traffic to run during the
evaluation that provides normal usage of services and/or
programs required by the attack. For example, to make attacks
that generate X-windows traffic more difficult to detect, normal
users also generate some X-windows traffic during the
evaluation. The attack was then automated, stealthy versions of
some attacks were developed and tested, procedures were
developed to verify that the attack worked, required
background traffic was generated, and documentation was
created. This process required from one week to one month per
attack. In some cases, transcripts of actual Air Force intrusions
were used to develop attack scenarios. When such transcripts
were not available, attacks were developed using publicly
known attacks and accounts of intrusions on civilian computer
systems

Novel attacks were developed by looking for unexploited
system or network weaknesses. The new HTTP-tunnel attack
used what looked like normal web browsing to create a covert
channel between an attacker and a victim machine. Custom
software installed on a victim browsed the web once a day and
contacted what looked like a normal web server. This server,
however, was a remote attacker who could interact with the
victim, download files from the victim, and run UNIX
commands on the victim using what looked like normal HTTP
replies to queries. This attack was difficult to detect within the
large amount of normal HTTP traffic. The novel sendmail
buffer overflow attack exploited a weakness in the MIME
translation code of a particular version of sendmail. One
carefully crafted email message containing a buffer overflow
sent to a victim created a new entry in the victim’s password
file that allowed an attacker to telnet in and login as root. The
novel process-table attack uses up all process table entries on a
victim machine. It continuously opens finger connections to the
victim at a rate that is fast enough to eventually fill up the
process table, but not too fast to trigger system thresholds that
would disallow new connections. Finally, the at attack is a

normal buffer overflow that is installed, but then set to run at a
later time using the UNIX “at” command. This attack was
included to determine whether intrusion detection systems
could trace a delayed “time bomb” style attack back to the
original network connection where the attack was installed.

Half of the U2R and R2L attacks included actions after the
attacker achieved root or local access on the victim machine.
Actions included modifying or examining the password,
shadow, or .rhosts file, creating a suid root shell, using telnet to
connect to other sites, and installing trojan executables, a
sniffer, or a server on a high level port. Roughly 25% of the
U2R attacks were stealthy. The attack source code and outputs
of commands issued from root shells were encrypted using
uuencode or small custom C programs, wildcards were used to
hide critical UNIX commands, actions were delayed, and the
setup, attack, and post-attack actions were spread over multiple
telnet sessions. In addition, roughly 10% of the probes were
made stealthy by running sweeps slowly and by examining
ports and/or IP addresses in random instead of sequential order.

6. Labeling Training and Test Data

Training data with labeled attacks was first provided to
participants from July to mid September 1999 to allow them to
tune and train their intrusion detection systems. Unlabeled test
data was then provided in late October for a blind evaluation.
List files were used to both label attacks in training data and
score network connections in unlabeled test data. These files
contain entries for every important TCP network connection as
well as for ICMP, and UDP packets. Table 2 shows selected
lines from a list file containing more than 287,000 entries from
one day of training data. List files provided with training data
indicated those connections which were parts of attacks and list
files returned by participants for test data indicated those
network connections selected to be parts of attacks by intrusion
detection systems. A separate line in each list file describes
each TCP connection and each UDP or ICMP packet. Each line
begins with a unique identification number, the start date and

Table 2. Entries extracted from a training list file that labels network connections and attacks for one day.

Start Start Src Dest Src Dest Attack
# Date Time Duration Service Port Port IP Address IP Address Score/Name
1 07/03/1998 08:00:01 00:00:01 eco/i - - 192.168.001.005 192.168.001.001 0 -
4 07/03/1998 08:00:02 00:00:01 domain/u 53 53 172.016.112.020 192.168.001.010 0 -
8 07/03/1998 08:01:03 00:00:01 smtp 1026 25 172.016.113.084 194.007.248.153 0 -
9 07/03/1998 08:01:06 00:00:02 smtp 1027 25 172.016.113.084 135.013.216.191 0 -
42 07/03/1998 08:01:50 00:00:29 ftp 1106 21 172.016.112.149 197.218.177.069 0 -
43 07/03/1998 08:01:51 00:00:01 http 1107 80 172.016.116.044 167.008.029.015 0 -
44 07/03/1998 08:01:51 00:00:01 http 1104 80 172.016.116.044 167.008.029.015 0 -
53 07/03/1998 08:01:52 00:00:01 http 1297 80 172.016.116.044 167.008.029.015 0 -
73 07/03/1998 08:01:52 00:00:02 ftp-data 20 1685 197.218.177.069 172.016.112.149 0 -
76 07/03/1998 08:01:53 00:00:01 snmp/u 161 1523 192.168.001.001 194.027.251.021 0 -
8383 07/03/1998 11:12:16 00:01:26 telnet 20504 23 197.218.177.069 172.016.113.050 1 Loadmodule
9966 07/03/1998 11:46:39 00:00:01 tcpmux 1234 1 205.160.208.190 172.016.113.050 1 Portsweep
10096 07/03/1998 11:49:39 00:00:01 2 1234 2 205.160.208.190 172.016.113.050 1 Portsweep



time for the first byte in the connection or packet, the duration
until the final byte was transmitted, and a service name. The
service name contains either the common port name for TCP
and UDP connections or the packet type for ICMP packets.
Names for non-TCP protocols are terminated by a slash
followed by a single letter that indicates the service (e.g. an “i”
for ICMP and a “u” for UDP). Following the name are the
source and destination port for TCP and UDP connections, the
source and destination IP addresses, the attack score and the
attack name. The attack score is zero and the name is a dash for
connections that are not part of an attack. In the training data,
the attack score is set to 1 and the name is a text string to label
connections associated with attacks. In the test data, attacks are
not labeled. Instead, all attack scores are zero and all attack
names are “-“. It is the responsibility of participants to process
the test data and then label list file entries corresponding to
presumed or putative attacks. Scores of connections associated
with attacks were to be set to non-zero values where more
positive values indicated greater certainty of an attack. Attack
names were to contain either the name of an old attack that was
provided in the training data or a more generic attack category
name (e.g. probe, DoS, U2R, R2L) for new attacks.

The list file in Table 2 shows examples of many types of
Internet traffic as well as components of two different labeled

attacks in the training data. The first entry at roughly 8:00 AM
is a normal ICMP echo packet. This is followed by normal
domain name server, mail, FTP, and web traffic. There is a user
to root loadmodule attack in telnet session labeled number
8383 at 11:12 AM and then a portsweep attack begins at 11:46
AM examining lower number ports first and sweeping up.
There were more than 287,000 other entries in this list file. The
other entries were omitted for clarity. List files also include a
short hand notation to indicate when many packets of the same
type occur (e.g. ICMP echo-reply packets that are part of a
smurf attack) to reduce their size.

Figure 3 shows all the network connections in a single day
of training data corresponding to the list file in Table 2. It
illustrates the wide variety of network traffic types, the
variation of traffic over a day, the visibility of some network
attacks, the relative percentages of different types of traffic,
and the duration of common TCP connections. The test bed
runs each day from 8:00 AM until roughly 6:00 AM of the next
day on every week day as shown by the horizontal axis of this
figure. The two-hour gap in the morning is used to upload audit
files and sniffer data, to download traffic generation files, to
reboot all machines, and to prepare for the next day of the test
bed run. The vertical regions in Figure 3 bounded by horizontal
lines contain traffic for different services and protocols. The
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column entries at the left of each region specify the service or
packet type and the number of connections or packets of each
type. For example there were 3,584 SMTP mail transfer TCP
connections, 4,341 web HTTP TCP connections, and 127 echo
ICMP packets. Each line segment represents a single network
connection and lines representing succesive sessions are
displaced vertically slightly and wrap around within each
vertical region. The length of the lines represents the duration
of each network connection. Lines begin with a greater-than
sign “>” and end with a less-than sign “<”, and thus form an
“X” for short sessions. The majority of TCP/IP sessions are
short and look like X’s. Telnet sessions created by automata
that simulate users are shown as longer lines that range from
two to six hours in duration. Solid black regions in Figure 3
correspond to services with the most traffic including mail
(SMTP), web (HTTP), and FTP-data file transfers. They also
include SNMP network monitoring which ran continuously,
and domain name service which resolved IP address names
required to deliver mail, send FTP files, telnet to remote hosts,
and perform other network services. Figure 3 also shows where
eight attacks occurred during this day of training. Many
different types of attacks are shown. Most obvious are the
neptune or synflood denial of service attack to all TCP ports
which lasts for an hour starting at roughly 17:30 and the short
overlapping smurf echo-reply flooding that runs for roughly 15
minutes around 18:00. The smurf attack accounts for the large
number of “ecr/i” echo-reply ICMP packets (527,848) and the
neptune attack accounts for many of the “other” packets
because it swept all 1024 low-numbered ports multiple times.
Other attacks are less obvious. The loadmodule and eject U2R
attacks each occur in one telnet session. The format U2R attack
includes an initial FTP session to download the attack script
and a second telnet session to run the attack. Finally, a
portsweep starts a little before 12:00 and the end of a rootkit
sniffer installation is accomplished at roughly 23:00.

7. Participants and Scoring

Six groups participated in the evaluation and submitted
systems using a variety of approaches to intrusion detection.
Details of these systems are provided in [13-18]. Three systems
attempted to detect all four categories of attacks using tcpdump
network packet data sometimes supplemented with BSM audit
data. One of these three used data mining or pattern
classification approaches to develop detectors for old attacks
included in the training data [13]. The other two were expert
systems composed of hand-crafted signatures and efficient
pattern matching algorithms designed to detect old attacks or
variants of old attacks [14,15]. An additional expert system
used handcrafted signatures to find only probe and DoS attacks
in tcpdump data [16]. Two other systems detected U2R attacks
against the Solaris victim host. One performed automated
nightly forensic analyses of file system dumps to detect

attacks [17], and the other detected anomalous behavior in
BSM system-call sequences using neural networks [18]. In
addition to these six submitted systems, a simple keyword
system was included to provide a baseline reference for U2R
attacks. The algorithm used to score the likelihood of an attack
in each TCP session in this system is similar to that used in
many existing commercial [19] and government-developed
systems [20]. Occurrences of keywords are detected and
counted in TCP network sessions reconstructed from network
tcpdump data. The total number of keywords is the score
assigned to each session. This score is placed in the test-data
list files. Thirty keywords were selected that are representative
of those used in existing keyword-based intrusion detection
systems. These include keywords that detect suspicious actions
(e.g. “passwd”, “shadow”, “permission denied”, “+ +”) and
keywords that detect well-known attacks (e.g. “from: |”, “login:
guest”, “loadmodule”, “CWD ~ROOT”). Keywords in the
baseline system were not tuned to detect attacks in the training
data, but represented common keywords in use at the time of
the evaluation.

ROC curves were created for each system and attack
category. First, all entries in each returned test list file were
sorted by attack score, with the highest scores at the top of the
list. A threshold was then set to be above the highest score on
the list, and then lowered progressively through all entries on
the list. At each threshold value, a point on the ROC curve was
plotted. The Y axis value of this point (percentage attacks
detected) was equal to the percentage of attacks above the
threshold on the list. The X axis value (false alarms per day)
was equal to the number of false alarms (e.g. normal sessions)
above the threshold on the list divided by 10 which was the
number of days in the test data. ROCs were created for each
system and each attack category. Each instance of an attack
was counted as one attack even if it included multiple TCP
sessions or included many UDP or ICMP packets. Scoring was
slightly different for the different categories of attacks because
DoS and probe attacks sometimes used thousands of network
ICMP or UDP packets while U2R and R2L attacks typically
only used one or a few TCP connections. For U2R and R2L
attacks, the highest score assigned to any TCP connection
associated with the attack was taken as the score for the attack.
This gives credit to an intrusion detection system which detects
any component of a low-traffic TCP-based attack. For probe
and DoS attacks, a fractional score from zero to one was
assigned to each attack. This score was the fraction of packets
associated with the attack that occur in the sorted list file above
the ROC threshold setting. This provides highest credit to an
intrusion detection system that finds all packets associated with
each high-traffic probe or DoS attack.



8. Results

Results are first presented for all UNIX victim hosts and
systems that detected all four attack categories. Results are then
presented for the Solaris UNIX victim host and systems that
used BSM host-based audit data only or that examined file
system dumps nightly. Overall results across all attacks are then
presented followed by further comparisons of results for old
attacks in the training data and new attacks only in the test data
and for clear and stealthy attacks

8.1 Results for Four Attack Categories

The majority of systems tested used either tcpdump network
sniffing data alone or tcpdump data in combination with BSM
audit data to detect attacks. ROCs for these systems are shown
in Figure 4. Research groups responsible for systems are not
explicitly identified in these or other figures, because the focus
is on reviewing the state of the art and not on comparing
individual systems. Information on the performance of
individual systems is available in [13-18]. These ROCs plot the
percentage correct attacks detected versus the number of false
alarms per day produced by each system. ROCs look like non-
varying straight lines when the false alarm rate is below 1 per
day. ROCs are single steps or straight lines for most of the

systems in Figure 4 because many systems used rules and
produced only a binary output that indicated whether an attack
did or did not occur. The keyword system, however, produced
a more continuous output and a multi-stepped ROC. The false-
alarms-per-day axis is logarithmic. It ranges from 1 false alarm
per day, which is a level easily handled by one system
administrator, to 500 false alarms per day, which is an
unacceptably high level that would require excessive time for
validation. The maximum false alarm rate was roughly 66,000
per day. This is equal to the total number of normal network
sessions divided by ten. Best performance is provided by
curves that pass through the upper left shaded region which
provide high detection accuracy with low false alarm rates.
Curves in the shaded region correspond to systems that detect
more than 50% of the attacks while producing fewer than 10
false alarms per day. Small differences in curves do not
necessarily represent statistically significant differences
between systems. Two standard deviations for these curves
were determined by bootstrap sampling [21] to be 12 to 18
detection percentage points in detection accuracy.

The upper left ROC in Figure 4 shows the results for the 43
denial of service attacks in the test data. The best system in this
category detects only 65% of the attacks, but with very few
false alarms. This relatively poor detection performance is
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Figure 4. Receiver Operating Characteristic (ROC) curves for systems that detected attacks using either
tcpdump network data alone or tcpdump data supplemented with BSM audit data. Some curves have
been shifted slightly for clarity. Only systems E1, E2, and D detect all four categories of attacks.



surprising for denial of service attacks which should be
relatively easy to detect. The best systems missed new denial of
service attacks that were not in the training data and also
variants of old attacks in the training data. Almost all systems
failed to detect the new process table, mailbomb, and UDP
storm attacks and most systems also missed a variant of the old
warez attack. Some of these attacks should have been relatively
easy to detect. The process table attack opens up more than 100
simultaneous finger connections over a period of minutes, and
the mailbomb attack sends roughly 10,000 identical mail
messages to one user in a few seconds. The new UDP storm
attack is visible in the outside sniffing data as only a single
packet sent from the outside, but with a forged inside IP
address. The warez attack in the test data was similar to that
used in the training data, except the size of the files that were
downloaded were smaller.

The upper right ROC in Figure 4 shows results for the 17
probe attacks that are in the test data. Performance is much
better for the best systems. Two systems detect almost 90% of
the probes with very few false alarms, and one system detects
almost 97% of the probes while producing roughly eight false
alarms per day. Systems performed well because the old probe
attacks (ip sweep, nmap, and satan) were similar to the new
probe attacks (saint and mscan) and because most probe attacks
were easy to detect. They were directed against many IP
addresses and/or ports (typically more than 100 ports or
addresses) and happened over a short time interval. A small
number of the port scans were made stealthy by scanning one
port every 2.5 minutes, by randomizing the port order, and by
using FIN scans instead of SYN scans. These scans were
detected presumably because they still scanned many ports and
all scan packets were sent from the same IP source. No
extremely stealthy scans examining fewer than three ports from
multiple IP sources over a long time span were used in this
evaluation.

The bottom left ROC in Figure 4 shows results for the 38
user to root attacks that are in the test data. The two best
systems detect roughly 60% to 70% of the attacks at false alarm
rates below four per day. This performance still misses more
than roughly 30% of the attacks, but it is much better than the
performance of the baseline keyword-based system. This
system detects fewer than 30% of the U2R attacks, even at a

false alarm rate of 500 false alarms per day. The poor
performance of the keyword baseline system is consistent with
results obtained by others with similar untuned keyword-based
systems. The real-time evaluation described in [11] included a
government-developed keyword system that was tested on less
than a day of traffic. The false alarm rate of this system was
more than 3,000 false alarms per day to detect roughly 5% of
the approximately 30 attack instances. Experience with a
commercial keyword-based system on many commercial sites
also suggests that false alarm rates of thousands per day per site
are required for good detection accuracy [22].

An analysis of the research systems, and experiments with
the baseline system suggest that two characteristics of the
research systems and of the evaluation led to improved
performance of the research systems. First, attack signatures
were similar between training and test data. Although new U2R
attacks in the test data exploited different system weaknesses,
the visible signature in tcpdump data was similar to that in
training data. It was primarily caused by attackers creating
interactive shells with root-level privilege and by stealthy
techniques (e.g. the use of uudecode) used to prepare for the
attack and run the attack. Second, examples of normal sessions
and of both clear and stealthy attacks were provided in training.
These examples were used by system developers to create rules
or signatures with low false alarm rates and high detection
rates. For example, one system [13] specifically extracted
features to detect root-level shells including typical root-shell
command-line prompts and a string printed out by some of the
buffer-overflow attacks to indicate when a root-level shell was
successfully created. This same system also used discriminant
training, which relied heavily on normal and attack training
data, to extract rules with high detection rates and low false
alarm rates. Experiments were performed to determine whether
selecting new attack-specific keywords and using discriminant
training with keyword counts as input features could improve
the performance of the simple baseline system. Neither
approach alone was sufficient to obtain the good U2R
performance demonstrated by the two best research systems. A
combination of adding new keywords and using discriminant
training, however, increased the performance of the baseline
system on U2R attacks to be similar to that of the two best
research systems [23].



The bottom right ROC in Figure 4 shows results for the 22
remote to local attacks in the test data. All systems perform
extremely poorly and the best detection rate is below 35% for
this serious category of attacks where remote users obtain user
or root privilege on the attacked machine. This poor
performance is due to the widely varied range of attacks and to
the many new attacks in this category. New R2L attacks
include HTTP-tunnel, named, sendmail, snmp-get, xlock, and
xsnoop which use different network services and different
attack mechanisms. Http-tunnel is a covert channel that uses
what looks like normal web browsing interactions to pass
information and commands between a victim machine and an
attacker machine using the HTTP network protocol. Named is
a buffer overflow on a DNS name server achieved by sending a
custom inverse-lookup query to a domain name server.
Sendmail is a buffer overflow attack achieved by sending a
custom mail message to a host running a vulnerable version of
sendmail. Snmp-get involves obtaining information from the
router illegally by using the simple network management
protocol (SNMP) protocol. Xlock is a trojan password
capturing screen lock program and xsnoop remotely captures
keystrokes from a poorly configured host running the X
window system. Systems missed almost all of these new attacks
presumably because they were not similar to any of the attacks
in the training data.

8.2 Host-Based Results for Solaris Victim

Four evaluated systems provided results using only BSM
audit inputs. Two were expert systems, which also provided
results with tcpdump data. A third was an anomaly detector that
only was tested only using BSM data, and a fourth was a
system that performed a nightly forensic analysis of Solaris file
system dumps. The performance of these systems was
compared for attacks launched against the Solaris victim, which

is the only operating system that supported auditing. Detection
accuracy using BSM audit data is only presented for U2R
attacks because there were too few Solaris attacks from the
R2L category to perform a valid comparison and because little
evidence for DoS and probe attacks is available in BSM audit
records. For example, scans which don’t actually start TCP
connections are not detectable in audit records because low-
level TCP stack transitions related to reception of isolated SYN
or RST packets do not generate audit records. Audit records
are typically only generated from Internet connections after a
TCP connection is established and inetd creates a new process
to handle this connection. ROCs for the 22 user-to-root attacks
against the Solaris host and the four systems that used BSM
audit data or file system dumps are show in Figure 5. Detection
accuracy is uniformly better with host-based BSM audit
records than with network-based tcpdump data. Two expert
systems that generated rules by hand using the training data
detected 77% and 91% of all U2R attacks at low false alarm
rates below one per day. The one system that used anomaly
detection and only BSM audit records (labeled “anomaly
detection” in Figure 5) detected all U2R attacks with only
slightly more than 10 false alarms per day [18]. This system
does not use hand-generated rules. It analyzes sequences of
BSM audit records for specific UNIX system programs to
identify anomalous behavior and uses training data to learn
normal sequences. This system has a multi-step ROC that rises
steeply in Figure 5. This stepped rise occurs because this
system outputs a continuously varying score that increases as
the sequence of audit records becomes more aberrant compared
to normal training sequences. Results obtained with this one
anomaly-based system suggest that anomaly detection
approaches may provide slightly better detection than rule-
based approaches with the expense of additional false alarms.
The one system shown in Figure 5 that used only nightly file
system dumps (labeled “file system forensics” in Figure 5)
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Figure 5. ROC curves using BSM audit data or file system information for 22 U2R attacks against the Solaris victim.



provided reasonable performance with a detection rate above
70% correct while generating fewer than 1 false alarm per day.
This system has the advantage that it could be applied to any
Solaris host without turning on BSM auditing. It is somewhat
surprising that it can perform so well by examining the contents
of the host file system only once per day and suggests that high
performance intrusion detection may not require custom
auditing for some classes of attacks.

8.3 Overall Results

Three of the systems that processed tcpdump data or both
tcpdump and BSM audit data were designed to detect all four
categories of attacks. Figure 6 shows overall ROC curves for
these systems for all attacks in the test data. The best system
detects roughly 75% of the attacks in the test data with fewer
than two false alarms per day. This expert system uses both
tcpdump and BSM data with hand-created attack signatures
generated using the training data. It uses highly tuned rules that
output very few false alarms and detect almost all of the old
attacks in the test data. It, however, misses many of the new
attacks. The next-best system is able to detect 64% of the
attacks with 20 false alarms per, even without BSM audit data.
It uses rules learned using pattern classification or data mining
approaches with hand-selected input features. The detection
rate of this system is similar to that of the first expert system
when the input to the expert system is tcpdump data alone. The
third-best system is an expert system that uses both tcpdump
and BSM data and hand-generated rules. It detects roughly
45% of the attacks at a false alarm rate of 46 false alarms per
day. These results suggest that either learning systems (e.g.
pattern classification or data mining) or expert systems (e.g.
hand-generated rules) can provide good performance on

previously seen attacks. Neither approach, however, is capable
of detecting new attacks with high accuracy.

8.4 Results with New, Novel, and Stealthy Attacks

Many systems provided good detection accuracy for old
attacks that were included in the training data, but poor
detection accuracy for new attacks that were only in the test
data. Figure 7 shows the difference in detection accuracy for
these two types of attacks. This plot shows the average
detection rate for the top two performing systems in each attack
category from Figure 4 at a false alarm rate of 10 false alarms
per day. The best performing systems detect old attacks with
reasonable accuracies ranging from roughly 63% to 93%
detections at 10 false alarms per day. Performance is much
worse for new attacks. Detection accuracy for new attacks is
below 25% for the R2L and DoS categories and not
significantly different from performance with old attacks for
the other two categories. This poor performance for new
attacks in these two categories indicates that rules learned from
the training data on old attacks do not generalize to the new
attacks. Different approaches to intrusion detection may thus be
required to obtain good performance on these new attacks.
Performance with new attacks is not degraded for the probe and
U2R categories because new attacks in these categories were
not as different from old attacks as in the DoS and R2L
categories. The new probe attacks used the same TCP/IP
protocols and services as old probe attacks and did not include
extreme approaches to stealthiness such as multiple IP sources,
extremely slow scans, and scanning only two or three ports.
The new U2R attacks used different mechanisms to obtain root-
level privilege, but many of these attacks used the telnet
service, included creation of an interactive root-level shell,
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Figure 6. ROC curves for the three best-performing systems and all 120 attacks in the test data.



included similar approaches to encrypting attack scripts, and
used similar buffer-overflow machine code.

Many new attacks were completely missed by all of the top
three systems from Figure 4. All network connections for the
following attacks were missed and labeled as normal traffic:
mailbomb, process table, udp-storm, at, HTTP-tunnel, named,
sendmail, snmpget, and xlock. This list includes all four novel
attacks developed specifically for this evaluation and 5 of the
11 new or recent attacks that were not in the traning data. In
general, systems didn’t detect attacks that differed substantially
from attacks in the training data. Attacks were missed which
used different TCP/IP services or different attack mechanisms
than training attacks. Even a small variation in the attack (e.g.
decreasing the size of the files downloaded in the Warez attack,
or slowing down scans) sometimes made an attack undetectable
for specific systems.

Stealthy techniques were used to make some of the U2R and
probe attacks more difficult to detect. Attack scripts and
outputs of U2R attacks were encrypted using the UNIX
“uuencode” and “uudecode” commands and small custom C
programs, attacks were distributed across multiple sessions,
and the actual illegal action was delayed relative to the
installation using the UNIX “at” command. Probes were spaced
out over longer intervals (e.g. every 2.5 minutes) and used RST
TCP/IP packets instead of SYN or other packet types. An
analysis of all stealthy and normal probe and U2R attacks
indicated that stealthy attacks were detected as well as normal
attacks. There was no statistically significant difference
between the average detection rate for stealthy and normal
attacks at a false alarm rate of 10 false alarms per day. An
analysis of individual attacks, however, shows that some of the
stealthy U2R techniques were effective. None of the intrusion
detection systems associated the delayed “at” attack with the
original network session where this attack was installed. In

addition, stealthy encryption techniques used in the test data,
but not in the training data were often effective in hiding
attacks. Examples of approaches that were effective in hiding
U2R attacks include using the UNIX “tr” command for
encryption, using shell wildcards to hide commands, and
issuing a unix “su” command to mask an illegal root shell.
Performance on stealthy U2R attacks was high for three
reasons. Examples of stealthy approaches were provided in the
training data, many U2R attacks created interactive root shells
which could be detected by the root prompt they exhibit, and
some buffer overflow attacks issued a text message to indicate
that a root shell was successfully created. Performance of
stealthy probes was high because many test probes were similar
to training probes and because the test data did not include
extremely stealthy scans that come from multiple IP addresses
against only two or three IP addresses or ports and that span
many days or hours.

9. Summary and Future Work

Procedures, metrics, and a large corpus of normal traffic and
attacks were developed that made it possible to successfullly
evaluate eight widely different intrusion detection systems. The
corpus included two months of background traffic generated
using custom traffic generators that looked like 100’s of users
on 1000’s of hosts. More than 300 instances of 38 different
types of automated attacks were launched against three UNIX
victim machines (SunOS, Solaris, and Linux). Seven weeks of
training data with labeled attacks were provided for system
development and then two weeks of unlabeled test data was
used for a blind evaluation. Test data included novel new
attacks developed specifically for this evaluation and recent
new attacks not included in the training data. Results were
analyzed by generating receiver operating characteristic curves
(ROCs) to determine the attack detection rate as a function of
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Figure 7. Average percent attacks detected by the top two systems in each attack category at a false alarm rate of 10
false alarms per day. The numbers in parentheses are the numbers of old and new attacks in each category.



the false alarm rate for the previously unseen test data. Results
were analyzed separately for user-to-root (U2R), remote-to-
local (R2L), probe, and denial of service (DoS) attacks.

Best overall performance was provided by systems that used
both tcpdump network data and BSM host-based audit data.
These systems performed well for old attacks included in
training data, but not for new attacks that were only in the test
data. System developers made good use of the training data by
creating hand-tuned rules or using learning approaches to
generate rules that detect old attacks. Detection accuracy
ranged from 63% to 93% correct for old attacks from four
categories at a false alarm rate of 10 false alarms per day.
Performance was much worse for attacks that were not
included in the training data. Detection accuracy for new
attacks was below 25% for the R2L and DoS categories where
the new attacks were substantially different from the old
attacks. All novel new attacks and roughly half of the new or
recent attacks were completely missed by all of the top three
systems. Many effective attack scenarios could be developed
using the new and novel attacks that would not be detected by
these research systems. These include attacks where remote
users accomplish root-level actions by sending mail (sendmail),
attacks where the attacker takes control of a router using SNMP
(snmpget), and delayed time-bomb attacks (at). They also
include covert channel attacks to exfiltrate simulated secret
material off a protected host (HTTP-tunnel) and denial of
service attacks where recovery requires a local reboot of the
victim host (process table).

Systems that used host-based auditing performed well for
U2R attacks against the single Sun Solaris host that provided
BSM audit data. Performance of two rule-based systems was
high (above 77% and 91% detection at 10 false alarms per
day). A third anomaly-detection system detected all U2R
attacks (100% detections) against the Solaris host using BSM
audit data at a false alarm rate that was slightly above 10 false
alarms per day. A fourth system, which examined the Solaris
file system nightly, detected 73% of the U2R attacks with a
false alarm rate below one false alarm per day and without any
special auditing.

These results demonstrate that current research systems can
reliably detect many existing attacks with low false alarm rates
as long as examples of these attacks are available for training.
All research systems could effectively use training data to
improve detection performance and minimize false alarms for
known attacks. Research systems, however, miss many
dangerous new attacks, especially when the attack mechanism
or TCP/IP services used differ from old attacks. These results,
and the general success of the evaluation procedures, suggest
two directions for further research. First, further research on
intrusion detection should emphasize the need to develop

approaches that can detect new attacks with low false alarm
rates. The promising performance of one system in this
evaluation that examined file systems [17] suggests that
systems should use more data sources than just audit data and
network sniffer data. Poor performance on new attacks that
used network services not used by attacks in the training data
suggest systems should monitor all exploitable network
services. Promising results with anomaly detection by one
system [18] suggests that this approach as well as other
approaches to detecting new attacks (e.g. specification-based
approaches [4]) should be explored. Additional research is also
required to develop systems that can detect old attacks and
variants of these attacks because even old attacks were not
detected perfectly. Systems should also provide more
identification information instead of simply indicating where an
attack occurs. The attack type, name, source, start time, and a
list of all connections that were part of the attack would be
useful information that could be used to stop an attack in
progress, prevent future attacks, and repair or contain damage.

A second direction for future work is to extend intrusion
detection systems and the evaluation procedures to include
attacks against Microsoft Windows/NT hosts and inside
attacks. Windows/NT hosts are becoming popular at both
government and commercial sites and inside attacks can be
more effective and easier to hide than the outside attacks used
in this initial evaluation. We are currently in the middle of a
second 1999 evaluation that extends the 1998 evaluation by
adding new Windows/NT victims and background traffic and
inside attacks. The primary focus of this second evaluation is to
determine performance with new attacks. New attacks included
in this evaluation include newly developed attacks as well as
stealthy variants of existing attacks designed to circumvent
systems that participated in the first evaluation. Results of this
second evaluation should be available early in 2000.
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