
The Malware Author Testing Challenge

Tarun Moni
School of Computer Science

Carleton University
Ottawa, Canada K1S 5B6
ashley.moni1@gmail.com

Sameer Salahudeen
Zighra, Inc.

Ottawa, Canada
sameer@zighra.com

Anil Somayaji
School of Computer Science

Carleton University
Ottawa, Canada K1S 5B6

soma@scs.carleton.ca

Abstract—Attackers regularly evaluate anti-malware software
to see whether or not their malware will be detected. This
attacker-driven anti-malware testing is something defenders
would ideally want to limit. Given that anti-malware products
must be widely distributed to be commercially viable, it is not
feasible to prevent attackers from running them. Here we examine
whether it may be possible to instead limit the effectiveness of
attacker tests.

Specifically, we present a game-theoretic model of anti-
malware testing where detection timeliness and coverage are
parameters that can be adjusted by anti-malware providers. The
less coverage and the slower the response, the harder it is for
attackers to determine whether their malware will be detected—
and the less protection the software provides to hosts running
the anti-malware software.

While our results are preliminary, they suggest that it is
clearly non-optimal for anti-malware vendors to simply maximize
coverage and detection time. As we explain, this result has
significant implications for product design and (non-malicious)
anti-malware testing methodologies.

I. INTRODUCTION

Anti-malware testing is normally framed as a problem
for defenders: individuals and organizations need to choose
software to defend their computers and anti-malware testing
provides an empirical basis for that choice. In designing
and evaluating anti-malware software, though, we must be
conscious of another group that has a deep interest in anti-
malware testing: attackers.

Attackers want to develop malware that can circumvent
existing defenses. To achieve this goal, they have to test their
software against those very defenses to see if they will be
detected. It might seem that attackers would have an incentive
to limit their testing given that most systems today upload
novel samples to vendors for later analysis. There are a number
of factors, though, that mitigate this impact. Attackers in gen-
eral can easily generate malware variants, vendors have limited
resources for analyzing novel malware, and many protection
systems can be run successfully without any connection to
the Internet. Thus in practice attackers face few barriers to
testing their code against anti-malware software, even without
VirusTotal (www.virustotal.com) or CloudAV [1].

When an attacker runs their code on a defended system,
normally they will know whether it is going to be detected or
not in a matter of seconds. If their malware is not detected,
there is now a window of opportunity for attacking systems
running the same defenses. This window may be measured in
minutes, days, or even years; what they know, though, is that

the opportunity to compromise other systems exists and can
be used within that timeframe with impunity.

Another way of saying the above is that for attackers, the
anti-malware testing problem is almost trivial and because
of this attackers routinely bypass defenses against malware.
The question we ask here is this: can we make the testing
problem harder for attackers? We do not see a way to limit
the ability of attackers to run anti-malware software for their
own testing purposes, either directly or indirectly. We do see an
opportunity, however, for making testing harder for attackers
if anti-malware software doesn’t classify software so quickly
or accurately.

For example, consider an anti-malware application that,
upon detecting a malicious piece of software, only reports this
result once a month. To test against such a system attackers
would have wait a month to see whether their programs were
detected, greatly slowing down their ability to verify that those
programs would be stealthy. We must assume, though, that
targeted systems are running the same anti-malware software
that attackers test. If so, then detection delay would allow
attackers to do what they want on a target system for a whole
month even if it were detected. Thus we can see a trade-
off between making the attacker testing problem harder and
reducing the effectiveness of the defense on targeted hosts.

In this paper we start to formalize this trade-off between
anti-malware reporting timeliness and attacker testing using
game theory. Our model is simple, ignoring many factors such
as malware replication, difference in scale between the size
of different populations (e.g., the vastly larger set of defend-
ers versus attackers), mixed attacker deployment strategies,
and scaling host subversion costs dependent upon reporting
strategies. However, it does capture the basic intuition of the
trade-off as described above. Further, its analysis suggests that
naively reporting malware detections completely accurately
and as quickly as possible is a suboptimal strategy. Our work
thus suggests that “reducing” anti-malware performance could
in fact make the development of zero-day attacks much more
difficult, and that such reductions might be possible without
placing defended systems at undue risk. While these results
should be considered to be preliminary, they are suggestive
enough that we believe further study into the attacker anti-
malware testing problem is warranted, both in theory and in
practice.

The rest of the paper proceeds as follows. In Section II
we define the problem we are attempting to model. Sec-
tion III presents our simple game-theoretic model of testing
interactions between attackers and anti-malware providers. We



analyze potential implications of our model in Section IV and
discuss related work in Section V. Section VI concludes.

II. THE PROBLEM

Our first goal is to try to model the overarching problem
formally. There is a large system of agents (attackers, normal
users, anti-malware software providers), a space of malware to
be designed, and a space of defensive software solutions (with
associated reporting strategies).

All of the agents are each trying to optimize their own
goals while stymying or assisting each other based on how
convergent those goals are. Their actions have probabilistic
outcomes. From here it seems reasonable to model the prob-
lem using game theory, the problem being a zero-sum game
between the attackers on one side versus the average users and
anti-malware providers on the other.

The most general problem is then a large game where
three populations of players play: attackers attempt to de-
velop malware to infect normal users (hereafter referred to
as “defenders”), anti-malware defense providers develop and
disseminate software to defenders to defeat the malware, and
defenders use the software given to them by their defense
providers to the best of their informed ability to protect
themselves.

An important constraint, perhaps the most important con-
straint, is that defense providers cannot differentiate between
attackers and defenders. Attackers will also be given defensive
software, and will exploit it to further their own agenda.

There is merit in modelling the network consequences of
subverting defender systems. The utility of a set of systems
being infected can be greater or lower than the sum of utilities
for infecting each individual system (botnets, self-reproducing
malware, etc.). Still, a reasonable simplifying assumption is to
ignore this and focus on subsets of the population that still
emphasize the problem at hand.

Consequently we will reduce our consideration to the
smallest subset of the player population that still characterizes
the problem: three agents and two computer systems. An
attacker and a defender fight for control over the defender’s
system, both using tools given to them by a single anti-malware
defense provider.

To help define the game they play and the strategies they
can formulate, we will model the space of all malware, X . X
is the set of all possible exploits that a malware can use to
successfully attack a host system. There is a surjection from
the space of all malware onto the space of all exploits: Every
piece of malware will be mapped to a single element of X
(each malware will only use a single exploit), while any exploit
which has no possible corresponding implementations will be
ignored.

The defense provider will have access to a subset of X
called K; these represent known exploits. For every element
within K the defense provider will be able to build software
which can detect and eliminate all associated malware. The
defense provider can also construct software that is only
capable of detecting subsets of K; these subsets will be
referred to as coverage. After designing each software instance,

they will be randomly assigned to the attacker and defender
(the software need not be identical, the other players are simply
indistinguishable). Neither attacker nor defender know the full
extent of K; they only know what is covered by the defense
software they are given.

The attacker can generate malware via development; we
make the simplifying assumption that the attacker has no
control over which element she ‘selects’ from X . Every time
she develops a new malware program, it uses a random exploit
from X (using a uniform distribution) and can be traced using
that exploit’s signature (if a defender system has coverage over
the exploit, the malware can be found).

The defender herself simply uses the tools given to her by
her defense provider. The defense provider cannot distinguish
between her and the attacker for the purposes of offering
anti-malware coverage. The defender generally has a simple
optimal strategy of using the anti-malware software she has
been provided as frequently and as totally as possible with no
considerations of restraint.

The game is zero-sum and continuous (on various variables
ranging from coverage schemes chosen to mixed attacker
strategies for discarding malware and developing new ver-
sions). The defense provider first constructs a coverage model,
which is a scheme for distributing subsets (or perhaps the
entirety) of K to both the attacker and defender indiscrim-
inately. The attacker can then use the coverage offered to
her to help test and dismiss malware she designs: gathering
information on the probability that she has a genuine zero-day
exploit (element outside of K), or assessing the chance that her
program can bypass the limited coverage offered to her target.
After the attacker settles on a final program, it’s deployed and
utility is gathered by all players based on pre-defined discrete
payoff coefficients (malware captured by defender, zero-day
developed, etc.).

III. THE MODEL

We’ll make a few assumptions, some taken directly from
the introduction, and design a simple instance of the more
general game formulation above:

1) The cost for the attacker to discard any given malware
and build a new one is low.

2) The defense provider uses a ‘random noise’ coverage
model, where they offer a fixed percentage of their
signature database K to all agents in the population
(defenders and attackers). Since the signatures offered
to everyone are random, the coverage set for each
system is mutually independent.

3) Coverage rotates (or more accurately, re-randomizes
to a new subset distribution of K) on a slow enough
timescale that the attacker cannot afford to wait
and test a given malware against multiple coverage
iterations.

Each assumption has a specific purpose. The random noise
model is an extremely simple realization of ‘partial coverage’
that can be easily scaled into modern total coverage systems.
This way we can directly compare the value of partial coverage
to our modern total coverage strategy. It also helps us describe



Attacker 

Defender c
β
 

 

c
α
 

Total Malware Coverage (X) 

Defence Coverage (K) 

Un-discovered threats (ω) c
α 
∩ c

β
 

Fig. 1. The game space: cα and cβ represent the local coverage offered to
the two anonymous players by the defense provider, while ω is the space of
zero day exploits (the set difference X\K).

the game using simple probability theory. The low-cost de-
velopment and slow-rotation assumptions help constrain the
attacker to a simple optimal strategy: Always dismiss a given
program if the attacker’s local coverage catches the program,
otherwise deploy.

The defense provider offers both other players random
subsets of K with a fixed measure c. Their coverage (labelled
cα and cβ) overlaps in parts, stand alone in others, and neither
cover a final remaining segment of K. No coverage set can
intrude upon the set of zero day exploits outside K (labelled ω)
as it is beyond the knowledge of the defense provider; only the
attacker can interact with this region. The relationship between
these variables is illustrated in Figure 1.

We shall normalize the measure of the set K to 1. This
lets us treat the public coverage percentage c and the measure
of known exploits covered interchangeably. The measure for
the shared coverage cα ∩ cβ of both attacker and defender is
c2 since they are independent.

There are four possible results to this game. Each will be
ascribed its own utility coefficient:

1) uz is the utility of the attacker stumbling across a zero
day exploit. The exploit they’ve randomly selected
falls within ω and cannot be caught by the provider’s
complete signature database.

2) ur is the utility of the attacker’s malware being caught
by their local system before being deployed in the
wild.

3) uc is the utility of the attacker deploying malware
that is then caught by the defender’s system.

4) us is the utility of the attacker deploying malware that
is not caught by the defender’s system, but ultimately
still falls within K and will be eventually caught by
coverage rotation.

From the perspective of the defense provider uz and us will
be negative, ur will be negligible and uc will be positive.

The aggregate utility function that the defense provider is
trying to optimize can be found by taking the sum of products
of each utility coefficient and its respective probability.

U(c) = uzω + urc+ uc(c− c2) + us(c
2 − 2c+ 1)

-4.5 

-4 

-3.5 

-3 

-2.5 

-2 

-1.5 

-1 

-0.5 

0 

0 0.2 0.4 0.6 0.8 1 

U(c) 

c 

Fig. 2. U(c) maximum at c = 141
160
≈ 88%.

Using the following sample values for each utility: {ω =
0.1, uz = −10, ur = 0.05, uc = 1, us = −3} we can generate
the graph Figure 2.

The maxima is not at c = 1; it’s a bit lower. A general
solution for this maxima can be derived from the aggregate
utility function and is as follows:

c↑ =
uc + ur − 2us
2(uc − us)

where c↑ is the value of c which will generate the largest
U(c).

This can be restated as follows:

c↑ = 1−
(

uc − ur
2(uc − us)

)
︸ ︷︷ ︸

shroud factor

The fractional component shall be referred to as the shroud
factor henceforth.

As long as we make the following assumptions:

1) uc > 0 (It’s worth catching their malware)
2) us < 0 (It’s bad to knowingly let a host system be

compromised)
3) uc > ur (Catching a given malware is better than

forcing the attacker to develop a new one)

. . . we can prove that the shroud factor will always be positive.
Since we’ve already assumed that ur is negligible, this isn’t a
very difficult conclusion to draw at all.

As long as the shroud factor is positive, c↑ < 1 and the
defense provider’s optimal strategy is to hide a random subset
of K from all clients.

IV. IMPLICATIONS

The shroud factor captures how much of provider’s pro-
tection abilities—its database of signatures and heuristics and,
potentially, the capabilities of its human analysts—is to be
hidden from all users in order to mitigate the ability of



attackers to develop new malware that bypass current defenses.
If attackers wish to be stealthy, the ability to quickly assess
whether their attack will be detected by current anti-malware
software is extremely valuable, as it ensures that their stealth
failures mostly occur on hosts that they control.

This notion of not revealing all of a defender’s capabilities
to an attacker is not new. It has long been know in the
intelligence community that capabilities should often be hidden
even when other considerations (such as harm to individ-
uals or standards of due process) would normally require
those capabilities to be revealed. While watching an attacker
compromise an organization and exfiltrate data might be a
useful strategy for a government entity engaged in a long-term
struggle for information dominance, it is not obvious if the
same considerations make sense for anti-malware providers.
What the shroud factor suggests is that such concealment does,
in fact, make sense.

But what form should that concealment take? Should it
be a simple strategy such as randomly reducing the number
of detectors each host uses, or should it be a more targeted
strategy where particularly novel malware is allowed to spread
for some time while it is observed by a team of experts? Our
model is not precise enough to differentiate between different
concealment strategies. We suggest that automated approaches
hold the most promise due to their inherent scalability on the
defender side.

One such simple automated strategy would be to have
the defense system trigger a full coverage scan at a random
frequency. The frequency could be randomly determined based
on the period elapsed from the last full coverage scan and the
number of partial scans being carried out during that period.
This full coverage scan would be totally out of control and
awareness of the user, assuring that the adversary will not be
able to only test their malware during a full scan. Regular
users should be made aware of this pattern of scans, however,
as that way attackers will know that straightforward detection
tests cannot be trusted. Indeed, a key purpose of such a strategy
is to introduce uncertainty into the planning of attackers, thus
forcing them to move much more slowly in their development
than they would otherwise. This benefit in itself may be the
key motivation for anti-malware providers to pursue detection
concealment strategies.

One unfortunate side-effect is that any such concealment
efforts will also have a negative effect on anyone evaluating
anti-malware software for legitimate ends. Results from any lab
test can no longer be trusted as part of the results may be con-
cealed. Proper testing would now require repeated evaluation
over an extended period of time. While such testing is possible
in a lab context, widespread shrouding of provider capabilities
would likely necessitate the use of more ecologically valid
testing such as the clinical trials methodology [2], [3]. The
cost of such a shift would be significant; if this shift is part
of an industry-wide effort to make systems less vulnerable to
zero-day threats, though, these costs may be justified.

V. RELATED WORK

While our focus on attacker anti-malware testing is novel,
many researchers have the dynamics of attackers and defenders
in a computer security context. Much of this work has a

biological flavor of some kind. The very term “computer
virus” [4] evokes the competition between living things, and as
such models of attackers and defenders in computer systems
have often looked to biology for inspiration. Epidemiological
modelling of the spread of malware done for famous incidents
such as Code Red [5] and for more generally understanding
the spreading patterns of email viruses [6]. Attacker-defender
modeling of malware has also been key to immunological
approaches to computer defenses such as Kephart’s immuno-
logical kill signals [7].

Dynamically changing coverage has been suggested as part
of general design principles for computer immune systems
[8] and was implemented as part of the LISYS network
intrusion detection system [9], [10]. It is also a general feature
of diversity/randomization approaches to low-level process
behavior such as ASLR [11] and instruction set randomization
[12], [13]. We should note, though, that “rolling coverage” in
this work is normally seen as an inevitable consequence of
other design decisions (such as randomization or distributed
detection) rather than as an effort to reduce the ability of
attackers to find gaps in protective mechanisms.

While game theory has a well-established place in com-
puter security [14], particularly in the context of economic
models of computer security [15] and information warfare [16],
to our knowledge this work is the first attempt to apply it to the
problem of attacker anti-malware testing and, more generally,
the issue of whether defenders should conceal their capabilities
in a civilian, commercial anti-malware provider context.

VI. CONCLUSION

The wide availability and uniform behavior of anti-malware
software allows attackers to benchmark their attacks against the
current protections easily and efficiently, thereby facilitating
the production of stealthy zero-day attacks. In this paper
we present a simple game-theoretic model of attacker/anti-
malware provider interactions that suggests that providers
can reduce the ability of attackers to easily create stealthy
attacks through “shrouding” their coverage. By increasing the
uncertainty as to whether their malware will be detected,
attackers must devote significantly greater efforts to testing
their malware. This additional attacker effort potentially helps
balance the playing field between attackers and defenders.

Although we proposed some ideas, we do not yet have
effective strategies that minimize the exposure of legitimate
hosts while maximizing the attacker effort required to develop
new undetectable malware. We believe that both theoretical
and practical work on such strategies are promising areas for
future work.

ACKNOWLEDGEMENTS

The first and third authors would like to acknowledge the
support of Canada’s Natural Sciences and Engineering Council
(NSERC) through their Discovery grants program.

REFERENCES

[1] J. Oberheide, E. Cooke, and F. Jahanian, “Cloudav: N-version antivirus
in the network cloud.” in 17th USENIX Security Symposium, 2008.

[2] A. Somayaji, Y. Li, H. Inoue, J. M. Fernandez, and R. Ford, “Evaluating
security products with clinical trials.” in CSET, 2009.



[3] F. Lalonde Levesque, J. Nsiempba, J. M. Fernandez, S. Chiasson,
and A. Somayaji, “A clinical study of risk factors related to malware
infections,” in Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security. ACM, 2013, pp. 97–108.

[4] F. Cohen, “Computer viruses,” Ph.D. dissertation, University of South-
ern California, 1985.

[5] D. Moore, C. Shannon, and k. claffy, “Code-red: A case study on the
spread and victims of an internet worm,” in Proceedings of the 2Nd
ACM SIGCOMM Workshop on Internet Measurment, ser. IMW ’02.
New York, NY, USA: ACM, 2002, pp. 273–284. [Online]. Available:
http://doi.acm.org/10.1145/637201.637244

[6] M. E. J. Newman, S. Forrest, and J. Balthrop, “Email
networks and the spread of computer viruses,” Phys. Rev.
E, vol. 66, p. 035101, Sep 2002. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevE.66.035101

[7] J. O. Kephart et al., “A biologically inspired immune system for
computers,” in Artificial Life IV: proceedings of the fourth international
workshop on the synthesis and simulation of living systems, 1994, pp.
130–139.

[8] A. Somayaji, S. Hofmeyr, and S. Forrest, “Principles of a computer
immune system,” in Proceedings of the 1997 workshop on New security
paradigms. ACM, 1998, pp. 75–82.

[9] S. A. Hofmeyr and S. Forrest, “An immunological model of distributed
detection and its application to computer security,” Ph.D. dissertation,
Citeseer, 1999.

[10] J. Balthrop, S. Forrest, and M. R. Glickman, “Revisiting lisys: Parame-
ters and normal behavior,” in Computational Intelligence, Proceedings
of the World on Congress on, vol. 2. IEEE, 2002, pp. 1045–1050.

[11] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh,
“On the effectiveness of address-space randomization,” in Proceedings
of the 11th ACM conference on Computer and communications security.
ACM, 2004, pp. 298–307.

[12] E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Stefanovic, and D. D.
Zovi, “Randomized instruction set emulation to disrupt binary code
injection attacks,” in Proceedings of the 10th ACM conference on
Computer and communications security. ACM, 2003, pp. 281–289.

[13] G. S. Kc, A. D. Keromytis, and V. Prevelakis, “Countering code-
injection attacks with instruction-set randomization,” in Proceedings of
the 10th ACM conference on Computer and communications security.
ACM, 2003, pp. 272–280.

[14] S. Roy, C. Ellis, S. Shiva, D. Dasgupta, V. Shandilya, and Q. Wu,
“A survey of game theory as applied to network security,” in System
Sciences (HICSS), 2010 43rd Hawaii International Conference on.
IEEE, 2010, pp. 1–10.

[15] L. A. Gordon and M. P. Loeb, “The economics of information security
investment,” ACM Transactions on Information and System Security
(TISSEC), vol. 5, no. 4, pp. 438–457, 2002.

[16] D. A. Burke, “Towards a game theory model of information warfare,”
DTIC Document, Tech. Rep., 1999.


