
Object-Level Recombination of Commodity Applications

Blair Foster
School of Computer Science

Carleton University
Ottawa, ON Canada K1S 5B6
blair.foster@gmail.com

Anil Somayaji
School of Computer Science

Carleton University
Ottawa, ON Canada K1S 5B6
soma@scs.carleton.ca

ABSTRACT
This paper presents ObjRecombGA, a genetic algorithm
framework for recombining related programs at the object
file level. A genetic algorithm guides the selection of object
files, while a robust link resolver allows working program bi-
naries to be produced from the object files derived from two
ancestor programs. Tests on compiled C programs, includ-
ing a simple web browser and a well-known 3D video game,
show that functional program variants can be created that
exhibit key features of both ancestor programs. This work
illustrates the feasibility of applying evolutionary techniques
directly to commodity applications.

Categories and Subject Descriptors
I.2.2 [Computing Methodologies]: Artificial Intelligence—
Automatic Programming, Program synthesis

General Terms
Experimentation

Keywords
genetic algorithms, genetic programming, software recom-
bination, ObjRecombGA, object-level recombination, com-
modity programs

1. INTRODUCTION
The dream of evolving computer programs has long been

pursued by those interested in evolutionary computation.
Building on the work of Koza[9], we now have techniques
for evolving programs to solve many relatively complex al-
gorithmic problems and for evolving solutions not just in
LISP but in standard programming languages such as C
[10]. Evolved code, however, exists in a separate universe
from the bulk of computer code, except when connected via
careful encapsulation or manual coding. While existing pro-
grams can exhibit many lifelike properties when viewed as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’10, July 7–11, 2010, Portland, Oregon, USA.
Copyright 2010 ACM 978-1-4503-0072-8/10/07 ...$10.00.

part of complex software ecosystems [1], the reality is that
most programs only evolve through manual programmer in-
tervention.

Here we argue that it is feasible to evolve commodity pro-
grams automatically, and specifically that such evolutionary
processes can produce derivative, functional programs with
potentially new feature combinations. The key insight is
that the fundamental operator of genetic algorithms, recom-
bination, can work on pairs of conventional programs so long
as those programs are closely enough related. Much as a dog
and a camel cannot mate successfully, we cannot expect re-
combination between a web browser and a word processor to
produce viable offspring. However, if we instead recombine
different versions of “the same” program—ones that share
a development history but whose code diverged relatively
recently—we can get new functional variants.

To demonstrate the feasibility of this approach, we have
developed ObjRecombGA, a genetic algorithm framework
for recombining the object files of standard Linux binary
programs. Given two ancestor programs, ObjRecombGA
evolves populations of bit strings that represent recombina-
tions of their respective object files. ObjRecombGA han-
dles minor linking problems, screens binaries for basic func-
tionality automatically, and calculates program fitness using
user-defined shell scripts. At the end of a run, the user is
presented with a set of mostly functional programs that can
be manually or automatically inspected further for desired
properties. To evaluate the effectiveness of our framework,
we recombined versions of a simple UNIX command line
program GNU sed [8], a simple graphical web browser Dillo
[12], and a popular 3D game Quake [14] and were able to
create very functional variants. In particular, we success-
fully evolved functional variants of Quake that combined
the desirable qualities (e.g., user interface and general I/O
features) of divergent versions, created by different indepen-
dent development teams, into one executable.

Because of the behavioral complexity of non-trivial pro-
grams, we have not been able to develop fitness functions
that completely evaluate the functionality of program vari-
ants while allowing the variation that makes program re-
combination interesting. Thus, even though ObjRecombGA
is structured as a traditional GA, in practice the evolution-
ary process it enables resembles the selective breeding of
domestic animals or Dawkins’s “blind watchmaker” [5]—at
the end of a run, programs need to be manually evaluated to
determine their suitability for use or for further recombina-
tion. Even with the manual aspects of the current process,
however, ObjRecombGA offers a way to create “mashups” of

variants of standard applications without the need for any
manual programming. As such, we believe ObjRecombGA
represents a small but significant step toward the evolution
of software in common practice.

The rest of this paper proceeds as follows. First, we ex-
plain our strategy for recombining ancestor programs in Sec-
tion 2 and discuss details of our implementation in Section 3.
We then describe the results of recombining existing pro-
grams in Section 4. We describe related work evolving pro-
grams in Section 5. Section 6 concludes.

2. DESIGN
ObjRecombGA is a traditional genetic algorithm in many

respects. It operates on a linear bit-string chromosome, pop-
ulations are initialized with random bit strings, it uses one
or two-point crossover, and it performs tournament selection
with elitism. The key difference is that ObjRecombGA’s
chromosomes encode program variants in the form of collec-
tions of object files.

Object files are the standard compilation unit for lan-
guages that compile directly into machine language. For
example, with C language programs in a standard UNIX-
like environment, program source code is divided into mul-
tiple files, each of which is given a .c extension. These files
are converted into an executable by first compiling each into
.o files containing a machine language translation of the C
source code. These .o files cannot be executed directly, how-
ever, because they have external code and data references
(symbols). To make an executable, then, multiple .o files
are combined (linked) such that all external references are
resolved appropriately.1

To evaluate the fitness of a bit string, ObjRecombGA se-
lects object files from one of two ancestor programs that are
selected by the user at the start of the run. Each position
in the bit string refers to a unique object filename; 0 refers
to the first ancestor, 1 refers to the other. The selected
object files are linked to form a complete program binary.
Then, the child binary is executed under the control of a
user-supplied script to determine its fitness.

Note that this process, if applied naively, is doomed: ar-
bitrary selections of object files taken from two different
programs will inevitably have unresolved symbols—the pro-
gram won’t even link, let alone execute. If we limit ourselves
to closely related programs, i.e., programs that are based on
the same original code base, the situation is much better, as
they are likely to both have object files with the same names
and approximately the same functionality and layout; nev-
ertheless problems are still quite likely.

To see why, consider a simple a program consisting of
only two object files, A and B. In version alpha (α) of the
program, object A contains two functions, fAn and fAm,
along with two global data items, dAx and dAy. Object
B also has two functions, fBn and fBm, in addition to a
single global data item, dBx. In version beta (β), object
A has been modified through the removal of function fAm
and the substitution of data item dAy with dAz. Figure 1
illustrates objects A and B from both versions with arrows
indicating external references between the two objects.

1Note that libraries are just indexed collections of .o files.
Dynamic libraries are collections of object files that are
linked with an executable at runtime, rather than when the
executable is first built.

dAx

dAy

fAn

fAm

dBx

fBn

fBm

Object A Object B

Alpha

dAx

fAn

dBx

fBn

fBm

Object B

Beta

Object A

dAz

Figure 1: Object Files from versions Alpha and Beta

Attempting to recombine and link object Aα with Bβ will
be problematic because function fBm from object Bβ has
an unsatisfied reference to a global data item dAz, which is
not present in object Aα. Likewise, attempting to recom-
bine and link object Bα with object Aβ is also problematic
because of the lack of fAm.

The key to resolving this difficulty is to allow redundant
copies of object files, i.e., allow both Aα and Aβ to be used
when creating an offspring. While the object file selected
by the GA will take precedence, any unresolved references
are satisfied using the object file from the other parent. (If
only one parent has a given object file, that file will always
be used.) Note that ObjRecombGA only works with two
ancestor programs; there are always at most two versions of
every object file. Thus, we can view ObjRecombGA’s indi-
viduals as specifying linking precedence rather than explicit
inclusion or exclusion—all ancestor object files are poten-
tially available to every individual in the population.

ObjRecombGA allows user-defined fitness functions in the
form of standard bash shell scripts; however, before such
scripts are executed, individuals are first evaluated with two
simple tests to check first whether an executable was suc-
cessfully created, and second checks that the resultant exe-
cutable runs without crashing. The score of these prelimi-
nary tests is added to the user-defined fitness function; thus,
supplied scripts just need to score a program’s functionality.

3. IMPLEMENTATION DETAILS
Having given an overview of ObjRecombGA in the previ-

ous section, we now discuss several implementation details.
As can be seen in Figure 2, ObjRecombGA presents the user
with a simple graphical frontend for setting the inputs of a
new run. Many of the general settings, such as population
size and number of generations, are standard genetic algo-
rithm settings. Others, however, are unique to ObjRecom-
bGA. In particular, the user must tell ObjRecombGA where
to find the object files for the two ancestors (the primary and
secondary directories) and must tell it how to build and test
executables. Additional options include the ability to pro-
vide an initial population and the ability to restrict which
common object files should be subject to the recombination

Figure 2: The ObjRecombGA interface.

process. These options enable users to target a particular
set of object files and specify exact recombinations of those
object files.

Note that ObjRecombGA does not use the primary and
secondary build strings as-is; the purpose of these strings,
rather, is to identify all relevant object files so they may
be analyzed and manipulated. Other than system libraries
(which are included as-is in the final link stage), ObjRecom-
bGA divides object files into three categories:

1. Object files unique to one ancestor.

2. Object files shared between the ancestors (that are bit-
wise identical).

3. Object files that have the same name but have differing
contents between the two ancestors.

Object files in the first two categories are put into a single,
per variant, runtime-created library that is linked against;
the object files in category three are the ones represented by
bits in ObjRecombGA’s chromosomes.

Note that because we are combining code from two very
similar yet different ancestor programs, we cannot use a
standard linker—there are too many duplicated symbols.
Even worse, we must bring in code from non-selected object
files: while our bit string may say to use foo.o from ancestor
A, we may have references that can only be resolved using
foo.o from ancestor B.

We solve this problem in two steps. First, at the start
of a run, all object files and libraries are enumerated and
their imported and exported symbols are cataloged. Im-
ports which resolve to symbols not defined inside the an-
cestor directories are purged, as they are assumed to refer
to standard external libraries that will be supplied to the
final linker command. This inventory allows all duplicated
symbols to be identified as well as all dependencies across
object files within each version.

Then, to generate a program variant, ObjRecombGA uses
a link resolver that inspects and rewrites (copies of) the
ancestors’ object files in order to make them refer to the
preferred definition of each symbol. Further, it follows de-
pendency chains to make sure the code and data so referred

have what they need included in the final binary as well—
all while respecting the object file preferences expressed in
a given individual’s chromosome. The modified object files
are then passed on to the standard GNU ld linker to create
a functional program.

The link resolver has been the key technical challenge in
developing ObjRecombGA. While its functionality is rela-
tively straightforward, the complexity of object file formats
necessitates a relatively convoluted implementation. To fa-
cilitate the research of others, we are planning on releasing
a technical report or open source implementation of ObjRe-
combGA’s link resolver in the near future.

While the link resolver will generally produce an exe-
cutable, occasionally the link fails due to limitations of our
current link resolver (although this has become increasingly
rare as our implementation has matured). Further, many ex-
ecutables so produced will hardly run: they crash on startup
or shortly thereafter. Rather than attempt to fix these is-
sues programmatically, we instead rely upon the genetic al-
gorithm framework to search for functional programs.

Specifically, ObjRecombGA’s has a built-in fitness func-
tion that scores each individual on whether it did build suc-
cessfully and does it run without generating a crash dump.
A successfully compiled program gets 1 added to its fitness
score; a program that also runs without crashing (creating a
core dump file) gets another 1 added to its score. The user-
supplied fitness shell script is then run with the generated
program as an argument; these scripts return an integral
value that is added again to the program’s fitness score to
produce a final value.

Currently, ObjRecombGA only supports object files from
compiled C programs; however, extending this to support
C++ would require minimal effort as the two languages
share a very similar linking stage.

4. RESULTS
To evaluate ObjRecombGA’s ability to recombine differ-

ent versions of a given type of program, we ran it on versions
of three programs:2

• GNU sed [8], a version of the standard UNIX com-
mand line stream editor,

• Dillo [12], a small graphical web browser, and

• Quake [14], the popular first-person shooter originally
developed by ID Software.

We first looked at sed because it was a relatively simple
yet non-trivial program that we could easily inspect and
evaluate its fitness. We then studied Dillo as an example
of a graphical application of moderate side but containing
complex internal algorithm (specifically, its rendering code).
In both these cases, we evaluated to what extent older and
newer program versions could be successfully recombined
into (mostly) functional variants. This work can be seen as
a simulation of patching older program versions with fixes
present in newer ones.

2All three of these programs are licensed under versions of
the Free Software Foundation’s GNU General Public License
(GPL), and as such permit the creation and distribution of
modified binary versions so long as the modified source code
is included.

Version Pair Files Unique Unstable
4.0.6 × 3.02 4 12 9
4.0.9 × 3.02 4 12 19
4.0.9 × 4.0.6 5 21 0
4.1.2 × 4.0.6 5 21 15
4.1.3 × 4.0.7 5 15 4
4.1.4 × 4.0.8 5 20 10
4.1.5 × 3.01 4 14 12
4.1.5 × 4.1.1 7 21 0

Table 1: Results for the tested GNU sed ancestor
pairs. “Files” refers to the number of files avail-
able for recombination. “Unique” is the number of
unique variants generated; 68 variants were created
for each pair. “Unstable” is the count of variants
that crashed upon execution.

After our success with sed and Dillo, we chose to study
a software ecosystem that had a more diverse population.
Many programmers have created Quake variants. Some au-
thors have focused on bug fixes and code cleanups; oth-
ers have implemented a wide variety of gameplay, appear-
ance, and interface changes. The individuality of the Quake
variants is remarkable for the degree to which it resembles
the diversity of individuals belonging to the same biological
species. Our tests with Quake, then, were more ambitious:
we wished to see if the key features of different branches
could be brought together in a single binary using ObjRe-
combGA.

Note that we did not run ObjRecombGA with an aim to
find an optimal cross; indeed, such an optimum was not well
defined in these runs because so many individuals were able
to achieve maximum fitness. We made this choice because
our aim was to explore the characteristics of recombined pro-
grams, not to find the best one (whatever that might be).
It is possible that other search methods might produce bet-
ter results. What is significant here is that ObjRecombGA
found programs that were of sufficient quality to warrant
manual inspection. Specifically, we found a number of inter-
esting variations in program behavior, ones that reveal the
potential of object-level recombination to produce interest-
ing, perhaps even useful levels of software diversity.

The results of our tests are detailed below.

4.1 GNU sed
For GNU sed, we selected eight pairs of versions as de-

tailed in Table 1 and ran ObjRecombGA on them with a
fitness function based upon success in running six scripts
from the Sed Script Archive [4], with one point given for
each line of output that matched that of a standard version
of sed on the same scripts. We used a size 12 population,
size 2 tournaments with 90% selection probability, and an
elitism size of 4 over 8 generations. Over this relatively
short run, as expected we saw no convergence toward all 0’s
or 1’s; thus, all tested individuals were mixes of code from
both ancestors.

Note that there were, at most, only seven object files avail-
able for recombination; thus, excluding the original ances-
tors, the number of potential variants ranged from 14 (24−2)
to 126 (27 − 2)—very small search spaces. Indeed, we often
created more individuals than there were possible combi-

Version Pair Files Unique Unstable
0.8.5 × 0.8.2 56 34 0
0.8.5 × 0.8.0 52 262 86
0.8.5 × 0.7.3 51 233 165
0.8.4 × 0.8.1 52 274 145
0.8.3 × 0.8.0 52 227 59
0.8.0 × 0.7.3 51 348 91

Table 2: Results for the tested Dillo ancestor pairs.
448 individuals were generated for each pair.

nations. (As GNU sed was the equivalent of max-ones for
ObjRecombGA, we did not consider the redundant individ-
uals to be significant.) All created variants were able to be
linked successfully.

Interestingly, the cross with the largest search space, 4.1.1
× 4.1.5, had the most viable programs (no crashes); this level
of success, however, is probably due to the close version
numbers of the programs. In contrast, some crosses, such
as 4.0.9 × 3.02, produced mostly non-viable programs. All
combinations, however, were able to produce some variants
that contained code from both ancestors.

The key result from these tests was that object-level re-
combination seemed to work—we were able to create gener-
ally working variants even between highly divergent ancestor
programs.

4.2 Dillo
With Dillo, we followed the same template as with sed;

however, with Dillo we had a much larger search space: at
minimum, 251−2 (see Table 2). We used a population size of
30 over 20 generations, two-point crossover, 90% tournament
probability, and an elitism size of 8.

As with sed, there was not much reason to run the GA for
many generations as we had a fitness function with a maxi-
mum score of 7. The fitness function only checked for basic
viability: rendering a simple HTML file from disk, rendering
an Internet site that contains only HTML, and rendering a
site with HTML and JavaScript. No attempt was made to
verify that proper output was produced; instead, screenshots
were captured for later analysis.

As Table 2 shows, while some version crosses produced
many unstable variants, a large number were stable. These
stable ones had a wide range of morphologies. A few ap-
peared to be perfectly functional; others would only bring
up an empty window. With some, it was possible to view
the loaded HTML source even though nothing was rendered
on the screen. Some could only render part of a page. Some
started with toolbars hidden, while others started with tool-
bars visible. One particularly interesting variant is shown
in Figure 3. Here, a cross between Dillo 0.8.4 and 0.8.1
produced a browser that would successfully load and ren-
der pages, except that unordered lists were omitted and the
page width specification was ignored.

4.3 Quake
Dillo showed us that object-level recombination would also

work on larger, more modern desktop applications. These
experiments also indicated to us that we were unlikely to get
many useful variants by combining older and newer versions
of a program; instead, we’d more likely find versions with

(a) (b)

Figure 3: (a) Dillo 0.8.5 showing the Dillo home page, and (b) a Dillo variant generated from versions
0.8.4 and 0.8.1 rendering the same page. Note how (b) omits HTML unordered lists and ignores the width
parameter of an HTML table when rendering the page.

(a) (b) (c)

Figure 4: Screenshots of Quake variants. (a) MakaQuake with a heads-up display (HUD) but no models
(note the missing torches and fires), (b) Fisheye Quake variant with working models, and (c) an automatically
recombined Quake with fisheye, HUD functionality, and working models.

Version Files Symbols Symbols
TyrQuake 92 1807 375

FishEyeQuake 89 2104 12
MakaQu 89 2160 450

SDLQuake 92 1962 168

Table 3: A comparison of the versions of Quake used.
“Symbols” represents the total number of symbols
of all the object files for a particular version. ”Sym-
bols” is the total number of symbols that are differ-
ent compared to the original Quake source.

Version Pair Files Unique Unstable Symbols
Tyr × SDL 84 727 204 459

Tyr × FishEye 88 738 138 387
Tyr × MakaQu 88 679 292 671
SDL × FishEye 85 676 149 180
SDL × MakaQu 85 476 64 428
FishEye × MQ 89 728 93 462

Table 4: Results for the tested Quake version pairs.
810 individuals were generated for each pair. ”Sym-
bols” indicates the total number which are not com-
mon between the two versions. This is used to pro-
vide a crude measure of how closely related the ver-
sions might be.

interesting bugs. This insight was our motivation to look to
programs with multiple, divergent versions already existing.
Thus did we start looking into Quake variants.

After experimenting informally with many versions, we
decided to do our experiments with four variants:

• FishEyeQuake, a Quake version that renders the world
as viewed through a fisheye lens,
strlen.com/gfxengine/fisheyequake/index.html

• SDLQuake 1.09, a port of Quake to the SDL, a cross-
platform multimedia library,
www.libsdl.org/projects/quake/

• TyrQuake 0.38, a version with many bugfixes and code
cleanups, and
disenchant.net/engine.html

• MakaQu 0.13, a version with a revamped menu system,
a “heads-up display” status bar, improved save game
system, and major OpenGL rendering changes.
quakedev.dcemulation.org/fragger/downloads.htm

To evaluate fitness, we compared the standard output
from a demo run of ’vanilla’ Quake, scoring as we did with
sed. We used single-point crossover, 90% tournament prob-
ability, an elitism value of 10 with a population size of 50
for 20 generations. Again, we did not seek to find optimal
individuals but interesting variants.

The versions that were the least divergent, SDLQuake
and FishEyeQuake, were able to produce a large number of
working variants. What was interesting was how quickly the

3Official build is supported on Windows only; modification
is required to build on Linux

Figure 5: Average fitness achieved at each genera-
tion for the recombined versions of Quake.

population converged on working solutions. The test started
with a number of individuals at discrete fitness levels: 2, 55,
and 175. Within seven generations most individuals had
achieved a fitness of 175 out of a possible maximum of 240
(see Figure 5). This population had not converged on a few
individuals, however, as over the run ObjRecombGA found
468 unique individuals with a 175 fitness value, many of
which derived 55-60% of their genome from one parent. This
finding was not all that surprising because SDLquake and
FishEyeQuake had the least divergent code bases: only 93%
(85) of the object files were shared, but only 9% (180) of the
symbols were different. The randomly initialized population
contained a large number of unfit individuals; recombination
of those individuals, however, quickly led to a large number
of relatively functional variants.

SDLQuake and MakaQu also seemed to be very successful
at recombination, producing the least number of unique vari-
ants but offering the highest average fitness scores. However,
this result turned out be misleading. While the variants did
load and run successfully, they exited prematurely in a clean
fashion (leaving no clear indication of a fatal error). This
resulted in what appeared to be correct output and lead to
a high degree of fitness, when in reality the variants were
not actually playable.

In terms of interesting functionality, however, we got some
of the most interesting results from a cross of FishEyeQuake
with MakaQu. As shown in Figure 4, FishEyeQuake can
render objects in the world (models) properly and gives a
fisheye view of the world. MakaQu on Linux, however, had
severe glitches: it did not support models, so it could not
even render the torches in the initial map properly. How-
ever, it did have a nice heads-up display. By combining
the two we were able to get a variant that had a heads-up
display, working models, and the ’fisheye’ view. In other
words, we were able to repair bugs and merge functionality
by recombining programs at the object file level.

5. RELATED WORK
Many researchers have studied the problem of evolving

programs. The bulk of the work in this area has followed
the template of Koza’s genetic programming (GP) [9], specif-
ically in the representation of programs using S-expressions
consisting of problem-specific functions and terminals. Work
on grammatical evolution [11], however, has adapted the GP

representations to store programs encoded in arbitrary com-
puter languages—programs are parsed into S-expressions us-
ing a supplied grammar. While grammatical evolution has
been successfully applied to C programs [10], these programs
have been either evolved from scratch or from handcrafted,
relatively small progenitors.

Over the past few years, however, a few researchers have
started looking into applying evolutionary techniques to com-
modity programs. One particular work of note is Arcuri’s
JAFF [3]. JAFF can repair faults automatically in Java
programs by identifying parts that fail unit tests and evolv-
ing limited software patches. While JAFF can currently run
only on programs expressed in a subset of Java, the approach
may be extendable to work on arbitrary Java programs.

Last year’s work by Forrest et al. [7] is the only work we
know where genetic programming has been used to directly
evolve the code of commodity programs. Given precise pos-
itive and negative test cases describing desired functional
characteristics, they were able to successfully evolve secu-
rity and bug fix patches for 20,000+ line C programs.

A number of artificial life systems have been developed
that evolve machine code representations, most notably Core
War [6], Tierra [13], and Avida [2]. Unlike ObjRecombGA,
however, they all work with programs encoded in bytecodes
designed to facilitate evolutionary search rather than the
object files produced by standard compilers.

6. CONCLUSION
We have shown that it is feasible to recombine related

programs at the object-file level using a genetic algorithm
framework and careful resolution of symbol dependencies be-
tween object files. Many program binaries produced by this
method do not function properly; however, many do. Our
success to date gives us significant hope that these tech-
niques could be used to aid with debugging, improve secu-
rity, and ultimately enable user-directed software specializa-
tion. Much as animals are bred to produce desirable indi-
viduals, it should be possible to the same with our desktop
programs. Further testing, however, is needed to determine
the full applicability of these techniques.

7. ACKNOWLEDGMENTS
This work was originally inspired by discussions at a June

2005 workshop at the Santa Fe Institute entitled “The Road
to Software Evolvability.” Somayaji in particular would like
to thank David Ackley and his graduate advisor, Stephanie
Forrest, for their contributions at this meeting and in dis-
cussions before and since.

This work was supported by the Discovery Grant program
of the Natural Sciences and Engineering Research Council
of Canada (NSERC).

8. REFERENCES
[1] D. Ackley. Real artificial life: Where we may be. In

Artificial Life VII: Proceedings of the Seventh
International Conference on Artificial Life). MIT
Press, 2000.

[2] C. Adami and C. Brown. Evolutionary learning in the
2d artificial life system ’avida’. In R. Brooks and
P. Maes, editors, Artificial Life IV, pages 377–381.
MIT Press, 1994.

[3] A. Arcuri. Evolutionary repair of faulty software.
Technical Report CSR-09-02, University of
Birmingham, 2009.

[4] V. Authors. Seder’s Script Archive, 2008.
http://sed.sourceforge.net/grabbag/scripts/.

[5] R. Dawkins. The Blind Watchmaker. Norton, 1986.

[6] A. Dewdney. In the game called core war hostile
programs engage in a battle of bits. Scientific
American, May 1984.

[7] S. Forrest, T. Nguyen, W. Weimer, and C. L. Goues.
A genetic programming approach to automated
software repair. In GECCO ’09, 2009.

[8] F. S. Foundation. GNU sed.
http://www.gnu.org/software/sed/.

[9] J. Koza. Genetic Programming: On the Programming
of Computers by Means of Natural Selection. The MIT
Press, 1992.

[10] M. O’Neill and C. Ryan. Evolving multi-line
compilable c programs. In 1999 European Conference
on Genetic Programming (EuroGP’99), 1999.

[11] M. O’Neill and C. Ryan. Grammatical evolution.
IEEE Transactions on Evolutionary Computation,
5(4):349–358, 2001.

[12] T. D. Project. Dillo: the fast and light browser.
http://www.dillo.org/.

[13] T. Ray. An approach to the synthesis of life. In
C. Langton, C. Taylor, J. Farmer, and S. Rasmussen,
editors, Artificial Life II, pages 371–408.
Addison-Wesley, 1991.

[14] I. Software. Quake.
http://www.idsoftware.com/games/quake/quake/,
1996.

