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Abstract—Large-scale attacks compromise populations of sys-
tems by exploiting vulnerabilities in shared components. This
paper presents a novel security metric, population fragility, that
captures the potential impact of vulnerable components on a
population of systems. We define population fragility using a
product family algebra (PFA)-based model that captures how
components are in turn made of other components. While our
current model has a number of simplifying assumptions, popula-
tion fragility potentially motivates new security approaches and
provides deeper insight into the relationship between diversity
and computer security.

Index Terms—fragility, security metrics, software diversity,
product family algebra

I. INTRODUCTION

Software vulnerabilities are the dominant concern in most
efforts to improve software security today, motivating multiple
approaches to the challenge. Software development practices
such as the the Microsoft SDL [1] reduce the number and
scope of software vulnerabilities through careful design, se-
curity audits, vulnerability scanning, and other techniques.
Ubiquitous software update mechanisms allow for vulnerable
applications to be patched after they have been deployed.
Firewalls, anti-malware systems, and even mandatory access
control mechanisms (as configured on current systems) all
attempt to reduce the impact of vulnerabilities that remain.
Despite all of these efforts, vulnerabilities continue to be found
and exploited by attackers.

Rather than focusing on eliminating vulnerabilities, another
strategy is to address the factors that make vulnerabilities so
dangerous. The impact of any vulnerability arises from both its
severity and its frequency. A vulnerability that allows for total
system compromise is not much of a concern if it only affects
a few systems (assuming those systems are not particularly
high value targets). A vulnerability that exists on millions of
systems, however, is a real threat.

Diversity has been proposed as a strategy for reducing
the impact of vulnerabilities [2]. The idea is that if sys-
tems are different, then vulnerabilities will only impact a
subset of systems at any time. Many researchers have crit-
icized software monocultures—environments with minimal
software diversity—as being especially insecure, especially
in the context of dominant operating systems [3]. Software
monocultures, however, have significant benefits in terms of
development time and administrative overhead, as fewer types
of systems translates to fewer systems for administrators to
learn how to configure, maintain, and secure.

Given that software diversity has both clear benefits and
costs, a natural approach to improving security would be to
devise measures of both in order to determine an appropriate
trade-off given available resources and expected risks. While
there are numerous security metrics [4], [5], [6], [7], [8], the
choices for measuring software diversity are much rarer, and
most of these do not measure diversity in a way that is relevant
to security.

Here we propose a new metric for software diversity, popu-
lation fragility, that captures a key factor relevant to security:
the impact of a vulnerability on a population of systems.
The insight behind our fragility metric is that as software
systems are created through the composition of components,
this nesting structure of components should be taken into
account when assessing software diversity for security. The
severity of a vulnerability is proportional to the number of vul-
nerable components in a population, whether that component
is a function, library, application, container, virtual machine,
or host. So, if we can model the relative commonality of
components at multiple scales, we can devise a measure of
the potential impact of an arbitrary vulnerability.

This paper presents a simple analytical feature model based
on product family algebra for defining and studying the
distribution of components within computer systems in a
population. This model is highly idealized; in particular, it
assumes a uniform distribution of component configurations.
The model is sufficient, however, to allow us to define a
security-oriented diversity metric that captures the impact of
vulnerabilities in shared components.

We can summarize our work as follows. We model a
population as a set of systems that each are composed of a set
of components, and each of these components are made up
of further sub-components. Each component can have one or
more variations. We can thus model hardware-level features
such as CPUs, software components such as operating sys-
tems, applications, and libraries, and algorithmic components
such as cryptographic primitives and protocols. Vulnerabilities
are defined in the context of affected components. If a system
has a vulnerable component, it is said to be vulnerable. The
fragility of a population, relative to a vulnerability, is then
the fraction of the population that could be compromised
by that vulnerability. A population that can be completely
compromised by one vulnerability is maximally fragile; to
minimize fragility, we minimize the fraction of a population
that can be compromised by a vulnerability. The rest of this

19th Annual Symposium on Information Assurance (ASIA ’24)
121



A Fragility Metric for Software Diversity

presents a formal version of this model along with worked
examples.

The remainder of this paper is organized as follows. Sec-
tion II provides the mathematical background describing prod-
uct family algebra, products and features. Section III describes
our approach for modeling populations of computer systems
using product family algebra. Section IV uses the model to
define and analyze population fragility as a security metric. We
discuss related work in Section V. Section VI concludes with
a discussion of contributions, limitations, and future work.

II. MATHEMATICAL BACKGROUND

In this section, we introduce the mathematical background
of product family algebra and a number of related concepts
including products and features which are needed for the
development of our analytical framework for modeling popu-
lations of computer systems in Sections III and IV.

A. Product Family Algebra

Product family algebra (PFA) [9] is an algebraic feature
modeling technique with the power to describe product fam-
ilies precisely. It is based on the mathematical structure
of idempotent commutative semirings. In addition, it allows
algebraic calculations and manipulations of product families
to generate new information about those product families.

A semiring is a mathematical structure
(
S,+, ·, 0, 1

)
where

(
S,+, 0

)
is a commutative monoid and

(
S, ·, 1

)
is

a monoid such that operator · distributes over operator +
and element 0 is annihilates S with respect to ·. We say
that a semiring is idempotent if operator + is idempotent
(i.e., x + x = x). We say that a semiring is commutative
if operator · is commutative (i.e., x · y = y · x).

Definition 1 (Product Family Algebra). A product family
algebra (PFA) is an idempotent and commutative semir-
ing

(
S,+, ·, 0, 1

)
where each element of the semiring is a

product family.

In the product family context, + can be interpreted as a
choice or option between two product families and · can
be interpreted as a mandatory composition of two product
families. The constant 0 represents the empty family and the
constant 1 represents the family that has one product without
features. The term a + 1 is the product family offering the
choice between a and the identity product and indicates that
the feature a is optional.

With the above interpretations, other concepts in product
family modeling can be expressed mathematically. In general,
each idempotent semiring

(
S,+, ·, 0, 1

)
has a natural partial

order ≤ on S defined by a ≤ b ⇐⇒ a + b = b. Therefore,
for product families a, b ∈ S, a ≤ b indicates that a is a
sub-family of b if and only if a+ b = b.

B. Products and Features

The basic building blocks of a product family in PFA are
products and features.

Definition 2 (Product). We say that a is a product if it is
different than 0 and satisfies:

∀(b |: b ≤ a =⇒ (b = 0 ∨ b = a) ) (1)
∀(b, c |: a ≤ b+ c =⇒ (a ≤ b ∨ a ≤ c) ) (2)

Equation 1 shows that a product does not have a subfamily
except the empty family and itself. Equation 2 indicates that
if a product a is a subfamily of a family formed by c and b, it
must be a subfamily of one of them. Intuitively, this indicates
that a product cannot be split using the choice operator +.

Definition 3 (Feature). We say that a is a feature if it is a
proper product different than 1 satisfying:

∀(b |: b ≤ a =⇒ (b = 1 ∨ b = a) ) (3)
∀(b, c |: a|b · c =⇒ (a|b ∨ a|c) ) (4)

where the division operator | is defined by a|b ⇐⇒ ∃(c |:
b = a · c ).

Equation 3 states that if we have a product b that divides a,
then either b is 1 or b = a. Equation 4 states that for all
product families b and c, if a is mandatory to form b · c,
then it is mandatory to form b or it is mandatory to form c.
Intuitively, this indicates that a feature cannot be split using
the composition operator ·.

New product families can be derived from other existing
product families by adding features. The refinement relation
captures such a relationship between two product families.

Definition 4 (Refinement). The refinement relation on a PFA
is defined as follows:

a ⊑ b ⇐⇒ ∃(c | c ∈ S : a ≤ b · c )

Informally, a product family a refines another product
family b if a has the same set of features as b and possibly
more. For example, assume that we have a new mobile that
has screen, keypad, calling feature, and GPS. We have also
an old mobile that has screen, keypad, and calling feature.
Therefore, new mobile refines old mobile because every
product in new mobile has all features of some products in
old mobile. When a product a refines a product b, we say
that b is a sub-product of a.

III. MODELING

In this section, we develop a model of computer systems
and their variants for different distributions within a population
of users. To achieve this, we use product family algebra
(PFA). PFA helps to capture and analyze the commonalities
and variabilities of a product family and allows mathematical
description and manipulation of product family specifications.
We use this model in Section IV to define population fragility.

A. An Example Population of Computer Systems

For simplicity, suppose that a computer system is com-
prised of hardware (hw) and software (sw). The hardware for
the system involves only a central processing unit (CPU),
motherboard (mb), random access memory (RAM), and a
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hard drive (hd). The software for the system involves only
an operating system (OS) and an optional application (app).
For any computer system, there are two kinds of CPU, mb,
RAM, and hd, and three kinds of OS and three kinds of app.
The product family of computer systems can be visualized as
a graphical feature model as shown in Figure 1.

To study populations of computer systems, we assume that
we have a set of computer system users. Each user operates
a computer system that can be built from the product family
described above. In this paper, we assume that the products
that can be built from this product family are distributed
uniformly among the population of users. This assumption
enables us to focus on the impact of sharing vulnerable
components in a population.

B. Specifying the Computer System Product Family using PFA

We use PFA to specify the product family described in
Section III-A and illustrated in Figure 1. We begin by declaring
the basic features of computer systems. The basic features
represent all of the possibly components that can be used
to build a computer system. In our example, we have 14
basic features corresponding to the specific kinds of CPU,
mb, RAM, hd, OS and app. Then, using the basic features
and the operators of PFA, we define a labeled product family
specifying the mandatory and optional features of products.
For example, as described in Section III-A, the software for a
computer system requires only an operating system and an op-
tional application. This is represented as sw = OS · (app + 1)
indicated that it is mandatory to have an operating system
and optional to have application. Subsequently, because we
have three kinds of operating system that we can choose from,
we specify OS = Windows +MacOS + Linux to show that
an operating system is one of Windows, MacOS or Linux.
The complete PFA specification for our example computer
system product family is shown in Figure 2. We will use this
PFA specification of the computer system product family to
evaluate the impact of a vulnerable component on the security
of an entire population of computer systems from this product
family.

C. Computing the Size of the Catalog of Products

Given the PFA specification of a product family, such as
that shown in Figure 2, we can compute the total number of
unique products that can be built from the specification.

Definition 5 (Catalog Size). Let C be a product family. Then,
the number of products that can be built from C is called the
catalog size (denoted |C|) and is computed recursively on the
structure of product family algebra:

|0| = 0

|1| = 1

|a| = 1 (a is a basic feature)

|a+ b| = |a|+ |b|
|a · b| = |a| × |b|

For the sake of consistency we will refer to the set of unique
products that can be built from the specification of a product
family as the catalog.

Example 1 (Computing the Catalog Size). Applying Defini-
tion 5 to the PFA specification of our computer system product
family in Figure 2, we have 192 possible computer system
products in the catalog.

|Computer| = |hw · sw|
= |hw| × |sw|
= |CPU ·mb · RAM · hd| × |OS · (app + 1)|
= [(1 + 1)× (1 + 1)× (1 + 1)× (1 + 1)]×

[(1 + 1 + 1)× (1 + 1 + 1) + 1]

= [2× 2× 2× 2]× [3× 4]

= 16× 12

= 192

■

It is important to understand how the addition of new
alternative products or features (i.e., variations) in a product
family affects the catalog size. The following proposition
shows that adding non-zero variations to a product family
increases the catalog size.

Proposition 1 (Variations Increase the Catalog Size). Adding
non-zero variations to a product family increases the size of
the catalog.

Proof. Let C be the original product family and let C ′ be the
product family after adding a non-zero variation. A variation is
the addition of an alternative feature that allows two products
to differ in the choice of that feature. Then,

|C| < |C ′|
⇐= ⟨ Hypothesis: C ′ is the product family C with an

additional product or feature v ̸= 0 ⟩
|C| < |C + v|

⇐⇒ ⟨ Definition 5 ⟩
|C| < |C|+ |v|

⇐⇒ ⟨ Arithmetic & |v| > 0 ⟩
true

Intuitively, Proposition 1 states that if we provide more
choices to build a computer system, we can build more unique
products that can be distributed among our population of
users.

IV. FRAGILITY ANALYSIS

In the previous section, we developed a model of a product
family of computer systems that are distributed among a
population of users. Using this model, we now study the
population fragility using these computer systems. In this
section, we define a measure of the population fragility with
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Fig. 1. Feature model for a computer system

1 % D e c l a r a t i o n s o f b a s i c f e a t u r e s
2 bf amd
3 bf i n t e l
4 bf ASRock
5 bf Asus
6 bf K i n g s t o n
7 bf Samsung
8 bf WD
9 bf S e a g a t e

10 bf Windows
11 bf MacOS
12 bf Linux
13 bf app1
14 bf app2
15 bf app3

1 % D e f i n i t i o n s o f l a b e l e d p r o d u c t f a m i l y
2 Computer = hw · sw
3
4 hw = CPU · mb · RAM · hd
5 sw = OS · ( app + 1)
6
7 CPU = amd + i n t e l
8 mb = ASRock + Asus
9 RAM = K i n g s t o n + Samsung

10 hd = WD + S e a g a t e
11
12 OS = Windows + MacOS + Linux
13 app = app1 + app2 + app3

Fig. 2. A PFA specification of the computer system product family

respect to a known exploitable system component. Then, we
study how increasing variability in the product family can
improve the population fragility.

A. Defining Population Fragility

Because products within a product family contain com-
monalities, there is a potential that multiple products contain
the same exploitable component or sub-product. To study this
phenomenon, we aim to define a measure to show how much
of a population is susceptible to an attack when we know
that there exists an exploitable component in the computer
system product family. To do so, we need to identify which
of the products in a product family contain an exploitable
sub-product; that is, the set of products which contain a
vulnerability that can be exploited by an adversary to conduct
an attack on the system. We call this set of products the set
of exploitable products.

To determine set of exploitable products, we assume that
there is an exploitable sub-product that we know about be-
forehand. Using this information, we find the set of products
in the catalog that contain these exploitable sub-products. By

determining the number of exploitable products with respect to
the total number of products that can be built from the product
family (i.e., the catalog size as defined in Section III-C), we
can determine the proportion the population1 that is susceptible
to an attack on the known exploitable sub-product. We call this
measure the population fragility. Formally, the measure of the
population fragility is defined as follows:

Definition 6 (Population Fragility). Let C be a product family
and let x be an exploitable sub-product. Then, the fragility of
C with respect to x is given by:

Fragility(C, x) =
|X|
|C|

where X = {c | c ∈ C ∧ c ⊑ x} is the set of exploitable
products in the product family C.

For the sake of our example, suppose that it has been
revealed that there is an exploitable vulnerability affecting

1Note that because we assume that the products in the catalog are uniformly
distributed among all users within a population, we can view the catalog size
and the size of the population as being equal.
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computer systems containing the combination of Windows,
intel, and app1. Because we do not know exactly which of
the features Windows, intel, and app1 has the exploitable
vulnerability—it may be one of them or any combination
of them—we say that all computer systems that contain the
exploitable sub-product (Windows · intel · app1) are vulner-
able. Applying Definition 6 shows that, out of 192 possible
computer system products, there are 8 products that contain the
known exploitable sub-product. This means that the population
fragility is 0.0417 as detailed in Example 2 below.

Example 2 (Population fragility with respect to the exploitable
sub-product Windows · intel · app1). Applying Definition 6,
the set of exploitable products is given by:

X = {(intel ·ASRock ·Kingston ·WD ·Windows · app1),
(intel ·Asus · Samsung · Seagate ·Windows · app1),
. . . ,

(intel ·Asus · Samsung ·WD ·Windows · app1)}

Therefore, |X| = 8. Using the results from Example 1, we can
compute the fragility of C with respect to x:

Fragility(C, x) =
|X|
|C|

=
8

192
= 0.0417

■

Now that we are able to compute the population fragility,
we turn our attention to determining how we can improve the
population fragility by adding variations to the product family
of computer systems distributed among the population.

B. Adding Variations to Exploitable Products

As shown in Proposition 1, adding variations to a product
family specification can increase the size of the catalog of
products that can be built. This means that we can have
more products with more variability, meaning that it is less
likely that products share combinations of features. When
considering how we can improve the population fragility,
there are several places where we can add variations. One of
these places is in the labeled product families that contain the
exploitable sub-product. To illustrate our intuition, we carry
out a broad example of adding variations in this manner. The
details are described in Example 3 below.

Example 3 (Adding variation to labeled product families
that contain the exploitable sub-product). We continue to
assume that we have the exploitable sub-product x =
(Windows · intel · app1).Consider the addition of one more
alternative to each of OS, CPU, and app labeled product
families in the PFA specification shown in Figure 2. More
specifically, suppose we add Unix as an alternative operating
system, arm as an alternative CPU, and app4 as an alterna-
tive app. Note that these additions yield new choices to avoid
the features present in the exploitable sub-product. The revised
PFA specification for our example computer system product
family with the added variations is shown in Figure 3.

As a result, the set of exploitable products (i.e., X) is the
same as in Example 2. Therefore, |X| remains 8, while the
catalog size (i.e. |C|), computed using Definition 5, increases
from 192 to 480. Thus, by applying Definition 6, the population
fragility is reduced to 0.0167 as a result of these added
variations in the product family. ■

The following proposition generalizes our intuition that
adding variations to exploitable products reduces the popu-
lation fragility.

Proposition 2 (Adding Variation to Exploitable Products).
Adding non-zero variations in an exploitable product de-
creases the population fragility.

Proof. Assume an exploitable sub-product x. Let
Fragility(C, x) be the original population fragility and
let Fragility(C ′, x) be the population fragility after adding a
non-zero variation in an exploitable product.

Fragility(C, x) > Fragility(C ′, x)

⇐⇒ ⟨ Definition 6 ⟩
|X|
|C|

>
|X ′|
|C ′|

⇐= ⟨ Hypothesis: X ⊆ X ′=⇒|X ′| = |X ′\X|+ |X| ⟩
|X|
|C|

>
|X ′\X|+ |X|

|C ′|
⇐⇒ ⟨ Fraction Addition ⟩

|X|
|C|

>
|X ′\X|
|C ′|

+
|X|
|C ′|

⇐= ⟨ Hypothesis: Add variation in an exploitable sub-
product =⇒ ¬ ∃(c | c ∈ C ′\C : c ⊑ x ) =⇒
|{c | c ∈ C ∧ c ⊑ x}| = |{c | c ∈ C ′ ∧
c ⊑ x}| =⇒ |X| = |X ′| =⇒ |X ′\X| = 0 ⟩

|X|
|C|

>
|X|
|C ′|

⇐⇒ ⟨ Proposition 1: |C| < |C ′| ⟩
true

Proposition 2 shows that if we can decrease the likeli-
hood of an exploitable sub-product being shared among a
large proportion of the population, then we can improve the
population fragility. The results of Proposition 2 show that
this can be achieved by providing more alternatives to avoid
known combinations of vulnerable system components that
so that a smaller proportion of the population shares these
vulnerabilities.

C. Adding Variations to Non-exploitable Products

In the previous section, we added variations in the labeled
product families that contain the exploitable sub-product. Here
we explore the effect that adding variations in the non-
exploitable sub-products has on the population fragility. As in
the previous section, we being with a broad example of adding
variations in this manner to illustrate our intuition. The details
are described in Example 4 below.
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1 % D e c l a r a t i o n s o f b a s i c f e a t u r e s
2 bf amd
3 bf i n t e l
4 bf arm
5 bf ASRock
6 bf Asus
7 bf K i n g s t o n
8 bf Samsung
9 bf WD

10 bf S e a g a t e
11 bf Windows
12 bf MacOS
13 bf Linux
14 bf Unix
15 bf app1
16 bf app2
17 bf app3
18 bf app4

1 % D e f i n i t i o n s o f l a b e l e d p r o d u c t f a m i l y
2 Computer = hw · sw
3
4 hw = CPU · mb · RAM · hd
5 sw = OS · ( app + 1)
6
7 CPU = amd + i n t e l + v ( arm )
8 mb = ASRock + Asus
9 RAM = K i n g s t o n + Samsung

10 hd = WD + S e a g a t e
11
12 OS = Windows + MacOS + Linux + Unix
13 app = app1 + app2 + app3 + app4

Fig. 3. Revised PFA specification with new variations (emphasize in boldface) in labeled product families that contain the exploitable sub-product x =
(Windows · intel · app1)

Example 4 (Adding variation to labeled product families
that do not contain the exploitable sub-product). Again we
assume that we have the exploitable sub-product x =
(Windows · intel · app1). Consider the addition of one more
alternative to each of the labelled product families CPU, mb,
RAM, hd, OS, and app in the PFA specification shown in
Figure 2. The revised PFA specification is similar to that shown
in Figure 3. Note that that only do these additions overlap with
the exploitable sub-product x = (Windows · intel · app1),
but also with the non-exploitable sub-products in the product
family.

As a result of the additions, the number of exploitable
products (i.e., |X|) increases from 8 to 27 and the catalog size
(i.e., |C|) increases from 192 to 1620. Applying Definition 6,
we find that the population fragility is 0.0167 again. ■

In Example 4, the population fragility remains unchanged
because the ratio between the number of exploitable products
and the catalog size remains same as that in Example 3.
Adding more variations to the non-exploitable products (e.g.,
mb, RAM, and hd), increases the number of products that
contain the exploitable sub-product while also increasing the
catalog size; we can build new products, but a subset of those
new products inevitably contain the exploitable sub-product
and thus become exploitable products themselves. Therefore,
increasing variations in the non-exploitable sub-products does
not help to reduce the population fragility. The following
proposition generalizes these observations:

Proposition 3 (Adding Variation to Non-exploitable Products).
Adding non-zero variations in a non-exploitable sub-product
does not change the population fragility.

Proof. Assume an exploitable sub-product x. Let
Fragility(C, x) be the original population fragility and
let Fragility(C ′, x) be the population fragility after adding a
non-zero variation in a non-exploitable sub-product.

Fragility(C, x) = Fragility(C ′, x)

⇐⇒ ⟨ Definition 6 ⟩
|X|
|C|

=
|X ′|
|C ′|

⇐= ⟨ Multiply Both Sides by 2 ⟩

2
|X|
|C|

= 2
|X ′|
|C ′|

⇐⇒ ⟨ Multiply Both Sides by 1 = |C′|
|C′| =

|C|
|C| ⟩

2
|X||C ′|
|C||C ′|

= 2
|X ′||C|
|C ′||C|

⇐⇒ ⟨ Expand Multiplication: 2a = a+ a ⟩
|X||C ′|+ |X||C ′|

|C||C ′|
=

|X ′||C|+ |X ′||C|
|C ′||C|

⇐⇒ ⟨ Fraction Addition ⟩
|X||C ′|
|C||C ′|

+
|X||C ′|
|C||C ′|

=
|X ′||C|
|C ′||C|

+
|X ′||C|
|C ′||C|

⇐⇒ ⟨ Arithmetic ⟩
|X||C ′|
|C||C ′|

− |X ′||C|
|C ′||C|

=
|X ′||C|
|C ′||C|

− |X||C ′|
|C||C ′|

⇐⇒ ⟨ Subtract Both Sides by |C′||C|
|C′||C| ⟩

|X||C ′|
|C||C ′|

− |C ′||C|
|C ′||C|

− |X ′||C|
|C ′||C|

=
|X ′||C|
|C ′||C|

− |C||C ′|
|C||C ′|

−
|X||C ′|
|C||C ′|

⇐⇒ ⟨ Arithmetic & Distributivity ⟩
|X||C ′|
|C||C ′|

−
(
|C ′| − |X ′|

)
|C|

|C ′||C|
=

|X ′||C|
|C ′||C|

−(
|C| − |X|

)
|C ′|

|C||C ′|
⇐⇒ ⟨ Cancellation ⟩

|X|
|C|

− |C ′| − |X ′|
|C ′|

=
|X ′|
|C ′|

− |C| − |X|
|C|

⇐⇒ ⟨ Arithmetic ⟩
|X|
|C|

+
|C| − |X|

|C|
=

|X ′|
|C ′|

+
|C ′| − |X ′|

|C ′|
⇐= ⟨ Hypothesis: X ⊆ C =⇒ |C\X| = |C|−|X| ∧

X ′ ⊆ C ′ =⇒ |C ′\X ′| = |C ′| − |X ′| ⟩
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|X|
|C|

+
|C\X|
|C|

=
|X ′|
|C ′|

+
|C ′\X ′|
|C ′|

⇐⇒ ⟨ Fraction Addition ⟩
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Proposition 3 emphasizes the point that not all variations are
effective at reducing the population fragility. This is important
because a tendency may be to simply add as many variations
as feasible into the product family. We need to be careful to
not simply build more products that contain exploitable sub-
products. The decision of where to introduce these variations
needs to be much more strategic as indicated by the results of
Proposition 2.

V. RELATED WORK

Security metrics is a complex topic, with books [4], [5]
and surveys of different areas including systems security
metrics [6], network security metrics [7], embedded security
metrics [8] among others. Despite this variety, the core ob-
jective of employing security metrics within an organization
is to establish a tangible and measurable way to assess the
cybersecurity posture. This quantification allows organizations
to gauge how secure their systems are, with a higher metric
indicative of a robust defense mechanism making cyber-
attacks arduous. The large number of metrics arises from the
numerous ways security can be quantified, capturing virtually
any aspect of system configuration or history that could be
related to security. Some measures are historical, such as how
often vulnerabilities have been found, how long it took for
vulnerabilities to be patched, and the time between patches
being made available to being applied to a given system. Some
are empirical, arising from lab or field studies where a defense
system’s ability to detect malware or intrusions are tested.
Others are more theoretical, such as password strength or
address space randomization entropy, where the construction
of the system should give certain security properties, but
its real-world security is impacted by many external factors.
(Cryptographic security measures are virtually all theoretical.)
No matter the type of metrics, however, each is only capturing
a small aspect of system security.

Most past work in metrics for software diversity is focused
on diversity from the perspective of fault tolerance [10].
Larsen (2014) noted that the field of automated software
diversity needed better metrics [11]. Subsequent to this we
know of two works that present diversity metrics for security,
Zhang (2016) [12] and Tong (2019) [13]. Both works are

inspired by diversity metrics used in ecology, unlike ours
which is inspired by work in software engineering. The focus
of Zhang’s work is on network-level diversity using an attack
graph-related approach; however, their work, although they
also examine how to determine resource similarity using
file and modification-level similarity [12]. In contrast, Tong’s
work presents an attribute matrix-based metric that captures
variations such as differences in hardware, operating system,
and applications [13]. The key distinguishing characteristics
of our work are 1) the focus on components and component
aggregations that can be modeled using PFA and not previous
approaches and 2) a precise connection between our model,
metric, and security, namely impact of vulnerabilities in shared
components.

Feature Models (FMs) were first introduced and used by
Kang et al. in 1990 [14]. They have since become well
accepted and applied in both academic and industrial projects.
A feature model represents a combination of system character-
istics called features such that each combination corresponds
to a member in a product family. A product family is a group
of products that normally share common features. Moreover,
it describes the commonalities, variabilities, and dependencies
between features. The main challenges of feature modeling
include the development, maintenance, and evolution of com-
plex and large feature models. Specifically, it is difficult to
handle unanticipated changes in large feature models [15].

A number of notable feature modeling methodologies and
notations have been proposed: Feature Oriented Domain
Analysis (FODA) [14], [16], Feature-Oriented Reuse Method
(FORM) [17], Reuse-Driven Software Engineering Business
(RSEB) [18], Featured Reuse-Driven Software Engineering
Business (FeatuRSEB) [19], among others. The key advantage
of Product Family Algebra (PFA) [9] over other product family
specification formalisms, such as FODA and FORM, is that
PFA can draw upon the large body of theoretical results for
idempotent commutative semiring and for algebraic techniques
in general, which help improve the consistency, correctness,
compatibility, and reusability of PFA-based models.

VI. DISCUSSION AND CONCLUDING REMARKS

The key contribution of our population fragility metric is
that it highlights the potential risks of shared components.
In past works criticizing software monocultures there is a
focus on monopolies, particularly in operating systems [3].
Population fragility, however, shows that we must think more
comprehensively about sharing, considering the implications at
multiple levels. When components are shared, we get benefits
such as increased functionality and standardization; however,
that sharing comes with the cost of shared vulnerabilities.
To the degree that diversity reduces the degree of sharing,
diversity can be seen as something that reduces the fragility
of a population. However, software diversity, in itself, does not
necessarily imply a significant reduction in population fragility
to the degree that there are vulnerabilities in parts that are still
shared. When adding diversity, then, we have to be mindful
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of whether our diversification strategy will impact whatever
vulnerabilities that are of concern.

As surveys of automated software diversity show, the field
is focused on the problem of changing how systems operate at
a low level using randomization techniques so as to make the
exploitation of vulnerabilities more difficult [20]. We believe
that automated software diversity is often not diversity at
all, and in fact it is a mistake to necessarily associate it
with the implementation-level diversity provided by N-version
programming and functional diversity. We assert that diver-
sity should be defined as strategies that minimize population
fragility. Compile-time or runtime automated approaches that
would disable unneeded software components on a given host
change could reduce population fragility; runtime approaches
that simply randomize program behavior, however, do not.
Randomizing memory layout makes it harder to perform code
injection attacks; however, an attack that works against one
system will work against any system that runs the same
software. The key insight here is simple: making attacks harder
does not reduce population fragility. The only way to change
population fragility is to change the fraction of a population
that is affected by a vulnerability.

While we believe the intuitions of population fragility are
clear, it is not so clear to what extent the measure can help us
understand real-world systems. One possible extension of our
model would be to populations with non-uniform distributions
of component configurations (which may require expanding
our concept of fragility). Such an expanded model could then
be used to directly model real-world systems. We suspect
such work may lead to non-intuitive conclusions such as the
Android ecosystem may be less fragile than the iOS ecosys-
tem due to the widespread practice of phone manufacturers
customizing their Android images; whether this is in fact
true will depend upon the impact of vulnerabilities in shared
components, particularly those distributed directly by Google.

So much research in computer security is focused on
finding ways to exploit vulnerabilities and ways to mitigate or
eliminate those vulnerabilities. Despite many years of effort,
this arms race seems to become ever more ferocious over time.
If defenders are to ever improve their position, they need
strategies that will change the game. We hope that metrics
focusing on a population-level view of vulnerabilities is a step
on the way to changing the game to make defending systems
easier than attacking them.
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