11th ANNUAL SYMPOSIUM ON INFORMATION ASSURANCE (ASIA '16), JUNE 8-9, 2016, ALBANY, NY

FrankenSSL: Recombining Cryptographic
Libraries for Software Diversity

(Invited Paper)

Bheesham Persaud, Borke Obada-Obieh, Nilofar Mansourzadeh, Ashley Moni, Anil Somayaji
School of Computer Science, Carleton University
Ottawa, Ontario, Canada
{bheesham, borke, nilofar, ashley, soma}@ccsl.carleton.ca

Abstract—Many security vulnerabilities arise from protocol
implementation flaws. Software diversity can reduce the impact
of such flaws; however, in practice there are relatively few
implementations of important protocols due to the challenge
of making interoperable, reliable, and efficient implementations.
One strategy for increasing the number of variants is to mix
and match components from different implementations. Just as
biological systems recombine DNA from parent organisms to
create children, we could mix and match code from different
protocol implementations to get thousands of variants. To achieve
this goal, two fundamental challenges must be overcome: we
need to demonstrate that these variants can be created while
preserving functionality, and we need to show that these variants
are not all susceptible to the same vulnerabilities. As a step
towards this goal we are developing a method for recombining
implementations of Transport Layer Security (TLS), specifically
OpenSSL, LibreSSL, and BoringSSL. In this paper we report on
our progress to date.

Keywords—software diversity, software recombination, library
security

I. INTRODUCTION

Each year, large numbers of computer security vulnerabil-
ities are reported as well as strategies to exploit them. To
address such discoveries, most Internet-connected platforms
have extensive resources devoted to developing and deploying
patches for software vulnerabilities. Despite such efforts, how-
ever, many systems remain unpatched, and even patched sys-
tems are subject to exploits of zero-day vulnerabilities. While
formal methods hold the promise of provably secure systems,
to date there has been little success in developing Internet-
connected systems that have no exploitable vulnerabilities.

One approach is to reduce the predictability in how systems
behave so as to make it harder to exploit vulnerabilities. Run-
time randomization defenses such as ASLR [1] make it
harder to perform memory corruption-based (buffer overflow)
attacks. Strategies such as derandomization [2] and heap
spraying [3], however, can be used to circumvent runtime
randomization. With runtime randomization, the attacker can
largely determine the likelihood of success or failure on a
targeted machine simply by studying the behavior of a test
machine under their control running the same software. If
software were truly diverse, however, attackers would lose this
advantage because the software running on any test machine
would (with high probability) be different from the software
running on the target.

The dangers of “software monocultures,” or the lack of
software diversity, have been noted by many researchers [4],
[5]. Almost all work in software diversity, however, has been
focused on the automatic creation of software variants at levels
not specified in program source code [6], [7]. This style of
diversity can be effective against attacks that make use of
regularities in program memory layout and behavior (such as
buffer overflows). Yet there exists many vulnerabilities which
do not make use of such regularities but are very exploitable.
Whether it be incorrect authentication checks, race conditions,
protocol implementation errors, or even more idiosyncratic
exploitable mistakes, such vulnerabilities cannot be mitigated
though semantic-preserving changes in how code is compiled
or run because the problems are in the programs’ semantics.

A diversity-style approach to mitigating such vulnerabilities
thus must make use of different implementations of the same
functionality. Creating independent implementations of critical
functionality is a practice long followed in the fault-tolerance
community [8], [9]. Today there exist multiple open-source
implementations of critical Internet infrastructure, server ap-
plications, and even many desktop applications such as web
browsers. While the presence of these variants provides a
small amount of diversity, an attacker still gets a lot of benefit
from exploiting popular variants because they are installed on
millions of systems.

Thus to improve security through diverse implementations
we need more than a handful of variants; instead, we need
enough variants that it is not feasible for attackers to study
and develop exploits for each one. We cannot hope to create so
many variants manually, and we cannot create them by simply
randomizing the behavior of individual implementations (as
has been done in previous work). The key insight of this work
is that we could combine portions of implementation with one
another to create diversity. Done properly, we would get a
combinatorial explosion of variants that would be challenging
for an attacker to characterize, let alone exploit.

Differences in program structure and function would suggest
that this would be a fool’s errand, as any arbitrary mixing of
code from different sources would most likely result in a non-
functional program. The entire field of genetic programming,
however, is based on creating new programs by recombining
fragments of other programs [10]. Further, in past work in our
group we have had success with the automatic recombination

ASIA '16 19

11th ANNUAL SYMPOSIUM ON INFORMATION ASSURANCE (ASIA '16), JUNE 8-9, 2016, ALBANY, NY

of regular program binaries at the object-file level [11], [12].
To get significant improvements in diversity that have measur-
able improvements in security, however, we need to maximize
implementation diversity while also preserving higher-level
semantics, particularly at the network and user interface level,
and do so with existing programs—something past approaches
cannot do.

Rather than recombining portions of entire programs, here
we propose Lo recombine portions of security-critical libraries.
Libraries present a stable API to applications yet can differ in
their internal semantics. So long as libraries implement the
same API, they may be interchanged. Thus, so long as we can
create library variants that implement the same API we can
get most of the benefits of implementation diversity at much
lower cost.

As a first test case, we are working on recombining li-
braries implementing standard SSL/TLS functionality, as such
libraries are both critical for security-related functionality and
have been shown to have many exploitable vulnerabilities.
Here we report on our progress on recombining elements of
OpenSSL [13] with two OpenSSL forks, BoringSSL [14] and
LibreSSL [15], [16]. As we will explain, recombination can be
challenging even between libraries that have recently diverged
from each other. Nevertheless, results to date indicate that our
approach has promise.

The rest of this paper proceeds as follows. We first describe
background and related work in Section II. We discuss our
approach in more detail in Section III. Sections IV & V
present details of our design and implementation progress,
respectively, while Section VI reports on our preliminary
results. Section VII discusses limitations and plans future
work; Section VIII concludes.

II. BACKGROUND
A. Software Diversity for Security

The idea of software diversity was proposed in fault tolerant
systems as far back as the late 1970s, in the form of N-version
programming [8]. In 1993, Cohen et al. [4] also recognised
the importance of software diversity for software security and
reported potential dangers of carrying out “software monocul-
tures.”

While using teams of developers to create independent
implementations has been proposed in the context of security
[17], the prohibitive costs of doing so have generally precluded
this approach. Instead, most work on software diversity for se-
curity has followed the direction described in 1997 by Forrest
et al. [6] where compile time and runtime diversity (really, ran-
domization) are added in ways that preserve the source code
level semantics of the application [7]. Most notably, address-
space layout randomization (ASLR) [1] is now a common
feature of modern operating systems; however, randomization
approaches have also been proposed at virtually all levels
of program behavior including the instruction set [18], [19],
memory address [20], function layout [21], and system calls
[22], [23]. Randomization-based defenses are often criticized
as they only provide probabilistic protection; however, through

N-variant programming [24] where the execution of variants
are compared at runtime, it is even possible to get deterministic
guarantees.

Because these transformations preserve source code-level
semantics, they are primarily useful in detecting memory
corruption attacks. Randomization at higher levels is also
possible, however, in order to mitigate attacks such as SQL
attacks [25] and cross-site scripting attacks [26]. But again,
such defenses cannot mitigate vulnerabilities that arise from
more general classes of implementation mistakes or design
errors.

B. Software Recombination & Patching

While most code is created manually by programmers,
there is a large body of work on automated ways to create
code. Compilers and assemblers are of course automated code
translators and generators; further, any declarative program-
ming system directly or indirectly generates code. By their
nature, however, these types of systems produce systems with
relatively little diversity.

Natural evolution has proven to be very good at automat-
ically producing diverse systems, so in considering ways to
automatically generate diversity it makes sense to look to
systems for evolving code. Most work in genetic programming
(GP)—the main community concerned with evolving code—
has focused on the evolution (really, searching in a pre-defined
space) of code which satisfies various fitness functions [10].
While there is work on diversity in genetic programming,
such work is mostly concerned with improving the quality
of GP search rather than creating diverse solutions for their
own sake [27], [28], [29]. While most work on genetic
programming only works with S-expressions, not the source
or object code of standard programming environments, there
has been progress in using GP to automatically create patches
to repair security vulnerabilities [30].

The work closest to ours here is that of Foster and So-
mayaji’s ObjRecombGA (2010) [11], [12]. ObjRecombGA
used a genetic algorithm to search for ways to successfully
recombine object files between two closely related programs
to create (with the help of a specialized linker) a new program
that combines the functionality of the two “parent” programs.
This approach was successful in combining functionality be-
tween variants of open source programs including a UNIX
command line program (GNU sed), a web browser (Dillo), and
a game (Quake). While object-level recombination may hold
promise for creating variants for security purposes, ObjRe-
combGA tends to create variants that are mostly one version
of the program with small additions from the other parent. It
does this in order to minimize the linking problems caused by
symbol, data structure, and function declaration mismatches
between object file variants.

Thus, to create a larger number of variants, we need to study
and develop techniques for managing the incompatibilities that
arise between divergent code bases.

ASIA '16 20

11th ANNUAL SYMPOSIUM ON INFORMATION ASSURANCE (ASIA '16), JUNE 8-9, 2016, ALBANY, NY

C. OpenSSL Security

The OpenSSL library started in 1998 as an implementation
of TLS. Over time, however, it has become a comprehensive
library implementing a wide range of cryptographic primitives
and protocols that a developer might require. While OpenSSL
is widely used, its security record has been problematic at
best. In 2014 and 2015 the OpenSSL project reported a total
of 54 Common Vulnerabilities and Exposures (CVE). As of
May 2016, many more vulnerabilities have been documented
in OpenSSL [31]. While many of the past vulnerabilities
in the OpenSSL library have been things such as buffer
overflows, integer overflows, and other types of memory
corruption attacks, many others were implementation errors
that are not easily mitigated through an implementation-level
randomization approach. Consider these examples:

« CVE-2003-0147 (OpenSSL Advisory) 14th March 2003:
RSA blinding was not enabled by default, potentially
allowing attackers to obtain the server’s private key
through a timing attack.

« CVE-2008-0166 (Debian Advisory) 9th January 2008:
OpenSSL on Debian systems generated predictable ran-
dom numbers due to a change made to remove warnings
generated by Purify and valgrind [32].

e« CVE-2008-5077 (OpenSSL Advisory) 7th January 2009:
Incorrect checking of a return result caused bad signatures
to be treated as being correct.

o« CVE-2014-0160 (OpenSSL Advisory) 7th April 2014: A
critical buffer over-read bug was discovered and named
Heartbleed [33].

The above vulnerabilities are all attributable to idiosyncratic
implementation mistakes. Different implementations would be
unlikely to have made exactly the same mistakes.

D. OpenSSL Forks

Soon after the Heartbleed bug in OpenSSL [33] was
disclosed, OpenSSL was forked by two groups looking to
improve the code quality of the project: LibreSSL, managed
by OpenBSD developers [16], and BoringSSL, managed by
Google developers [14].

LibreSSL has been designed as a streamlined drop-in re-
placement for OpenSSL, implementing the same basic API and
much of the same functionality, although many uncommonly
used and insecure algorithms have been removed. In contrast,
BoringSSL, while also streamlined, has not been intended as a
drop-in replacement; instead, the BoringSSL developers have
been willing to change APIs and functionality to improve se-
curity, performance, and usability. The BoringSSL developers
at Google are willing to do such changes because they also
control the codebases that use BoringSSL. Nevertheless, the
basic APIs provided by BoringSSL are still largely identical
to those provided by OpenSSL.

Often when forks are created the original project loses
resources; however, around the same time as BoringSSL and
LibreSSL were founded, the OpenSSL project also received
an influx of developer attention and funding. Thus, OpenSSL

has proven to be a kind of “natural experiment” in the cre-
ation of security-critical code diversity with multiple, mostly
compatible implementations now in existence.

III. LIBRARY-LEVEL SOFTWARE RECOMBINATION

In order to create software diversity that will improve soft-
ware security, here we propose to focus our efforts on creating
diverse implementations of security-critical libraries rather
than diversifying entire applications. Our strategy follows that
of ObjRecombGA [11] in that we wish to recombine the code
from different implementations. In order to get finer-grained
recombination (and hence more variants) our aim is to enable
recombination at the function level rather than the object file
level.

We propose to focus on library-level recombination for
multiple reasons.

o Library-level vulnerabilities can affect many applications;
thus, efforts to improve the security of such libraries will
tend to have disproportionate benefit.

o Important libraries often have multiple implementations,
and these implementations are often closely related. (For
example, libraries are often forked in order to satisfy
the requirements of large applications.) Even when these
implementations do not provide identical APIs, they are
still often substitutable with modest effort.

o Fine-grained recombination will likely require some
amount of manual effort. By focusing on libraries we can
leverage this effort to improve the security of multiple
applications.

FrankenSSL thus is a first effort to do library-level software
recombination between OpenSSL library and recently created
forks of OpenSSL. As explained in the last section, OpenSSL
is widely used, security-critical, has a long history of vulner-
abilities, and there exist high quality forks of OpenSSL.

IV. DESIGN

While the basic principle behind FrankenSSL’s design can
be translated to any other library with multiple forks or
implementations, for clarity here we describe our design in
terms of three libraries, OpenSSL, BoringSSL and LibreSSL.

A library can be modeled as an abstract cluster of functions
that all interlink. This abstraction is not that far from the reality
of their representations in a filesystem as sets of object files
with symbolic references to each other.

Applications that wish to use SSL/TLS normally interact
with their library of choice through APIs. The functions that
represent those libraries also interconnect with each other and
use each other through internal APIs, since modern software
engineering prioritizes modular over monolithic architecture
for functionality.

Normally a target application would link (through its APIs)
to a sct of functions within the function cluster of the library,
and those functions would link to other functions or each other.
This pattern creates a straightforward hierarchy of abstraction,
from the application (that asks for data to be encrypted or

ASIA '16 21

11th ANNUAL SYMPOSIUM ON INFORMATION ASSURANCE (ASIA '16), JUNE 8-9, 2016, ALBANY, NY

y - N Library
;\ P AR

o

APPLICATION

Fig. 1. Applications normally link into libraries through an established graph
of dependencies.

Library A

Library B

p

~ APPLICATION -

Library C

Fig. 2. Our goal is to layer different implementations of the same library to
allow wider functional diversity through procedural cross-linking.

decrypted) down to terminal functions in the graph (that
manipulates and manages data and memory).

The three implementations of SSL can be considered to
be three clusters of functions, with some overlap. Since they
are related to each other (with BoringSSL and LibreSSL
both being forks of OpenSSL), some functionality is shared
across multiple libraries. Each effective library can be modeled
mostly as a directed graph, starting from the application and
splaying out into the shared function cluster. See Figure 1.

From this formalization, it’s easy to see that alternate
potential implementations of SSL can simply be modeled as
unique graphs. FrankenSSL’s goal is to procedurally generate
random, viable API/linker graphs upon this shared library of
functions and symbols. See Figure 2.

Exploits in any of the implementations are ultimately lo-
cated in a specific function, or in the interplay between a
small set of functions. As a consequence, randomized im-
plementations drastically cut down on the effective portabil-
ity of any given exploit, since an attacker can’t guarantee
that any given system has the relevant function or function
constellation. Even if a given implementation does have the
target functions in the target arrangement, alterations to the
rest of the graph may lead to the runtime being structured
differently in a manner reminiscent of Address Space Layout
Randomizaton [1].

V. IMPLEMENTATION PROGRESS

While we eventually would like to recombine libraries
at arbitrary function boundaries, initially we have focused
on recombining the libraries at the level of calls that are
commonly made by applications into the library. Applications
created using OpenSSL (and thus BoringSSL and LibreSSL)
generally follow the same workflow: initialize the library,
initiate a TLS session, configure the TLS session, read from
a session, write to a session, deinitialize the session, and
then proceed to deinitialize the library. We wish to distribute
these calls across the different libraries: we want to initialize
with OpenSSL while reading from a session using LibreSSL’s
functionality, for example, as well as distributing internal calls
across implementations.

As a first step towards this goal, we have focused on
recombining the initializaiton and deinitialization code of each
of the libraries. Specifically, we focused on recombining calls
to the following functions:

e SSL_load_error_strings(),
e SSL_library_init (),

e TLS_client_method(),

e SSIL_CTX_new(),

e SSL_CTX_free (), and

e SSLeay_version().

In the rest of this section we describe the project scaffolding,
build system, and linking issues. In the next section we present
the results of these efforts.

A. Scaffolding

Installing OpenSSL, BoringSSL, and LibreSSL side-by-side
on the same system can be a daunting task for novices. Each of
the libraries—due to the nature of having the same origin—
export similar symbols, build artifacts with the same name,
and install to the same directories.

Installation of any one implementation on a system-wide
basis would mean that another implementation cannot be used
due to the resulting collisions. This makes having an instal-
lation of more than one implementation based on OpenSSL
difficult, to say the least. These collisions make it impossible
to link all three into the same application without any edits to
any of the implementations.

Our solution is to link applications against a hand-crafted
dynamically linked stub library. We then specify different com-
binations of implementations at runtime using LD_PRELOAD.
This method gets rid of any high-level namespace collisions,
however, it only works if all three libraries can be linked in
to the application at once. To allow this to happen we had to
change how the libraries were built.

B. Build Infrastructure

One of the changes that both BoringSSL and LibreSSL
made from OpenSSL was a change in build infrastructure.
OpenSSL makes use of a custom build infrastructure based
upon standard Makefiles. BoringSSL and LibreSSL, however,
were changed to use CMake.

ASIA '16 22

11th ANNUAL SYMPOSIUM ON INFORMATION ASSURANCE (ASIA '16), JUNE 8-9, 2016, ALBANY, NY

Initially we tried converting the build system for OpenSSL
to CMake. This proved to be challenging. OpenSSL requires
many files to be generated before compilation and a number
of compiler flags to be passed in at configuration time. Many
of these flags are not documented, and as such are difficult to
account for when migrating the build system.

Rather than migrate all of the code to a single build system,
we instead modified each as needed in order to allow code
from all three libraries to be incorporated into a single binary.
To accomplish this we had to address the symbol resolution
problem.

C. Symbol Resolution

Versioning the shared objects allows maximal modularity as
we can combine exported symbols from each linked library at
runtime. While OpenSSL versions symbols by default, Bor-
ingSSL and LibreSSL do not; thus, BoringSSL and LibreSSL
export the same symbols for various functions, preventing
them from both being linked in to the same binary.

Before we could implement a wrapper around cach library
we needed to ensure that the correct function would have been
called from each library. That is, we needed to make sure that
the program, at runtime, knew which version of a function to
call.

We investigated multiple solutions to get around symbol
collisions, namely: the use of objcopy to rename important
symbols, writing a compiler pass, and using symbol version-
ing.

« objcopy: Using this method would require us to modify
not only the compiled shared object files, but also to
create our own header files with prototypes to each of the
functions. This would, in essence, give a result equivalent
to writing our own compiler pass.

o Compiler pass: This method included creating a plugin
for GCC or writing an LLVM pass to rename symbols
of each library at compilation time such that there would
be no colliding symbols. However, writing a plugin for
GCC or a pass for LLVM would require anyone who
would want to build the software to have their compiler
configured correctly. While not unreasonable, it is also
not ideal as it would introduce complexities that come
with working at the compiler level.

« Symbol versioning: After reading the section on Symbol
Relocations, and Export Control of Drepper’s “How To
Write Shared Libraries” [34], we decided that his method
was perfect for our needs. It required an additional two
compiler flags and the creation of a symbol map which
was trivial to write. By exporting the version of a symbol,
each library we linked to would have saved a reference to
the library it was referring to at link-time, which meant
that at runtime the expected functions should be called.

Ultimately, we moved forward with symbol versioning
as it is, we believe, the most transparent way to achieve
non-colliding, globally exported symbols and only requires
minimal changes to each codebase.

D. Runtime Linking

Each method that is wrapped from OpenSSL, BoringSSL,
and LibreSSL is packaged into its own shared object file.
While this generates three times as many files as wrapped
methods, it safely separates each method from each library.

We link each method from the desired library to a test
program which uses each of the methods. Linking is done
at runtime by specifying each wrapper through the use of
the LD_PRELOAD environment variable. If the program runs
without any errors, it is considered to have a successful
combination of methods.

VI. PRELIMINARY RESULTS

We have tested all combinations for intialization and deini-
tialization using the three libraries and none of them are
viable for practical use. Programs have cither thrown a fatal
error or have leaked memory—not ideal in either case. The
memory errors arise because of the difference in the SSL._CTX
structure defined in each library. This causes complications as
the SSL_CTX structure is used to store state throughout each
session.

We created a simple application to test whether or not a
combination was viable. Any combination ran by the program
had to go through the initialization and deinitialization pro-
cesses without errors to be considered a viable combination.
Errors during runtime were checked for using valgrind and
GDB.

TABLE I
RESULTS FROM MANUAL TESTING

init deinit Result
Open Open ‘Works
Open Boring | SIGABRT
Open Libre SIGSEGV
Boring | Boring | Works
Boring | Libre Leak
Boring | Open Leak
Libre Libre ‘Works
Libre Boring | SIGABRT
Libre Open SIGSEGV

Read and write operations in the sessions were not sup-
ported by any combination that was not error-free; thus, we
omitted these results from the above table.

There was no case in which any of the libraries worked
well together, even with some rudimentary “shim” code. The
differences between each library’s SSL context, and what
is required to correctly allocate it vary too greatly to work
without significant amounts of interface code.

VII. DISCUSSION

We have attempted to recombine parts of OpenSSL, Li-
breSSL, and BoringSSL to create functional variants. As
highlighted in the previous section, the namespace and symbol
collision issue that arises from the recombination of the
three libraries have successfully been resolved. We were also
successful in developing a proof-of-concept application that

ASIA '16 23

11th ANNUAL SYMPOSIUM ON INFORMATION ASSURANCE (ASIA '16), JUNE 8-9, 2016, ALBANY, NY

can swap out implementations of a function at runtime. We
were however unable to resolve the memory error issue which
resulted from inaccurate memory allocation by the variants
produced. As such, we were unsuccessful in the production of
fully functional variants.

While automated recombination methods such as those used
by ObjRecombGA [11] might allow for the creation of more
functional variants, changes to core data structures such as
the SSL context SSL_CTX will require the creation of glue
code of some kind to account for these differences, either by
maintaining parallel versions of the data structures (one for
each version of the library used) or by dynamically changing
the data structure as it is accessed. While this adaptation could
eventually be automated, a first step would be to develop such
glue code manually. We have made some progress with the
development of such code; finishing this work is a key goal
for future work on this project.

One of the surprising results of this work is the degree to
which the forks of OpenSSL have diverged. Both BoringSSL
and LibreSSL have reorganized the code, changed build sys-
tems, and changed core data structures. These changes are
likely due to the large technical debt that OpenSSL had
incurred over the years which contributed to the large number
of vulnerabilities and motivated the creation of the forks in
the first place. Indeed, we ourselves ran into issues regarding
the build environment of OpenSSL, with us finding that
multiple files generated before compilation in OpenSSL are
not documented. We can thus understand the motivation for
the work that has been done on cleaning up the code and
build system in BoringSSL and LibreSSL. Going forward,
then, it may be wise to focus more on recombining the forks
of OpenSSL rather than using the original library.

The extensive modifications also give additional motivation
for the development of FrankenSSL. At a minimum, such
extensive code changes have likely introduced vulnerabilities;
further, as these codebases diverge, it becomes more and more
difficult for vulnerabilities found in any one of them to also
be found and removed from the others. Library-level software
recombination is a strategy that can mitigate the risks of these
vulnerabilities.

VIII. CONCLUSION

This paper presents a new methodology for defending
systems from intrusion through diversity, library-level software
recombination. It also presents progress on the development
of FrankenSSL, a randomly-generated recombination of code
present in OpenSSL, LibreSSL, and BoringSSL.

While we are able to solve the basic problem of doing
the recombination using symbol versioning and per-function
object file wrappers, changes to core data structures prevents
complete interoperability of initialization and deinitialization
routines between libraries. Glue code to manage these in-
compatibilities needs to be developed in order to allow for
finer-grained recombination between these libraries. The de-
velopment of such glue code, automation of the recombination

process, and an evaluation of vulnerability mitigation are key
goals for future work.

ACKNOWLEDGMENTS

The authors would like to acknowledge the support of
Canada’s Natural Sciences and Engineering Research Council
(NSERC) through their Discovery grants program.

REFERENCES

[1] The PaX Team, “Address space layout randomization,” https://pax.
grsecurity.net/docs/pax-future.txt, 2003, accessed May 17, 2016.

[2] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh,
“On the effectiveness of address-space randomization,” in Proceedings
of the 11th ACM Conference on Computer and Communications Security
(CCS). ACM, 2004, pp. 298-307.

[3] J. K. David Evans, Anh Nguyen-Tuong, Moving Target Defense. New
York: Springer New York, 2011, ch. Effectiveness of Moving Target
Defenses.

[4] F. B. Cohen, “Operating system protection through program evolution,”
Computers and Security, vol. 12, no. 6, pp. 565-584, 1993.

[5] D. Geer, R. Bace, P. Gutmann, P. Metzger, C. P. Pfleeger, J. S.
Quarterman, and B. Schneier, “Cyberinsecurity: The cost of monopoly,”
in Computer and Communications Industry Association Report, 2003.

[6] S. Forrest, A. Somayaji, and D. H. Ackley, “Building diverse computer
systems,” in the Sixth Workshop on Hot Topics in Operating Systems.
IEEE, 1997, pp. 67-72.

[7] B. Baudry and M. Monperrus, “The multiple facets of software diversity:
Recent developments in year 2000 and beyond,” ACM Computing
Surveys (CSUR), vol. 48, no. 1, p. 16, 2015.

[8] L. Chen and A. Avizienis, “N-version programming: A fault-tolerance
approach to reliability of software operation,” in Digest of Papers FTCS-
8: Eighth Annual International Conference on Fault Tolerant Computing,
1978, pp. 3-9.

[9] J. C. Knight and N. G. Leveson, “An experimental evaluation of the

assumption of independence in multiversion programming,” Software

Engineering, IEEE Transactions, vol. SE-12, no. 1, pp. 96-109, 1986.

J. R. Koza, Genetic programming: on the programming of computers by

means of natural selection. MIT press, 1992.

B. Foster and A. Somayaji, “Object-level recombination of commodity

applications,” in Proceedings of the 12th Annual Conference on Genetic

and Evolutionary Computation. ACM, 2010, pp. 957-964.

B. C. Foster Jr., “Object file program recombination of existing software

programs using genetic algorithms,” Master’s thesis, Carleton University,

2011.

OpenSSL Software Foundation, “OpenSSL: Cryptography and SSL/TLS

toolkit,” https://www.openssl.org/, accessed May 17, 2016.

Google, “BoringSSL,” https://boringssl.googlesource.com/boringssl/, ac-

cessed May 17, 2016.

OpenBSD, “LibreSSL,” http://www.libressl.org/, accessed May 17,

2016.

J. Wagnon, “Security sidebar: LibreSSL is forking OpenSSL,” https:

//devcentral.f5.com/articles/security-sidebar-libressl-is-forking-openssl,

May 5, 2014, accessed May 17, 2016.

M. G. Bailey, “Malware resistant networking using system diversity,” in

Proceedings of the 6th Conference on Information Technology Educa-

tion. ACM, 2005, pp. 191-197.

E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Stefanovic, and D. D.

Zovi, “Randomized instruction set emulation to disrupt binary code

injection attacks,” in Proceedings of the 10th ACM Conference on

Computer and Communications Security (CCS). ACM, 2003, pp. 281-

289.

G. S. Kc, A. D. Keromytis, and V. Prevelakis, “Countering code-

injection attacks with instruction-set randomization,” in Proceedings of

the 10th ACM Conference on Computer and Communications Security.

ACM, 2003, pp. 272-280.

S. Bhatkar, D. C. DuVarney, and R. Sekar, “Address obfuscation: An

efficient approach to combat a broad range of memory error exploits.”

in USENIX Security, vol. 3, 2003, pp. 105-120.

M. Abadi and J. Planul, “On layout randomization for arrays and

functions,” in Principles of Security and Trust. ~ Springer, 2013, pp.

167-185.

[10]

(1]

[12]

[13]
[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

ASIA '16 24

[22]

(23]

[24]

[25]

[26]

[27]

11th ANNUAL SYMPOSIUM ON INFORMATION ASSURANCE (ASIA '16), JUNE 8-9, 2016, ALBANY, NY

X. Jiang, H. J. Wang, D. Xu, and Y.-M. Wang, “Randsys: Thwarting
code injection attacks with system service interface randomization,” in
26th Symposium on Reliable Distributed Systems (SRDS). 1EEE, 2007,
pp. 209-218.

Z. Liang, B. Liang, and L. Li, “A system call randomization based
method for countering code-injection attacks,” International Journal of
Information Technology and Computer Science (IJITCS), vol. 1, no. 1,
p. 1, 2009.

B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson,
J. Knight, A. Nguyen-Tuong, and J. Hiser, “N-variant systems: a
secretless framework for security through diversity,” in 15th USENIX
Security Symposium, 2006.

S. W. Boyd and A. D. Keromytis, “SQLrand: Preventing SQL injection
attacks,” in Applied Cryptography and Network Security. Springer,
2004, pp. 292-302.

M. Van Gundy and H. Chen, “Noncespaces: Using randomization to
defeat cross-site scripting attacks,” Computers & Security, vol. 31, no. 4,
pp. 612-628, 2012.

S. M. Gustafson, “An analysis of diversity in genetic programming,”
Ph.D. dissertation, University of Nottingham, 2004.

[28]

[29]

[30]

[31]

[32]

[33]

[34]

ASIA '16

R. Burke, S. M. Gustafson, and G. Kendall, “A survey and analysis of
diversity measures in genetic programming.” in GECCO, vol. 2, 2002,
pp- 716-723.

E. K. Burke, S. Gustafson, and G. Kendall, “Diversity in genetic
programming: an analysis of measures and correlation with fitness,”
IEEE Transactions on Evolutionary Computation, vol. 8, no. 1, pp. 47—
62, Feb 2004.

S. Forrest, T. Nguyen, W. Weimer, and C. Le Goues, “A genetic
programming approach to automated software repair,” in Proceedings of
the 11th Annual Conference on Genetic and Evolutionary Computation.
ACM, 2009, pp. 947-954.

OpenSSL Software Foundation, “OpenSSL: Vulnerabilities,” https://
www.openssl.org/mews/vulnerabilities.html, accessed May 17, 2016.

B. Schneier, “Random number bug in debian linux,” https://www.
schneier.com/blog/archives/2008/05/random_number_b.html, May 19
2008, accessed May 25, 2016.

Codenomicon, “The heartbleed bug,” http://heartbleed.com/, April 2014,
accessed May 25, 2016.

U. Drepper, “How to write shared libraries,” Retrieved Jul, vol. 16, p.
2009, 2006.

25

