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Abstract
In machine learning research and application, multiclass

classification algorithms reign supreme. Their fundamental

property is the reliance on the availability of data from all

known categories to induce effective classifiers. Unfortu-

nately, data from so-called real-world domains sometimes do

not satisfy this property, and researchers use methods such

as sampling to make the data more conducive for classi-

fication. However, there are scenarios in which even such

explicit methods to rectify distributions fail. In such cases,

1-class classification algorithms become the practical alterna-

tive. Unfortunately, domain complexity severely impacts their

ability to produce effective classifiers. The work in this arti-

cle addresses this issue and develops a strategy that allows

for 1-class classification over complex domains. In particular,

we introduce the notion of learning along the lines of under-

lying domain concepts; an important source of complexity in

domains is the presence of subconcepts, and by learning over

them explicitly rather than on the entire domain as a whole,

we can produce powerful 1-class classification systems. The

level of knowledge regarding these subconcepts will naturally

vary by domain, and thus, we develop 3 distinct methodolo-

gies that take the amount of domain knowledge available into

account. We demonstrate these over 3 real-world domains.
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1 INTRODUCTION

With the proliferation of data collection over the past few decades, the ubiquity of data in most domains

provides an exceptionally conducive platform for practical research into the application of machine

440 © 2017 Wiley Periodicals, Inc. wileyonlinelibrary.com/journal/coin Computational Intelligence. 2018;34:440–467.



SHARMA ET AL. 441

learning algorithms, particularly classification. In particular, interest from industry is increasing in

using intelligent algorithms for fast and efficient solutions to tasks that would typically require vast

human resources or cumbersome and outdated approaches. A tremendous amount of data is now being

collected at a very fast rate, and there is a strong desire to make sense of these massive data sets by

using techniques from machine learning.

However, with this exposure of machine learning to these data sets, many of the standard, implicit

assumptions that machine learning methods often make are now being torn apart. This has a direct

consequence on how algorithms and ideas from machine learning can be applied to these domains.

Specifically, algorithms that not only handle the issues associated with massive data sets but are also

able to take advantage of the nuances inherent in them to ameliorate performance need to be tuned and

developed.

There are 2 significant facets to massive data sets in particular that have the most severe impact

on machine learning solutions. The first, and perhaps most significant and pervasive issue, is that of

class imbalance. Most of the binary and multiclass classification algorithms that form the core of

the machine learning world assume relatively balanced distributions of categories (classes) to induce

appropriate discriminant functions. Put more simply, there are sufficient data from all known cate-

gories that make up the domain to build a model that can classify novel data with acceptable accuracy.

But, more often than not, real-world data are far from balanced; there is, typically, an overabundance

of data from certain classes, and there are very little data from other classes. The issues arising directly,

or indirectly, from such imbalanced distributions deserve special attention and, of late, research into

learning in such domains has gained in popularity1; oversampling, undersampling, cost-sensitive clas-

sification, etc are some of the conventionally used methods used for rectifying imbalance. However,

there are situations, for example, in security domains and text classification, when imbalances are

of such an extreme nature that even methodologies designed explicitly for handling them cannot be

applied. In particular, the only data available for learning a classification system are from a single class

(or a group of similar classes); data from other classes are either nonexistent or impossible to col-

lect or exceptionally rare. In such scenarios, 1-class classification, a special paradigm of classification

algorithms, becomes the only viable framework for learning.

In our past work, we explored in detail the problem of which paradigm of learning, 1 class or

binary/multiclass, to use, based on the levels of imbalance.2 Establishing the situations under which

1-class classification is the suitable choice is one matter; actually using it is an entirely different matter

altogether. This leads us to the second issue, one that directly impacts 1-class classification, namely,

domain complexity. Massive data sets tend to have a highly complex distribution; the entire data space

can, in effect, be clustered into distinct subconcepts, each of which forms their own unique space.

Modeling a single class that exhibits a complex distribution is a typically hard task; the advantage

that 1-class classifiers possess over multiclass classifiers in domains of imbalance disappears when

the domain in consideration is complex. We hypothesize that the complexities arise because of the

presence of subconcepts, and depending on the domain and availability of domain experts, we can have

varying amounts of knowledge regarding what the subconcepts are. In the ideal case, we have complete

knowledge regarding what the subconcepts are and are able to identify them during classification.

However, in other domains, we may need to learn them in a supervised manner with the aid of a domain

expert. The worst case occurs when we have no knowledge and must discover them via unsupervised

learning. Regardless of the amount of knowledge, the core idea is to simplify the original domain into

subdomains that are easier to model; learning in the context of subconcepts rather than over the entire

domain will narrow down the focus of the learner, allowing it to be more effective at accepting target

class instances and rejecting data from all other classes.
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Our work was inspired by research conducted over 3 real-world domains. The first domain

comprised data representing Xenon isotopes and dealt with the compliance verification of the Com-

prehensive Test Ban Treaty (CTBT)3,4; we were tasked with investigating whether machine learning

could be applied so as to automate the detection of clandestine nuclear tests by nations. The second

domain comprised gamma ray spectra and involved investigating the applicability of machine learning

for the purposes of detecting gamma ray signatures emitted from dangerous isotopes, for example, ura-

nium or plutonium. The third domain related to biometric sensor data gathered from a mobile phone's

accelerometer, gyroscope, and touch screen during a swipe action, the aim being to use this to authen-

ticate only the user of the phone. All these domains suffer from extreme imbalance, and this precludes

the application of binary or multiclass classification algorithms.

The article is structured as follows. Section 2 will provide an overview on the various methods

used for learning over complex domains exhibiting extreme class imbalance. Section 3 introduces the

strategies for improving 1-class classifier performance by dividing the domain along subconcepts. An

empirical analysis is conducted over artificial and UCI data sets, as well as the 3 real-world domains

that motivated our research. We begin by validating our strategies over the artificial and UCI data sets in

Section 4. This is followed by an application of our strategies over the 3 domains in Section 5. Section

6 provides concluding remarks, and possible directions for future research are detailed in Section 7.

2 CHALLENGES IN IMBALANCED DOMAINS

In this section, we review research done within the field of extreme imbalance. Extreme imbalance

warrants the application of 1-class classifiers, as explored in the work of Bellinger et al,2 and thus, our

review will focus only on research done under 1-class classification. For a comprehensive review on

research done in the general area of imbalance, we direct the interested reader to the excellent survey

by He and Garcia.1

The 2 aspects that affect the performance of 1-class classifiers considered in this work are overlap

and multimodality, both of which contribute to the overall complexity of a domain. It is well established

that the degree of overlap between classes severely impacts classifier performance; the more the overlap

between classes, the harder the learning task. This holds true for both binary and 1-class classifiers.

Furthermore, if a domain is highly multimodal, there is a risk of a 1-class classifier overgeneralizing

as it attempts to “cover” all areas of the domain. We begin this section by reviewing work done in

understanding the relationship between the level of imbalance and the level of overlap between various

classes in domains. This is followed by a review on research done in improving performance over

imbalanced, multimodal domains.

2.1 Imbalance and overlap
Studies in imbalance and overlap have been primarily conducted under a binary or multiclass classifi-

cation setting. Though no studies exist that explicitly look at the impact of overlap on 1-class classifiers,

research done over binary classifiers offers insight into the effects of overlap on 1-class classifiers.

Thus, we review the relevant research in this subsection.

While much of the focus in literature has been on rectifying the imbalance explicitly, a few

researchers have examined the extent to which imbalance really affects classifier performance. Are

there properties of the domain that might make the impact of imbalance less severe? Japkowicz5 dis-

covered that if the classes are linearly separable, a classifier such as a support vector machine (SVM)

would not be impacted by imbalance. Specifically, they note that the problems due to class imbalances
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are relative to various factors, such as the complexity of the concept (ie, how complex the probability

distribution function that generates the data is) and the size of the training set; the classifier perfor-

mance will be immune to imbalance if the concept is simple and the training set is large. Prati et al6

conduct a similar study; using 10 artificially generated data sets, each with varying levels of overlap,

they observe that as the overlap decreases, the effect of imbalance becomes less severe. To further

understand the nuances of overlap and imbalance, García et al7 examine the performance of classifiers

by looking at the overall imbalance ratio in the data (global imbalance), the imbalance ratio in the over-

lap region (local imbalance), and the amount of data in the overlap region. They observe that a class

that is better represented in the overlap regions is better classified by global learners, while a class

that is not well represented is classified better by local learners. The dependency between overlap and

imbalance is further studied by Denil and Trappenberg,8 where they observe that given enough data,

imbalance has minimal impact, whereas if the overlap is severe, even optimal classifiers will suffer in

performance.

All these studies conclude that imbalance is not always the issue; the degree of overlap between the

classes has a major impact. In other words, the greater the overlap, the harder the learning task, irrespec-

tive of imbalance. Therefore, the impact of overlap between classes traverses both binary/multiclass

and 1-class classification paradigms; in the latter, the challenge will be in inducing an appropriate

function that does not overgeneralize into the overlap region. Thus, these studies serve to highlight that

even in a 1-class classification setting, handling overlap is important in producing accurate classifiers.

In the following subsection, we consider the other facet of data complexity, that of multimodality.

2.2 Imbalance and multimodality
Multimodality in a domain can arise by the presence of multiple subconcepts. In this section, we

review work conducted to improve the performance of 1-class classifiers when faced with multimodal

domains. We begin by considering ensemble-based approaches that resample the domain and use exist-

ing ensemble learning algorithms, followed by work done under a clustering-based framework that

divides the domain space by some form of clustering. We end this subsection by considering research

done that exploits known domain knowledge to divide the domain for improving classification.

2.2.1 Ensemble learning–based approaches
Ensemble methods such as bagging and boosting have had tremendous success in multiclass classi-

fication, and thus, it should come as no surprise that methods inspired from these algorithms have

found their way within the realm of learning with imbalance. Shieh et al9 use bagging to create an

ensemble of 1-class SVMs (OCSVMs). They note that in the presence of noisy and borderline samples,

OCSVM learns an enlarged boundary, which leads to a large number of false positives. They evaluate

both a regular OCSVM and the bagged version over artificial and 3 UCI data sets and show that their

bagged version outperforms the regular OCSVM in all cases, especially when they introduce noise into

the data sets. Desir et al10 create bootstrap replicas of the training data and generate outliers for each

set, thus converting each subset of the data into a binary classification problem. Over these subsets,

they train random forest classifiers and aggregate their decision. Through experiments conducted over

data sets from the UCI repository, they compare the performance of their method against OCSVM,

Gaussian estimator, Parzen windowing, and Gaussian mixture and demonstrate that on most data sets,

their approach performs equally well or better than these algorithms.
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2.2.2 Clustering-based approaches
For clustering-based approaches, the idea is to partition the data space into distinct subspaces over

which individual 1-class classifiers can be trained. Wang et al11 exploit the inherent target data struc-

tures obtained via hierarchical clustering to create an ensemble of spherical 1-class classifiers. Further

work in using clustering for creating 1-class classifier ensembles is conducted by Lipka et al,12 where

the authors use the k-means algorithm to create an ensemble of OCSVM classifiers. A general-purpose

framework for using clustering for improving 1-class classification is proposed by Krawczyk et al.13

Their framework consists of 3 parts: the choice of clustering algorithm, the choice of 1-class classi-

fier, and the choice of how to combine decisions. In all studies, the ensemble appears to outperform

the single 1-class classifiers. Within the area of network intrusion detection, Leung et al in Leung and

Leckie14 develop a clustering algorithm based on pMAFIA to perform anomaly detection on network

data, with the aim to cover 95% of the training data (using the KDD Cup data set), thus making the

5% of data points not covered as outliers.

2.2.3 Learning with domain knowledge
While the previous sections used generic methods for partitioning the data space, some research, espe-

cially in security, has looked into using the nuances of the domain itself for partitioning the space. In

other words, rather than simply cluster or sample based on a general heuristic, they look at whether

groups can be formed such that all the data in a particular group conform to a predetermined heuristic

as determined by a domain expert.

In the domain of handwritten character recognition, a nonclustering-based approach to autoasso-

ciation is discussed by Schwenk and Milgram.15 The authors describe Diabolo networks, in which

an autoassociator (AA) is trained on a particular class, inherently reducing a multiclass problem into

multiple 1-class problems. Each character is treated as a separate class, and a network is trained on

it. The class whose network returns the smallest reconstruction error is assigned to the corresponding

test instance. Note that the core idea in this approach may not have anything to do with alleviating the

problem of small disjuncts but of reducing a complex domain, ie, the set of all characters in the English

language as applicable to handwritten character recognition, into simpler domains, ie, the individual

characters.

In the domain of network security, Giacinto et al16 propose a modular system. Specifically, they

observe that traffic over a TCP/IP network is made up of packets pertaining to different services, each

characterized by its own unique pattern. Thus, it follows that a unique classifier must be induced for

each service, rather than the traffic as a whole. They identify 6 services: Web, mail, Internet Control

Message Protocol, FTP, Internet Control Message Protocol, and miscellaneous. Furthermore, for each

service, they use 3 sets of features: 1 for content specific information, 1 for intrinsic information, and

1 related to traffic. Thus, each service has 3 classifiers trained for it. Using a variety of multiclass

classifiers over the DARPA data set, the authors report an improvement in classification performance

and a reduction in false alarms. The use of multiclass classifiers is not very practical (as attack data are

typically unavailable for learning), and thus, in a follow-up work by Giacinto et al,17 the authors extend

this framework to train 1-class classifiers, specifically, the 1-class SVM, Parzen density estimator, and

k-means. As with multiclass classifiers, they observe that the ensemble provides superior performance

as opposed to just single classifiers.

Neither of the studies discussed in this subsection use a general heuristic. Instead, they divide and

conquer based on explicit domain knowledge. The principles, however, are the same: divide the domain

space and learn over each subset.
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FIGURE 1 An overview of research coverage in the field of learning over imbalanced domains

2.2.4 Summary
In Figure 1, we provide a graphical overview regarding the various aspects of research in learning over

imbalanced domains. We observe that, irrespective of the choice of learning paradigm (binary or 1

class), the challenges in building efficient classifiers are similar: One has to deal with either overlap,

domain complexity (eg, due to multimodality), or a combination of both.

As the figure demonstrates, and indeed, from the review presented in this chapter, if we are to use

binary classifiers, then the task of rectifying the challenges posed by various aspects of imbalance is

relatively easy. It is when the choice is to use a 1-class classifier that we observe a dearth in research and

solutions for handling all challenges presented by imbalance. The notion of overlap only really makes

sense when we have knowledge of both classes; given only data from a single class, it is difficult to

ascertain whether other classes will overlap with the known class. This issue will be further exacerbated

if the domain exhibits multimodality. It is this void in research that is addressed in this article.

3 LEARNING THE SUBCONCEPTUAL LAYER

The performance of 1-class classifiers is severely impacted if the domain under consideration is com-
plex. These complexities can arise because of overlap as well as multimodality, and generalizing over

them can lead to poor classifier performance. Therefore, if we wish to improve performance, it is imper-

ative to handle these complexities appropriately. A step towards this end is to understand what causes a

domain to exhibit them. We propose that a root cause for these complexities is the presence of multiple

subconcepts that underlie the domain space, an idea explored by Sharma et al18; each of these sub-

concepts represents a unique property within the overall domain and can typically be identified by an

expert in the domain. Thus, we hypothesize that by identifying and isolating these concepts and learn-

ing over them individually, one can mitigate the effects of domain complexity and induce more accurate

1-class classifiers. In this section, we formally introduce our strategies for 1-class classification over

subconcepts.

We begin by delving into the notions of main concepts and subconcepts. As an example to illus-

trate the general idea, let us consider a simple learning problem that involves distinguishing between

spoiled beans and fresh beans within the family of common beans (Phaseolus vulgaris). The domain of

common beans has a number of different aspects, each corresponding to a type of bean. For simplicity,

in our example, we only consider 3 aspects: kidney beans, pinto beans, and white beans.
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Our learning task is to learn the concept of fresh beans. Because of the presence of 3 different

aspects, this concept is represented by 3 subconcepts: fresh pinto beans, fresh kidney beans, and fresh
white beans.

Tfig:conceptTypes illustrates the generalization of our bean example to concepts and subconcepts.

In particular, it illustrates a domain with 3 aspects and 2 classes:

• The target class is the class over which we will induce a 1-class classifier. In our bean example, this

would represent fresh beans. The outliers thus would be spoilt beans.

• The different aspects of the domain are denoted by A1, A2, and A3. In our bean example, these

would be kidney, pinto, and white beans.

• The concept that we wish to learn is represented by the target class within each aspect. Thus, the

concept is represented by (Target 1∪Target 2∪Target 3), and Target 1, Target 2, and Target 3 cor-

respond to the subconcepts of the concept. For our bean example, Target 1 would represent fresh

kidney beans, Target 2 fresh pinto beans, and Target 3 fresh white beans, the concept to learn being

that of fresh beans.

The gradient in the image represents density; darker regions contain the bulk of the data. The image

further serves to illustrate how the presence of multiple aspects can cause the domain to exhibit both

multimodality and overlap between the classes.

In the presence of subconcepts, there are 2 approaches that can be used for inducing a classifier to

learn the main concept:

• Learn the concept as a whole: In this approach, learning is done for the concept over all aspects of

the domain. In our bean example, the training data would consist of fresh beans of all types (aspects).

• Learn over subconcepts: For this approach, learning is done over each subconcept corresponding to

the different aspects of the domain. In our bean example, the training data would be divided based

on the type of fresh beans and 3 classifiers would be built, 1 for each subconcept.

Thus, in the first approach, we ignore the presence of subconcepts and simply learn the entire

concept, whereas in the second approach, we tailor our learning methodology to explicitly handle the

different subconcepts. The question thus becomes, which approach to take? Specifically, how does

making a conscious decision to learn along subconcepts impact learning?

To answer this question, let us once again consider the domain illustrated in Figure 2. If we are to

induce a 1-class classifier over the target class without taking each subconcept into account, we get a

classifier as shown in Figure 3. Given the complexity of the domain, the classifier would overgeneralize

over the subconcepts, the consequence being that while it would indeed cover most of the target class,

it would erroneously classify most of the outlier data as belonging to the target class as well.

If we are to acknowledge the presence of aspects and divide the target data based on the associated

subconcepts, on the other hand, we would get a classifier (or a set of classifiers) as shown in Figure 4.

By learning over the subconcepts, we do not risk overgeneralization; each classifier focuses only on

the targets belonging to a single subconcept. Thus, the resulting classifier would have a much lower

error rate over the outliers.

To summarize, we hypothesize that, in the presence of aspects, learning directly over the concept

can yield poor performance, especially due to overgeneralization. Using domain knowledge to identify

the aspects, and consequently the subconcepts, we can prevent a classifier from overgeneralizing, thus

resulting in better classification. In subsequent sections, we will empirically validate this observation.

The question now is how to actually identify the aspects. Depending on the nature of the aspects

and the associated domain knowledge, we propose 3 different strategies. These are elaborated in the

following sections.
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FIGURE 2 The notion of main and subconcepts [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Inducing a classifier without distinguishing between different subconcepts [Color figure can be viewed

at wileyonlinelibrary.com]

3.1 One-class classification with complete knowledge
The most ideal case occurs when it is possible to identify, with full confidence and accuracy,

which aspect a novel instance from the data space belongs to. With respect to training, a domain

wileyonlinelibrary.com
wileyonlinelibrary.com
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FIGURE 4 Inducing classifiers by distinguishing between different subconcepts [Color figure can be viewed at

wileyonlinelibrary.com]

expert is available to identify the different aspects and categorize the training data into appropriate

subconcepts, and we can build 1-class classifiers over these subconcepts. Furthermore, once we have

built an ensemble of 1-class classifiers, the system knows to which aspect a novel instance belongs.

Thus, novel instances can be processed by the 1-class classifier tailor-made for that particular aspect.

This idea is illustrated in Figure 5. Consider a domain in which there are 2 aspects, A1 and A2.

In practice, the domain expert will provide us with training data from both aspects, from which we

induce two 1-class classifiers OC 1 and OC 2 using target data T1 corresponding to A1 and T2 corre-

sponding to A2. Now, with respect to classification, for every novel instance i, we are able to identify

which aspect it belongs to. If i belongs to A1, we classify it using classifier OC 1, and by OC 2 if it

belongs to A2.

To summarize, one can use this strategy in the following conditions:

• If we have knowledge of which aspect the training samples belong to

• If we are able to identify which aspect novel testing samples belong to

To illustrate the applicability of the strategy, let us consider our bean example from earlier. As the

aspects (ie, the type of beans) are fully identifiable, for training, we would know which subconcept
the training data belongs to, and so we would have 3 training sets for each target subconcept, 1 each

for fresh kidney, pinto, and white beans. Thus, we would end up with three 1-class classifiers, each

representing a single type of fresh bean. During classification, we would have a mechanism that would

be able to tell whether the bean to be classified is a kidney bean, pinto bean, or white bean. The key

point to note here is that the mechanism would simply detect the type of bean, and not whether it is fresh

or spoilt; that is the task of the 1-class classifiers. In other words, we are identifying the underlying

aspects of the domain. Based on the type, the bean would be sent to the appropriate 1-class classifier

that would then decide whether it is fresh or spoilt.

This strategy is conducive for the domain of swipes for biometrics considered in our practical case

study, detailed in Section 5.1. The underlying aspects pertain to motion and are fully identifiable via

the smartphone sensors during both training and classification.

wileyonlinelibrary.com
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FIGURE 5 One-class classification with full knowledge [Color figure can be viewed at wileyonlinelibrary.com]

3.2 One-class classification with fuzzy knowledge
In reality, it may or may not be possible to identify the underlying aspects in the domain. This may occur

either because of the inability of the available hardware or software to perform such a task without

human intervention or because the underlying processes that conform to the aspects themselves are

very difficult to quantify; the concepts are fuzzy.

For the case of fuzzy knowledge, we propose the following strategy: Training the 1-class classifiers

is done as in the strategy for full knowledge by using the target data. However, because the hard-

ware cannot explicitly identify the concept, we induce a multiclass classifier over the known aspects.

Depending on how the aspects are represented in the domain, the data used for this may or may not

include outlier instances; this is because we are learning to differentiate between the aspects, and not

targets and outliers. Now, when novel instances are encountered, they are classified into the appropri-

ate aspect by the multiclass classifier and processed by the appropriate 1-class classifier. The strategy

is outlined in Figure 6.

To summarize, one can use this strategy in the following conditions:

• If we have knowledge of which aspect the training samples belong to

• If we are unable to identify which aspect novel testing samples belong to

Let us now consider how this strategy would be applied to our bean example. The aspects (ie, the

type of beans) in this case would be identifiable during training, but during classification, we would

have no way of knowing whether the bean to be classified for freshness is a kidney, pinto, or white

bean. Thus, we would first use supervised learning for learning the underlying aspects of the domain to

wileyonlinelibrary.com
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FIGURE 6 One-class classification with fuzzy knowledge [Color figure can be viewed at wileyonlinelibrary.com]

aid us during the classification phase. Specifically, we would have a training set composed of kidney,

pinto, and white beans, irrespective of whether they are fresh or spoilt, and we would train a multiclass

classifier over the type of beans. For training the 1-class classifiers over the target concept, we would

have 3 training sets, 1 for each subconcept, corresponding to fresh kidney, pinto, and white beans.

Thus, the multiclass classifier learns the aspects of the domain, and the 1-class classifiers learn the

target subconcept corresponding to each aspect. During classification, a bean would be first passed

to the multiclass classifier to identify its type, and then it would be passed to the appropriate 1-class

classifier to ascertain whether it is fresh or spoilt.

This strategy is conducive for the domain of detecting anomalous gamma ray spectra considered

in our practical case study, detailed in Section 5.2. The underlying aspects pertain to the presence of

water in the environment and are fully identifiable by the physicists at Health Canada during training

(as they are able to label spectra accordingly) but cannot be determined during classification.

3.3 One-class classification with no knowledge
The worst-case scenario occurs when we have no knowledge of the aspects underlying the domain, for

example, because of the lack of a domain expert in the field. To divide the domain into the unknown

aspects, we turn to classical unsupervised learning methods: clustering. The purpose of clustering is

to divide the data space into a number of regions such that instances in a particular region are most

similar to each other; this is illustrated in Figure 7. Naturally, instances that are affected by the same

aspect will be most similar to each other, and thus, in the absence of knowledge of aspect, we simply

cluster the data space and build 1-class classifiers over each cluster, the aim being that each cluster

will represent an unknown aspect. The final classifier is an ensemble of all the various classifiers built

on the clusters. Classification is done as follows: If an instance is positively classified by at least 1 of

the models, then it is assigned to the target class; otherwise, it is classified as an outlier.

wileyonlinelibrary.com
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FIGURE 7 One-class classification with no knowledge [Color figure can be viewed at wileyonlinelibrary.com]

Thus, this strategy is to be applied in the following condition:

• When we have no knowledge regarding what aspects occur in the domain

This strategy would be applied to our bean example if we have absolutely no idea as to what type of

beans will be given to us. In other words, we have no knowledge regarding the aspects of the domain.

We would simply cluster the training data of fresh beans and induce 1-class classifiers over each cluster.

During classification, each bean would be passed to these classifiers and would be classified as fresh

if one of the classifiers deems it to be so.

This strategy is ideal for the domain of classifying a Xenon signature for compliance verification of

the CTBT considered in our practical case study, detailed in Section 5.3. While we know the domain is

multimodal based on statistical analysis, we have no knowledge regarding any aspects in the domain.

In subsequent sections, we empirically validate the utility of these strategies over complex domains.

We first validate them over artificial and UCI data sets. This is followed by their application over the

3 domains encountered during the course of our research work.

4 VALIDATING THE STRATEGIES

The previous section painted a theoretical picture of our strategies for 1-class classification over com-

plex domains. In this section, we empirically validate them over artificial and UCI data sets. We begin

by describing the artificial data sets that we create, followed by the UCI data sets, followed by an

overview of the experimental framework. The results are presented at the end of the section.

4.1 Data description
4.1.1 Artificial data
The purpose of using artificial data is to create idealized data distributions over which we can control

the 2 aspects of complexity considered in this article, namely, multimodality and complexity. In par-

ticular, we use three 5-dimensional artificial data sets that are various combinations of multimodal and

wileyonlinelibrary.com
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unimodal target and outlier distributions. We create 2 multimodal distributions, one in which there is

no overlap between the modes and the other in which we force overlap. The specifications for these

are as follows:

Data 1: Unimodal target and multimodal outlier distributions:

Target: N([15, 15, 15, 15, 15], 2.75)
Outlier: N([5, 5, 5, 15, 15], 2) ∪ N([25, 25, 25, 15, 15], 2)
∪N([15, 15, 15, 5, 5], 2) ∪ N([15, 15, 15, 25, 25], 2)

Data 2: Multimodal target and multimodal outlier distributions, no overlap:

Target: N([5, 5, 5, 5, 5], 3) ∪ N([25, 25, 25, 5, 5], 3)
∪N([5, 5, 5, 25, 25], 3) ∪ N([25, 25, 25, 25, 25], 3)

Outlier: N([15, 15, 15, 2.5, 2.5], 2) ∪ N([27.5, 27.5, 27.5, 15, 15], 2)
∪N([2.5, 2.5, 2.5, 15, 15], 2) ∪ N([15, 15, 15, 15, 27.5, 27.5], 2)

Data 3: Multimodal target and multimodal outlier distributions, overlap:

Target: N([10, 5, 5, 10, 5], 3) ∪ N([20, 25, 25, 10, 5], 3)
∪N([10, 5, 5, 20, 25], 3) ∪ N([20, 25, 25, 20, 25], 3)

Outlier: N([17.5, 15, 15, 5, 2.5], 2) ∪ N([25, 27.5, 27.5, 17.5, 15], 2)

FIGURE 8 The first 3 principal components of the unimodal artificial data set [Color figure can be viewed at

wileyonlinelibrary.com]
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FIGURE 9 The first 3 principal components of the multimodal artificial data set with no overlap [Color figure can

be viewed at wileyonlinelibrary.com]

∪N([5, 2.5, 2.5, 12.5, 15], 2) ∪ N([12.5, 15, 15, 15, 25, 27.5], 2)
Figure 8 shows the principal component analysis plots of the first 3 components of the unimodal

artificial data set, whereas Figures 9 and 10 display the multimodal artificial distributions without and

with overlap, respectively. In all data sets, there are 4000 target and 2000 outlier instances (equally

split between each mode).

4.1.2 UCI data sets
Apart from the artificial data sets, we also consider data sets from the UCI repository,19 each with

its own unique characteristics. Table 1 lists the data sets used, along with the initial number of tar-

get instances and outlier instances in each data set (prior to the exponential increase in the level of

imbalance). All the data sets have numeric attributes and no missing values.

Apart from alphabets and the 3 forest data sets, all are originally binary classification problems.

The alphabets data set consists of 26 classes, 1 for each letter of the English language. The forest cover

data set (from which the 3 forest data sets listed above are derived) consists of 7 different classes, 1 for

each unique species of trees found in the Roosevelt National Forest of Northern Colorado. To convert

these into binary problems (ie, have a target and outlier class), we use aspects unique to the data set to

transform them.

For the alphabets data set, the target class is represented by all instances corresponding to the

letters I, J, M, and N; all other letters constitute the outlier class. The forest cover data set consists of 7

wileyonlinelibrary.com
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FIGURE 10 The first 3 principal components of the multimodal artificial data set with overlap [Color figure can be

viewed at wileyonlinelibrary.com]

TABLE 1 Description of the UCI data sets

Data set Number of targets Number of outliers

Diabetes 500 133

Heart disease 150 60

Ionosphere 225 63

Thyroid disease 3 541 115

Sonar 111 97

Alphabets 3 077 1538

Forest 16 500 6499

ForestC1 2 500 1249

ForestC2C5 2 400 1200

types of tree species (classes) found in the Roosevelt National Forest of Northern Colorado: spruce/fir

(type 1), lodgepole pine (type 2), ponderosa pine (type 3), cottonwood/willow (type 4), aspen (type 5),

Douglas fir (type 6), and krummholz (type 7). Thus, we are able to create 3 unique data sets:

Forest: This is composed of types 3, 4, 6, and 7 as the target class. While types 3, 4, and 6 form

their own unique niche, the resulting distribution was found to be highly simple to learn. As

a result, to add an element of complexity and multimodality, we combined the 3 with type 7.

wileyonlinelibrary.com
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TABLE 2 Strategies used for each data set

Data set C F N

Artificial multimodal (NO) ✓ ✓ ✓
Artificial multimodal (O) ✓ ✓ ✓
Diabetes × × ✓
Heart disease × × ✓
Ionosphere × × ✓
Thyroid disease × × ✓
Sonar × × ✓
Alphabets × ✓ ✓
Forest × ✓ ✓
ForestC1 × × ✓
ForestC2C5 × × ✓

ForestC1: Type 1 is the second largest of the classes but is described as being atypical of the species

found in the region. Thus, the second forest cover data set had only type 1 as the target class.

ForestC2C5: The final data set represents types 2 and 5, which are the largest distinct group in the

data set, and the most typical of the region.

4.2 Experimental framework
On the basis of the type of knowledge available over the domains, the applicable strategies are detailed

in Table 2. C refers to using complete knowledge of aspects, F refers to the fuzzy knowledge approach

of using supervised learning to learn the aspects during training, and N refers to the approach when we

have no knowledge regarding the aspects of the domain. The fuzzy knowledge approach is applicable

for the alphabets and forest domains as we know the aspects of the domain, and thus, during training,

we know the subconcepts within the target class data. However, this knowledge is not available during

testing. In the other UCI domains, we have no knowledge regarding the aspects of the domain, and

thus, we only use the strategy for no knowledge.

We use the AA and the OCSVM for 1-class classification. The experiments with AA were imple-

mented using the AMORE* R package and run in R.† One hidden layer was used for the AA in all the

experiments, and the number of training iterations was set to 50. The momentum value was set to 0.99,

and the learning rate to 0.01. The number of hidden units for the artificial data sets were set to 4. For

all other data sets, they varied from 1 to the number of dimensions of the particular data set, and the

number of units giving the best results was chosen. The R implementation of OCSVM via the e1071

package‡ is used.

The performance measure we use is the geometric mean of the per-class accuracies.20 It is given

by g-mean =
√

acc1 × acc2, where acci is the accuracy of the classifier on instances belonging

to class i. Note that the metric is computed in a manner that is independent of imbalance, as each

class is treated individually. Thus, it is immune to imbalance. Evaluation is done using a 5 × 2 cross

validation.

*AMORE: A MORE flexible neural network package, http://cran.r-project.org/web/packages/AMORE/index.html
†The R Project for Statistical Computing, http://www.r-project.org/
‡http://cran.r-project.org/web/packages/e1071/index.html

http://cran.r-project.org/web/packages/AMORE/index.html
http://www.r-project.org/
http://cran.r-project.org/web/packages/e1071/index.html
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4.3 Results
Table 3 summarizes the results over all domains; we list the g-mean for the regular version of each

1-class classifier, along with the g-mean of the 1-class classifier under the best-performing applicable

strategy (AA refers to the autoassociator, K-AA refers to the best-performing knowledge strategy for

the AA, OCSVM refers to the 1-class SVM, and K-OCSVM refers to the best-performing knowledge

strategy for the OCSVM). In all domains, we note that using knowledge improves the classification.

In all cases, the domains exhibit complexity in terms of high overlap (all domains) and multimodality

(all except diabetes and sonar).

It is worth considering where exactly the improvement in performance by using knowledge is com-

ing from. We noted previously that learning without taking domain knowledge into account can lead

to overgeneralization. The implication of this is that the majority of outlier data would be misclassified

as belonging to the target class, and thus, the accuracy over the outlier class would be very poor. Using

knowledge can mitigate the detrimental effect of overgeneralization. In the experiments discussed in

this section, we observe that the improvement in performance comes entirely from an increase in the

power of the 1-class classifier to correctly classify novel instances as outliers (ie, an improved out-

lier detection accuracy). In Table 4, we display the per-class accuracies for both the target and outlier

classes, for the case when the 1-class classifier uses no knowledge (under the column NK) and for the

best-performing knowledge strategy (under the column K).

All domains exhibit an increase in the outlier class accuracy; in some cases, the increase is highly

significant. In some domains, the true-positive rate declines slightly; this is due to the classifier not

overgeneralizing over the complex domain. A simple classification rule would be to accept every-

thing as belonging to the target class, and given that we only have data from that class, this would

ensure perfect accuracy over the available data. In other words, we overgeneralize over the available

data. The more complex the domain, the higher the likelihood of such an overgeneralization happen-

ing. While this would ensure high accuracy over the target data, the performance over novel outlier

instances would be dismal. This is evident from the results presented; all domains exhibit some level

of complexity, and we observe that the outlier accuracies are relatively low compared with the tar-

get accuracies. Using domain knowledge to identify and learn along the aspects prevents this sort of

overgeneralization from happening. While the target accuracy may go down slightly, by tightening

the classifier, we are correctly able to reject a much larger number of outliers, which, especially in

security-based domains, is extremely crucial! In practice, the bulk of data available for learning is

TABLE 3 Summary of results over all domains

Data set AA K-AA OCSVM K-OCSVM

Artificial multimodal (NO) 0.111 0.911 0.375 0.927

Artificial multimodal (O) 0.258 0.879 0.510 0.923

Diabetes 0.544 0.656 0.578 0.656

Heart disease 0.661 0.723 0.684 0.705

Ionosphere 0.794 0.909 0.894 0.910

Thyroid disease 0.579 0.663 0.552 0.675

Sonar 0.436 0.631 0.616 0.623

Alphabets 0.538 0.883 0.693 0.850

Forest 0.799 0.833 0.588 0.783

ForestC1 0.748 0.898 0.724 0.895

ForestC2C5 0.764 0.780 0.732 0.784



SHARMA ET AL. 457

TABLE 4 The target and outlier class accuracies over the various domains

Target accuracy Outlier accuracy
Data set Classifier NK K NK K

Artificial multimodal (NO) AA 0.946 0.961 0.029 0.849

OCSVM 0.894 0.861 0.157 0.999

Artificial multimodal (O) AA 0.950 0.941 0.074 0.827

OCSVM 0.893 0.857 0.291 0.995

Diabetes AA 0.924 0.703 0.308 0.656

OCSVM 0.809 0.640 0.421 0.642

Heart disease AA 0.898 0.748 0.490 0.628

OCSVM 0.730 0.654 0.643 0.737

Ionosphere AA 0.950 0.926 0.680 0.890

OCSVM 0.930 0.912 0.860 0.890

Thyroid disease AA 0.658 0.737 0.509 0.596

OCSVM 0.697 0.593 0.444 0.768

Sonar AA 0.690 0.590 0.270 0.642

OCSVM 0.645 0.488 0.584 0.791

Alphabets AA 0.947 0.925 0.307 0.843

OCSVM 0.886 0.840 0.543 0.860

Forest AA 0.897 0.886 0.712 0.787

OCSVM 0.868 0.896 0.385 0.685

ForestC1 AA 0.893 0.876 0.626 0.920

OCSVM 0.897 0.892 0.584 0.897

ForestC2C5 AA 0.890 0.844 0.649 0.720

OCSVM 0.898 0.908 0.597 0.677

typically normal, or “benign”; data from anomalous classes of interest are rare or impossible to col-

lect (eg nuclear explosions, stock market crashes, and hacking attacks). Thus, identifying a harmless

instance as being harmful is much more acceptable than identifying a harmful instance as harmless.

Thus, improving the detection of outliers (ie, harmful data) is paramount.

5 PRACTICAL CASE STUDIES

In this section, we detail experiments conducted over the 3 primary domains considered in our work,

namely, swipe data from smartphones, gamma ray spectra, and Xenon concentrations for CTBT veri-

fication. For each domain, we begin by describing the data, followed by the experimental framework

and results. The domain of swipe-based biometrics is an example of one in which we have complete

access to knowledge regarding the aspects of the domain. The domain of detecting anomalous gamma

ray spectra is an example of a domain with fuzzy knowledge of the aspects, as while we can iden-

tify aspects during training, during testing, we cannot ascertain the aspect to which a novel spectrum

belongs. Finally, the domain for compliance verification of the CTBT is an example of one in which

we have no knowledge regarding the aspects.

5.1 Biometrics for security: swipes
5.1.1 Domain description
The first domain we consider is that of biometric authentication on mobile phones. Specifically, the

task is to use a users swipe across the touch screen of a mobile device to provide authentication. When
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a user swipes across the screen, each sensor generates a time series; the touch screen time series rep-

resents the Cartesian coordinates of the swipe across the screen at different time intervals, and the

accelerometer and gyroscope time series represent the motion of the phone in 3-dimensional space

while the swipe is being done across the screen. For our study, we are only interested in biomet-

rics defined by the users' hand motion, and thus, we only consider the accelerometer and gyroscope

time series.

The accelerometer and gyroscope sensors report values for the x, y, and z axis. Our discretization

methodology is illustrated in Figure 11. We begin by binning the time series into a fixed number of

bins. Thus, each bin will represent a curve that represents a fixed temporal section of the time series.

For each bin, we calculate 2 distinct features: the slope of the regression line for the curve in the bin

and the area under the same curve. The slope represents the direction in which the time series travels in

that particular time segment, whereas the area represents the magnitude of the motion. Together, these

2 values represent a fixed temporal section in the time series. Each swipe, therefore, is represented

by a vector composed of the discretized accelerometer and gyroscope features. The data are collected

using a custom application designed for an Android phone.

5.1.2 Experimental framework
We identify 2 behaviors on which to split the swipe space: sitting and walking; these represent the

2 aspects of the domain. While it is possible to identify a lot more behaviors, as an initial step, we

focused only on these 2. Identifying whether a user is stationary or in motion is simple; modern phone

operating systems have application program interfaces that are able to detect motion. For example, one

can use the step detector capability in the Android application program interface. Thus, when a user

swipes, the phone can detect motion, or the lack of, and can process the swipe using the appropriate

1-class classifier. As a result, the learning strategy we use is full knowledge, as we can identify to which

aspect the novel instances belong.

Two users were asked to generate these data sets, and the results are presented over these data.

In particular, the mixed motion results (ie, over the whole domain) are obtained by combining all the

data sets and passing them through our algorithm. The results by focusing on the aspects are obtained

by passing the data sets for sitting and walking separately, and combining the results for the resulting

ensemble.

FIGURE 11 Discretization of the accelerometer and gyroscope time series [Color figure can be viewed at

wileyonlinelibrary.com]
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With respect to the users, user 1 swipes with 1 hand, his right, while holding the phone in the same

hand. His swipes are highly consistent with respect to the touch patterns. User 2 holds the phone in

both hands and swipes with the index finger as well as the thumb using his right hand. His swipes are

less consistent than those of user 1. The phone used in both cases is the HTC One. We discuss 2 sets of

results. In the first, we test the ability of users to authenticate themselves (the user acceptance rate). In

the second set, we test the ability of our solution to defend the user against attacks (the attack acceptance

rate); the user hands the phone over to another user, and they attempt to authenticate themselves.

5.1.3 Results
The results from our user study experiment are presented in Tables 5 and 6. Specifically, these numbers

represent the number of times the user was able to log into his phone by using their swipe without

being rejected, ie, the user acceptance rate and the attacker acceptance rate, the rate at which the model

authenticates attack attempts. It is worthwhile to note that typically, industry reports accuracy taken

over 3 consecutive attempts; if even one of these 3 attempts is successful, the entire set is labeled

as a successful attempt. We, however, only consider single attempts. Thus, our numbers, compared

with industry, represent a lower bound on performance, as taking sets of 3 will increase the accuracy

values. We report user acceptance rates and attacker acceptance rates separately for each motion for

clarity. The results for the system over both aspects are shown under ensemble, whereas the results for

the model built by ignoring motion are shown under mixed. Finally, we also present the g-mean for

both systems.

If one were to observe the raw time series generated by different motions for the sensors, it will be

clear that even though the user is the same, each motion corresponds to a unique aspect of the domain.

This is illustrated, for sitting and walking for the user, in Figures 12 and 13 for a single-swipe x axis

accelerometer and gyroscope, respectively.

As has been the case in the domains described before, the presence of multiple subconcepts in the

target data makes it very difficult to create 1-class classifiers that work well over all. This is evident

by the results presented here; attempting to model both motions results in poor performance due to the

model overgeneralizing over the motions. This is particularly significant for user 2, who is the more

variable of the 2 users; the gains in performance are exceptionally high with respect to the attacker

acceptance rate.

TABLE 5 Authentication accuracies for different motions for user 1

Motion User acceptance rate, % Attacker acceptance rate, % g-Mean

Sitting 68.42 29.49 0.694

Walking 61.9 16.93 0.717

Ensemble 65.6 23.8 0.707

Mixed 55 39.2 0.578

TABLE 6 Authentication accuracies for different motions for user 2

Motion User acceptance rate, % Attacker acceptance rate, % g-Mean

Sitting 71.42 12.5 0.79

Walking 54 47.36 0.533

Ensemble 63.7 27.9 0.677

Mixed 63.2 73.6 0.408
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FIGURE 12 Accelerometer time series for walking and sitting [Color figure can be viewed at wileyonlinelibrary.com]

5.2 Gamma ray spectra data

5.2.1 Domain description
The second domain we consider pertains to invasive isotope detection over gamma ray spectra; this

research was conducted in collaboration with physicists at Health Canada. Health Canada deployed

18 NaI (sodium iodide) detectors during the Vancouver Winter Olympic Games in 2010 to produce a

catalog data set that can be used for future development and testing of machine learning approaches

to multicategory alarm systems. The resulting measurements can be plotted as in Figures 14 and

15; the former corresponds to a pure background measurement, whereas the latter corresponds to a

background plus technetium. Energy is represented in terms of channels on the x axis and the counts,

which indicate the intensity, are recorded on the y axis. The isotopes of interest in our experiments all

peak well below channel 600, and thus, to minimize the effects of the so-called curse of dimensionality,

we only use the first 600 channels.

We were provided with data from 3 stations, and apart from the background, the readings contained

spectra for 3 medical isotopes, namely, iodine, thallium, and technetium (one of the stations also had

readings for caesium, which were the result of a check source). The resulting data sets displayed a

prohibitive level of imbalance, as evident from the number of isotope spectra in the data from each

station. These, along with the number of background instances, are enumerated below:

wileyonlinelibrary.com
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FIGURE 13 Gyroscope time series for sitting and walking [Color figure can be viewed at wileyonlinelibrary.com]

• Station 6: 5 iodine spectra, 3 technetium spectra, and 15 caesium spectra, 39 000 background spectra

• Station 12: 2 iodine spectra, 7 technetium spectra, 25 747 background spectra

• Station 13: 3 iodine spectra, 2 technetium spectra, 2 thallium spectra, 24 709 spectra

In addition to the medical isotopes that were measured and identified as a result of people pass-

ing by the Health Canada detectors, Health Canada also provided artificially generated spectra for

cobalt at varying signal strengths. These were subsequently incorporated into the data from the recep-

tors for all stations. The sole purpose of these data was to facilitate proper evaluation; the lack of

medical isotope data, while hindering the training of binary classifiers, also poses an issue for eval-

uation. Thus, to accurately verify the strength of the final system, these instances were used during

evaluation.

5.2.2 Experimental framework
The physicists at Health Canada indicated that the presence of rain and/or water had an impact over the

gamma ray spectra measured. This can cause a greater number of dangerous isotopes to pass by unde-

tected (high number of false positives), as it can cause the 1-class classifier to overgeneralize. Thus,

the data comprise 2 distinct aspects of the spectra, based on whether they are affected by rain/water.

While we have a priori knowledge of these during training, it is not possible to ascertain, during

classification, which aspect the novel spectrum will belong to. This is because it is not just rain that

affects a spectrum; the presence of water in the environment has an impact as well. Therefore, the

wileyonlinelibrary.com
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FIGURE 14 Plotted on the log scale, this depicts a background instance [Color figure can be viewed at

wileyonlinelibrary.com]

FIGURE 15 Plotted on the log scale, this depicts an instance containing the medical isotope technetium [Color

figure can be viewed at wileyonlinelibrary.com]

learning strategy we use is that of fuzzy knowledge; we train a binary classifier to learn to discriminate

between the 2 aspects and pass novel spectrum to the appropriate 1-class classifier.

With respect to labels for the training data, we were given a file in which the physicists had hand

labelled the spectra based on visual inspection as well as the dose rate for the spectra. The caveat

with simply using dose rate is that isotopes not impacted with the presence of water can also yield

high dose rates; simply using the dose rate as the threshold is not ideal as it can result in a large

number of misclassifications for isotopes. Thus, the physicists provided us with the hand-labeled file.

Furthermore, the simulated cobalt data provided to us also had an ample amount of spectra impacted

by the presence of water. This allowed us to train effective binary classifiers for learning the 2 aspects.

For the first tier (phase 1), we use decision trees (DTree), nearest neighbor (IBK), and naïve

Bayes (NB) for discriminating between rain and nonrain aspects. They are trained on rain and nonrain

wileyonlinelibrary.com
wileyonlinelibrary.com
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spectra that consist of both background and anomalous spectra. The second tier (phase 2) consists of 2

anomaly detection systems, one for rain events and another for nonrain events. We use the Mahalanobis

distance. The Mahalanobis distance relies on the calculation of a mean and a covariance matrix. These

are calculated using the training data; the matrices for the rain system are calculated using the rain

events from the background training set, and conversely, the matrices for the nonrain system are calcu-

lated using the nonrain events from the background training data. Note that we only use the background

data for calculating the matrices, as the anomalies we expect to find are relative to the background.

The physicists desired the results as area under the receiver operating characteristic curve (AUC)

values, along with the true (correctly identified background spectra) and false positives (incorrectly

classified anomalous spectra). We report these results for both the system that learns over the aspects

(2-tier system) and one that builds a classifier with no regard to the aspects (1-tier system). Note that

we report 2 AUC values for the 2-tier system, as there are two 1-class classifiers, one for each target

subconcept.

5.2.3 Results
For the system built by learning over the aspects (2-tier system), the naïve Bayes classifier was the most

effective supervised learning method for learning the aspects (rain and nonrain). For station 6, the AUC

value for both rain and nonrain 1-class classifiers was 0.99. For stations 12 and 13, the AUC value over

the nonrain 1-class classifier was 1, and that over the rain 1-class classifier was 0.99. For the 1-class

classifier built over the entire target data with no regard to aspects (1-tier system), the AUC value was

0.99 for all 3 stations. The high AUC values for both systems can be attributed primarily to the nature

of the probabilistic distribution of the individual channels of the spectral data. The near-Gaussian

distribution of each channel makes the feature space of the domain exceptionally conducive to being

used with the Mahalanobis distance. This in turn produces the results that we see here.

It is interesting to note that even without using a binary classifier to split testing data into rain and

nonrain classes, the Mahalanobis distance–based anomaly detection system still produces exceptional

AUC values. Thus, it is prudent to examine the actual true- and false-positive rates to get an idea

regarding the effectiveness of the 2-tier system. This is illustrated in Table 7, where we can see that

without inducing a rain separating classifier, the 1-tier system gives more than twice as many false

positives as the 2-tier system. We also note that the improvement in performance is resulting, once

again, in a reduction in the number of false positives due to there being less overgeneralization.

5.3 CTBT domain
5.3.1 Domain description
The final domain we consider pertains to data relating to the compliance verification of the CTBT.

The CTBT domain was originally introduced to the machine learning community in the form of an

TABLE 7 Total number of true positives (TPs) and

false positives (FPs) incurred with (2-tier system) and

without (1-tier system) rain separation

1-Tier system 2-Tier system
Station TPs FPs TPs FPs

Station 6 3758 336 3950 144

Station 12 3856 98 3918 36

Station 13 3900 24 3914 10
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open data mining competition at the International Conference on Data Mining 2008.3 The competition

invited teams to take part in building classification models from a training set that was provided by the

Radiation Protection Bureau of Health Canada. For the competition, Health Canada provided data from

5 geographically distinct locations; the data set was composed of measured concentrations of 131mXe,
133Xe, 133mXe, and 135Xe. However, because there were no available explosion data, they provided

synthesized explosion data. Stocki et al4 used several binary classifiers to discriminate between the

background and synthesized explosion data and demonstrated that these methods outperformed simple

linear discriminators. Following this study, Bellinger et al21-23 noted the “unnatural” a priori class

probabilities that were inherent in the publicly available Health Canada CTBT data set, highlighting

that the domain clearly fits into a 1-class classification problem. This motivated them to develop a

stochastically episodic event modeling and simulation framework; the data used for our work were

based on this framework.

5.3.2 Experimental framework
Given that we have no knowledge regarding the aspects present in the domain, the strategy used is

similar to the one used for the UCI domains. The 1-class classifiers used are the AA and the probability

density estimator. The probability density estimator has also been implemented in WEKA,24 and we

use the Gaussian estimator as the density estimator and AdaBoost with decision stumps as the class

probability estimator. The clustering algorithm used was the k-means algorithm.

The experiments with the AA were implemented using the AMORE R package and run in R. One

hidden layer was used for the AA in all the experiments, and the number of training iterations was

set to 50. The momentum value was set to 0.99, the learning rate was set to 0.01, and the number of

hidden units ranged from 1 to the number of dimensions of the particular data set. The number of

clusters varied from 2 to 20. Once again, we use the geometric mean of the per-class accuracies as the

evaluation metric. It is given by g-mean =
√

acc1 × acc2, where acci is the accuracy of the classifier

on instances belonging to class i. Evaluation is done using stratified 10-fold cross validation.

5.3.3 Results
The results of the 1-class classifiers over the CTBT data set are presented in Table 8. The data set has

5000 normal instances and 20 instances representing explosions.

Clustering the domain yields significant improvements in performance. This is particularly evident

with the probability density estimator classifier. Clustering allows us to divide the target class into

smaller subspaces (with the hope of capturing the subconcepts in the target data). Thus, the 1-class

classifier induced in the cluster that contains the bulk of the outlier data will contribute to an improved

overall classification, as the classifier learned over it will be far more specialized (less generalized)

than a single classifier trained over the entire target class.

TABLE 8 Results (g-mean) of the clustered and

nonclustered (normal) autoassociator and probability density

estimator over the Comprehensive Test Ban Treaty data set

g-Mean
Nonclustered Clustered

Autoassociator 0.652 0.822

Probability density estimator 0.213 0.819
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6 CONCLUDING REMARKS

This article introduces strategies for 1-class classification that learn within the context of domain

aspects, which gives rise to the presence of subconcepts within the target data. Data typically exhibit

extreme levels of imbalance, making the application of binary classifiers prohibitive. Furthermore, data

that are available tend to be derived from highly complex distributions; overlap between classes and

multimodality in the domain can be prohibitive to the performance of 1-class classifiers. We hypoth-

esize that these complexities arise because of the presence of subconcepts within the target data, and

the performance of 1-class classifiers can be vastly improved by using domain-specific knowledge to

identify and learn over these subconcepts. In particular, depending on the level of domain knowledge

available, we propose 3 approaches:

1. The case when there is domain knowledge: Knowledge of the intricacies of the domain implies

that we have a notion on the nature of the underlying aspects. In this case, we propose to explicitly

divide the target data based on the corresponding subconcepts. Two considerations need to be taken

into account in this case:

• Identification of aspects is directly possible. In other words, it is is possible to identify the aspect

to which a novel instance belongs with guaranteed 100% accuracy. This is evident in the bio-

metric domain considered, as a mobile device's hardware is capable of identifying a user's state

of motion.

• Identification of aspects is not directly possible. However, through a domain expert, a data set

having data labelled according to the domain aspects is available to enable learning them in a

supervised manner. In this case, we propose inducing a multiclass classifier over the aspects;

novel samples are passed to the appropriate 1-class classifier as classified by the multiclass

classifier. Instead of classifying using all the 1-class classifiers in the ensemble, only the clas-

sifier that induced the target subconcept corresponding to the aspect selected by the multiclass

classifier is used.

2. The case of no domain knowledge: In this case, we propose to learn the aspects in an unsupervised

manner, ie, via clustering, and build 1-class classifiers over these clusters. The resulting ensemble

makes the classification decision collectively.

Our work was motivated by, and tested on, real-world problems. The domains we used exemplified

the variety and quality of data that are encountered in practice. The results presented in this article

offer strong support for our strategies. In particular, the most significant insight to be gained is that, if

possible, it is useful to exploit the nuances of the domain for producing efficient classification systems.

An important point needs to be made regarding generalizing over subconcepts. While it is not a

logical absolute that all possible 1-class classifiers will fail by overgeneralizing over multiple subcon-

cepts in the majority class, the results of our experiments over artificial and UCI domains highlight the

fact that overgeneralization can be detrimental to performance when considering at least 2 powerful

1-class classifiers, the AA and the OCSVM. Furthermore, all classifiers considered in the 3 practical

case studies suffer from overgeneralization as well. The simple bean illustration discussed in Section

3 illustrates subconcepts that are fairly distinct; however, in practice, subconcepts are rarely so ide-

ally distinct. For example, in the gamma ray domain, the impact of rain causes subtle differences in

the signature of the spectrum, resulting in subconcepts that are “fuzzy.” Thus, while we do not claim

that all classifiers will suffer from overgeneralization in the presence of subconcepts (indeed, such an

absolute claim is impossible to verify), our work demonstrates that classifiers can suffer in the pres-

ence of subconcepts, and by considering the strategies in this article, we can improve classification

performance.



466 SHARMA ET AL.

7 DIRECTIONS FOR FUTURE WORK

While we present 3 different strategies for 1-class classification, it is possible to combine them, depend-

ing on the application. For instance, in the complete knowledge approach, we know a priori what aspect

the datum belongs too. We can use a new strategy in which we merge these 2 approaches together;

we can use the power that discrimination algorithms offer to boost the complete knowledge approach.

Specifically, we can induce a probabilistic classifier to assign a classification to the novel datum. Given

that we have knowledge as to the aspect to which it belongs, we can check if the classification proba-

bility assigned by the classifier to the datum for that aspect is above or below a predefined threshold.

If it is below the threshold, we can classify that as being an outlier, rather than further passing it along

for processing by 1-class classifiers.

With respect to the strategy presented in the absence of domain knowledge, there are several

interesting directions for future research into the use of clustering for 1-class classification. For the

experiments presented in this thesis, we used 2 clustering algorithms: the k-means algorithm and

the k-medoids algorithm. Depending on the domain, it would be worth exploring other clustering

algorithms, such as the expectation-maximization algorithm, or even hierarchical clustering, for dis-

covering clusters. The dendrogram from the hierarchical clustering could give useful insight into the

presence of subconcepts in the target data and be used to determine the appropriate number of clusters

to use.

The work in this article looks at binary and 1-class classifiers. One-class classifiers fit naturally as a

substitute for learning problems that come under a binary formulation when data exist only for 1 class;

1 of the 2 classes becomes the target and the other the outlier. However, things are not as straightforward

when the domain has multiple classes. Consider a domain with 5 classes, and data are available only

from 3 classes. Given the domain formulation, it may not be prudent to consider the 2 unknown classes

as belonging to a single outlier class, as knowing to which of the 5 classes a novel datum belongs could

be important. Applying a 1-class classifier directly would not be appropriate, as it would treat the 2

unknown classes as a single class. Furthermore, inducing a multiclass classifier over the known classes

would also not be appropriate as it would simply learn to discriminate between the 3 classes and not

take into account that the domain has 2 other classes. One possibility to resolve the latter aspect would

be to apply a strategy over the known classes, treating each class as a subconcept and inducing a 1-class

classifier over them. However, dealing with the unknown classes would be a challenge, especially if the

data are impossible to collect or reliably simulate. Thus, inducing efficient classification systems over

multiclass domains that suffer from imbalance is an important and challenging avenue of research.
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