
The Ethics of Coexistence:
Can I Learn to Stop Worrying and

Love the Logic Bomb?

John Aycock
Department of Computer Science

University of Calgary
2500 University Drive NW

Calgary, Alberta, Canada T2N 1N4
Email: aycock@ucalgary.ca

Anil Somayaji
School of Computer Science

Carleton University
1125 Colonel By Drive

Ottawa, Ontario, Canada K1S 5B6
Email: soma@scs.carleton.ca

John Sullins
Department of Philosophy
Sonoma State University

1801 East Cotati Ave.
Rohnert Park, CA 94928

Email: john.sullins@sonoma.edu

Abstract—Computer security attacks are frequent fodder for
ethical analyses, but the ethics of computer security defenses are
not often examined. We address this by considering a topical
problem in computer security. In an age of so-called “advanced
persistent threats” that lurk undetected on computer systems for
long periods of time, it is increasingly unrealistic to expect a
computer system to be permanently free of malicious software.
Recognizing this, we posit the idea of a “cosecure system” – a
cosecure system, by design, would allow legitimate software and
malicious software to coexist safely on the same machine.

We take an unusual tack to software design and use ethical
concerns to guide the design of a cosecure system, rather than
building a cosecure system and then performing an ex post facto
ethical analysis.

The principal tenets of security that must be upheld are con-
fidentiality, integrity, and availability, and any system purporting
to be secure has an ethical duty to the system user to uphold these.
This is the starting point for our design process, and we proceed
to look at how a cosecure system may be implemented. What
we arrive at by going through this ethics-based software design
becomes a proof by contradiction: we are forced to conclude that
it is not possible, in fact, for malicious and legitimate software
to coexist; a cosecure system as we have described it cannot be
built.

This allows us to see traditional computer security defenses in
a new light. If we cannot uphold key security properties in the best
case, where a system is expressly designed to allow coexistence
of malicious and legitimate software, what does that imply about
the defenses of the actual computer systems we use?

We propose that a community defense is an alternative that
eludes previous ethical issues, as well as being defensible from
an information ethics point of view.

I. INTRODUCTION

Ethical issues are much easier to examine and debate
when there is obvious harm that may result from actions and
consequences: euthanasia, slavery, weapons development. The
same principle seems to hold in the ethics of computer security.
Virus writing is potentially harmful, for example, and elicits
ethical analyses – indeed, it appears impossible to write a
text on computer ethics without a discussion about computer

viruses [1]–[4]. Whether “good” viruses and worms can exist
has also been examined from the viewpoint of ethics [5], [6],
as has proactive research looking to identify new security
threats [7], [8]. But there is no need to examine computer
security defenses from an ethical point of view because they
are always doing good. . . or are they?

As a simple example, a web site’s passwords are too easy
to guess, so an administrator concerned about brute-force and
dictionary attacks installs software that requires users to make
strong passwords. Users, in turn, respond by writing passwords
down [9] and reusing passwords [10]; attackers switch to
phishing and keylogging to steal passwords, attacks that can
no longer be detected by the web site’s server. This example
involves choice, an action taken in the name of security, an
action with consequences. As such, it may be subjected to
ethical analysis, as can computer security defenses in general.

Most current defenses implicitly assume that the world is
divided into two parts: the protected part and the unprotected
part. Defense mechanisms attempt to keep the protected part
from being compromised; at best, they have no effect on
the unprotected part. Malware clearly coexists with legitimate
software in current defense scenarios, but (ideally) in the
unprotected part. In this paper we look at whether malware
coexistence can be extended to apply within a single system
and still retain security for the user, using a new type of system
called a cosecure system. Cosecure systems pose a number of
ethical challenges, which we use to give insight into traditional
defenses and point towards alternative defense approaches.

The rest of this paper proceeds as follows. Section II
introduces the concept of cosecure systems. We perform an
ethical analysis of cosecure systems in Section III; Section IV
looks at an alternative approach, and Section V concludes.

II. COSECURE SYSTEMS

Current approaches to defend computers against threats
would make a great deal of sense to anyone from medieval
times. Erect some walls (more walls are better) and place
everything to be protected inside the walls. A breach of the
walls is disaster.978-1-4799-4992-2/14/$31.00 c© 2014 IEEE

Firewalls blocking inbound connections are a perfect em-
bodiment of this metaphor, of course, as are Trojan horses
being used to break through defenses. The other current
defensive mainstay, anti-virus software, effectively builds walls
too by scanning files, memory, and incoming packets to keep
threats out. This idea of protection is reflected culturally, as
Johnston observes [11, page 24]: ‘The antivirus industry’s
grand narrative is that it is successfully producing antidotes
that update computer software against global viral threats.’

How ‘successfully’ these defenses work is open to debate.
A firewall provides no protection from users running malicious
code behind the firewall via drive-by downloads and/or social
engineering. Anti-virus software relies heavily on a reactive
model1 that is increasingly lagging behind the onslaught of
barbarian malware assailing the walls [14]–[16]. In any case,
anti-virus software can never fully succeed because its task
has long been known to be undecidable [17]. Even the notion
of multiple walls – defense-in-depth – is being called into
question [18].

These strategies share an all-or-nothing approach to de-
fense, where the goal is to keep all computers malware-free.
An alternative is to look at the larger population of computers,
accept that some of those computers will be afflicted by mal-
ware, and work on containing the problem to those computers.
Some work has been done on this (e.g., virus throttling [19]),
but the approach is not widespread and it still conceptually
treats a computer’s status as binary: infected or not infected.2

We are proposing a different approach in this paper. We
argue that it is increasingly unrealistic to assume that a
computer can be kept free of malware, and we must build
systems where legitimate software is able to coexist with
malicious software.3 The challenge is to construct a system
that permits a user to use the computer and have their data
and actions uncompromised, yet also permits malware to be
present and functional. We call such a computer not secure,
not insecure, but cosecure. By way of analogy, consider a city.
A city is well known to have crime taking place within it,
and dark alleys better left unexplored, yet remains functioning
regardless.

While there may be great technical challenges in building
a cosecure system, we assume for purposes of ethical analysis
that we are able to build one. What are the ethical implications?
Furthermore, the details of this system have been left purposely
vague; can the cosecure system design follow from ethical
constraints?4

III. ETHICS AND THE COSECURE SYSTEM

From a conceptual, information ethics standpoint we can
argue for the use of a cosecure system. Information entities can
all be said to have a certain amount of intrinsic worth. It is only

1We recognize that anti-virus heuristics, for example, may detect unknown
malware proactively, but it is still fair to say that anti-virus is largely reactive.
See [12], [13] for more on anti-virus software.

2Or, in keeping with the virus throttling work, misbehaving or behaving.
3Kursawe and Katzenbeisser [20] also considered coexistence, but did not

examine ethical issues at all.
4Note we are not simply claiming that a computer system will have

‘invisible’ ethical values built in as a side effect of its construction [21].
We are instead exploring how to incorporate ethics into the software design
process so that a system that upholds ethical values results.

on close analysis of the code and a complete explanation of
the computing environment the code is functioning in that any
sort of judgment of the value of the code can be reached. This
task is difficult, if not impossible, so our system defaults to
one that acknowledges that any code may have some worth.
But we are also not claiming that every piece of code in a
user’s system is benign to that user. Some will be working
against their wishes, some will be working for their interests,
and some will have neutral value. Thus we can see that very
complex mixtures of harm, help, and ambivalence can occur
from the point of view of all the various applications in the
system.

The idea of a cosecure system also shines a different light
on security. Specifically, are security professionals (and their
progeny, security software) ethically obligated to provide full
defense at all times? Other professions are not, such as police
or rescue personnel; they are obligated to do what they can
but no one expects perfection. It seems that we place stronger
demands on computer security, perhaps in part due to the
differences between the physics of the real world (police can’t
be everywhere) versus the cyber world, but also because a
single security breach may be potentially disastrous.

Certainly expectations on security software are high. Anti-
virus software is used in computer forensics (e.g., [22]), for
example, and as such its results need to be accurate enough
to stand up in court. At the same time anti-virus and other
security software are known to security professionals to yield
an imperfect defense, as discussed in Section II. A cosecure
system is more ethical than traditional systems in the sense
that its very concept is honest and forthcoming in terms of
the security it provides and does not provide, thus upholding a
duty to be truthful on the part of security professionals.5 While
it can be argued that at certain times a half truth or “Platonic”
lie might be justifiable, in this case there is no clear benefit to
the user told the half truth that their system is fully protected
by the purchase and installation of anti-virus software. There
is no known placebo effect possible in this situation and in
fact it works in the reverse. The user can operate their system
with no idea about the presence of malware operating behind
the scenes and beyond the defenses of anti-virus software. The
only beneficiaries in these situations are the people selling the
software and the people making the malware.

Another commonly-stated duty for computer professionals
(e.g., [23], [24]), system administrators (e.g., [25]), and users
alike (enshrined in the legal principle of duty of care) is
avoiding harm to others and not endangering the public. We
must then consider if a cosecure system would violate this
duty. The answer derives from what the malware on a cosecure
system is permitted to do: malware that attacks other comput-
ers by attempting remote exploits for worm spread, or joins
a distributed denial-of-service attack clearly causes harm to
others. Malware that does not overtly attack is a bit more subtle
ethically, but – for example – malware that proxies connections
to a “mother ship” for purposes of phishing infrastructure [26]
is not ethically neutral in that it facilitates harm being done.

5While not binding on security professionals, we note that this is a
general moral imperative in the ACM Code of Ethics (‘Be honest and
trustworthy’ [23]), and is also reflected in the IEEE Code of Ethics (‘. . . be
honest and realistic in stating claims . . . based on available data’ [24]).

It follows that there must be constraints on the malware
in a cosecure system in order for the system to operate in an
ethical fashion. This substantially informs a cosecure system’s
design. A cosecure system must be able to enforce constraints
and must therefore have some form of unimpeachable exec-
utive provided through a secure operating system kernel or
virtualization. This may further extend to having a trusted,
secure boot process.

For the remainder of the cosecure system design, we turn
to the basic tenets of security: confidentiality, integrity, and
availability [27], [28]. As these underpin our notion of security,
an ethical case can be made that a cosecure system has a duty
to provide these to a legitimate user.

Availability of a cosecure system addresses whether or not
a user has the appropriate resources (e.g., CPU time, memory,
bandwidth) for their legitimate computer usage. Resource
scheduling is well-studied in operating systems; looking at
CPU time, for instance, a cosecure system could employ
lottery scheduling [29] with the user possessing the majority
of “tickets,” which can then be passed as necessary to other
processes acting on behalf of the user.

Preserving integrity in a cosecure system implies that a
user’s programs and data cannot be modified by the malware
sharing the system.6 Access control plays an important role
here – changes are permitted only on the behest of the
legitimate user – and a secure software update process can
be used to prevent malicious updates being introduced [30].

Access control also figures prominently in confidentiality
in a cosecure system. A legitimate user’s data cannot be
allowed to be exfiltrated by malware in any way. This obvi-
ously includes local data, but also data dynamically generated:
webcam images, microphone data, keystrokes, mouse clicks,
screen shots, network traffic. In essence, only the user must
be allowed access to cosecure system I/O. Even supposedly
isolated malware processes cannot access user data, because
of the risk of leaking it via a covert channel [31].

What does this leave? Any process not initiated by a legit-
imate user cannot access data on a system, except for its own,
and has no I/O access apart from perhaps a limited amount of
network bandwidth (limited to deter DDoS attacks and other
nefarious uses). In essence, we are left with only a (distributed)
computing platform for malware, eerily reminiscent of Shoch
and Hupp’s “worms” at Xerox PARC [32].

We have also ignored an important point, namely how
malware gets onto a cosecure system to begin with. If malware
is going to be on a system, it must get there in one of three
ways: be installed on the system initially, be installed by user
action, or by subverting an existing legitimate application.
If the malware is present on the system initially, then it is
insecure, not cosecure, at the outset. If a user explicitly installs
the malware, perhaps through social engineering, then the
malware is acting on behalf of the user and is legitimate, in
the cosecure system sense. If the malware is injected into a
legitimate user application, then again the malware will appear

6Data integrity and confidentiality could be addressed in part by assuming
that a user’s data is stored somewhere in the cloud, but then attacks involving
the malware getting access to or modifying the cloud data would have to be
prevented.

to be acting on behalf of a legitimate user. We therefore assert
that, strictly following ethical design constraints, a cosecure
system cannot be built.

A cosecure system is still useful, however, because it allows
us to view traditional systems anew. There is no meaningful
way for malware and legitimate users to coexist on the same
machine even if the system is expressly designed to allow it,
and have ethical duties upheld: duties to not harm others,
and duties to the user to provide confidentiality, integrity, and
availability. The cosecure system essentially acts as a proof
by contradiction. In practice, of course, the situation is even
worse – traditional systems are not as restricted as our mythical
cosecure system, and systems with “secure” booting, “secure”
kernels, and “secure” virtualization are invariably found to be
subvertible (e.g., [33], [34]).

Herein lies the dilemma. On one hand, we cannot observe
ethical duties if malware is allowed on a user’s computer; on
the other hand, we know that current defenses are flawed. Nor
are we absolved from this dilemma by defense in depth. Piling
defenses – flawed or specialized to a single type of attack,
or both – haphazardly together and trusting to blind faith that
invaders will be kept at bay is not an ethically laudable position
either.

One could arrive at the conclusion that the only solution is
to do nothing defensively, but given the potential for direct
harm to the user and indirect harm to others, this is not
ethically permissible. (This may seem like a “straw man”
argument, but it is a realistic scenario, when the number of
Macs and mobile devices not running security software are
considered.) We argue that there is an ethical obligation to ap-
ply current defenses even though, being imperfect, they cannot
completely fulfill duties to the user. The obligation arises only
because applying current defenses is more ethical than doing
nothing. This is not unlike voting against bad candidates in
an election rather than voting for a good candidate. It is a
distasteful situation to be in, as a security professional, and
we are forced to ask if there are alternatives.

IV. AN ALTERNATIVE APPROACH

To begin with, building walls and creating a fortress of a
single machine (traditional defenses) or within a single ma-
chine (cosecure systems) is problematic from an information
ethics point of view. Consider a physical building in a large
city. Every building, even a private home, has some property
that others can use, such as sidewalks and other areas where
use is welcome, e.g., walking up to the door when the mail is
delivered or if a friend visits, but is suspicious when strangers
approach. But it is impossible, and even undesirable for a
private home to attempt to become a fortress. It is antagonistic
to the free flow of concord and commerce in the public sector.
In the world of code, a fortress mentality works to thwart the
benefits of free and open computing and this limits the growth
of valuable information entities.

If the single computer as fortress is undesirable and un-
achievable, then we must look more broadly to the single
computer as an entity in a community which permits the
free flow of information within it. We already organize our
computers into communities by networking them, and we
should be organizing our defenses to reflect this too. The

key missing concept in security terms is that of the group:
collective responsibility. Individual computers in a network
should not just be responsible for their own security; they
must also help keep other machines secure. Similarly, system
administrators have a responsibility to not just keep their
systems safe but to keep other members of the community
– the Internet – safe when they can [25]. Current mechanisms,
however, are more based on a “rugged individualism” view of
the world where everybody takes care of their own but nobody
has a responsibility to anybody else.

A full discussion and analysis of this alternative approach
would occupy a complete paper unto itself, but we briefly note
that in practice, principles for community defense include the
following:

• Information about attempted or successful security
breaches must be disseminated widely in a timely
fashion.

• Attacked systems must strive to prevent the attacker
from targeting others.

• Systems should leave a forensic trail so others can
learn from their demise.

• Systems must monitor their neighbors.

• Systems may disable themselves altruistically if doing
so helps preserve the community.

Note that we are not assuming that all members of the
community will be malware-free. This releases us from ethical
problems related to imperfect defenses for any given user,
as our duty is now to the larger community, where we have
no choice but to coexist with malware. The altered security
perspective also allows us to draw on ethical arguments devel-
oped for actions and consequences within human communities.
To wit, the community of computers mirrors human-to-human
relationships, and we conjecture that the ethical principles for
humans may be analogously applied to networked computers
in this way.

V. CONCLUSION

We cannot stop worrying about malware, and coexistence
with malware on a single machine is not ethically tenable.
Looking to coexistence within a larger community is one
solution, but tolerating and embracing the inevitability of
malware is a strange love indeed.

ACKNOWLEDGMENT

The first two authors’ research was supported in part by
the Natural Sciences and Engineering Council of Canada via
ISSNet, the Internetworked Systems Security Network.

REFERENCES

[1] S. Baase, A Gift of Fire, 2nd ed. Prentice Hall, 2003.
[2] T. Forester and P. Morrison, Computer Ethics, 2nd ed. MIT Press,

1994.
[3] D. G. Johnson, Computer Ethics, 3rd ed. Prentice Hall, 2001.
[4] H. T. Tavani, Ethics & Technology: Ethical Issues in an Age of

Information and Communication Technology. Wiley, 2004.
[5] J. Aycock and A. Maurushat, ““Good” worms and human rights,” ACM

SIGCAS Computers and Society, vol. 38, no. 1, pp. 28–39, 2008.

[6] V. Bontchev, “Are “good” computer viruses still a bad idea?” in
Proceedings of the EICAR ’94 Conference, 1994, pp. 25–47.

[7] J. Aycock and A. Maurushat, “Future threats,” in 17th Virus Bulletin
International Conference, 2007, pp. 275–281.

[8] J. Aycock and J. Sullins, “Ethical proactive threat research,” in Work-
shop on Ethics in Computer Security Research, 2010, pp. 231–239.

[9] A. Adams and M. A. Sasse, “Users are not the enemy,” Communications
of the ACM, vol. 42, no. 12, pp. 40–46, 1999.

[10] B. Ives, K. R. Walsh, and H. Schneider, “The domino effect of password
reuse,” Communications of the ACM, vol. 47, no. 4, pp. 75–78, 2004.

[11] J. Johnston, Technological Turf Wars: A Case Study of the Computer
Antivirus Industry. Temple University Press, 2009.

[12] J. Aycock, Computer Viruses and Malware. Springer, 2006.
[13] P. Szor, The Art of Computer Virus Research and Defense. Addison-

Wesley, 2005.
[14] K. J. Higgins, “Antivirus rarely catches Zbot Zeus Trojan,” Dark

Reading, 16 September 2009.
[15] ——, “Study: Antivirus software catches about half of malware, misses

15 percent altogether,” Dark Reading, 2 March 2009.
[16] J. Oberheide, E. Cooke, and F. Jahanian, “CloudAV: N-version antivirus

in the network cloud,” in 17th USENIX Security Symposium, 2008, pp.
91–106.

[17] F. Cohen, “Computer viruses: Theory and experiments,” Computers &
Security, vol. 6, no. 1, pp. 22–35, 1987.

[18] M. E. Locasto, S. Bratus, and B. Schulte, “Bickering in-depth: Rethink-
ing the composition of competing security systems,” IEEE Security &
Privacy, pp. 77–81, November/December 2009.

[19] J. Twycross and M. M. Williamson, “Implementing and testing a virus
throttle,” in Proceedings of the 12th USENIX Security Symposium, 2003,
pp. 285–294.

[20] K. Kursawe and S. Katzenbeisser, “Computing under occupation,” in
New Security Paradigms Workshop, 2007, pp. 81–88.

[21] J. H. Moor, “What is computer ethics?” Metaphilosophy, vol. 16, no. 4,
pp. 266–275, 1985.

[22] United States District Court, D. Puerto Rico, “N. Rivera-Cruz v.
Latimer, Biaggi, Rachid & Godreau, LLP, et al.” Civil No. 04-2377
(ADC), 16 June 2008.

[23] Association for Computing Machinery, “ACM code of ethics and
professional conduct,” http://www.acm.org/about/code-of-ethics, 1992.

[24] Institute of Electrical and Electronics Engineers, “IEEE code of
ethics,” http://www.ieee.org/about/corporate/governance/p7-8.html, last
accessed 17 January 2014.

[25] USENIX Special Interest Group for Sysadmins, “System
administrators’ code of ethics,” https://www.usenix.org/lisa/
system-administrators-code-ethics, 2003.

[26] H. Project, “Know your enemy: Fast-flux service networks,” 2007.
[27] M. Bishop, Computer Security: Art and Science. Addison Wesley,

2003.
[28] C. P. Pfleeger and S. L. Pfleeger, Security in Computing, 3rd ed.

Prentice Hall, 2003.
[29] C. A. Waldspurger and W. E. Weihl, “Lottery scheduling: Flexible

proportional-share resource management,” in 1st Symposium on Op-
erating Systems Design and Implementation, 1994.

[30] G. Wurster and P. C. van Oorschot, “Self-signed executables: Restricting
replacement of program binaries by malware,” in 2nd USENIX Work-
shop on Hot Topics in Security, 2007.

[31] B. W. Lampson, “A note on the confinement problem,” Communications
of the ACM, vol. 16, no. 10, pp. 613–615, 1973.

[32] J. F. Shoch and J. A. Hupp, “The “worm” programs – early experience
with a distributed computation,” Communications of the ACM, vol. 25,
no. 3, pp. 172–180, 1982.

[33] S. T. King, P. M. Chen, Y.-M. Wang, C. Verbowski, H. J. Wang, and
J. R. Lorch, “SubVirt: Implementing malware with virtual machines,”
in 2006 IEEE Symposium on Security and Privacy, 2006, pp. 314–327.

[34] M. Steil, “17 mistakes Microsoft made in the Xbox security system,”
in 22nd Chaos Communication Congress, 2005.

