
Network Traffic Characterization Using
(p, n)-grams Packet Representation

By

Abdulrahman Hijazi

A thesis submitted to
the Faculty of Graduate Studies and Research

in partial fulfilment of
the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

Carleton University
Ottawa, Ontario, Canada

©2014, Abdulrahman Hijazi

Abstract

With the ever increasing advances in network protocols and traffic complexity, new
challenges are emerging in traffic characterization and management. In this thesis, we
propose a new approach that can complement existing ones with a simple high-level
understanding of network traffic. Our approach uses (p, n)-grams representation to
analyze network traffic, where a (p, n)-gram is an n-byte string starting at offset p.

We argue that the (p, n)-grams representation combines the efficiency of using
specific packet fields (e.g. ports) with the generalized pattern matching of n-grams,
without the complexity and overhead of full packet pattern matching. We also show
that using (p, n)-grams allows for traffic analysis at all packet parts (payload content,
header port/flow, and other header behavior fields), without mixing between similar
patterns that may accidentally exist at different fields within packets.

As a proof of concept, we develop a (p, n)-gram-based lightweight unsupervised
clustering algorithm (ADHIC) that makes no prior assumptions about the involved
protocols. We show that ADHIC can automatically cluster network traffic using a
binary decision tree into equivalence classes that closely approximate standard mea-
sures of network traffic. We also show that ADHIC can be used to monitor network
traffic through observing the dynamic updates to the clustering tree. Those incre-
mental updates highlight the temporal changes in network traffic that are not easily
detected using standard network analysis methods.

We then research the characteristics and distributions of (p, n)-grams in network
packets, and how they can be utilized for traffic analysis. In particular, we argue
that (p, n)-grams have automatic fingerprinting capability where a simple frequency

ii

analysis of network packets can capture structural (p, n)-grams based on their relative
high frequencies. These (p, n)-grams represent protocol and sub-protocol structures
and cross-protocol patterns.

We observe that (p, n)-grams follow a power-law-like distribution where the struc-
tural ones constitute the rapidly-dropping-off curve before the long tail. We argue
that this special distribution adds to the efficiency of (p, n)-grams-based traffic anal-
ysis as it describes structural (p, n)-grams as 1) a small set of (p, n)-grams that 2)
can be easily distinguished from the long list. Our observation relies on a thorough
empirical analysis using independent network traffic traces. In addition, we create
an entropy-based conceptual model that explains this distribution behavior in the
context of the hierarchy of network protocols and statistics of Internet traffic.

iii

Acknowledgment

Dedicated to my dearest father, Abdullah Hijazi, dearest mother, Ameerah Deyab,
and dearest wife, Nesrin Sarmini for their endless support and courage throughout
this difficult journey. My father has been always the source of passion and enthusi-
asm to pursue this long path. My mother gave me the ideal example of dedication
and determination. My wife made everything possible to provide the best working
environment while raising our five little children.

I would like to extend my sincerest thanks and appreciation to my advisor, Anil
Somayaji for all the great guidance, advice, and help he gave me throughout my time
in the PhD program. Anil was an advisor and a friend at the same time who helped
me facilitate all the difficulties and obstacles I went through during my program.

I would also like to specially thank Hajime Inoue who I worked with on the
ADHIC algorithm and was the one who coded the entire implementation of ADHIC
(i.e., NetADHICT). It was also a great honor and privilege to work with Paul van
Oorschot and Ashraf Matrawy on the first publications we had on ADHIC.

Special thanks to Scott Knight and Bilal Hejazi who helped us experimenting
ADHIC with real datasets from their organizations (RMC and MD respectively), and
then getting the results after proper anonymization to the data.

Thank you to Gunes Kayacik, Mohammad Mannan, and Gehana Booth for read-
ing through the entire thesis and providing insightful feedback.

Another thank you to my PhD proposal committee, Scott Knight, Evangelos
Kranakis, Ashraf Matrawy, and Liam Peyton, and my PhD examination board, Carey
Williamson, Marc St-Hilaire, Robert Biddle, and Carlisle Adams for all their useful

iv

comments and great insights.
Finally, I would like to remember OGS, OGS-ST, PSEPC, NSERC, and MITACS

for their generous awards and fundings.

v

Contents

Abstract ii

Acknowledgment iv

Table of Contents vi

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Packet Similarities . 2

1.2 (p, n)-grams . 3

1.3 Hypotheses . 4

1.4 Related Publications . 5

1.5 Independent and Collaborative Work 6

1.6 Thesis Organization . 6

2 Background and Related Work 9

2.1 Analyzing Traffic Using Ports and Flows 10

2.2 Analyzing Traffic Using Payloads (Deep-Packet Inspection) 11

2.2.1 Using n-grams Representation To Analyze Network Traffic . 13

2.3 Analyzing Traffic Using Behavior Information and Other Header Fields 15

2.3.1 Characterizing Encrypted Traffic 16

vi

2.4 Analyzing Traffic Using Machine Learning and Statistical Analysis . 17

2.4.1 Protocol Fingerprinting . 19

2.4.2 Protocol Inference and Identification 20

2.5 Our Work in Context . 21

3 Introducing ADHIC 24

3.1 Rationale Behind ADHIC . 24

3.2 How ADHIC Works . 26

3.2.1 Introducing ADHIC Trees 27

3.2.2 Traffic Clustering within the Tree 28

3.2.3 Basic Tree Operations . 30

3.3 ADHIC Performance . 32

3.3.1 (p, n)-gram Representation 32

3.3.2 Packet Sampling . 33

4 Clustering Network Traffic Using ADHIC 35

4.1 Experimental Setup . 36

4.1.1 Datasets Description . 36

4.2 The Reference Classifier . 39

4.2.1 Parameter Settings . 40

4.3 An ADHIC Decision Tree . 41

4.3.1 ADHIC Training Time . 44

4.3.2 Header vs. payload (p, n)-grams 44

4.3.3 Encrypted packets . 45

4.4 ADHIC vs. the Reference Classifier 46

4.5 Testing ADHIC with Other Networks 51

5 Monitoring Abnormal Traffic Using ADHIC 55

5.1 Clustering without header information 56

5.2 Clustering P2P traffic . 58

5.3 Synthetic Background Traffic: DARPA Dataset 60

vii

5.3.1 Traffic Distribution of LL Dataset 62

5.3.2 Testing the LL Dataset with ADHIC 62

5.3.3 Temporal Distribution of Traffic 64

5.3.4 Distributions of (p, n)-grams 67

5.3.5 Summary . 68

6 (p, n)-gram Characteristics in Network Traffic 71

6.1 (p, n)-gram Characteristics . 72

6.1.1 Rapidly-Dropping-Off Frequency Distribution 73

6.1.2 Capturing Differences in Protocol Structural Designs 76

6.1.3 Mapping (p, n)-gram Characteristics with Applications . . . 81

6.2 Entropy as a Metric to Measure Content Similarity 83

6.2.1 Entropy Model Definition 83

6.2.2 Applying Entropy Model to Network Traffic 85

7 Frequency Distributions of (p, n)-grams 89

7.1 Experiments Procedure and Rationale 89

7.2 Rapidly Dropping Off Distribution Behavior 92

7.2.1 Empirical Analysis . 93

7.2.2 Different Sizes of n . 97

7.2.3 Our Default Size of n . 99

7.2.4 Different Trace Lengths . 100

7.2.5 Packet Sampling . 102

8 Pattern Capturing Using (p, n)-grams 104

8.1 Semantic Meanings of Frequent (p, n)-grams 105

8.1.1 ADHIC without header (p, n)-grams 107

8.2 Protocol-Dependent Entropy Models 107

8.3 Capturing Design Structures in Individual Protocols 112

8.3.1 Offset Distribution Behaviors 112

8.3.2 Frequency Distribution Behaviors 117

viii

8.3.3 Discussion . 120

9 Conceptual Model 121

9.1 Rapidly Dropping Off Frequency Distribution 121
9.1.1 Step 1: Identify the Main Different Types of Packet Contents 122
9.1.2 Step 2: Compare the Sizes of Low and High Entropy Fields . 126
9.1.3 Conclusion . 128

9.2 Power-Law Behavior . 129

10 Concluding Remarks 132

10.1 Contributions . 132
10.1.1 ADHIC for Traffic Clustering 133
10.1.2 ADHIC for Traffic Monitoring 134
10.1.3 Characteristic distributions of (p, n)-grams 134
10.1.4 Fingerprinting with (p, n)-grams 135

10.2 Limitations . 137
10.3 Future work . 138

Appendices 140

A. Using Frequency Analysis in Natural Language Processing I

A.1 Advantages of using Frequency Analysis II
A.2 Language Identification and Text Categorization using n-grams . . III

B. Power-Law Distributions VI

B.1 Zipf’s Law . VII
B.2 Power-Laws: From Observations to Applications IX

C. IP Packet Structure XI

D. Protocol References XIII

References XV

ix

List of Tables

3.1 ADHIC parameters used in most of our experiments 31

4.1 Protocol statistics for the 1-week CCSL and MD traces 38
4.2 Classification-like clustering . 48

5.1 Packet statistics with no header information 56
5.2 Protocol classification and content statistics for MD, CCSL and LL 63

7.1 Power exponent α calculated for various traces from the CCSL datasets 94
7.2 Power exponent α calculated for various traces from the MD datasets 95
7.3 Power exponent α calculated with different sizes of n 98
7.4 Top 10 (p, n)-grams and their matching frequencies 98
7.5 Sample space and domain space of (p, n)-grams 100
7.6 Power exponent α behaviors with different capturing periods 101

8.1 Power-law slope calculated for different protocols 118

C.1 IP Packet Structure . XII

D.1 Protocol References . XIV

x

List of Figures

1.1 Simplified structure of an HTTP GET-request packet 3

3.1 An example ADHIC decision tree 28

3.2 Pseudocode for the ADHIC matching algorithm 29

3.3 Pseudocode for the ADHIC adjustment algorithm 30

4.1 A decision tree produced by ADHIC and its simplified version . . . 42

4.2 Percentage of packets in singular clusters (four CCSL network traces) 47

4.3 Percentage of packets in singular clusters (April dataset) 50

4.4 Annotated decision tree produced by ADHIC using a second dataset 52

4.5 Simplified decision tree produced by ADHIC using a third dataset . 53

5.1 ADHIC’s Annotated decision trees without looking at headers . . . 57

5.2 CCSL January tree snapshot with the presence of P2P traffic 59

5.3 Synthetic LL data lacks consistency 65

5.4 Temporal analysis of packet distribution (LL and CCSL datasets) . 66

5.5 Example of high volumes of DNS traffic (LL dataset) 68

5.6 Comparison between the CCSL and LL traffic captures 69

6.1 Frequency distribution of (p, n)-grams on a normal scale 73

6.2 Frequency distribution of (p, n)-grams on a log-log scale 75

6.3 Offset distribution of (p, n)-grams 77

6.4 Protocol-dependent (p, n)-grams frequency and offset distributions . 80

xi

6.5 Entropy calculated at each 1-byte-long packet offset 85
6.6 Entropy calculated for two different protocols 86

7.1 (p, n)-gram frequency distributions with different sizes of n 97
7.2 (p, n)-grams frequency distribution with different capturing periods 101
7.3 (p, n)-gram frequency sampling invariance in a 3-hour dataset . . . 103

8.1 (p, n)-gram patterns in network traffic 105
8.2 Most frequent (p, n)-grams . 108
8.3 Entropy of some TCP protocol packets 109
8.4 Entropy of some UDP protocol packets 110
8.5 Entropy of ETH and IP protocol packets 111
8.6 Offset distribution of (p, n)-grams for protocol-specific traffic 113
8.7 TCP protocol patterns . 114
8.8 UDP protocol patterns . 115
8.9 Low entropy protocol patterns . 116
8.10 High entropy protocol patterns . 116
8.11 Frequency distributions of (p, n)-grams for single-protocol traces . . 119

B.1 Power law on a linear and a log-log scales VII
B.2 Zipf’s law for the English and French corpora IX

xii

1 Introduction

Traffic of computer networks is fundamentally hard to understand. Enterprises add
numerous database, file service, network management, and proprietary protocols as
part of custom applications. Even the smallest home networks today connect to
thousands of remote hosts in order to access email, instant messaging, voice-over-IP,
peer-to-peer file sharing, streaming media, and social media.

To maintain their networks, administrators must make sense of this cacophony
even as remote hosts shift, undocumented protocols evolve, and usage patterns con-
stantly change. Today network administrators use a variety of tools to help them
understand and manage this chaos. Current network analysis technology, however, is
not sufficient for this task.

Standard network monitoring tools commonly capture traffic patterns using two
approaches. One is using specific header fields such as the 5-tuples in the packet
headers (i.e., source IP, source port, destination IP, destination port, and protocol
ID) which are used to identify flows and sessions. The key advantage of using these
fields specifically is that they can be observed efficiently while also providing good
insights into traffic patterns.

The other is regular expression-encoded signatures that are used to identify pat-
terns associated with specific protocols, attacks, or other chosen communications.
The key advantage to signatures is that they allow for very specific types of traffic
to be extracted. They are much more expensive to process than 5-tuples, however,
because the entire packet contents—not just the headers—must be searched for each
signature.

1

2 Chapter 1. Introduction

While both are powerful on their own, these representations limit our ability to
learn about network traffic. If we are looking for specific signatures, then we will
only find patterns matching those signatures. If we are looking at 5-tuples, then
our findings are limited to patterns that reveal themselves within 5-tuples. The key
question of this thesis is: are there other ways of representing network traffic that
combine the specificity of signatures with the efficiency of 5-tuples? To begin to
address this question, we start with packet similarities.

1.1 Packet Similarities

In a typical network traffic, packets of the same protocol type possess field similarities
and byte repetitions. These can be found at any portion of the network packets
including both the header and payload fields. For certain protocol types, however,
packet similarities are mostly found in packet headers (e.g., encrypted protocols).

Examples of patterns in the header fields include protocol ID (TCP, UDP, ICMP),
port number, Quality-of-Service (QoS) flags, and special values at common header
fields, such as: time to live (TTL), checksums, and options. Examples of payload
patterns, on the other hand, include strings like “GET” and “POST” in the payloads
of the HTTP GET and POST request packets respectively. Other examples are the
URI field in the CUPS protocol and the certificate information exchanged by the SSL
protocol’s communicating parties. Figure 1.1 presents the general structure of the
HTTP GET-request packet, including the “GET” subsequence pattern.

Note that some patterns, such as the letters “GET”, will have a higher frequency
than others (such as the text of the subsequent URL). Moreover these patterns will
tend to occur more often in certain parts of the packet (say, the beginning of the TCP
payload) than others. We refer to such high-frequency patterns as being “structural”
or “semantic” patterns within network packets as they tend to be associated with pro-
tocol or program-level characteristics of communication. In contrast, lower frequency
patterns are associated with more varied phenomena such as user communication.

1.2. (p, n)-grams 3

Figure 1.1. Simplified structure of an HTTP GET-request packet.

Here we ask the question, how can we identify and characterize structural pat-
terns in a general way, such that packets matching those patterns can be efficiently
identified? As we will show, the key lies in a new representation of network traffic
patterns, (p, n)-grams.

1.2 (p, n)-grams

A well-known alternative to regular expression-based signatures for representing pat-
terns in network packets is n-grams, where an n-gram is a string of n consecutive
bytes within any part of the raw packet. Viewing network traffic using this repre-
sentation is not limited by protocols or flows, and does not require prior knowledge
of existing patterns. Comparing usages of n-grams and 5-tuples in representing net-
work traffic, however, shows two different emphases. While using n-grams emphasizes
pattern contents, using 5-tuples emphasizes pattern locations.

n-grams are commonly used in machine learning statistical methods to analyze
network packets and file types (Section 2.2.1). Examples include analyzing binary
contents of files [100], and detecting anomalous file segments [172]. On the other
hand, PAYL [185], and Anagram [186] use n-grams to analyze network packets with
machine learning algorithms for intrusion and anomaly detection respectively.

One key disadvantage of n-grams, though, is that like signatures, they require the

4 Chapter 1. Introduction

entire contents of a packet to be scanned in order to determine a match. Another is
that they cannot capture certain kinds of structure in network packets. For example,
a 4-gram representing an IP address could match either the source or destination
address in the IP packet header.

We can address both of these limitations by adding location information to n-
grams. A simple way to do this is to add an offset p, thus giving us (p, n)-grams. Just
like n-grams, (p, n)-grams are not limited to patterns in packet headers and do not
require prior knowledge of existing patterns. (p, n)-grams, however, can be matched
more efficiently and can capture structural patterns (such as the difference between
source and destination IP addresses) that n-grams cannot capture. On the other
hand, the 5-tuples can be represented by a set of five (p, n)-grams.

Note that Matrawy et al. [113] were the first to propose (p, n)-grams for traffic
shaping of network packets. Their work, however, was mainly focused on mitigating
DOS attacks through diversity-based network management using (p, n)-grams.

We define structural (p, n)-grams as those with a relatively high frequency in
observed network traffic. In this thesis we argue that structural (p, n)-grams capture
the high-level organization and semantics of traffic and that (p, n)-grams can be used
to do lightweight hierarchical clustering of traffic and to fingerprint network protocols
and sub-protocols.

1.3 Hypotheses

Here are our hypotheses about (p, n)-grams that we address in the following chapters:

First, we hypothesize that we can find representative structural (p, n)-grams effi-
ciently using hierarchical clustering, specifically through an algorithm we co-invented,
Approximate Divisive HIerarchical Clustering (ADHIC). (Chapters 3, 4, and 5)

Second, we hypothesize that (p, n)-grams with relatively high frequency constitute
a small subset of the total possible set of (p, n)-grams in network traffic. We also con-
jecture that (p, n)-gram frequencies in network traffic follow a power-law-like behavior

1.4. Related Publications 5

similar to that of Zipf’s law [203]. (p, n)-grams with relatively high frequency repre-
sent the short rapidly-dropping-off portion of the distribution line without the long
tail. Our hypothesis is that this characteristic gives (p, n)-gram-based approaches an
efficiency advantage in terms of the required space and time complexities to capture
and process structural patterns (Chapters 6 and 7).

Third, we hypothesize that these relatively frequent (p, n)-grams capture high-
level structures of network traffic including network protocols, high-volume commu-
nication flows, and frequently communicating hosts; thus, we call them structural
(p, n)-grams. Our hypothesis is that structural (p, n)-grams can form a “fingerprint”
of network protocols that may be used to identify them in a fashion similar to that
of hand-crafted regular expression signatures (Chapter 6 and 8).

1.4 Related Publications

Some parts of this thesis have been peer-reviewed and published. The following list
shows these publications in chronological order:

1. Hajime Inoue, Dana Jansens, Abdulrahman Hijazi, Anil Somayaji, “NetAD-
HICT: A Tool for Understanding Network Traffic,” USENIX: 21st Large Instal-
lation System Administration Conference (LISA’07), Dallas, USA, Nov 2007.

2. Abdulrahman Hijazi, Hajime Inoue, Anil Somayaji, “Lightweight Unsupervised
Hierarchical Network Traffic Clustering,” NIPS: Workshop on Machine Learn-
ing in Adversarial Environments for Computer Security (NIPS’07 workshop),
Whistler, Canada, Dec 2007.

3. Abdulrahman Hijazi, Hajime Inoue, Ashraf Matrawy, P. C. van Oorschot,
Anil Somayaji, “Discovering Packet Structure through Lightweight Hierarchical
Clustering,” Proceedings of the IEEE International Conference on Communi-
cations (ICC’08), Beijing, China, May 2008.

6 Chapter 1. Introduction

4. Carson Brown, Alex Cowperthwaite, Abdulrahman Hijazi, Anil Somayaji,
“Analysis of the 1999 DARPA/Lincoln Laboratory IDS Evaluation Data with
NetADHICT,” Proceedings of the IEEE Second Symposium on Computational
Intelligence for Security and Defense Applications (CISDA’09), Ottawa,
Canada, Jul 2009.

While the parts of this thesis related to ADHIC have been published (Chap-
ters 3, 4, and 5), the other parts have not as of yet. Those include the parts on
empirical power-law characterization of network traffic (Chapter 7), protocol finger-
printing (Chapter 8), and the conceptual model of traffic (Chapter 9).

1.5 Independent and Collaborative Work

Basically this thesis is my independent work except for some collaborative work pre-
sented in Chapters 3 and 4. In these two chapters, my collaborative work (mainly with
Hajime Inoue) was in defining the clustering application requirements, and working
on the design of ADHIC: Approximate Divisive HIerarchical Clustering [65, 80].

On the other hand, planning, conducting all experiments and working on the
empirical analysis [63, 64] and conceptual insights, were all my own independent work.
Note, however, that Hajime Inoue was the one who did the software implementation
of ADHIC: NetADHICT [80].

Finally, Carson Brown and Alex Cowperthwaite have helped in preparing the
DARPA dataset for experimentation with ADHIC; however, all the analysis and con-
clusion work presented in Chapter 5 were my own [20].

1.6 Thesis Organization

This section presents a high-level overview of the arguments and contributions for the
thesis chapters, and provides brief discussion of their main components.

1.6. Thesis Organization 7

Chapter 2 discusses the related work in network traffic characterization. The
chapter focuses on the statistical analysis and machine learning algorithms proposed
to fingerprint, cluster, and classify network traffic including identifying peer-to-peer
(P2P) and encrypted traffic.

Chapter 3 presents the design of ADHIC (Approximate Divisive HIerarchical Clus-
tering). ADHIC is an unsupervised packet clustering algorithm that works without a
priori knowledge about protocol structures. The output of ADHIC is a dynamic tree
graph that gives a decomposition of the inspected traffic and its changes over time.

Chapter 4 provides empirical analysis on ADHIC’s clustering performance of nor-
mal traffic using data from three independent networks.

Chapter 5 examines the ability of ADHIC to monitor abnormal and evasive net-
work traffic and that of synthetically generated network traffic. It also examines how
well ADHIC can segregate protocols without looking at the packet header fields.

Chapter 6 analyzes the characteristics of (p, n)-grams that enable algorithms such
as ADHIC. It introduces in more detail hypotheses about network traffic that are
evaluated in later chapters. It also introduces a novel use of Shannon entropy as a
metric to measure the similarity level of fields in network packets and applies this
measure to multiple network captures.

Chapter 7 empirically tests the frequency distributions of (p, n)-grams in network
traffic, and how their frequency analysis can be used to discover structural patterns
in network packets.

Chapter 8 discusses the pattern-matching capabilities of (p, n)-grams, with em-
phasis on their representation richness to capture structural patterns at any portion
within network packets. The chapter also discusses how these patterns can be used
as fingerprints to distinguish between different protocols and sub-protocols.

Chapter 9 builds an abstract conceptual model to explain our empirical findings
of the (p, n)-gram frequency distributions in the context of the current design and
implementation of Internet protocols and statistics of network traffic. It serves as a
formal approximation to validate that our results are not dataset dependent.

8 Chapter 1. Introduction

Finally, Chapter 10 concludes with a summary of our contributions and their
limitations, and discusses our plan for future work.

2 Background and Related Work

With the increasing advances in designs and types of network traffic protocols, a
substantial number of researchers have explored the question of how to characterize
Internet traffic. Surveying the literature for existing techniques in this domain shows
various approaches with different criteria.

For example, the characterization goal might be focused on traffic fingerprinting,
identification, classification, clustering, reverse engineering, or others. On the other
hand, the scope could cover all Internet traffic, or specific protocols, and the analysis
technique might vary from direct field check to machine learning or other statistical
or heuristic analysis techniques. In addition, the analysis environment might be real-
time or off-line, and the scale can vary from traffic on one host to an enterprise or
ISP-level. Finally, different approaches analyze different parts of the packets. For
example, there are techniques that check the packet header fields only, and others
that analyze the payload portion as well.

In taking what part of network packets is analyzed as a use case, the literature
shows four common ways to look at packets [36]: 1) check their port numbers, 2)
analyze their flows (e.g., 5-tuples), 3) analyze their behaviors (e.g., inter-arrival time,
packet size, and other packet header fields), and 4) analyze packet payloads (i.e.,
deep-packet inspection). It is also common to use a combination of these four as a
hybrid approach in the same traffic characterization technique.

Our research is mainly about using (p, n)-grams within network packets (header
and payload) to cluster network traffic. Therefore, this chapter discusses the related
work with some emphasis on machine learning clustering algorithms. The chapter also

9

10 Chapter 2. Background and Related Work

briefly discusses specific related topics such as analyzing encrypted traffic and cites
examples of recent work done in protocol fingerprinting, inference and identification.
The chapter also includes a section on using the n-gram and (p, n)-gram representa-
tions to analyze network traffic. Finally, the chapter concludes with a section that
puts our work in the context of the related work.

2.1 Analyzing Traffic Using Ports and Flows

Checking packet port numbers is a well known analysis approach to classify network
traffic [107, 137]. Specifically, port numbers have been commonly used to identify net-
work traffic types and applications. This technique worked well with legacy protocols
that used to comply with the fixed traditional port numbers assigned by IANA [72].
For example, the CoralReef [32] tool, developed by CAIDA (Cooperative Association
for Internet Data Analysis) [23], uses a module (AppPorts) to convert application
port numbers to application and protocol names. Another example is MRTG [120],
which is a standard network system administration tool that shows traffic utiliza-
tion in terms of port usage, with ports being used as a proxy for identifying network
protocols and uses.

However, the advances in network protocol designs and implementations have
rendered this approach inaccurate. The problem arises in more than one way. On
the one hand, there is a wide usage of common ports for arbitrary applications in
order to circumvent firewalls, as well as the use of dynamic port allocation for evasive
applications such as peer-to-peer (P2P) file sharing [89]. On the other hand, there
are new applications that don’t have IANA registered ports. This is, of course, in
addition to the use of port translation [36].

Another way to analyze network traffic is to check flow properties of the network
packets. This is mainly to statistically analyze the flow fields in the packet header
(5 tuples: source IP, source port, destination IP, destination port, and IP protocol)
to characterize network traffic. FlowScan [137] is one such software package that

2.2. Analyzing Traffic Using Payloads (Deep-Packet Inspection) 11

extracts flow information from IP routers.

In addition to techniques that examine individual flows, aggregates of flows have
been explored and analyzed. Estan et al. [52] introduced a traffic characterization
technique that relies on clustering traffic according to resource usage and consumption
patterns, based on their 5-tuple flow information. They use their prototype system
(AutoFocus [52]) to accomplish this task and generate traffic reports. Mahajan et
al. [108, 109] studied aggregates of flows in the context of preventing flash crowds and
denial-of-service (DoS) attacks. They proposed using a pushback mechanism where
routers cooperate in controlling aggregate traffic.

Another example is NetFlow [28] which is a proprietary network protocol devel-
oped by Cisco to collect IP traffic information on systems that run Cisco Internetwork
Operating System (IOS). NetFlow provides several IP services including network per-
formance and security monitoring. Basically, it captures flow information1 of network
traffic and analyzes it at monitoring hosts.

Looking at the packet flow information is very fast. However, unless some sort of
clustering of flow records is efficiently used, this flow-based approach has the drawback
of emphasizing individual flows, which usually results in excessive detail and less high-
level understanding of the traffic [52].

2.2 Analyzing Traffic Using Payloads (Deep-Packet In-
spection)

Analyzing packet payloads is a common traffic characterization technique that is
usually referred to as deep packet inspection. This technique relies mainly on looking
for special signatures in the packet payloads, or doing more complicated syntactical
matching.

Worm detection is one of the early applications where payload-based traffic analy-
1Note that Cisco usually defines a network flow by a 7-tuple entity where the SNMP ingress

interface and IP type of service are added to the traditional components of the 5-tuple flow (i.e.,
source and destination IP address, source and destination port number, and IP protocol).

12 Chapter 2. Background and Related Work

sis has been commonly used. For example, EarlyBird [162, 163] automatically detects
unknown worms based on a common content sequence of exploits that comes along
with a range of unique sources spreading the infection and destinations being targeted
in the attack.

HoneyComb [95] uses a honeypot system to capture network traffic and apply pat-
tern matching techniques and protocol conformance checks to automatically generate
attack signatures for intrusion detection systems (IDS). Both EarlyBird and Auto-
graph systems employ Rabin fingerprints to index counters of content substrings.
Alternately, Autograph [93] generates its signatures specifically for worms that prop-
agate using TCP transport by analyzing the prevalence of portions of flow payloads.

There are also very useful payload-based tools that rely on a priori knowledge
of network protocols and their structures to analyze network traffic. For example,
Wireshark [31] applies deep packet inspection to identify network protocols. Its cur-
rent database can recognize hundreds of protocols, while new protocols get added
over time. Wireshark displays captured packets graphically to the user, and gives
in-depth details about their contents and structures.

In addition, Sandvine’s Network Data Analytics [153] is meant for fast analysis
of huge aggregate data from Tier 1 or Tier 2 networks. It offers a comprehensive
coverage of many of the available protocols and combines accuracy and efficiency.
However, the tool is very knowledge intensive, which limits its functionality to the
already known and analyzed network traffic protocols.

In spite of its powerful characterization capabilities, one common problem with
payload analysis is its limitations when inspecting encrypted traffic [60, 90, 91]. In
addition, deep packet inspection usually introduces privacy concerns due to the au-
tomated analysis of transmitted user data. Another problem with payload-based
characterization of network traffic is that it is usually computationally expensive,
and requires continuous maintenance of identifying rules [36].

2.2. Analyzing Traffic Using Payloads (Deep-Packet Inspection) 13

2.2.1 Using n-grams Representation To Analyze Network Traffic

One of the common network traffic analysis approaches to discover high-level patterns
is to use n-grams in machine learning statistical methods to analyze network packets
and file types.

For example, Li et al. [100] proposed an n-gram-based machine learning method
to identify file types through analyzing their binary contents. Normalized n-gram
distributions are used to represent all files of a certain type. They are then used to
detect unknown file types or check if the content of a file matches the type indicated
in its header. Stolfo et al. [172] then extended this work for detection of suspicious
anomalous file segments using n-grams.

Wang et al. [187], on the other hand, used n-grams to analyze network packets
and build a machine learning intrusion detection system called PAYL. During the
training phase, PAYL profiles application payloads of network packets using frequency
distribution of n-grams and their standard deviation. PAYL does that for packets with
the same length, destination address and port. A size of (n = 1) is used to simplify the
system’s computations. A distance function (Mahalanobis, a standard distance metric
in statistics) is used at the production phase to measure the distance between existing
profiles and the inspected new data using a predetermined threshold. Experiments
showed successful results with low false positives. The work on PAYL was further
extended in order to detect zero-day worms and generate their signatures [185].

Anagram [186] is another payload-based machine-learning algorithm (created by
the same group) that uses n-grams to analyze network traffic for anomaly detection.
While PAYL computes a profile of byte n-grams (i.e., n = 1) frequency distribu-
tion, Anagram models high-order n-grams (i.e., n ≥ 2) to capture consecutive byte
information. Relying on the n-grams’ special frequency distributions within packet
payloads, both PAYL and Anagram were able to gauge similarity between packets
that share the same application, length, host, and port.

In recent research, Sheu et al. [158] proposed a two-tier enhanced hierarchical mul-
tipattern matching (EHMA) algorithm for packet inspection in a network intrusion

14 Chapter 2. Background and Related Work

detection system (NIDS). Their algorithm assumes that most packets are innocent
ones, and looks for their common grams. It then uses these grams to narrow down
the search for bad packets. Their matching process concentrates patterns into a small
on-chip table for performance efficiency. Their simulation results show relatively good
performance compared to other similar algorithms in [157], [181], and [105].

Also, Wei et al. [106] proposed an unsupervised botnet detection system that
divides traffic into known applications and then clusters traffic on each application
community, using n-grams extracted from the network flows. The purpose of their
work is mainly to find anomalous behaviours. Both [106] and [158] have found n-
grams with (n=1) to be good enough to achieve their results.

Matrawy et al. [113] were the first to propose (p, n)-grams for traffic shaping of
network packets. (p, n)-grams in network packets could be thought of as a special
case of n-grams with a sliding window (or simply n-grams with offsets p). However,
using n-grams for packet matching over time requires maintaining a sliding-window
state for each n-gram used at each time. The added offset p is what maintains this
information for each n-gram.

Their algorithm (i.e., [113]) constructs 50 queues and associates 20 (p, n)-grams
with each queue, for a total of 1,000 (p, n)-grams. (p, n)-grams are selected based
on their matching frequency in an earlier day. Each packet is checked sequentially
against the set of (p, n)-grams at each queue. The packet gets forwarded to the queue
where the match occurs or otherwise to a default queue. Each queue is served with
an equal share of the network bandwidth. The goal of this system is to mitigate the
effect of DOS attacks through grouping similar packets together in one queue with
a limited share of the bandwidth. That is, if the queues manage to do a proper
classification, and one of the queues starts to receive a worm or flash crowd traffic, it
will be exclusively affected. The undesired traffic would only consume a limited size
of the bandwidth that is originally assigned to each queue.

2.3. Analyzing Traffic Using Behavior Information and Other Header Fields 15

2.3 Analyzing Traffic Using Behavior Information and
Other Header Fields

Analyzing network packets through their behaviors usually relies on behavioral and
flow information all located in the packet header fields. That is, the approach looks
for special host communication patterns to differentiate between packets of various
applications. In this approach, packet sizes, directions, and inter-arrival times, are
examples of packet behavior characteristics that can be correlated together [136]. Cor-
relation usually goes across different flows, but could also go across different sessions.
For example, Bernaille et al. [13] use the sizes of the first six packets in a session as
the protocol signature.

Paxson and Floyd [135] studied packet arrivals in network traffic, and showed that
in the case of wide area network (WAN) traffic, a Poisson distribution may only apply
to packet arrivals of certain traffic types like TCP file transfer and remote login. In
addition, Leland et al. [97, 98] researched the statistical self-similarity properties of
Ethernet traffic.

Karagiannis et al. [91] classified traffic by examining host behavior. Their strategy
was to observe host behavior at the social level (host interaction), functional level
(popularity, role), and transport level. They reported classifying 80%-90% of traffic
with 95% accuracy. Also, Bernaille et al. [14] studied the feasibility of early clustering
of applications by observing the size and direction of the first few packets of a TCP
connection.

Another example of packet behavior analysis is that of Kumpulainen et al. [96],
in which they used a multi-layer clustering algorithm to monitor traffic patterns and
characterize servers and devices generating the traffic. They collected behavioral
information from packet headers (e.g., sending and receiving sequences, TCP and
UDP connections, etc.) of each address within one-hour time frames. They used that
then to create informative variables that describe the traffic.

Borders et al. [17] use their Web Tap tool to differentiate between legitimate
HTTP traffic and other protocols that use covert channels (through HTTP tunnels)

16 Chapter 2. Background and Related Work

to communicate with web servers behind the firewalls. Filtering with Web Tap uses
traffic behavior parameters such as request regularity, bandwidth usage, inter-request
delay time, and transaction size. Similarly, Pack et al. [133] use packet features such as
packet size, change of packet size, and packet interleaving time to construct behavior
profiles of application network sessions and detect HTTP tunneling activities.

One limitation of behavior-based traffic analysis is that it usually overlooks some
of the key protocol-specific information that is within the packet contents, and can
be used to identify or fingerprint the original protocol type. This information can
usually be derived from the protocol-specific fields within the headers and payloads
of packets [107].

2.3.1 Characterizing Encrypted Traffic

While payload-based traffic analysis techniques assume differences in packet contents
for different traffic or protocol types, behavior-based techniques assume differences in
behaviors. Although the two approaches usually complement each another in traffic
analysis, the strength of each approach relies on which differences are manifested in
the protocol implementations. This, however, may vary depending on the protocols
being analyzed.

A common example where behavior-based traffic analysis usually gives more ac-
curate identification is when dealing with disguised protocols [90, 91]. That is, P2P
applications usually use encrypted or compressed payloads, and may disguise their
ports (e.g. using the HTTP port 80) to escape traffic shaping; however, their packets
usually feature a special communication behavior that can be distinguished from the
normal behavior of HTTP traffic [75].

For instance, Wright et al. [194, 195] observe that different application proto-
cols have different behaviors of packet exchange between the communicating parties.
Studying and profiling these different behaviors on unencrypted traffic, and then
matching the behavior of encrypted traffic to one of them allows a relatively accurate
guessing of the encrypted traffic protocol type and ID. In addition, Gebski et al. [56]

2.4. Analyzing Traffic Using Machine Learning and Statistical Analysis 17

rely on the size, timing and direction of network packets to profile encrypted traffic
using a graph-comparison approach.

Three more examples of characterizing encrypted protocol identification are those
of Wright et al. [193], Sun et al. [174], and Liberatore et al. [102]. Wright et al. [193]
use the length behavior of encrypted Voice-over-IP (VoIP) packets in a session to
predict the language used in a phone conversation. This was found possible when
Variable Bit Rate (VBR) coders were used for encoding. On the other hand, Sun et
al. [174] observe that visiting different pages on the web results in different number
and size of object downloads. Studying and reporting traffic signatures of thousands
of web pages and then checking the encrypted web traffic against these signatures can
help identifying the visited web pages. Similarly, Liberatore et al. [102] have worked
on identifying the sources of encrypted HTTP connections using similarity checks to
a library of known profiles.

2.4 Analyzing Traffic Using Machine Learning and Sta-
tistical Analysis

Machine learning algorithms are commonly used to analyze network traffic. Although
machine learning analysis can be done using any of the packet parts including headers
and payloads [130, 36], it has shown promising results even with traffic that may
preclude payload analysis (e.g., encrypted and obfuscated traffic).

There are three common types of machine learning algorithms: supervised, un-
supervised, and semi-supervised (or constrained clustering). Approaches with su-
pervised learning start with building a model using training and labeled data and
then using this model to classify subsequent traffic [119, 101, 190, 51]. Unsupervised
learning approaches, on the other hand, use clustering algorithms to cluster flows to-
gether based on their similar characteristics without labeled data [114, 50, 199, 200].
Finally, semi-supervised or constrained clustering combines a clustering algorithm
and some set of rules like a must-link and can’t-link constraint to increase clustering

18 Chapter 2. Background and Related Work

accuracy [188, 192, 159].

In all the above three learning types, however, proposed solutions vary between
those based on traffic flows, payloads, behavior, and/or a combination of them. For
example, Wang et al. [188] proposed a semi-supervised clustering that focuses on
packet flow correlation information. On the other hand, Szab et al. [175] proposed
another semi-supervised clustering algorithm focusing on connectivity patterns (be-
haviors) such as packet sizes and arrival times. Dehghani et al. [39], and Wong et
al. [192], proposed a hybrid supervised algorithm based on payload contents as well as
packet behavior statistical features such as size and inter-arrival time. While the work
by [39] worked well with HTTP and FTP applications, the work by [192] targeted
the BitTorrent traffic detection.

It is important to note the variety of clustering algorithm techniques used in the
literature. Among the common ones are hierarchical clustering, decision trees, K-
Means algorithms, statistical distributions, genetic algorithms, Bayesian networks,
association rules and self-organization maps, SVM, and neural networks [125, 202, 8,
159].

Clustering traffic into application classes using machine learning was also studied
by Zander et al. [200] where they used an approach based on Bayesian classification.
McGregor et al. [114] clustered application traffic using the Expectation Maximization
algorithm. Also, Roughan et al. [148] clustered traffic into different QoS classes.

Other applications of machine learning algorithms have been in the area of traffic
fingerprinting and classification. For example, Haffner et al. [60] proposed a machine
learning algorithm that automates construction of application signatures. Moore
et al. [118], on the other hand, suggested an iterative classification algorithm that
operates on flows. Moreover, Sen et al. [155] and Choi et al. [26] have proposed an
algorithm to inspect available documentation and packet-level traces, and a content-
aware application traffic measurement, respectively.

2.4. Analyzing Traffic Using Machine Learning and Statistical Analysis 19

2.4.1 Protocol Fingerprinting

In protocol fingerprinting, content and/or behavior of network packets are analyzed
to identify specific features of network protocol implementation [160]. This can be
on the syntax level or semantic level, and can go on the headers and/or payload level
of network packets. Examples of syntax level fingerprinting include the work of Bev-
erly [15], in which he shows TCP/IP traffic header fingerprinting using probabilistic
learning can identify a host’s OS. Moreover, fingerprints of worm attacks are com-
monly made through substring signatures within the packet payloads. A substring,
such as: “X-Kazaa-*” is an example of a common string that may identify the Jazz
P2P protocol [107].

Website fingerprinting is an example of identifying semantic information even
when encrypted tunnels are used. Gong et al. [57] were able to fingerprint a website
with 80% accuracy using round-trip time (RTT) calculations from a virtual machine
that tries to simulate the network conditions on the user’s home network. Cai et
al. [22], on the other hand, used packet bahavior information such as timing, direction,
and size to fingerprint websites with accuracy between 50% and 90%.

Fingerprinting network packets can be created manually prior to traffic analysis
such as those hand-crafted strings used in Snort [147], and Bro [134]. Alternatively,
they can be automatically generated using signature extracting algorithms such as
those used in EarlyBird [162, 163], HoneyComb [95], Netbait [27], and Autograph [93],
or using machine learning algorithms such as that used in [21].

The manual approach assumes a priori knowledge about existing protocols, and
can’t help with zero-day protocols or applications. The automatic approach, how-
ever, allows systems to extract signatures while analyzing the byte representation of
network packets in order to achieve automatic pattern inference and/or generation
of attack signatures. For example, Dusi et al. [46] presented a statistical fingerprint-
ing method based on behavior header information at the network layer (e.g. packet
sizes, and inter-arrival times) that can detect application-layer tunnels and enforce
network-boundary security policies.

20 Chapter 2. Background and Related Work

On the other hand, Zhang et al. [201] proposed another statistical fingerprint-
ing method that can detect stealthy P2P Botnets. Their method fingerprints the
Command-and-Control communication patterns and use that to distinguish between
hosts of legitimate P2P networks and P2P bots. Similarly, Tegeler et al. [179] pro-
posed BotFinder, an algorithm that can automatically build multi-faceted models for
Command-and-Control traffic of different malware families.

Moreover, in recent research work, Shu et al. [160] proposed a formal model for
fingerprinting based on a Finite-State Machine (FSM) that can specify complex pro-
tocols like the TCP congestion control and SSL handshaking subprotocol.

2.4.2 Protocol Inference and Identification

The work on protocol inference and identification extends from or overlaps with the
work on protocol fingerprinting and classification. For example, deep packet inspec-
tion can be used to fingerprint protocols and identify them based on their special
matching. In behavior analysis, traffic protocols can be inferred based on their packet
behaviors. Therefore, it is common to find the related research focusing on specific
protocol identification such as encrypted traffic (See Section 2.3.1), Bit torrent, and
other P2P traffic [202], Skype [125], etc.

It is common to find that pattern matching is performed through finite automata
(FA). Antonello et al. [5] have observed that several consecutive transitions in FA lead
to the same destination state. Thus, they proposed a range compressed deterministic
finite automaton (RCDFA) that aims to decrease space requirements when used to
perform pattern matching.

Interesting protocol inference and identification research was introduced by Ma
et al. [107]. They proposed an unsupervised protocol inference framework that re-
lies on common flow contents (packet strings), not just flow information. Basically,
they classify traffic by building statistical models of messages exchanged in a protocol
without relying on port numbers to identify applications. Their approach assumes
that flows from the same application/protocol possess content similarities that can

2.5. Our Work in Context 21

distinguish them from others. Thus, it looks for common flow content and uses that
to identify traffic that employs the same application/protocol. Using three classifi-
cation techniques (product distributions, Markov processes, and common substring
graphs), they were able to capture statistics and structures of messages exchanged in
a protocol, and use that to group protocols without relying on ports or other a priori

knowledge about protocol structures.

Now that we briefly discussed the main areas of related work, it is time to put our
work in context.

2.5 Our Work in Context

In this research, our goal is to use another representation of traffic that can extend the
advantages of using n-grams to efficiently find common patterns in network packets.
Therefore, based on the previous related-work discussion, our (p, n)-gram research
may be relatively closer in implementation to the n-gram based traffic analysis algo-
rithms.

When compared with other signature-based or field-specific traffic analysis tech-
niques, n-gram-based traffic analysis helps in better extracting interesting patterns
within network packets as it assumes no apriori knowledge about where in the packet
they are located. However, it does not give a semantic meaning on what these strings
may belong to within the protocol packets (e.g., header vs payload). Moreover, n-
gram-based algorithms compare each string to the whole packet for pattern matching.
a process that at best requires linear time.

Our research, however, augments the capabilities of n-grams by adding some se-
mantic meaning to each n-gram to help in the analysis part. In addition, instead of
looking at the whole packet for each pattern matching, we follow the approach for
which high-speed routers are optimized in order to achieve better scalability: match-
ing a sequence of bytes at specific packet locations (using offset p).

With respect to the machine learning algorithm used, we use ADHIC (Approxi-

22 Chapter 2. Background and Related Work

mate Divisive HIerarchical Clustering), a simple unsupervised machine learning clus-
tering algorithm that uses a dynamic binary decision tree to divide and cluster net-
work traffic and create a decomposition of the inspected traffic in real-time fashion.

On the other hand, considering the different ways to analyze packet parts discussed
above (port-based, flow-based, behavior-based, and payload-based), our (p, n)-gram-
based research offers a simple and efficient traffic characterization technique that
achieves combined advantages as it looks at the entire packets with all fields with
equal attention. For instance, (p, n)-grams may represent port numbers, flow data
(5-tuples), payload data, as well as packet behavior information (e.g., packet length,
time-to-live (TTL), options, etc.).

Our work is similar to that of Ma et al.’s [107] in that it uses an unsupervised
header/payload machine learning approach to group protocols without looking at
specific packet fields or assuming apriori knowledge about network protocols. They
both suggest unexpected (non-traditional) means to infer network protocols. For
example, we observe that using (p, n)-grams in characterizing network traffic can
discover payload patterns within protocols and sub-protocols that can go cross-flow
in network packets. However, in addition to the algorithm differences, our work is
different from Ma et al. in that it represents network packets using (p, n)-grams,
where each (p, n)-gram consists of a 2-byte string and an offset, as opposed to the
classical representation using just strings (with fixed or variant sizes).

In summary, with the goal of augmenting other traffic analysis algorithms to
achieve high-level traffic analysis, our work is different from all n-gram-based ap-
proaches discussed earlier in three ways: objective, methodology, and efficiency. From
the objective perspective, we want to build a blind packet-structure system that can
relate packets through their semantic structure similarities as well as content similar-
ities without apriori knowledge of the traffic protocols (Chapters 3, 4, and 5).

From the methodology point of view, we attach a semantic meaning to each n-
gram through adding an offset p. This increases the domain space and gives traffic
analysis another dimension. It also allows us to efficiently capture specific protocol

2.5. Our Work in Context 23

structures that can be used to fingerprint different network protocols (Chapters 6
and 8). Finally, from the efficiency perspective, packet matching with (p, n)-grams
requires comparing the (p, n)-gram only with the packet’s n-byte sequence at offset
p, as opposed to comparing with the whole packet as in the n-gram case. A common
efficiency similarity though between (p, n)-grams and n-grams is their power-law-like
distribution behavior that allows the relatively frequent ones to be easily distinguished
from the rest (Chapters 6 and 7).

In comparison to the DOS mitigation work by Matrawy et al. [113] using (p, n)-
grams, our work researches the (p, n)-grams’ ability to fingerprint network protocols
efficiently and use that to cluster and monitor network traffic. Our research is based
on empirical analysis and conceptual models to support our hypotheses of (p, n)-
grams and their characteristics in network traffic (Section 1.3). In particular, they
support our hypotheses of the (p, n)-grams ability to capture protocol structures for
fingerprinting purposes, and their special power-law-like distribution behavior that
allows them to be efficiently distinguished from other (p, n)-grams found in the traffic.

3 Introducing ADHIC

This chapter and the following one present collaborative work I did with Hajime
Inoue to develop a clustering algorithm that can cluster network traffic efficiently and
effectively. We defined the clustering application requirements and designed ADHIC
(Approximate Divisive HIerarchical Clustering algorithm) [65, 80]. The empirical
analysis and theoretical insights in later chapters, however, are my own work [64, 63].

In this chapter, we introduce our clustering algorithm ADHIC [63, 65, 64], and
discuss how it works. We also reference its current prototype implementation Ne-
tADHICT (Network Approximate Divisive HIerarchical Clustering Tool) [80]. Ne-
tADHICT is licensed under the GNU General Public Licence (GPL), and is available
from the Carleton Computer Security Laboratory (CCSL) website [79]. Chapter 4
presents an empirical analysis of ADHIC’s performance on real network traffic. Our
empirical results show the effectiveness of ADHIC to cluster and classify network
traffic for network management and security purposes.

3.1 Rationale Behind ADHIC

In a nutshell, ADHIC is a binary-tree-based clustering algorithm that continuously
divides monitored traffic based on packet matchings with automatically calculated
(p, n)-grams. ADHIC analyzes monitored packets to find (p, n)-grams with high fre-
quency and then applies a divisive hierarchical clustering algorithm (a standard ma-
chine learning method) to build a dynamically changing binary tree whose leaf nodes

24

3.1. Rationale Behind ADHIC 25

constitute clusters of semantically similar packets.

The objective of this research is to find a technique that can efficiently cluster net-
work packets into semantically meaningful classes without using any domain-specific
knowledge. Our approach to achieve this is to find the packet design structures, for
fingerprinting purposes (See Section 2.4.1), that are already present, even if we do not
know them, rather than the structures that we expect to find. We, therefore, target
an unsupervised algorithm that can efficiently cluster network traffic, while promptly
adapting to the recurrent changes in network traffic.

Our work is inspired by earlier work in our research group (see Section 2.2.1)
on mitigating distributed denial-of-service (DoS) attacks using (p, n)-grams [113].
Initially, ADHIC was to be a more scalable version of this algorithm. As we will show,
though, ADHIC is particularly suited to semantic clustering of network packets.

Our approach is different from the other network traffic clustering and classify-
ing methods mentioned in the related work chapter (i.e., Chapter 2) in three ways.
First, ADHIC does not rely on any previous knowledge of packet contents, nor does
it assume particular byte ranges as fields of interest in the learning process. Second,
although ADHIC is an unsupervised clustering algorithm, the clusters are semanti-
cally equivalent without requiring pre-labelling. Third, ADHIC works on raw network
packets and does not require flow reconstruction, packet reassembly, or packet nor-
malization to perform its traffic clustering, making it inherently more lightweight
than methods that do require such preprocessing (see Section 2.2).

We choose a hierarchical clustering approach since Internet traffic has an encapsu-
lated structure. For example, HTTP is encapsulated in a TCP session, whose packets
are encapsulated in IP and, typically, Ethernet packets. Such a structure is best
represented with a hierarchy rather than with a simple collection of clusters.

We also choose to create a divisive hierarchical clustering algorithm that works
in a top-down fashion. Divisive clustering is a good fit for our goals as we want to
capture large scale patterns rather than the fine-grained details of network behavior.
Our divisive clustering algorithm assumes that all data belongs to one cluster at

26 Chapter 3. Introducing ADHIC

the beginning. It then iteratively divides the cluster into smaller ones to capture
finer-grained details [88, 62].

Existing approaches to divisive hierarchical clustering typically employ an entropy
minimization calculation, which is O(n2) in the number of clustered items [44]. This
is, however, too expensive for a high-speed implementation. Therefore, we target a
linear algorithm (O(n)) in the number of inspected packets, and sub-linear in the
number of Bytes within inspected packets (i.e., an algorithm that only needs to look
at a small portion of the packet before making a clustering decision).

Our insight here comes from how high-speed routers are designed to quickly clas-
sify incoming packets. High-speed routers look at a subset of bytes within the packet
(i.e., destination IP address) to determine where the packet should go. Our choice,
therefore, has been to base our divisive hierarchical clusterer on a generalization of
what high-speed routers are optimized to observe: (p, n)-grams. A (p, n)-gram, in
our research, corresponds to a byte-sequence of size n byte(s) and offset p in network
packets, where p starts at the beginning of the Ethernet frame. (p, n)-grams can rep-
resent common patterns within packets so long as they appear at fixed offsets within
the packets. Patterns such as the presence of a string anywhere in a packet, however,
cannot be efficiently represented using the offset-based (p, n)-grams.

3.2 How ADHIC Works

ADHIC recursively divides traffic into binary classes, with each subdivision being
defined by the presence or absence of a given (p, n)-gram. It stops dividing classes
when the resulting traffic is below some configurable threshold in volume. ADHIC
also produces a binary decision tree that consists of 1) internal nodes, where each is
populated with a decision (p, n)-gram, and 2) leaf nodes, which constitute the final
(terminal) clusters.

ADHIC is a single-pass algorithm that looks at each packet only once while clus-
tering network traffic. While ADHIC needs to inspect all packets for (p, n)-gram

3.2. How ADHIC Works 27

matchings, it accelerates the clustering process by sampling fewer packets for (p, n)-
gram frequency analysis and tree generation. In most of our experiments, we sampled
only 20% of all packets for the tree generation part because we were interested in min-
imizing error and maximizing repeatability. Section 3.3.2 shows that, for the datasets
we worked with in our network, only 3% of packets are needed for the tree gener-
ation process to achieve an error rate of less than 5% for (p, n)-gram frequencies.
ADHIC utilizes this approximate divisive hierarchical clustering approach to assign
packets to clusters and adapt the cluster decision tree to changing traffic patterns
simultaneously.

3.2.1 Introducing ADHIC Trees

Figure 3.1 shows a simple ADHIC binary decision tree captured at an early stage (a
typical mature tree has slightly over 100 total nodes). In this tree, all nodes have
a node identifier (e.g., N2) and two entries of traffic statistics of packet counts and
percentage. Those two statistics entries represent the number of packets encountered
in two time periods (windows), namely: update period (currently set to last 10 min),
and maturation window (currently set to last 3 hours). We introduce these time
periods in Section 3.2.3.

Each of the internal nodes (i.e., N2, N5, and N8) is associated with a (p, n)-gram
(e.g., 21, 0x00 0x71 for N2). Left branches in the tree indicate matches, while right
branches indicate the absence of a given (p, n)-gram. The circle size of a leaf node
(cluster) varies depending on the number of packets seen in each node over the last
update period. The numbers at the bottom of each leaf node tells the number of
different protocols represented by packets in the cluster.

Each protocol type within a cluster is represented by a slice, where the size of a
slice reflects the relative volume or number of packets. Slices with one color represent
Ethernet protocols (e.g., ARP); two colors (slice + one stripe) are IP protocol types
(e.g., EIGRP); three colors (slice + two stripes) are specific TCP and UDP protocols
(e.g., HTTP). See Table 4.1 for protocol-color matchings.

28 Chapter 3. Introducing ADHIC

File /home/ahijazi/traffic/testjan/dump-2006-01-21.09:49.in

 Time 57

Queues 4

Last 10 Minutes 15358

Last 180 Minutes 278704

Total Packets 780140

N2

21, 0x00 0x71

15358 (100.00%)

278704 (100.00%)

N5

55, 0x00 0x00

4634 (30.17%)

84551 (30.34%)

N8

8, 0xd3 0x3b

10724 (69.83%)

194153 (69.66%)

N6

1992 (12.97%)

36921 (13.25%)

1

N7

2642 (17.20%)

47630 (17.09%)

2

N9

4908 (31.96%)

92357 (33.14%)

12

N10

5816 (37.87%)

101796 (36.52%)

21

Figure 3.1. (Best viewed in color) An example ADHIC decision tree. Terminal clusters
are represented by pie charts (color key provided in Table 4.1). Singular clusters are
presented on a gray box.

It is important to note that the colors come from a “reference classifier” that scans
packets in the tree nodes (clusters) after they get generated by ADHIC. The reference
classifier is a port-based classifier that we use in addition to ADHIC to compare its
output with the classical classification (i.e., through port numbers) of packets. We
discuss more about the reference classifier in Section 4.2.

3.2.2 Traffic Clustering within the Tree

Traffic that matches a classification rule within the node (i.e., a decision (p, n)-gram)
is said to match and is directed to the left, or true subtree. The rest of the traffic is

3.2. How ADHIC Works 29

directed to the right, or false subtree. Because rightmost subtrees have not matched
any of the classification rules within their subtrees, we sometimes refer to these as
default clusters. The rightmost cluster of the entire tree is the global default cluster.
See Figure 3.2 for a pseudocode representation of the ADHIC matching algorithm.

for each packet:
start at root node
while node <> leaf_node

if(node.png in packet)
node = node.left

else
node = node.right

assign packet to leaf_node

Figure 3.2. Pseudocode for the ADHIC matching algorithm.

Traffic within each terminal cluster can be viewed as packets that were filtered by
a boolean equation constructed through a path from the root node to the leaf. Left
subtrees are combined with and, whereas, right subtrees are combined with and not.
On the other hand, leaf nodes with rounded grey boxes mean that all packets within
that cluster belong to the same protocol type (thus, number 1 is at the bottom). We
call these special nodes singular clusters as they contain packets of one protocol only.

For example, Figure 3.1 shows traffic split into two subtrees through the following
decision (p, n)-gram: (21, 0x00 0x71) (Table C.1 presents a basic preview of the com-
mon IP TCP/UDP packet structure). The two subtrees were further split into four
terminal (leaf) clusters, where traffic that matches (21, 0x00 0x71) is then matched
against (55, 0x00 0x00).

In this example, the two left terminal clusters are dominated by packets from
a proprietary MP3-Stream protocol (similar to the Real-time Transport Protocol
-RTP). Packets in these two clusters feature a special “fragment offset” and “time-
to-live” value, namely: 0x00 at offset 21, and 0x71 at offset 22 respectively. ADHIC
automatically computes the corresponding (p, n)-gram of these two bytes (i.e., (21,
0x00 0x71)) through its relatively high frequency. It then uses this (p, n)-gram as a
fingerprint to segregate the MP3-Stream packets and cluster them in the left hand

30 Chapter 3. Introducing ADHIC

side of the tree.

3.2.3 Basic Tree Operations

ADHIC’s trees first start with one root node, and consistently get updated, over
time, through two operators: split and delete. Splitting is attempted when a leaf
cluster matches too much (more than a split threshold) traffic during the most recent
maturation window. Nodes which have been modified within a maturation window of
the current time are locked and cannot be split or deleted.

To split, we search for a (p, n)-gram that matches approximately half (50%) of the
packets in the cluster. We refer to the matching percentage range as the similarity

spread. In our experiments, we set the similarity spread parameter to 20%, split
threshold to 2%, and maturation window to 3 hours (see Table 3.1). Thus, using the
current settings of ADHIC, a leaf cluster will split if it matches more than 2% of the
packets in the past 3 hours, and a (p, n)-gram is found such that it exists in 40% to
60% of the packets in that cluster. Note that ADHIC chooses the first (p, n)-gram it
finds within the similarity spread and assigns that to the new decision node it creates.

for each node:
if(node.traffic_perc < min)

parent.delete(node)
else if(node is_leaf && node.traffic_perc > max)
{

png = find_png(node, cache)
if(png.found()) node.split(png)

}

Figure 3.3. Pseudocode for the ADHIC adjustment algorithm. cache holds a sample
of recently observed packets.

Deletion occurs when a subtree has not matched a minimum threshold of traffic
percentage (currently set to 0%) during the most recent maturation window. The
subtree’s parent node is also deleted. The parent node’s other subtree, the one not
deleted, becomes the direct child of the parent node’s parent. See Figure 3.3 for a

3.2. How ADHIC Works 31

pseudocode representation of the ADHIC adjustment algorithm.

For performance reasons, splitting and deletion do not occur continuously; instead,
they are restricted to update period intervals of several minutes (currently set to 10
minutes). The similarity spread, maturation window, update period, and the thresh-
olds for splitting and merging are all configurable parameters. Proper configuration
of these parameters may depend on more than one criterion, such as volume of net-
work traffic to be analyzed, number of different protocols involved, change frequency
in application activities, desired zooming-level of traffic monitoring, etc. Table 3.1
shows the values we used in most of our experiments. Those parameters were set
based on experimenting with multiple value options.

Parameter Value Parameter Value
(p, n)-gram length 2
maturation window 3 hours update period 10 minutes
delete threshold 0% split threshold 2%
sampling rate 20% similarity spread 20%

Table 3.1. ADHIC parameters used in most of our experiments

We considered complementing the and and not operators of ADHIC with an or

operator implemented through multiple internal nodes with multiple (p, n)-grams.
Internal nodes would acquire multiple (p, n)-grams by being merged with other nodes
rather than being deleted. Individual (p, n)-grams within nodes would then be deleted
if they did not match a packet within the maturity period. We found, however, that
the quality of the clusters produced by ADHIC with either operator regime was
similar.

By viewing packets as individual (p, n)-grams, the algorithm treats packets as high
dimensional vectors, where the number of dimensions is the packet’s length −n + 1.
Note, however, that these dimensions are not independent. The effective information
provided by the (p, n)-gram vector is reduced by its overlapping nature; also, due
to the often observed non-random nature of packet contents, the presence of one
(p, n)-gram often affects the probability of other, non-over-lapping (p, n)-grams.

ADHIC’s splitting method is far more efficient than that used in most divisive

32 Chapter 3. Introducing ADHIC

hierarchical clustering methods. Most choose a split that minimizes entropy in the
generated groups [44]. Entropy minimization is a natural choice because it ensures
that similar items are grouped together. Unfortunately, entropy minimization is a
slow calculation as it requires a separate computation for each of the 2m − 2 choices
for each split (where m is the number of packets in the original cluster).

3.3 ADHIC Performance

Throughout this research, we test performance of ADHIC through its NetADHICT
implementation. We run most of our experiments with NetADHICT on an Apple
Mac Pro with 1 GB of main memory and 2.66 GHz “Woodcrest” cores. Using this
hardware, the single-threaded NetADHICT (with logging minimized) is able to cluster
packet data at about 250 Mbps.

While its current speed is more than sufficient for a research prototype, NetAD-
HICT currently is not fast enough to monitor high-speed links. The lightweight nature
of our algorithm, however, should permit much higher-speed implementations. Such
work is a topic for future research.

The following two subsections discuss the lightweight nature and performance
characteristics of ADHIC and its current implementation (NetADHICT) in light of
two aspects: (p, n)-gram representation, and packet sampling.

3.3.1 (p, n)-gram Representation

Existing approaches to divisive hierarchical clustering typically employ an entropy
minimization calculation, which is O(n2) in the number of clustered items [44]. This
is, however, too expensive for a high-speed implementation.

In comparison, our (p, n)-gram based approach applies a sub-linear (in the number
of packet Bytes) algorithm that only needs to look at a small portion of the packet
before making a clustering decision. This is also to be compared with common n-gram

3.3. ADHIC Performance 33

based algorithms that compare each string to the whole packet for pattern matching;
a process that requires linear time.

On the other hand, when it comes to the process of selecting (p, n)-grams for
clustering, we find that the rapidly-dropping-off distribution of (p, n)-grams with a
power-law-like behavior (see Chapter 7) gives an additional space efficiency advantage.
In essence, this distribution behavior implies that the structural (p, n)-grams are easily
distinguishable from the rest in the long tail due to their unique high frequency. It
also implies that only a small set of structural (p, n)-grams is required for the traffic
characterization applications.

In addition, our current implementation of ADHIC (i.e., NetADHICT) also applies
a specific update-periods policy to do tree splitting and deletion (see Section 3.2.3)
in order to reduce this overhead while keeping the dynamic tree sensitively adaptive
to new traffic changes. NetADHICT also has a max tree height policy that limits the
number of checks each packet has to go through before it reaches its final cluster.

3.3.2 Packet Sampling

Our choice of using (p, n)-grams for traffic characterization allows ADHIC to use only
a small number of packets, through packet sampling, in order to construct its clus-
tering decision tree. ADHIC utilizes this approximate divisive hierarchical clustering
approach to assign packets to clusters and adapt the cluster decision tree to changing
traffic patterns simultaneously.

In essence, ADHIC uses unbiased packet sampling while searching for (p, n)-grams
within the similarity spread matching percentage range. That is, ADHIC uses indi-
vidual (p, n)-grams as a proxy for a more expensive entropy calculation. If we assume
a normal distribution of the traffic packets, then the sample size (m) required to have
an error rate of (B) or less, is estimated using the well known simple formula [94]:

34 Chapter 3. Introducing ADHIC

m =
1

B2
(3.1)

That is, for a 5% error rate or less, the sample size should be 400 packets. Network
traffic, however, does not follow a normal distribution [135], and thus, we must sample
more. In all our experiments referenced in this thesis, we choose a conservative
sampling rate of 20% (see Table 3.1).

In our implementation of ADHIC, we use a pseudo random number generator
function to do the sampling. That is, for each inspected packet, we generate a random
number “r” between 0 and 1 and compare it with 0.2. If r ≤ 0.2, we sample the packet
for (p, n)-gram frequency analysis, otherwise, we don’t.

It is important to note though that we found the proper sampling rate to be
network dependent. For most of our tested datasets, a sampling rate of only 3% of
the inspected packets is enough to achieve an error rate of less than 5% for (p, n)-gram
frequency distributions. More on sampling is discussed in Chapter 7.

4 Clustering Network Traffic Using ADHIC

Chapter 3 discusses our network traffic clustering algorithm ADHIC and explains how
it works on a high level. This chapter tests ADHIC’s functionality and performance
using experiments with four datasets (described in Section 4.1). The primary purpose
of these tests is to analyze the accuracy and efficiency of ADHIC in clustering network
traffic and to confirm its consistent behavior in different network environments, thus
reducing the probability that our conclusions might be network dependent.

The chapter first describes the experimental setup we used throughout this re-
search, and introduces our port-based reference classifier which we use to evaluate
ADHIC performance (Section 4.2). The chapter then describes how ADHIC works
on our main dataset (Section 4.3), and examines its performance in contrast to the
reference classifier (Section 4.4). It finally examines ADHIC’s performance on other
networks we had access to (Section 4.5).

The next chapter (Chapter 5), on the other hand, tests ADHIC’s performance on
our main dataset without looking at the packets’ header portion (Section 5.1). It
also discusses how ADHIC can be further used to classify network traffic for network
management and security purposes. That is, it examines the ability of ADHIC to
detect evasive traffic using its (p, n)-grams approach.

35

36 Chapter 4. Clustering Network Traffic Using ADHIC

4.1 Experimental Setup

This section presents the experimental setup that we used throughout this research.
In particular, it describes the main network traffic datasets and traces that we used
to test our developed applications (described in Chapters 4 and 5), as well as to verify
(p, n)-gram characteristics in network traffic (described in Chapters 7 and 8).

4.1.1 Datasets Description

There are four independent datasets that we used throughout this research to verify
our results and test our applications, namely: CCSL, MD, RMC, and LL. While
the last one represents a synthetic dataset created at Lincoln Labs, the first three
represent full captures of network traffic from three independent networks. This
section describes the first two (i.e., CCSL, MD) as they constitute the datasets mostly
used in this Chapter. On the other hand, RMC and LL are later described where
they are exclusively used in Chapters 4 and 5, respectively.

CCSL and MD are both full-capture original datasets from which we extracted
traces of various sizes. CCSL (Carleton Computer Security Lab) represents traffic
captures from our research lab at Carleton University, Ottawa; whereas, MD (Mary-
land) represents traffic captures from a private sales company in Maryland.

The CCSL dataset belongs to a graduate student laboratory network with over
15 machines, two network printers and about a dozen regular users. The network
provides common services to external hosts, such as a web server, web mail, email
server, domain name, secure shell, and network printing services.

In particular, the dataset represents a network traffic capture of all incoming
packets to the CCSL Lab where the destination MAC address is either a broadcast
(ff:ff:ff:ff:ff:ff), a multicast (e.g., HSRP and EIGRP router protocols), or the specific
CCSL’s firewall MAC address. This consists of several months of traffic capture, of
which we focus on four one-week long traces that correspond to the following periods:
Aug. 13-19, 2004, Dec. 10-16, 2005, Jan. 20-26, 2006, and Apr. 3-9, 2006. In

4.1. Experimental Setup 37

contrast to the other three weeks, the August trace contains IP traffic only, where
non-IP (e.g., ARP protocol [6]) packets were all excluded from the dataset.

On the other hand, the MD dataset represents a two-month long traffic capture
from a private small-size sales company in Maryland. The network is comprised of
over a dozen windows-based machines including two file servers and a Voice-over-IP
(VoIP) phone system. The dataset is over 8 GB in size, and is mostly populated
by web (HTTP and HTTPs), email (POP), and media streaming (RTP) traffic. The
dataset consists of the company’s incoming traffic captured during two months, start-
ing from Oct 30, 2007 until Dec 26, 2007.

Table 4.1 provides a hierarchical composition of each of the four traces of the
CCSL dataset, along with the first week trace of the MD dataset. It also provides
protocol statistics for each protocol (Appendix B.2 provides a list of protocol names,
references and acronyms). Note the hierarchical labeling of protocols. Protocols with
one color level constitute Ethernet protocols including IPv4. Protocols with two color
levels are IP protocol types. Protocols with three color levels are specific TCP and
UDP protocols.

Depending on the purpose of the experiments, these datasets are used completely
and/or partially (using random traces of sub-captures) to verify the (p, n)-gram char-
acteristics in network traffic (further discussed in Chapter 7) and to test the perfor-
mance of the developed applications.

It is important to note that during the experiments reported here we sampled 20%
of all packets. As we described in Section 3.3.2, on our network only 3% of packets are
needed to achieve an error rate of less than 5% for (p, n)-gram frequencies; however,
we sampled at 20% because we were interested in minimizing error and maximizing
repeatability.

We found that finding proper datasets for this type of research is not easy. In
essence, most of the experiments done for verification purposes require datasets with
full packet captures of real (as opposed to synthetic) network traffic. In these experi-
ments, payloads are as important as headers, and both should be treated by the tools

38 Chapter 4. Clustering Network Traffic Using ADHIC

CCSL ’04 CCSL ’05 CCSL ’06 CCSL ’06 MD ’07
Protocol Aug 13-19 Dec 10-16 Jan 20-26 Apr 03-09 Nov 01-07

IPv4 100.00 % 82.34 % 79.00 % 86.66 % 88.34 %
TCP 51.24 % 48.24 % 50.71 % 53.73 % 72.66 %

TCP Unknown 10.34 % 7.53 % 1.01 % 0.62 % 0.08 %
MS WBT/MS RDP 0.00 % 0.08 % 0.00 % 0.14 % 0.00 %
IPP 0.01 % 4.98 % 4.64 % 6.88 % 0.00 %
IMAPS 1.01 % 1.03 % 0.68 % 2.35 % 0.00 %
HTTPS 0.36 % 0.13 % 0.59 % 1.75 % 14.81 %
SSH 14.75 % 4.32 % 4.15 % 3.37 % 0.00 %
MS Streaming/RTSP 2.36 % 0.17 % 0.80 % 1.38 % 0.00 %
MSNMS 0.03 % 0.01 % 0.06 % 0.05 % 0.26 %
XMPP 0.00 % 0.01 % 0.01 % 0.02 % 0.02 %
TCP Sophos 0.00 % 0.07 % 0.24 % 0.08 % 0.00 %
TCP No Payload 13.34 % 25.06 % 22.53 % 26.69 % 14.10 %
RTSP 0.00 % 0.16 % 0.09 % 0.03 % 0.00 %
TELNET 0.12 % 0.00 % 0.00 % 0.00 % 0.00 %
FTP 2.66 % 0.23 % 0.04 % 0.07 % 0.00 %
SMTP 0.03 % 0.15 % 0.27 % 0.37 % 0.03 %
IMAP 0.00 % 0.00 % 0.03 % 0.01 % 0.00 %
CVS 0.00 % 0.00 % 0.00 % 0.16 % 0.00 %
POP 0.00 % 0.00 % 0.02 % 0.07 % 7.64 %
HTTP 6.22 % 4.28 % 15.56 % 9.67 % 34.98 %
AIM 0.00 % 0.00 % 0.00 % 0.00 % 0.73 %

UDP 43.26 % 31.52 % 24.37 % 28.93 % 14.97 %
UDP Unknown 0.01 % 0.05 % 0.05 % 0.01 % 0.02 %
DNS 0.43 % 0.52 % 1.05 % 0.95 % 0.80 %
CUPS 6.58 % 2.58 % 3.65 % 1.81 % 0.00 %
WHO 0.13 % 0.06 % 0.08 % 0.09 % 0.00 %
MP3-Stream 0.00 % 13.90 % 2.04 % 3.51 % 0.00 %
NBDGM 1.31 % 0.64 % 0.93 % 0.88 % 0.00 %
DCE_RPC 0.11 % 0.20 % 0.24 % 0.22 % 0.11 %
SIP 0.00 % 0.00 % 0.00 % 0.00 % 1.80 %
NBNS 1.07 % 1.62 % 0.61 % 2.49 % 0.00 %
RIPv1 8.03 % 0.37 % 0.49 % 0.59 % 0.00 %
HSRP 25.55 % 11.39 % 15.15 % 18.28 % 0.00 %
DHCP 0.01 % 0.16 % 0.03 % 0.02 % 0.01 %
NTP 0.01 % 0.04 % 0.06 % 0.07 % 0.10 %
RTP 0.00 % 0.00 % 0.00 % 0.00 % 12.11 %

ICMP 0.02 % 0.30 % 0.88 % 0.35 % 0.01 %
EIGRP 5.48 % 2.28 % 3.03 % 3.66 % 0.00 %

ARP N/A 17.28 % 20.58 % 12.29 % 11.66 %
STP and DTP N/A 0.38 % 0.42 % 1.05 % 0.00 %

Total no. of Packets 5,117,600 11,422,323 8,622,721 7,075,868 7,275,137
Total Size in GB 2.7 2.8 3.1 1.8 1.6

Table 4.1. (Best viewed in color and electronically to allow enlargement) Protocol
statistics for the 1-week-long CCSL and MD network traces. Only protocols with
percentages ≥ 0.02% are shown, and with percentages ≥ 0.1% are highlighted.

4.2. The Reference Classifier 39

and algorithms without modifications (except for IP-address anonymization).

Therefore, although we conjecture that our results do not reveal private informa-
tion, we had to face the very strict privacy policies governing these types of datasets.
This explains the small number of datasets that we managed to experiment with. As
for the datasets described in this section, we had proper permission from the users as
well as sufficient knowledge of the network setup and running applications.

4.2 The Reference Classifier

Evaluating network traffic clustering algorithms can be looked at from different per-
spectives. However, regardless of how this is done, there needs to be a reference
that we compare to. One of the main goals of our clustering algorithm is to cluster
traffic blindly into semantically meaningful clusters. Thinking of a common refer-
ence that allows us to understand what ADHIC is doing and gives us quantitative
results measuring accuracy of ADHIC led us to use a classical port-based classifier as
a reference.

We understand that using a port-based classifier has its own limitations, espe-
cially with traffic that does not use its default port number. We, however, found that
using this reference classifier would give us the closest metric translating to “seman-
tically meaningful”. We thus introduce the “reference classifier” as an independent
port-based classifier that we use to better understand the behavior of ADHIC. Note
that although ADHIC was not meant to work as a classifier in the first place, we
measure ADHIC clustering performance using the conventional classification view of
the reference classifier. We call this feature “classification-like” clustering.

Our reference classifier primarily relies on IP protocol and port information, but
also monitors features such as Ethernet packet type. NetADHICT uses the reference
classifier to label ADHIC’s output trees by protocol types. The protocol labelling
produced by the reference classifier allows us to quickly compare ADHIC with port-
based traffic classification, a standard lightweight approach for understanding network

40 Chapter 4. Clustering Network Traffic Using ADHIC

behavior.

We explore the differences between the reference classifier and ADHIC in Sec-
tion 4.4. We also show how ADHIC can go beyond port-based classification, with
the ability to cluster without headers (Section 5.1) and to cluster evasive traffic (Sec-
tion 5.2).

Finally, in addition to the reference classifier, we have also verified the quality of
ADHIC’s clusters in our lab through the use of standard network analysis tools such
as Wireshark [31].

4.2.1 Parameter Settings

Our experiments with ADHIC mostly used a set of parameter values (see Table 3.1)
that were determined by exploring several options. Our evaluation of ADHIC relies
on analyzing the decision trees produced after every update period along with the
updated statistics.

In our testing environment, we found that ADHIC is not highly sensitive to most of
these parameter values and it tends to produce qualitatively similar trees under many
settings. We, therefore, have chosen the parameter values as a reasonable trade-off
between accuracy and performance. For example, slightly better results were obtained
with a two hour maturation window; analysis runtimes are much faster, however, with
a three hour maturation window.

We also found that the optimal sizes of the maturation and update windows are
better set with respect to the observed traffic volume. While shorter window sizes
achieve better clustering accuracy, they require more processing and thus degrade the
overall performance. For example, we found that a three-hour maturation windo, and
a ten-minute update window give a reasonable tradeoff between speed and accuracy
with the CCSL traces. On the other hand, we found an optimal setting of a one-hour
maturation window and a one-minute update window when testing ADHIC with the
dataset of the enterprise RMC network traffic (see Section 4.5).

One significant exception to parameter sensitivity, however, is the size of n, for

4.3. An ADHIC Decision Tree 41

which we tested the size values between 1 and 4 and settled on a value of 2. Our choice
is primarily based on the observation that although long (p, n)-grams provide a large
amount of context (thus, giving more semantically meaningful splits), they are not
found frequently. On the other hand, shorter (p, n)-grams are easier to find in large
quantities, but they may not be as meaningful. We found that setting n = 2 with
ADHIC produces the best tradeoff results on our datasets. Sections 7.2.2 and 7.2.3
examine the issue of the appropriate choice of n in more detail.

4.3 An ADHIC Decision Tree

This section describes an example decision tree and the types of clusters it produces.
As explained in Section 3.2.2, the cluster labels in the ADHIC output trees come from
the reference classifier, not ADHIC; ADHIC only generates the tree and produces the
(p, n)-grams for each node.

Figure 4.1 (a) shows an original decision tree produced in the morning of January
24, 2006, after four days of execution from the CCSL January trace. We have also
added an annotated, symbolic version (Figure 4.1 (b)) that is easier to explain in the
same figure. Each triangle in the annotated graph represents one or more terminal
cluster nodes that contain the same protocol as in the original tree.

The black circles in the annotated graph are called default clusters, and con-
stitute the rightmost child of subtrees. Default clusters are the product of several
non-matching (p, n)-grams. Thus, packets in default clusters are “everything that is
not something else”. In the original tree graph, rounded gray boxes denote singular

clusters. We define singular clusters as those that the reference classifier reports as
clustering packets of one protocol type only.

In this particular tree, the (p, n)-gram at the root node (i.e., (4, 0x29 0xd2) at node
N2) in the annotated tree belongs to the destination MAC address field. Therefore,
the root node in this tree acts like a distinguisher that splits the tree into two halves
based on their destination MAC address. While the left half belongs to packets

42 Chapter 4. Clustering Network Traffic Using ADHIC

File capture/dump-2006-01-24.10:49.in.in
 Time 635
Queues 70

Last 10 Minutes 29642
Last 180 Minutes 240335
Total Packets 6684020

N2
4, 0x29 0xd2

29642 (100.00%)
240335 (100.00%)

N5
36, 0x01 0xbd

25070 (84.58%)
173442 (72.17%)

N8
21, 0x00 0x02
4572 (15.42%)

66893 (27.83%)

N11
9, 0x70 0xad
710 (2.40%)

7158 (2.98%)

N14
9, 0x70 0xad

24360 (82.18%)
166284 (69.19%)

N17
25, 0x83 0x86
1577 (5.32%)

28473 (11.85%)

N20
9, 0x70 0xad

2995 (10.10%)
38420 (15.99%)

N437
47, 0x02 0xfa
335 (1.13%)
3557 (1.48%)

N434
47, 0x02 0xfa
375 (1.27%)
3601 (1.50%)

N29
56, 0x05 0xb4

17118 (57.75%)
132262 (55.03%)

N32
36, 0x00 0x87
7242 (24.43%)

34022 (14.16%)

N457
165 (0.56%)
1120 (0.47%)

1

N460
170 (0.57%)
2437 (1.01%)

1

N466
205 (0.69%)
898 (0.37%)

1

N500
27, 0x75 0xa2
170 (0.57%)
1533 (0.64%)

N501
86 (0.29%)
455 (0.19%)

1

N502
84 (0.28%)

1078 (0.45%)
1

N47
47, 0x02 0xfa
361 (1.22%)
2891 (1.20%)

N77
46, 0x80 0x10

16757 (56.53%)
129371 (53.83%)

N68
47, 0x02 0xfa
163 (0.55%)
1584 (0.66%)

N83
55, 0x01 0x08
7079 (23.88%)

32438 (13.50%)

N48
100 (0.34%)
290 (0.12%)

1

N472
261 (0.88%)

2601 (1.08%)
1

N203
16, 0x05 0x8c
9581 (32.32%)

74122 (30.84%)

N125
46, 0x50 0x18
7176 (24.21%)

55249 (22.99%)

N368
22, 0x2c 0x06
190 (0.64%)
2634 (1.10%)

N503
36, 0x02 0x77
9391 (31.68%)

67134 (27.93%)

N476
32, 0xe1 0x0d

53 (0.18%)
742 (0.31%)

N200
46, 0x70 0x02
7123 (24.03%)
54507 (22.68%)

N369
0 (0.00%)

176 (0.07%)
0

N481
190 (0.64%)
2458 (1.02%)

1

N504
8282 (27.94%)
61050 (25.40%)

1

N505
1109 (3.74%)
6084 (2.53%)

1

N487
9 (0.03%)

341 (0.14%)
1

N478
44 (0.15%)

401 (0.17%)
2

N379
44 (0.15%)

1167 (0.49%)
1

N284
46, 0x80 0x18
7079 (23.88%)

53340 (22.19%)

N374
27, 0x75 0x1b
5914 (19.95%)
47233 (19.65%)

N302
16, 0x05 0x8c
1165 (3.93%)
6107 (2.54%)

N506
67, 0x6f 0x6e
3501 (11.81%)

31664 (13.17%)

N392
32, 0xe1 0x0d
2413 (8.14%)

12981 (5.40%)

N303
92 (0.31%)

298 (0.12%)
2

N380
57, 0x00 0x00
1073 (3.62%)
5809 (2.42%)

N507
1440 (4.86%)
12984 (5.40%)

1

N508
2061 (6.95%)
18680 (7.77%)

1

N512
57, 0x0a 0x0d
1146 (3.87%)
2352 (0.98%)

N515
48, 0x1e 0xe0
1267 (4.27%)
1267 (0.53%)

N513
1134 (3.83%)
2261 (0.94%)

1

N514
12 (0.04%)
91 (0.04%)

1

N516
625 (2.11%)
625 (0.26%)

1

N517
642 (2.17%)
642 (0.27%)

4

N381
177 (0.60%)
741 (0.31%)

4

N382
896 (3.02%)

5068 (2.11%)
5

N69
92 (0.31%)

229 (0.10%)
1

N442
71 (0.24%)

1355 (0.56%)
1

N260
16, 0x05 0x8c
5708 (19.26%)

24847 (10.34%)

N101
46, 0x70 0x02
1371 (4.63%)
7591 (3.16%)

N484
545 (1.84%)

3219 (1.34%)
2

N428
46, 0x80 0x10
5163 (17.42%)
21628 (9.00%)

N359
28, 0x00 0xaa

71 (0.24%)
1432 (0.60%)

N185
57, 0x00 0x00
1300 (4.39%)
6159 (2.56%)

N518
32, 0xe1 0x3a
1296 (4.37%)
1296 (0.54%)

N509
32, 0xe1 0x3a

3867 (13.05%)
11187 (4.65%)

N519
573 (1.93%)
573 (0.24%)

2

N520
723 (2.44%)
723 (0.30%)

1

N510
1494 (5.04%)
4386 (1.82%)

3

N511
2373 (8.01%)
6801 (2.83%)

5

N497
32, 0xe1 0x1e

0 (0.00%)
851 (0.35%)

N361
71 (0.24%)

581 (0.24%)
1

N186
188 (0.63%)

1064 (0.44%)
4

N218
43, 0x00 0x00
1112 (3.75%)
5095 (2.12%)

N498
0 (0.00%)

509 (0.21%)
0

N499
0 (0.00%)

342 (0.14%)
0

N219
365 (1.23%)

1456 (0.61%)
1

N290
16, 0x05 0x8c
747 (2.52%)

3639 (1.51%)

N445
324 (1.09%)
559 (0.23%)

3

N305
21, 0x00 0x2f
423 (1.43%)

3080 (1.28%)

N306
0 (0.00%)

98 (0.04%)
0

N383
36, 0x80 0x00
423 (1.43%)

2982 (1.24%)

N384
107 (0.36%)

1306 (0.54%)
1

N490
316 (1.07%)

1676 (0.70%)
7

N35
48, 0x35 0x00
648 (2.19%)

11683 (4.86%)

N38
5, 0x02 0x00
929 (3.13%)

16790 (6.99%)

N41
29, 0x75 0xce
1082 (3.65%)

11775 (4.90%)

N44
32, 0x15 0xff
1913 (6.45%)

26645 (11.09%)

N36
216 (0.73%)

3895 (1.62%)
1

N56
39, 0x1c 0x4e
432 (1.46%)

7788 (3.24%)

N59
48, 0x35 0x00
648 (2.19%)

11685 (4.86%)

N71
25, 0x29 0x86
281 (0.95%)

5105 (2.12%)

N57
215 (0.73%)

3893 (1.62%)
1

N58
217 (0.73%)

3895 (1.62%)
1

N60
216 (0.73%)

3891 (1.62%)
1

N86
41, 0x38 0x00
432 (1.46%)

7794 (3.24%)

N72
130 (0.44%)

2338 (0.97%)
1

N73
151 (0.51%)

2767 (1.15%)
2

N87
216 (0.73%)

3895 (1.62%)
1

N88
216 (0.73%)

3899 (1.62%)
1

N42
250 (0.84%)

2876 (1.20%)
1

N62
30, 0x15 0x03
832 (2.81%)

8899 (3.70%)

N134
74, 0x6f 0x6e
260 (0.88%)

4794 (1.99%)

N65
29, 0x75 0x15
1653 (5.58%)
21851 (9.09%)

N63
496 (1.67%)

4811 (2.00%)
1

N64
336 (1.13%)

4088 (1.70%)
2

N329
136, 0x20 0x4c

117 (0.39%)
2094 (0.87%)

N320
74, 0x6e 0x2e
143 (0.48%)
2700 (1.12%)

N119
27, 0x1c 0x86
648 (2.19%)
6974 (2.90%)

N89
29, 0x75 0xce
1005 (3.39%)
14877 (6.19%)

N330
39 (0.13%)

698 (0.29%)
1

N362
38, 0x00 0x88

78 (0.26%)
1396 (0.58%)

N365
92, 0x39 0x30

77 (0.26%)
1396 (0.58%)

N491
10, 0xd4 0x47

66 (0.22%)
1304 (0.54%)

N363
40 (0.13%)

698 (0.29%)
1

N364
38 (0.13%)

698 (0.29%)
1

N366
38 (0.13%)

698 (0.29%)
1

N367
39 (0.13%)
698 (0.29%)

1

N492
22 (0.07%)
428 (0.18%)

2

N493
44 (0.15%)
876 (0.36%)

3

N120
556 (1.88%)
5145 (2.14%)

1

N323
10, 0xd4 0x47

92 (0.31%)
1829 (0.76%)

N122
27, 0x1c 0x86
345 (1.16%)
4729 (1.97%)

N104
12, 0x08 0x06
660 (2.23%)

10148 (4.22%)

N344
52, 0x15 0xec

52 (0.18%)
958 (0.40%)

N325
40 (0.13%)
871 (0.36%)

1

N345
47 (0.16%)
851 (0.35%)

1

N346
5 (0.02%)

107 (0.04%)
1

N123
232 (0.78%)
2987 (1.24%)

1

N494
22, 0x00 0x30
113 (0.38%)
1742 (0.72%)

N105
327 (1.10%)
4176 (1.74%)

1

N137
55, 0x53 0x63
333 (1.12%)
5972 (2.48%)

N495
36 (0.12%)
584 (0.24%)

1

N496
77 (0.26%)

1158 (0.48%)
1

N347
95, 0x5f 0x4c

98 (0.33%)
1744 (0.73%)

N326
30, 0xff 0xff
235 (0.79%)
4228 (1.76%)

N348
39 (0.13%)
698 (0.29%)

1

N349
59 (0.20%)

1046 (0.44%)
1

N327
59 (0.20%)

1193 (0.50%)
2

N335
174, 0x00 0x00

176 (0.59%)
3035 (1.26%)

N336
81 (0.27%)

1450 (0.60%)
1

N337
95 (0.32%)

1585 (0.66%)
2

(a) A decision tree produced by ADHIC

N2
4, 0x29 0xd2

N5
36, 0x01 0xbd

N14
9, 0x70 0xad

N11
TCP

(control)

N47
TCP

(control)

N29
56, 0x05 0xb4

N77
46, 0x80 0x10

N125
46, 0x50 0x18

N200
46, 0x70 0x02

N476
HTTP

N359
TCP

(control)

N379
TCP

(control)

N32
36, 0x00 0x87

N68
TCP

(control)

N83
55, 0x01 0x08

N101
46, 0x70 0x02

N185
57, 0x00 0x00

N186
TCP

(control)

N8
21, 0x00 0x02

N17
25, 0x83 0x86

N35
HSRP

N38
5, 0x02 0x00

N59
HSRP

N71
EIGRP

N20
9, 0x70 0xad

N41
ARP

N44
32, 0x15 0xff

N134
74, 0x6f 0x6e

N329
CUPS

N320
74, 0x6e 0x2e

N491
10, 0xd4 0x47

N65
29, 0x75 0x15

N89
29, 0x75 0xce

N104
12, 0x08 0x06

N105
ARP

N137
55, 0x53 0x63

N347
CUPS

N326
30, 0xff 0xff

N327
Ether (old)

N335
174, 0x00 0x00

N336
NBDGM

N203
16, 0x05 0x8c

N503
TCP

(control)

N368
HTTP

N284
46, 0x80 0x18

N302
16, 0x05 0x8c

N380
TCP

(control)

N303
HTTP

N374
27, 0x75 0x1b

N506
IPP

N392
SSH

N260
16, 0x05 0x8c

N484
HTTP

N428
46, 0x80 0x10

N509
SSH

N518
TCP

(control)

N218
43, 0x00 0x00

N219
TCP

(control)

N384
DNS

N290
16, 0x05 0x8c

N445
HTTP

N383
36, 0x80 0x00

N490
HTTP

N365
CUPS

N492
RIPv1

N493
NBDGM

N337
NBNS

N122
ARP

N119
ARP

(b) A simplified annotated tree

Figure 4.1. (Best viewed in color and electronically to allow enlargement) An original
decision tree produced by ADHIC (4.1(a)) and a simplified annotated version (4.1(b)).
The original tree contains 70 terminal clusters (leaves), of which 4 are empty, and
48 are singular. In the simplified tree, triangles represent subtrees, and filled circles
represent default clusters.

4.3. An ADHIC Decision Tree 43

that were exactly destined to our CCSL’s firewall, the right half represents those
that were broadcasted or multicasted. This is why the right half of the tree shows
protocols such as CUPS (Common UNIX Printing System [34]), HSRP (Hot Standby
Router Protocol [67]), EIGRP (Enhanced Interior Gateway Routing Protocol [48]),
ARP (Address Resolution Protocol [6]), NBDGM (NetBIOS Datagrams [126]), NBNS
(NetBIOS Name Service [127]), RIPv1 (Routing Information Protocol [146]), and
some other old Ethernet protocols, such as STP (Spanning Tree Protocol [173]) and
DTP (Dynamic Trunking Protocol [43]) (we labeled both as “Ethernet (old)” in the
tree and in Table 4.1).

Another observation in that tree is that (p, n)-gram offsets at the internal nodes
vary between the Ethernet header, IP header, TCP/UDP header, and payload. For
example, the payload (p, n)-grams at nodes N134 (i.e., 74, 0x61 0x6e), N320 (i.e., 74,
0x6e 0x2e), and N137 (i.e., 55, 0x53 0x63) exclusively segregate the CUPS packets.
Those common (p, n)-grams are part of the printer descriptions usually spelled out
in the CUPS packets.

Another payload (p, n)-gram example is the one at node N335 (i.e., 174, 0x00
0x00) which exclusively segregates NBDGM packets before they go to the global
default cluster. This (p, n)-gram represents one of the option fields in the NBDGM’s
Server Message Block Protocol. On the other hand, (p, n)-grams like those at node
N17 (i.e., 25, 0x83 0x86) and node N491 (i.e., 10, 0xd4 0x47) are from the header
fields of the HSRP and RIPv1 protocols respectively.

The left half of the tree has more of the TCP and UDP common user protocols,
such as the HTTP, SSH (Secure Shell [171]), IPP (Internet Printing Protocol [82]),
and DNS (Domain Name System [41]) protocols. Note that in this tree portion, there
are clusters for TCP (control) packets. Those are TCP control packets that feature
zero-length payloads, such as SYN, FIN, RST, or ACK. We find that these packets
are often clustered together, away from their corresponding data-containing packets
in the ADHIC trees.

44 Chapter 4. Clustering Network Traffic Using ADHIC

4.3.1 ADHIC Training Time

ADHIC output trees dynamically change over time, adapting themselves to the new
traffic being captured. Frequency of changes depend on various factors, but are mainly
due to the traffic type and volume, and the ADHIC parameters set before operation
(e.g., update period and maturation window). In running our experiments with the
parameter values set in Table 3.1, we observed that after one day of parsing the CCSL
1-week long dataset, the output trees start to saturate to a general high level shape.
This high level shape remains similar for the rest of the week, with changes in the
lower level of the tree depending on the types of traffic changes (i.e., a new network
spike).

We also observed that the training time required to bring trees into maturity varies
depending on the application types, their change frequency, and their operation times.
Our results suggest that ADHIC requires some time to develop enough clusters to
effectively segregate protocols when there is a common set of network applications
running in the system. In essence, ADHIC requires a training time that covers all
traffic activities seen in the network during the day and night times before the general
tree shape saturates. This, however, was different with the MD dataset, where ADHIC
only took approximately twelve hours to reach a saturated high level tree structure.

4.3.2 Header vs. payload (p, n)-grams

Because ADHIC is not biased in what part of the packet it examines, both header
and payload (p, n)-grams can be used to cluster packets. For example, in one of the
experiments, IPP packets were segregated by (27, 0x75 0x1b) which is part of the
source IP address. Other times (p, n)-grams are discovered deep within the payload.
An example of a payload (p, n)-gram is (174, 0x00 0x00) at node N335 in Figure 4.1,
which uniquely identifies all NBDGM packets and segregates them at N528 just prior
to the global default cluster. This (p, n)-gram refers to the “reserved” and “parameter
count” fields within the NBDGM packet structure.

4.3. An ADHIC Decision Tree 45

A second example of a payload (p, n)-gram is the (301, 0x00 0x00) (p, n)-gram,
which effectively segregates 75% of RIPv1 traffic in another tree for the August
dataset. This (p, n)-gram is part of the zero-padding within the RIPv1 “IP ad-
dress” field. A third example is (61, 0x00 0x0c), which appears in the STP packets’
frame check sequence, and usually is found to cluster matching STP packets together.
Moreover, both ARP and DTP packets are sometimes found segregated through their
trailer patterns. For example, (51, 0x00 0x00) and (82, 0x00 0x00) are common (p, n)-
grams found in the trailers of the ARP and DTP packets respectively.

It is important to note that we often find the same protocol getting clustered using
different (p, n)-grams in different contexts. For example, we sometimes find HSRP
packets segregated by (37, 0xc1 0x00) which uniquely identifies the last byte of the
destination port and first byte of the UDP length. In other trees, however, both (48,
0x35 0x00) from the payload and (5, 0x02 0x00) from the header are used to segregate
them. The payload (p, n)-gram represents the “hold time” and “priority” field while
the header (p, n)-gram indicates the last and first bytes of the destination and source
MAC addresses, respectively.

Moreover, we sometimes find that both header and payload (p, n)-grams are used
to segregate the same protocol into different clusters in the same tree. For example, in
one of the trees, we find EIGRP packets were grouped using the payload (p, n)-gram
(64, 0x00 0x0f) (which represents the “hold time” parameter) at one node, and were
grouped using (25, 0x29 0x86) at another node in the same tree.

4.3.3 Encrypted packets

ADHIC uses (p, n)-grams from both the packet headers and payloads to cluster net-
work traffic. Packets with encrypted payloads are usually clustered together by AD-
HIC simply because they are dissimilar to all the other structured traffic. On many
occasions, however, ADHIC also separates different types of encrypted traffic using
header (p, n)-grams which are neither part of the IP-address or port fields.

For example, IMAPS packets are sometimes separated from others through header

46 Chapter 4. Clustering Network Traffic Using ADHIC

(p, n)-grams such as (22, 0x2c 0x06) (representing the “time-to-live” and “protocol
ID” fields) and (54, 0x01 0x01) (representing NOP, NOP in the “options” fields). In
another tree example, we find that SSH and IMAPS packets share a common path
in the tree until they get separated at the terminal clusters by (54, 0x01 0x01) which
matches the “options” field in SSH and the “content type” and “version” fields in
IMAPS.

4.4 ADHIC vs. the Reference Classifier

Terminal clusters in ADHIC trees are represented by colored pie charts produced by
the port-based reference classifier. Singular clusters (denoted in the tree by rounded
grey boxes), however, are those clusters that the reference classifier reports as contain-
ing packets of only one protocol. Those clusters are semantically meaningful, in that
the clusters represent traffic belonging to a single protocol. However, this does not
mean that clusters that are not singular are not semantically meaningful. Protocol
classification is simply one aspect of meaning that ADHIC can discover.

By comparing ADHIC’s clusters with the reference classifier described in Sec-
tion 4.2, our results show that ADHIC regularly finds and clusters together semanti-
cally meaningful packets. Moreover, we sometimes find that ADHIC might be doing
better than the reference classifier itself, especially when packets don’t use the right
port (e.g. P2P using port 80).

Figure 4.2 shows ADHIC performance by reporting how closely ADHIC clustering
was acting like a conventional port-based protocol classifier. The y-axis represents
the percentage of packets that were clustered in singular clusters at each 10 minute
update period.

Again, ADHIC was not meant to work as a classifier in the first place; however,
this figure shows ADHIC’s clustering performance using the conventional classification
view of the reference classifier. We call this feature “classification-like” clustering, and
we measure it at each update period by calculating the percentage of packets residing

4.4. ADHIC vs. the Reference Classifier 47

Figure 4.2. Percentage of packets in singular clusters at each update period for the
four CCSL datasets.

in singular clusters (ns) (i.e., clusters with only one protocol type) with respect to
the total number of packets seen during that update period (nt):

percentage(%) =
ns ∗ 100

nt
(4.1)

Table 4.2, on the other hand, shows the median and standard deviation (std-dev)
calculated over the whole examined time period of the datasets (7 days). While the
first column shows the results considering all types of protocols, the second column
shows the percentages of the TCP packets only residing in singular clusters with
respect to the total number of TCP packets seen in the dataset. The third, fourth,
and fifth columns show the results when considering UDP packets, other IP packets
(i.e., IP packets that are neither TCP nor UDP), and non-IP packets, respectively.

48 Chapter 4. Clustering Network Traffic Using ADHIC

Dataset “Classification-like” clustering using default settings

Aug 13-19 All TCP UDP Other-IP Non-IPProtocols
Average 71.73% 84.21% 91.31% 42.22% N/A
Median 78.03% 89.76% 94.11% 46.10% N/A
Std-Dev 18.74% 16.70% 13.71% 12.41% N/A

Dec 10-16 All TCP UDP Other-IP Non-IPProtocols
Average 76.43% 84.72% 88.68% 43.98% 79.29%
Median 81.17% 89.26% 91.88% 47.79% 79.87%
Std-Dev 14.87% 13.61% 11.16% 15.37% 9.38%

Jan 20-26 All TCP UDP Other-IP Non-IPProtocols
Average 72.92% 86.37% 85.79% 84.03% 79.51%
Median 77.57% 93.48% 88.17% 95.94% 79.80%
Std-Dev 16.43% 18.02% 10.84% 27.10% 8.52%

Apr 3-9 All TCP UDP Other-IP Non-IPProtocols
Average 61.24% 93.57% 90.04% 83.87% 67.35%
Median 64.08% 98.41% 94.53% 98.12% 69.95%
Std-Dev 17.49% 13.15% 13.59% 24.09% 15.52%

Table 4.2. Classification-like clustering: Gauging ADHIC’s clustering performance us-
ing the conventional classification view of the reference port-based classifier. Median
and standard deviation are computed using update period statistics.

ADHIC has relatively better performance with TCP and UDP packets compared
to the other-IP and non-IP packets. This is because the other-IP and non-IP clusters
may get a few of the TCP or UDP encrypted or streaming packets routed to them, as
they match the same (p, n)-grams in the tree path. That is, those clusters are mainly
populated by single protocols, but they also have a few packets from other protocols;
thus, they are no more counted as singular. Nevertheless, the structural similarities
between packets within each of the four groups are still evident enough that ADHIC
can usually recognize and use them to separate different protocols from each other.

The results in Table 4.2 exclude the first day of operation because ADHIC requires
some time to develop enough clusters to effectively segregate protocols. This period
could be thought of as an unbiased short training period, and can be clearly seen
in the first 144 update periods in Figure 4.2. The one-day period covers all traffic

4.4. ADHIC vs. the Reference Classifier 49

activities seen in the network during the day and night times.

Note also that the median percentage of packets in singular clusters is lower when
considering all protocols. For example, the median number of packets clustered in
singular clusters mostly varies between 64% and 81% compared to the 88% and above
for the TCP and UDP classes. There are several reasons for this.

First, the reference classifier is, on occasion, simply wrong. In several instances,
particularly in the CCSL August trace, oddly configured application-layer protocols
were mixed with flows of the same protocol. For example, we found that ADHIC
clusters together same-protocol traffic running on more than one non-standard port
number (e.g., HTTP traffic running on other than port 80); however, just because
they do not share the same port number, the reference classifier would not consider
their cluster as singular. This is a problem not just with this port-based reference
classifier, but with any headers-based classifier.

Second, sometimes the reference classifier is not flexible enough. The reference
classifier differs from other network header-based classifiers in that it treats TCP
control packets (e.g., SYN, FIN, ACK, etc.) as a separate category from the other
same-protocol packets with data. This category is added in the reference classifier
because ADHIC often segregates control packets as they constitute a semantically
meaningful group. However, sometimes ADHIC will simply group all packets of a
TCP flow together, lumping control packets in with data packets. Thus the reference
classifier does not classify these as singular clusters. This is another reason Table 4.2
under-reports the effectiveness of ADHIC.

Finally, the adaptive behavior of ADHIC is also partly responsible for the differ-
ence. ADHIC does not split the clusters containing network bursts as they appear;
instead, it assumes that the bursts are transient and assigns the bursts to existing
leaf nodes. Only if the burst lasts several update periods does ADHIC attempt to
segregate the burst. This change in behavior becomes very clear by comparing the
visualization of consecutive output decision trees of ADHIC.

Figure 4.3 shows this effect clearly on the CCSL April dataset. The sine wave

50 Chapter 4. Clustering Network Traffic Using ADHIC

in the graph shows the day/night time throughout the week on the x-axis. It is
shifted to show 12:00pm at the highest sine wave peaks, and 12:00am at the lowest
peaks. It is clear how at each spike’s peak (bottom), the reference classifier shows a
sudden degradation of ADHIC’s performance (top). Note how spikes are classified as
non-singular and lower the performance because it is high volume.

Figure 4.3. Percentage of packets in singular clusters at each update period for the
CCSL April dataset (top), in contrast with the number of packets seen in the trace for
the same time period (bottom).

On a side note, we use median rather than average as a representative of effective-
ness. Consider, for example, Figure 4.2, which shows ADHIC clustering performance
on all the four CCSL traces. A spike occurs in the CCSL August trace close to update
period number 550, which dramatically reduces the percentage of packets at singu-
lar clusters. When the traffic spike subsides, the singular cluster packet percentage
recovers. This proper function of ADHIC decreases the apparent performance when
compared with the reference classifier.

4.5. Testing ADHIC with Other Networks 51

These reasons explain the apparently “low” statistics in Table 4.2. While Table 4.2
and Figure 4.2 are presently the best metrics for evaluating ADHIC, they under-
represent its effectiveness because of the defects inherent in the traditional classifiers.

4.5 Testing ADHIC with Other Networks

In this section, we test ADHIC against two independent full-capture datasets: MD
and RMC. As introduced in Section 4.1.1, the MD dataset represents two months
of captures from a private small-size sales company in Maryland, USA. The network
is comprised of over a dozen windows-based machines with about ten users. The
machines also include two file servers, and a Voice-over-IP (VoIP) phone system. The
dataset is over 8 GB in size and is mostly populated by web (i.e., HTTP and HTTPs),
email (POP), and media streaming (RTP) traffic. The dataset consists of incoming
traffic to the company captured during a two-month period from Oct 30, 2007 until
Dec 26, 2007. Table 4.1 gives protocol classification and content statistics for the first
week of this dataset.

The RMC dataset, on the other hand, represents a one-hour capture from the
uplink of the Royal Military College (RMC) in Kingston, Ontario, Canada. The size
of this dataset is about 12 GB, where the college network has over 1000 users. For
this dataset, we were not able to inspect packets manually to generate our detailed
results. Therefore, we do not use this dataset in other experiments. However, we had
access to the ADHIC output trees which gave us fair evidence that ADHIC would
still be useful in clustering traffic into semantically equivalent classes even if it is run
against enterprise network datasets.

While ADHIC performed qualitatively similarly in these environments as it did
in the CCSL lab, the trees generated by ADHIC capture a number of interesting
structural features of these network environments.

Figure 4.4 shows that the MD network produced a more fine protocol clustering
(a deeper tree) than the CCSL trees, due in part to the longer observation time. This

52 Chapter 4. Clustering Network Traffic Using ADHIC

N2
34, 0x00 0x50

N5
33, 0xXX 0x00

N368
15, 0x00 0x00

N647
HTTP

N389
57, 0x50 0x2f

N8
13, 0x00 0x45

N11
46, 0x50 0x18

N23
16, 0x00 0x28

N83
4, 0xda 0x25

N41
TCP

(control)

N65
6, 0x00 0x11

N6561
IGMP

N314
45, 0x00 0x00

N315
IGMP + ARP

N611
41, 0x76 0x00

N1220
2, 0xa0 0x05

N1253
ARP

N1256
24, 0xb6 0x84

N1304
ARP

N5726
TCP

(control)

N4673
20, 0x40 0x00

N6611
HTTP + TCP

(control)

N5507
16, 0x00 0x28

N5765
46, 0x50 0x18

N6530
HTTP

N6602
HTTP + TCP

(control)

N671
TCP

(control)

N5531
HTTP

N1781
POP

N1739
67, 0x72 0x65

N155
1, 0x01 0x02

N3686
47, 0x12 0x16

N6073
TCP

(control)

N5393
27, 0xXX 0xXX

N5394
DNS

N6116
POP

N5394
DNS

N185
74, 0x20 0x31

N2468
SIP

N293
27, 0xXX 0xXX

N3286
DNS + DCE-RPC

N635
5, 0x04 0x00

N6584
RTP

N5483
SSL + TCP

(control)

N2833
ARP

N1307
IGMP

N2318
65, 0x69 0x6e

N6058
POP

N2396
60, 0x65 0x2d

N6061
POP

N3080
34, 0x01 0xbb

N3935
SSL

N3368
29, 0xXX 0xXX

N4070
POP

N4028
80, 0x00 0x00

N5459
73, 0x6d 0x70

N5460
AIM

N5687
82, 0x00 0x00

N5688
AIM

N4029
AIM

N5851
MSNMS

Figure 4.4. (Best viewed electronically to allow enlargement) Annotated decision tree
produced by ADHIC from a snapshot taken from the Maryland experiment.

MD annotated tree snapshot in Figure 4.4 was taken after processing three weeks of
dataset as opposed to one week in the case of the CCSL snapshot in Figure 4.1.

Several protocols were clustered in this network that were not available in the
CCSL runs. For example, AIM (AOL Instant Messenger [2]), RTP (Real-time Trans-
port Protocol [150]), SIP (Session Initiation Protocol [165]), POP (Post Office Proto-
col [138]), and DNS (Domain Name System [41]) are all appropriately clustered here.
Note that several protocols were classified using payload (p, n)-grams. POP clusters
were branched at offsets like 60, 65, and 67 which represent the response description
field in the POP packets. AIM clusters were identified at offsets like 80 and 82 which
are part of the AIM buddylist service field. SIP packets were clustered together using
a payload (p, n)-gram at offset 74.

Figure 4.5 shows a very high level overview of a decision tree taken from the RMC

4.5. Testing ADHIC with Other Networks 53

5, 0xXX 0xXX

55, 0x00 0x00

20, 0x00 0x00

34, 0x00 0x50

20, 0x00 0x00
TCP

(control)

TCPUDP

HTTP

TCPUDP

Figure 4.5. A high level simplified decision tree produced by ADHIC from a snapshot
taken from the RMC experiment.

network. Here, ADHIC has chosen (5, 0xXX 0xXX)1 to do the first tree split and form
the root (p, n)-gram node. This (p, n)-gram belongs to the last byte of the destination
MAC address field and the first byte of the source MAC address field. Therefore, all
packets going on the left hand side of the tree belong to traffic destined for a specific
router. The right hand side is comprised of all the other packets including traffic
broadcasted and not specifically destined to this router.

A significant amount of HTTP traffic is segregated on the right half of the tree
using the header (p, n)-gram (34, 0x00 0x50), which represents the source port 80.The
payload (p, n)-gram (55, 0x00 0x00), on the other hand, is part of the “urgent pointer”
field which is usually set to zeros if the URG is not set. The two other identical (p, n)-
grams (20, 0x00 0x00) (which represent IP flags and fragment offset fields) are acting
as discriminators between UDP (matching) and TCP (non-matching) packets on both
sides of the tree.

Unfortunately, our sample was sufficiently short (just one hour long) that we could
not see how ADHIC may proceed if it were to continue with more packets. However,
our results with the RMC dataset re-assure us about ADHIC’s main strategy of
generating its binary decision tree. In particular, it starts from a high level segregation

1Due to the strict privacy policy agreement we made with RMC, we had to anonymize all MAC
and IP addresses.

54 Chapter 4. Clustering Network Traffic Using ADHIC

in the root node (using a destination MAC address (p, n)-gram), to a lower level where
it segregates between TCP and UDP. Based on our experience with the MD and CCSL
datasets, we expect that the next split level in the tree will be more fine grained and
will be based on protocol types, followed by flow types.

5 Monitoring Abnormal Traffic Using ADHIC

This chapter examines the ability to detect evasive and/or abnormal traffic using the
(p, n)-grams approach. It first examines how well ADHIC can segregate protocols
even if header information becomes useless (Section 5.1). The chapter shows that
despite the packet’s missing header portion, ADHIC can still find useful (p, n)-grams
in the payload that will cluster traffic similar to the results produced with full packet
information.

The chapter then examines the ability of ADHIC to detect P2P traffic even if it is
obfuscated to run under port 80 (Section 5.2). The chapter shows that ADHIC rarely
uses ports to cluster traffic; rather, it clusters based on common patterns. Thus, it
segregates the bulk of the P2P traffic by not finding the same patterns it finds with
other traffic.

Finally, the chapter shows how ADHIC can detect certain abnormal behaviors
in simulated traffic using the (p, n)-grams approach (Section 5.3). More experiments
with the synthetic DARPA old datasets are discussed. Basically, the IDEVAL dataset
is normally used to evaluate network intrusion detection performance; however, many
researchers have observed that the synthetic background traffic in this dataset deviates
from normal background traffic in a few key ways, specifically regularities, predictabil-
ity, traffic distribution and lack of crud. We hypothesized that these deviations would
cause ADHIC to generate abnormal traffic trees. As we now explain, this was indeed
the case.

55

56 Chapter 5. Monitoring Abnormal Traffic Using ADHIC

5.1 Clustering without header information

We continue our investigation of evasive traffic by examining how well ADHIC can
segregate protocols even if header information becomes useless. We configured Ne-
tADHICT to ignore the first 38 bytes of each packet. This excludes the 14 bytes of
Ethernet header, the IP header, and port information for both TCP and UDP. As a
side effect, it also excludes payload information for packets that are neither UDP nor
TCP. We then tested ADHIC against the four CCSL traces again, collected statistics,
and examined the decision tree at the same snapshot in time.

Dataset “Classification-like” clustering using no header information

Aug 13-19 All TCP UDP Other-IP Non-IPProtocols
Average 82.06% 94.97% 94.25% 89.14% N/A
Median 91.31% 97.49% 95.90% 92.20% N/A
Std-Dev 20.77% 8.18% 9.41% 15.15% N/A

Dec 10-16 All TCP UDP Other-IP Non-IPProtocols
Average 65.85% 86.89% 88.34% 89.81% 66.76%
Median 70.46% 91.72% 91.81% 97.38% 68.19%
Std-Dev 17.05% 14.99% 11.63% 17.70% 10.82%

Jan 20-26 All TCP UDP Other-IP Non-IPProtocols
Average 65.67% 91.65% 86.59% 92.94% 67.94%
Median 67.40% 97.92% 89.06% 95.98% 68.08%
Std-Dev 17.65% 15.58% 13.16% 11.76% 12.50%

Apr 3-9 All TCP UDP Other-IP Non-IPProtocols
Average 68.03% 93.18% 87.64% 97.10% 56.35%
Median 73.24% 97.49% 91.72% 98.85% 56.85%
Std-Dev 18.40% 10.87% 11.67% 7.49% 21.65%

Table 5.1. Percentage of packet statistics after ignoring header information

Similar to Table 4.2, Table 5.1 shows the new statistics for the four CCSL network
traces when Ethernet header, IP header, and both source and destination port num-
bers are skipped during the generation of (p, n)-grams. Once again, the table reports
how much (in terms of packets percentage) ADHIC clustering was performing like a
conventional protocol classifier—one that did have access to packet headers.

5.1. Clustering without header information 57

N5
8, 0xd3 0x3bN8

46, 0x0a 0x64

N17
1, 0x03 0x93N14

HSRP

N98
TCP

(control)

N29
46, 0x50 0x10

N47
46, 0x70 0x02

N71
HTTP + TCP

(control)

N146
HSRP

N77
HTTP + TCP

(control)

N32
15, 0x00 0x00

N50
16, 0x05 0x8c

N83
301, 0x00 0x00

N734
15, 0x00 0x02

N761
MS Streaming

N736
SSH + TCP

(control)

N11
10, 0xad 0x34

N20
1, 0x03 0x93

N92
14, 0x45 0xc0

N167
57, 0xb4 0x01

N275
TCP

(control)

N23
36, 0x07 0xc1

N41
HSRP

N44
21, 0x00 0x80

N74
301, 0x00 0x00

N149
RIPv1

N113
NBDGM

N101
CUPS

N68
82, 0x65 0x72

N104
74, 0x6f 0x6e

N309
TCP

 (control)

N308
57, 0x00 0x00

N752
54, 0x01 0x01

N753
SSH + TCP

(control)

N754
IMAPS + TCP

(control)

N731
34, 0x00 0x50

N755
HTTP

N758
MS Streaming

N230
43, 0x00 0x00

N231
EIGRP

N35
16, 0x00 0x28

N344
TCP

(control)

N62
HTTP + TCP

(control)

N164
RIPv1

N124
EIGRP

N122
301, 0x00 0x00

N605
TCP

(control)

N266
16, 0x00 0x28

N749
67, 0x00 0x00

N750
DCE_RPC

N751
HTTPS + TCP

(control)

N716
34, 0x00 0x50

N746
HTTP + TCP

(control)

N152
CUPS

N155
32, 0x15 0xff

N383
CUPS

N407
30, 0xff xff

N408
RIPv1

(a) ADHIC tree with default paramters

N2
46, 0x80 0x10

N416
42, 0x2b 0xbf

N199
DNS

N98
SSH +

MS Streaming

N74
54, 0x01 0x01

N417
MS Streaming

N167
HTTP + TCP

(control)

N5
57, 0x61 0x86

N8
HSRP

N11
55, 0x00 0x00

N23
46, 0x50 0x10

N47
TCP

(control)

N308
NBDGM

N107
CUPS

N77
82, 0x65 0x72

N101
74, 0x6f 0x6eN134

60, 0x43 0x45

N135
NBNS

N358
NBSS

N128
CUPS

N131
74, 0x6e 0x2e

N132
CUPS

N197
174, 0x00 x00

N418
HTTP + TCP

(control)
N59

RIPv1

N38
301, 0x00 0x00

N89
TCP

(control)

N62
46, 0x50 0x11

N122
RIPv1

N83
82, 0x00 0x00

N321
TCP

(control)

N320
47, 0x04 0x00

N356
56, 0x00 0x00

N392
TCP

(control)

N26
54, 0x02 0x04

N44
TCP

(control)

N41
52, 0x00 0x00

N53
46, 0x50 0x18

N338
IMAPS

N182
HTTP

N71
56, 0x54 0x20

N173
61, 0x31 0x20

N174
HTTP

N57
EIGRP

N56
67, 0x04 0x00

(b) ADHIC tree without looking at the headers

Figure 5.1. (Best viewed electronically to allow enlargement) Annotated decision trees
produced by ADHIC using default parameters (5.1(a)) and without looking at the
packets’ header portion (5.1(b)). Both trees were produced from the same snapshot
taken from the CCSL August trace.

58 Chapter 5. Monitoring Abnormal Traffic Using ADHIC

We expected ADHIC would perform badly when not allowed to use most of the
header information because it usually uses both the header and payload in build-
ing the decision tree. However, it pleasantly surprised us by generating trees that
were qualitatively similar to the trees produced using all the packet information (see
Figure 5.1). ADHIC’s ability to cluster is occasionally degraded, especially with TCP-
based streams, but it still finds a large amount of structure within many protocols.

By comparing the results in Tables 4.2 and 5.1, one can see how ADHIC sometimes
performs better when no header information is given during (p, n)-gram generation.
This is mainly due to the random sequence in which ADHIC chooses its (p, n)-grams.
From a pool of many (p, n)-gram candidates, the payload (p, n)-gram that ADHIC
picks (because it happens to be the first one it finds to match the similarity spread
-see Chapter 3) might work better with packets seen later in the traffic, resulting in
better trees and improved segregation results.

The largest difference is in ADHIC’s inability to segregate encrypted traffic when
headers are restricted. In the CCSL August trace, all encrypted traffic is routed to
a single cluster. This contrasts with the earlier experiments that allowed ADHIC to
examine header information, in which each encrypted protocol was routed to a distinct
cluster. This is because, without header information, it becomes almost impossible
to distinguish between types of encrypted packets—there is no structural information
available.

5.2 Clustering P2P traffic

We have performed several experiments with ADHIC against P2P traffic. Some of
these experiments used the BitTorrent [16] client application to download relatively
large files (over 500 MB) to our lab machines. BitTorrent is perhaps among the most
evasive of the popular P2P protocols. Linux binaries, free public compressed movies,
and live video streaming are examples of what the experiments included. Traffic
pertaining to these experiments was then individually merged with the CCSL Jan

5.2. Clustering P2P traffic 59

dataset for testing.

While some P2P captured traffic featured unique source port numbers, many
others were running on constantly changing port numbers. Based on our experience
with ADHIC and no header traffic, our hypothesis was that ADHIC would be able to
segregate P2P traffic into clusters separate from other traffic even without consistent
port information. As we will show, our results were consistent with this hypothesis.

File /home/ahijazi/jan-traffic/dump-2006-01-26.16:49-merged-3.in
 Time 959
Queues 109

Last 10 Minutes 37751
Last 180 Minutes 535533
Total Packets 13840391

N2
43, 0x00 0x00

37751 (100.00%)
535533 (100.00%)

N5
51, 0x00 0x00
7393 (19.58%)

62898 (11.74%)

N8
31, 0x75 0x15

30358 (80.42%)
472635 (88.26%)

N11
9, 0x70 0xad
2700 (7.15%)
29275 (5.47%)

N14
6, 0x00 0x01

4693 (12.43%)
33623 (6.28%)

N17
16, 0x00 0x28
2949 (7.81%)
29887 (5.58%)

N20
37, 0xc1 0x00

27409 (72.60%)
442748 (82.67%)

N23
29, 0x75 0xce
1204 (3.19%)
12901 (2.41%)

N26
29, 0x75 0xce
1496 (3.96%)
16374 (3.06%)

N29
16, 0x00 0x30
2230 (5.91%)

15206 (2.84%)

N32
16, 0x00 0x30
2463 (6.52%)

18417 (3.44%)

N24
484 (1.28%)
3785 (0.71%)

1

N47
30, 0x15 0x03
720 (1.91%)
9116 (1.70%)

N152
27, 0x1c 0x86
636 (1.68%)
6164 (1.15%)

N50
30, 0x35 0x02
860 (2.28%)

10210 (1.91%)

N48
294 (0.78%)
4297 (0.80%)

1

N49
426 (1.13%)
4819 (0.90%)

4

N153
518 (1.37%)
4132 (0.77%)

1

N154
118 (0.31%)
2032 (0.38%)

1

N51
473 (1.25%)
4651 (0.87%)

1

N155
27, 0x1c 0x86
387 (1.03%)
5559 (1.04%)

N156
324 (0.86%)
4239 (0.79%)

1

N157
63 (0.17%)

1320 (0.25%)
4

N53
47, 0x02 0xfa
1940 (5.14%)
9953 (1.86%)

N218
64, 0x00 0x0f
290 (0.77%)

5253 (0.98%)

N56
48, 0xfa 0xf0
2091 (5.54%)

11380 (2.12%)

N80
22, 0x01 0x11
372 (0.99%)

7037 (1.31%)

N83
36, 0x00 0x87

85 (0.23%)
2580 (0.48%)

N86
57, 0x64 0x01
1855 (4.91%)
7373 (1.38%)

N219
129 (0.34%)

2340 (0.44%)
1

N245
0, 0x00 0x03
161 (0.43%)

2913 (0.54%)

N84
32 (0.08%)

1116 (0.21%)
1

N973
53 (0.14%)

1464 (0.27%)
1

N87
87 (0.23%)

1473 (0.28%)
1

N1000
1768 (4.68%)
5900 (1.10%)

1

N246
9 (0.02%)

197 (0.04%)
2

N335
82, 0x00 0x00
152 (0.40%)

2716 (0.51%)

N336
20 (0.05%)

355 (0.07%)
1

N817
132 (0.35%)

2361 (0.44%)
2

N281
36, 0x00 0x87

83 (0.22%)
2451 (0.46%)

N239
36, 0x00 0x87
2008 (5.32%)
8929 (1.67%)

N81
209 (0.55%)

3733 (0.70%)
1

N221
25, 0x29 0x86
163 (0.43%)

3304 (0.62%)

N282
15 (0.04%)

1058 (0.20%)
1

N961
68 (0.18%)

1393 (0.26%)
1

N511
606 (1.61%)

2545 (0.48%)
1

N500
0, 0x00 0x03
1402 (3.71%)
6384 (1.19%)

N501
83 (0.22%)

389 (0.07%)
1

N614
57, 0x64 0x01
1319 (3.49%)
5995 (1.12%)

N615
15 (0.04%)

1349 (0.25%)
1

N640
1304 (3.45%)
4646 (0.87%)

1

N222
130 (0.34%)

2341 (0.44%)
1

N338
0, 0x00 0x03
33 (0.09%)
963 (0.18%)

N339
3 (0.01%)

179 (0.03%)
1

N820
30 (0.08%)
784 (0.15%)

1

N35
6, 0x00 0x01
2297 (6.08%)
17880 (3.34%)

N62
9, 0x70 0xad
652 (1.73%)

12007 (2.24%)

N41
48, 0x35 0x00
1298 (3.44%)
23372 (4.36%)

N44
9, 0x70 0xad

26111 (69.17%)
419376 (78.31%)

N326
47, 0x10 0x40
1620 (4.29%)
8524 (1.59%)

N404
21, 0x00 0x70
677 (1.79%)
9356 (1.75%)

N98
21, 0x00 0x2a
240 (0.64%)
2529 (0.47%)

N101
8, 0xd3 0x3b
412 (1.09%)
9478 (1.77%)

N985
36 (0.10%)

1886 (0.35%)
1

N356
48, 0xff 0xff
1584 (4.20%)
6638 (1.24%)

N613
0 (0.00%)

2296 (0.43%)
0

N455
22, 0x6f 0x06
677 (1.79%)
7060 (1.32%)

N947
22, 0x6f 0x06
479 (1.27%)
2192 (0.41%)

N428
21, 0x00 0x70
1105 (2.93%)
4446 (0.83%)

N948
0 (0.00%)
82 (0.02%)

0

N991
479 (1.27%)

2110 (0.39%)
1

N429
0 (0.00%)

108 (0.02%)
0

N467
36, 0x00 0x50
1105 (2.93%)
4338 (0.81%)

N521
21, 0x00 0x6b
291 (0.77%)

3257 (0.61%)

N649
814 (2.16%)
1081 (0.20%)

1

N522
1 (0.00%)

164 (0.03%)
1

N1001
26, 0x86 0x75
290 (0.77%)
3093 (0.58%)

N1002
52 (0.14%)

1978 (0.37%)
1

N1003
238 (0.63%)
1115 (0.21%)

1

N952
38 (0.10%)
320 (0.06%)

1

N482
47, 0x10 0xff
639 (1.69%)
6740 (1.26%)

N992
33, 0x21 0x05
372 (0.99%)
940 (0.18%)

N518
21, 0x00 0x6b
267 (0.71%)
5800 (1.08%)

N993
0 (0.00%)
16 (0.00%)

0

N1006
372 (0.99%)
924 (0.17%)

1

N519
2 (0.01%)

168 (0.03%)
1

N572
26, 0x86 0x75
265 (0.70%)
5632 (1.05%)

N751
0 (0.00%)

540 (0.10%)
0

N605
22, 0x6d 0x06
265 (0.70%)

5092 (0.95%)

N606
3 (0.01%)

151 (0.03%)
1

N644
47, 0x10 0x40
262 (0.69%)
4941 (0.92%)

N943
70 (0.19%)

116 (0.02%)
1

N689
36, 0x00 0x50
192 (0.51%)
4825 (0.90%)

N926
33, 0x21 0x04
189 (0.50%)
4743 (0.89%)

N691
3 (0.01%)
82 (0.02%)

1

N927
7 (0.02%)

3926 (0.73%)
1

N928
182 (0.48%)
817 (0.15%)

1

N99
8 (0.02%)

107 (0.02%)
2

N413
47, 0x10 0xf5
232 (0.61%)

2422 (0.45%)

N254
21, 0x00 0x2d
156 (0.41%)
4416 (0.82%)

N179
74, 0x6e 0x2e
256 (0.68%)

5062 (0.95%)

N414
0 (0.00%)

191 (0.04%)
0

N494
57, 0x20 0x2f
232 (0.61%)
2231 (0.42%)

N495
106 (0.28%)
613 (0.11%)

1

N977
22, 0x29 0x06
126 (0.33%)

1618 (0.30%)

N978
0 (0.00%)

123 (0.02%)
0

N979
126 (0.33%)
1495 (0.28%)

3

N255
0 (0.00%)

238 (0.04%)
0

N485
36, 0x3e 0xd0
156 (0.41%)
4178 (0.78%)

N180
77 (0.20%)

1396 (0.26%)
1

N506
74, 0x6f 0x6e
179 (0.47%)
3666 (0.68%)

N935
26, 0x44 0x8e

5 (0.01%)
257 (0.05%)

N512
57, 0x20 0x2f
151 (0.40%)
3921 (0.73%)

N981
0 (0.00%)

163 (0.03%)
0

N937
5 (0.01%)

94 (0.02%)
1

N513
79 (0.21%)

377 (0.07%)
1

N641
21, 0x00 0x2b

72 (0.19%)
3544 (0.66%)

N642
0 (0.00%)

2796 (0.52%)
0

N974
20, 0x40 0x00

72 (0.19%)
748 (0.14%)

N975
72 (0.19%)
690 (0.13%)

2

N976
0 (0.00%)
58 (0.01%)

0

N986
136, 0x20 0x4c

117 (0.31%)
2099 (0.39%)

N508
62 (0.16%)

1567 (0.29%)
5

N987
38 (0.10%)
698 (0.13%)

1

N988
79 (0.21%)

1401 (0.26%)
1

N65
25, 0x83 0x86
432 (1.14%)
7793 (1.46%)

N68
25, 0x83 0x86
866 (2.29%)

15579 (2.91%)

N158
46, 0x50 0x18

13997 (37.08%)
243911 (45.55%)

N116
7, 0xd0 0xd3

12114 (32.09%)
175465 (32.76%)

N66
216 (0.57%)
3892 (0.73%)

1

N67
216 (0.57%)
3901 (0.73%)

1

N104
39, 0x1c 0x4e
432 (1.14%)

7786 (1.45%)

N107
41, 0x38 0x00
434 (1.15%)
7793 (1.46%)

N105
217 (0.57%)
3891 (0.73%)

1

N106
215 (0.57%)

3895 (0.73%)
1

N108
217 (0.57%)
3898 (0.73%)

1

N109
217 (0.57%)
3895 (0.73%)

1

N653
32, 0xe1 0x0d

65 (0.17%)
2130 (0.40%)

N299
16, 0x05 0x8c

13932 (36.90%)
241781 (45.15%)

N170
16, 0x05 0x8c
2011 (5.33%)

64026 (11.96%)

N140
61, 0x00 0x0c

10103 (26.76%)
111439 (20.81%)

N664
16 (0.04%)
96 (0.02%)

1

N743
15, 0x00 0x00

49 (0.13%)
2034 (0.38%)

N608
46, 0x80 0x10
309 (0.82%)

11755 (2.20%)

N443
54, 0x01 0x01

13623 (36.09%)
230026 (42.95%)

N744
29 (0.08%)

723 (0.14%)
6

N745
20 (0.05%)

1311 (0.24%)
4

N1016
34, 0x00 0x50
274 (0.73%)
6786 (1.27%)

N776
21, 0x00 0x3e

35 (0.09%)
4969 (0.93%)

N548
27, 0x75 0x1b

10038 (26.59%)
186381 (34.80%)

N917
16, 0x00 0x28
3585 (9.50%)

43645 (8.15%)

N1017
262 (0.69%)
6246 (1.17%)

1

N1018
12 (0.03%)

540 (0.10%)
1

N777
0 (0.00%)

84 (0.02%)
0

N778
35 (0.09%)

4885 (0.91%)
2

N566
46, 0x80 0x10
9870 (26.15%)

180534 (33.71%)

N569
22, 0x2c 0x06
168 (0.45%)

5847 (1.09%)

N997
104 (0.28%)

4861 (0.91%)
1

N1037
16, 0x02 0x7e
3481 (9.22%)

30808 (5.75%)

N1007
35, 0x89 0x02
6189 (16.39%)

113828 (21.26%)

N1010
35, 0x89 0x02
3681 (9.75%)

66706 (12.46%)

N856
0 (0.00%)

176 (0.03%)
0

N746
32, 0xe1 0x3a
168 (0.45%)

5671 (1.06%)

N1034
57, 0x0a 0x71
2288 (6.06%)
25278 (4.72%)

N1046
33, 0x0b 0xc9
3901 (10.33%)
11989 (2.24%)

N1025
67, 0x6f 0x6e
1710 (4.53%)

30857 (5.76%)

N1055
67, 0x6f 0x6e
1971 (5.22%)
5983 (1.12%)

N1035
0 (0.00%)
0 (0.00%)

0

N1036
2288 (6.06%)
25278 (4.72%)

1

N1047
0 (0.00%)
0 (0.00%)

0

N1048
3901 (10.33%)
11989 (2.24%)

1

N1049
83, 0x6c 0x69
722 (1.91%)

2178 (0.41%)

N1052
74, 0x61 0x6b
988 (2.62%)

2981 (0.56%)

N1056
720 (1.91%)

2154 (0.40%)
1

N1057
1251 (3.31%)
3829 (0.71%)

3

N1050
361 (0.96%)

1089 (0.20%)
1

N1051
361 (0.96%)

1089 (0.20%)
1

N1053
361 (0.96%)

1089 (0.20%)
1

N1054
627 (1.66%)

1892 (0.35%)
1

N775
111 (0.29%)

2879 (0.54%)
4

N913
57 (0.15%)

2792 (0.52%)
2

N1038
2302 (6.10%)

20705 (3.87%)
1

N1039
1179 (3.12%)

10103 (1.89%)
8

N458
46, 0x80 0x10
124 (0.33%)

12427 (2.32%)

N227
56, 0x00 0x00
1887 (5.00%)

51599 (9.64%)

N141
301 (0.80%)

5382 (1.00%)
1

N173
50, 0x00 0x00
9802 (25.96%)

106057 (19.80%)

N1021
91 (0.24%)

7938 (1.48%)
2

N922
33 (0.09%)

4489 (0.84%)
4

N1043
34, 0x74 0xe8
1386 (3.67%)
6847 (1.28%)

N308
54, 0x01 0x01
501 (1.33%)

35495 (6.63%)

N1044
601 (1.59%)

3002 (0.56%)
1

N1045
785 (2.08%)

3845 (0.72%)
4

N695
32, 0xe1 0x3a
237 (0.63%)

6971 (1.30%)

N734
32, 0xe1 0x3a
264 (0.70%)

28524 (5.33%)

N696
122 (0.32%)

3180 (0.59%)
4

N791
47, 0x10 0xff
115 (0.30%)

3791 (0.71%)

N1040
45, 0x41 0x08

8 (0.02%)
95 (0.02%)

N956
48, 0xff 0xff
256 (0.68%)
4999 (0.93%)

N792
52 (0.14%)

228 (0.04%)
1

N964
63 (0.17%)

3563 (0.67%)
3

N1041
0 (0.00%)
0 (0.00%)

0

N1042
8 (0.02%)
95 (0.02%)

1

N957
15 (0.04%)
92 (0.02%)

2

N958
241 (0.64%)
4907 (0.92%)

9

N497
10, 0xd4 0x47
676 (1.79%)

10383 (1.94%)

N203
55, 0x53 0x63
9126 (24.17%)
95674 (17.87%)

N498
52 (0.14%)
995 (0.19%)

1

N499
624 (1.65%)
9388 (1.75%)

5

N204
96 (0.25%)

1747 (0.33%)
1

N416
30, 0xff 0xff

9030 (23.92%)
93927 (17.54%)

N417
68 (0.18%)

1226 (0.23%)
3

N527
174, 0x00 0x00
8962 (23.74%)
92701 (17.31%)

N528
68 (0.18%)

1337 (0.25%)
2

N1031
46, 0x50 0x18
8894 (23.56%)
82065 (15.32%)

N1032
4315 (11.43%)
34827 (6.50%)

1

N1033
4579 (12.13%)
47238 (8.82%)

5

Figure 5.2. CCSL January tree snapshot with the presence of P2P traffic (best viewed
electronically). All BitTorrent traffic went to the highlighted clusters: N499, N1032,
and N1033.The dark blue cluster (N499) represents the BitTorrent’s UDP packets,
while the gray and yellow clusters (i.e., N1032 and N1033) represent the TCP data
and TCP control packets respectively.

Figure 5.2 shows an example of how BitTorrent traffic was clustered together using

60 Chapter 5. Monitoring Abnormal Traffic Using ADHIC

ADHIC after it was merged with the CCSL January trace. In particular, one cluster
(N499) managed to segregate most of the UDP tracker related data packets through
(50, 0x00 0x00)—a (p, n)-gram that is not in the IP-header portion; all the other
related TCP packets (whether data or control packets) got routed to the tree’s global
default cluster at N1033 and its adjacent cluster at N1032, as they did not match any
of the (p, n)-grams higher in the tree.

Note that the reference classifier recognized UDP tracker cluster and labeled it
with its special dark blue color while it could not recognize the TCP data packets
(unknown port numbers) and labeled them as unknown with the grey color. Due to
the huge amount of P2P traffic, further splitting of the default cluster occurs later in
the trace; however, the BitTorrent traffic was always segregated on its own or in the
global default cluster along with a few other unusual packets.

One question we had was whether BitTorrent would be clustered differently if it
were run over a standard port. To test this, we obfuscated all BitTorrent packets by
changing their port number to 80 and re-ran our experiment. We found that each
packet was clustered exactly as before in the tree, however, the reference classifier
wrongly labeled the packets as if they were HTTP.

This performance can be explained by two observations. One is that ADHIC rarely
uses ports to cluster traffic. But more significantly, ADHIC was able to segregate the
bulk of the BitTorrent traffic not by characterizing it directly, but by characterizing
other network traffic as having patterns that were absent in the BitTorrent traffic.
Thus, so long as most well-behaved traffic can be appropriately clustered, evasive
protocols can be identified simply by their lack of structural resemblance to other
traffic.

5.3 Synthetic Background Traffic: DARPA Dataset

The Lincoln Laboratory Intrusion Detection Evaluation (IDEVAL) datasets [103]
(referenced hereafter as LL datasets) are entirely synthetic datasets that have been

5.3. Synthetic Background Traffic: DARPA Dataset 61

primarily used to evaluate intrusion detection and other network security systems.
These datasets are useful because they contain no proprietary or confidential infor-
mation for any real users. The LL datasets have been brought to the attention of the
network security and machine learning communities, and have been used in a number
of well-cited papers [111, 139, 187, 197].

However, the LL datasets were criticized many times for having a number of
artifacts that make them less useful for evaluation [115]. For example, the normal
traffic is too uniform: the machines behave in a too similar manner, and there is a
distinct lack of malformed background traffic, or “crud”. Mahoney et al. [110] also
reported several other inconsistencies with real traffic captures, notably regularities
regarding TCP SYN packets and severe predictability in source addresses and packet
header fields such as the time-to-live. Because of these features, attacks in the LL
datasets are much easier to detect than in regular network traffic.

In this section, we test ADHIC’s performance on the LL dataset. The goal is
to check whether ADHIC can detect these known abnormalities in this LL synthetic
traffic, as well as finding other abnormal behavior that distinguishes synthetic traffic
from real traffic. Obviously, our work of analyzing the LL dataset with NetADHICT
has been prefaced with the past research identified in [115] and [110]. It is with
this known artificiality in hand that we are inspecting the results found from using
NetADHICT, noting discrepancies from past research with real datasets.

Note that any conventional anomaly or pattern analysis tools may be able to
detect what was found by examining the trees created by NetADHICT, however,
NetADHICT reveals many representations all at once. Our analysis in this section
demonstrates how we have arrived at some interesting observations for the LL dataset.
Before we describe our testing of the LL dataset with ADHIC, let’s show the traffic
distribution of LL dataset compared to our CCSL and MD real traffic datasets.

62 Chapter 5. Monitoring Abnormal Traffic Using ADHIC

5.3.1 Traffic Distribution of LL Dataset

In 1998, and again in 1999, the Lincoln Laboratory at MIT, under contract from
DARPA, developed a series of datasets in order to test the correctness and robustness
of existing Intrusion Detection Systems (IDS) [104]. These datasets were created by
using host computers connected together with a traffic generator to model a small US
Air Force base of limited personnel, connected to the Internet. Network traffic and
host audit information was recorded during the experiments. Three weeks of training
data and two weeks of test data were released, as well as a list of all attacks included
in these synthetic datasets.

We use three weeks of the LL dataset training data captured from the sniffer on
the inside of the network. Each week is comprised of data for Monday through Friday
from approximately 8am to 6am the following day. Some traces were cut short due
to system crashes during the data capture [103].

Table 5.2 compares the protocol composition statistics for three dataset traces:
1-week MD trace (Oct 31-Nov6, 2007); CCSL trace (Apr3-Apr10, 2006); and LL trace
(Mar8-Mar13, 1999). We note that our traffic capture also contains attacks, just as
the second week of the LL dataset contains labelled attacks. However, our network
is significantly smaller than the LL virtual machines, although its network topology
is similar, and it generates traffic at a similar scale.

5.3.2 Testing the LL Dataset with ADHIC

We performed two rounds of testing with ADHIC. The first involved running ADHIC
on each of the ≤ 22 hour traces. ADHIC was run with its standard parameters: 10
minute update periods and an 18 update period maturation window (180 minutes).
This resulted in trees with a maximum depth of 5 or 6, and 18 to 26 terminal clusters.

For the second test, we merged the datasets together to form three week-long
traces. The timestamps in the traces were shifted to remove the two hour empty
period between each trace (from approximately 6am to 8am) and then merged into a

5.3. Synthetic Background Traffic: DARPA Dataset 63

MD 2007 CCSL 2006 LL 1999
Protocol Oct 31-Nov 6 Apr 3-Apr 10 Mar 8-Mar 13

IPv4 88.34 % 86.66 % 98.96 %
TCP 72.66 % 53.73 % 89.68 %

TCP Unknown 0.08 % 0.62 % 0.05 %
MS WBT/MS RDP 0.00 % 0.14 % 0.00 %
IPP 0.00 % 6.88 % 0.00 %
IMAPS 0.00 % 2.35 % 0.00 %
HTTPS 14.81 % 1.75 % 0.00 %
SSH 0.00 % 3.37 % 4.73 %
MS Streaming/RTSP 0.00 % 1.38 % 0.00 %
MSNMS 0.26 % 0.05 % 0.00 %
XMPP 0.02 % 0.02 % 0.00 %
TCP Sophos 0.00 % 0.08 % 0.00 %
TCP No Payload 14.10 % 26.69 % 42.22 %
RTSP 0.00 % 0.03 % 0.00 %
NBSS 0.00 % 0.00 % 0.03 %
IRC 0.00 % 0.00 % 0.04 %
TELNET 0.00 % 0.00 % 26.54 %
FTP 0.00 % 0.07 % 1.48 %
SMTP 0.03 % 0.37 % 3.45 %
CVS 0.00 % 0.16 % 0.00 %
POP 7. 64 % 0.07 % 0.03 %
HTTP 34.98 % 9.67 % 11.11 %
AIM 0.73 % 0.00 % 0.00 %

UDP 14.97 % 28.93 % 8.95 %
UDP Unknown 0.02 % 0.01 % 0.06 %
DNS 0.80 % 0.95 % 7.25 %
CUPS 0.00 % 1.81 % 0.00 %
WHO 0.00 % 0.09 % 0.00 %
MP3-Stream 0.00 % 3.51 % 0.00 %
NBDGM 0.00 % 0.88 % 0.02 %
DCE_RPC 0.11 % 0.22 % 0.01 %
SIP 1.80 % 0.00 % 0.00 %
NBNS 0.00 % 2.49 % 0.17 %
RIPv1 0.00 % 0.59 % 0.54 %
HSRP 0.00 % 18.28 % 0.00 %
DHCP 0.01 % 0.02 % 0.00 %
SNMP 0.00 % 0.00 % 0.05 %
NTP 0.10 % 0.07 % 0.84 %
RTP 12.11 % 0.00 % 0.00 %

ICMP 0.01 % 0.35 % 0.33 %
EIGRP 0.00 % 3.66 % 0.00 %
IGMP 0.69 % 0.00 % 0.00 %

ARP 11.66 % 12.29 % 0.42 %
ETHER (old) 0.00 % 1.05 % 0.09 %

Total no of Packets 1521232 7075868 7275137
Avg Packt Size in B 746.6 253.37 205.75
Total size in GB 1.1 1.8 1.6

Table 5.2. Protocol classification and content statistics for the second week of the LL
dataset compared to two 1-week datasets from the CCSL and MD datasets. Only
protocols with percentage ≥ 0.02% are shown, and with percentage ≥ 0.1% are high-
lighted.

64 Chapter 5. Monitoring Abnormal Traffic Using ADHIC

single large trace file. ADHIC was again run with standard parameters. This second
run provided a longer term view of the evolution of the tree, providing more time for
the tree’s structure to stabilize. The trees for the week long traces were much larger:
they had a maximum depth of 10 or 11 and contained 60 to 75 terminal clusters.

We divide our analysis of the LL dataset into two main parts. First, we exam-
ine the temporal distribution of traffic as shown by the evolution of ADHIC’s trees
(Section 5.3.3). We then examine anomalies in the distributions of (p, n)-grams in
Section 5.3.4. We finally discuss the summary of our analysis in Section 5.3.5.

5.3.3 Temporal Distribution of Traffic

Network traffic is made up of many bursts: connections are established, used and then
closed and each one is different in some way. Most of these connections share similar
features and underlying consistency. ADHIC works by extracting this similarity, using
(p, n)-grams, and clustering like traffic together. The LL data appears to be missing
some of this consistency. We make this observation because we see a “strobe”-like
effect in regards to the trees ADHIC creates.

Consider Figures 5.3(a) and 5.3(b), which show two consecutive “snapshots” of
the ADHIC tree from the second week of the LL dataset, ten minutes (one update
period) apart. Note how the trees are almost completely different. Many clusters are
created from a particular burst of traffic, then left empty when the burst ceases. New
bursts cause new nodes to be created, and they then also quickly disappear.

Such large changes in tree structure over a short period of time is something
we never see in regular network traffic. Some clusters may grow or shrink; overall,
though, the structure of the trees remains consistent. The ever-changing trees shown
here from the LL dataset lead us to the conclusion that the traffic does not resemble
normal traffic.

We further characterize the bursty nature of the LL datasets in Figure 5.4. Here
we have compared them to the CCSL April dataset. Note the LL graphs contain data
which has been modified to close the two-hour gap between traces; the overlaid sine

5.3. Synthetic Background Traffic: DARPA Dataset 65
File /home/acowpert/NetAdhict/IEEEPaper/data/LinconLabs/concatenated/ll-2.tcpdump

 Time 240
Queues 50

Last 10 Minutes 2843
Last 180 Minutes 37522
Total Packets 3336862

N2
31, 0x10 0x70
2843 (100.00%)
37522 (100.00%)

N5
14, 0x45 0x10
886 (31.16%)
4184 (11.15%)

N8
7, 0xc0 0x4f
1957 (68.84%)
33338 (88.85%)

N119
10, 0x46 0x33
0 (0.00%)

263 (0.70%)

N32
1, 0x10 0x5a
886 (31.16%)
3921 (10.45%)

N17
14, 0x45 0x10
1219 (42.88%)
14721 (39.23%)

N44
0, 0x00 0x00
738 (25.96%)
18617 (49.62%)

N245
16, 0x00 0x29
0 (0.00%)
262 (0.70%)

N160
0 (0.00%)
1 (0.00%)

0

N68
19, 0x0b 0x00
68 (2.39%)
975 (2.60%)

N74
16, 0x00 0x3f
818 (28.77%)
2946 (7.85%)

N290
26, 0xc5 0xda
0 (0.00%)
17 (0.05%)

N293
26, 0xc5 0xda
0 (0.00%)
31 (0.08%)

N291
0 (0.00%)
17 (0.05%)

0

N292
0 (0.00%)
0 (0.00%)

0

N294
0 (0.00%)
31 (0.08%)

0

N295
0 (0.00%)
0 (0.00%)

0

N69
15 (0.53%)
40 (0.11%)

1

N107
169, 0x04 0xac
53 (1.86%)
935 (2.49%)

N75
0 (0.00%)
383 (1.02%)

0

N92
73, 0x61 0x64
818 (28.77%)
2563 (6.83%)

N108
1 (0.04%)
12 (0.03%)

1

N284
48, 0x10 0x00
52 (1.83%)
923 (2.46%)

N285
38 (1.34%)
437 (1.16%)

2

N286
14 (0.49%)
486 (1.30%)

2

N93
455 (16.00%)
481 (1.28%)

1

N257
16, 0x00 0x4c
363 (12.77%)
2082 (5.55%)

N299
45, 0xf0 0x00
67 (2.36%)
805 (2.15%)

N259
296 (10.41%)
875 (2.33%)

2

N300
28 (0.98%)
339 (0.90%)

1

N301
39 (1.37%)
466 (1.24%)

1

N179
54, 0x00 0x00
0 (0.00%)

1552 (4.14%)

N38
55, 0x00 0x00
1219 (42.88%)
13169 (35.10%)

N137
28, 0xda 0x6c
15 (0.53%)
244 (0.65%)

N62
51, 0x00 0x00
723 (25.43%)

18373 (48.97%)

N221
27, 0x10 0x71
0 (0.00%)
782 (2.08%)

N281
37, 0x17 0x8a
0 (0.00%)
770 (2.05%)

N53
39, 0x20 0x85
323 (11.36%)
8213 (21.89%)

N56
29, 0x10 0x70
896 (31.52%)
4956 (13.21%)

N222
0 (0.00%)
782 (2.08%)

0

N223
0 (0.00%)
0 (0.00%)

0

N282
0 (0.00%)
770 (2.05%)

0

N323
43, 0x3e 0xaa
0 (0.00%)
0 (0.00%)

N324
0 (0.00%)
0 (0.00%)

0

N325
0 (0.00%)
0 (0.00%)

0

N54
20 (0.70%)
361 (0.96%)

1

N83
49, 0x00 0xac
303 (10.66%)
7852 (20.93%)

N57
9 (0.32%)

147 (0.39%)
1

N116
43, 0x00 0x00
887 (31.20%)
4809 (12.82%)

N84
20 (0.70%)
361 (0.96%)

1

N110
47, 0x10 0x7d
283 (9.95%)
7491 (19.96%)

N308
28, 0x72 0x94
145 (5.10%)
2702 (7.20%)

N146
20, 0x40 0x00
138 (4.85%)
3935 (10.49%)

N309
0 (0.00%)

616 (1.64%)
0

N310
145 (5.10%)
2086 (5.56%)

1

N314
27, 0x10 0x71
67 (2.36%)

1083 (2.89%)

N317
27, 0x10 0x71
71 (2.50%)
1058 (2.82%)

N315
67 (2.36%)
955 (2.55%)

1

N316
0 (0.00%)
128 (0.34%)

0

N318
71 (2.50%)
925 (2.47%)

1

N319
0 (0.00%)

133 (0.35%)
0

N320
28, 0x72 0x94
71 (2.50%)
1060 (2.83%)

N152
28, 0x70 0x14
816 (28.70%)
2834 (7.55%)

N321
0 (0.00%)
133 (0.35%)

0

N322
71 (2.50%)
927 (2.47%)

1

N153
745 (26.20%)
832 (2.22%)

1

N311
28, 0x71 0x69
71 (2.50%)
1319 (3.52%)

N312
0 (0.00%)
607 (1.62%)

0

N313
71 (2.50%)
712 (1.90%)

1

N138
3 (0.11%)
36 (0.10%)

1

N178
12 (0.42%)
208 (0.55%)

2

N77
2, 0x7b 0x38
89 (3.13%)
1630 (4.34%)

N80
30, 0xac 0x10
634 (22.30%)

16743 (44.62%)

N78
62 (2.18%)
1121 (2.99%)

3

N79
27 (0.95%)
509 (1.36%)

3

N95
10, 0x46 0x33
607 (21.35%)

16131 (42.99%)

N98
9, 0x9c 0xb2
27 (0.95%)
612 (1.63%)

N209
31, 0x10 0x72
561 (19.73%)
15488 (41.28%)

N128
28, 0x70 0x32
46 (1.62%)
643 (1.71%)

N133
5 (0.18%)
74 (0.20%)

1

N134
16, 0x00 0x28
22 (0.77%)
538 (1.43%)

N302
26, 0xc4 0xe3
0 (0.00%)

3539 (9.43%)

N272
38, 0xe9 0xca
561 (19.73%)

11308 (30.14%)

N129
0 (0.00%)
12 (0.03%)

0

N296
22, 0x80 0x06
46 (1.62%)
468 (1.25%)

N303
0 (0.00%)
12 (0.03%)

0

N304
0 (0.00%)

3527 (9.40%)
0

N273
0 (0.00%)
780 (2.08%)

0

N305
16, 0x00 0x28
561 (19.73%)
9705 (25.86%)

N306
195 (6.86%)
3497 (9.32%)

1

N307
366 (12.87%)
6208 (16.54%)

2

N297
36 (1.27%)
307 (0.82%)

2

N298
10 (0.35%)
161 (0.43%)

2

N235
3 (0.11%)
38 (0.10%)

1

N173
8, 0x20 0x89
19 (0.67%)
500 (1.33%)

N287
57, 0x14 0x00
0 (0.00%)
159 (0.42%)

N277
19 (0.67%)
341 (0.91%)

2

N288
0 (0.00%)
81 (0.22%)

0

N289
0 (0.00%)
78 (0.21%)

0

(a) LL, week 2 dataset at 240th update periodFile /home/acowpert/NetAdhict/IEEEPaper/data/LinconLabs/concatenated/ll-2.tcpdump
 Time 241
Queues 51

Last 10 Minutes 350
Last 180 Minutes 35779
Total Packets 3337212

N2
31, 0x10 0x70
350 (100.00%)

35779 (100.00%)

N5
14, 0x45 0x10
135 (38.57%)
3967 (11.09%)

N8
7, 0xc0 0x4f
215 (61.43%)

31812 (88.91%)

N119
10, 0x46 0x33
0 (0.00%)
49 (0.14%)

N32
1, 0x10 0x5a
135 (38.57%)
3918 (10.95%)

N17
14, 0x45 0x10
45 (12.86%)

13774 (38.50%)

N44
0, 0x00 0x00
170 (48.57%)
18038 (50.42%)

N245
16, 0x00 0x29
0 (0.00%)
48 (0.13%)

N160
0 (0.00%)
1 (0.00%)

0

N68
19, 0x0b 0x00
65 (18.57%)
974 (2.72%)

N74
16, 0x00 0x3f
70 (20.00%)
2944 (8.23%)

N290
26, 0xc5 0xda
0 (0.00%)
17 (0.05%)

N293
26, 0xc5 0xda
0 (0.00%)
31 (0.09%)

N291
0 (0.00%)
17 (0.05%)

0

N292
0 (0.00%)
0 (0.00%)

0

N294
0 (0.00%)
31 (0.09%)

0

N295
0 (0.00%)
0 (0.00%)

0

N69
15 (4.29%)
55 (0.15%)

1

N107
169, 0x04 0xac
50 (14.29%)
919 (2.57%)

N75
0 (0.00%)
383 (1.07%)

0

N92
73, 0x61 0x64
70 (20.00%)
2561 (7.16%)

N108
1 (0.29%)
12 (0.03%)

1

N284
48, 0x10 0x00
49 (14.00%)
907 (2.54%)

N285
36 (10.29%)
436 (1.22%)

2

N286
13 (3.71%)
471 (1.32%)

2

N93
1 (0.29%)
481 (1.34%)

1

N257
16, 0x00 0x4c
69 (19.71%)
2080 (5.81%)

N299
45, 0xf0 0x00
64 (18.29%)
869 (2.43%)

N326
150, 0x51 0x80

5 (1.43%)
5 (0.01%)

N300
27 (7.71%)
366 (1.02%)

1

N301
37 (10.57%)
503 (1.41%)

1

N327
0 (0.00%)
0 (0.00%)

0

N328
5 (1.43%)
5 (0.01%)

2

N179
54, 0x00 0x00
0 (0.00%)

608 (1.70%)

N38
55, 0x00 0x00
45 (12.86%)

13166 (36.80%)

N137
28, 0xda 0x6c
10 (2.86%)
243 (0.68%)

N62
51, 0x00 0x00
160 (45.71%)

17795 (49.74%)

N222
0 (0.00%)

310 (0.87%)
0

N281
37, 0x17 0x8a
0 (0.00%)

298 (0.83%)

N53
39, 0x20 0x85
40 (11.43%)

8213 (22.95%)

N56
29, 0x10 0x70
5 (1.43%)

4953 (13.84%)

N282
0 (0.00%)

298 (0.83%)
0

N323
43, 0x3e 0xaa
0 (0.00%)
0 (0.00%)

N324
0 (0.00%)
0 (0.00%)

0

N325
0 (0.00%)
0 (0.00%)

0

N54
20 (5.71%)
361 (1.01%)

1

N83
49, 0x00 0xac
20 (5.71%)

7852 (21.95%)

N57
5 (1.43%)

144 (0.40%)
1

N116
43, 0x00 0x00
0 (0.00%)

4809 (13.44%)

N84
20 (5.71%)
361 (1.01%)

1

N110
47, 0x10 0x7d
0 (0.00%)

7491 (20.94%)

N308
28, 0x72 0x94
0 (0.00%)

2702 (7.55%)

N146
20, 0x40 0x00
0 (0.00%)

3935 (11.00%)

N309
0 (0.00%)

616 (1.72%)
0

N310
0 (0.00%)

2086 (5.83%)
0

N314
27, 0x10 0x71
0 (0.00%)

1083 (3.03%)

N317
27, 0x10 0x71
0 (0.00%)

1058 (2.96%)

N315
0 (0.00%)

955 (2.67%)
0

N316
0 (0.00%)

128 (0.36%)
0

N318
0 (0.00%)
925 (2.59%)

0

N319
0 (0.00%)
133 (0.37%)

0

N320
28, 0x72 0x94
0 (0.00%)

1060 (2.96%)

N152
28, 0x70 0x14
0 (0.00%)

2834 (7.92%)

N321
0 (0.00%)

133 (0.37%)
0

N322
0 (0.00%)

927 (2.59%)
0

N329
84, 0x00 0x01
0 (0.00%)
0 (0.00%)

N311
28, 0x71 0x69
0 (0.00%)

1319 (3.69%)

N330
0 (0.00%)
0 (0.00%)

0

N331
0 (0.00%)
0 (0.00%)

0

N312
0 (0.00%)

607 (1.70%)
0

N313
0 (0.00%)
712 (1.99%)

0

N138
0 (0.00%)
36 (0.10%)

0

N178
10 (2.86%)
207 (0.58%)

2

N77
2, 0x7b 0x38
85 (24.29%)
1623 (4.54%)

N80
30, 0xac 0x10
75 (21.43%)

16172 (45.20%)

N78
62 (17.71%)
1119 (3.13%)

3

N79
23 (6.57%)
504 (1.41%)

2

N95
10, 0x46 0x33
48 (13.71%)

15663 (43.78%)

N98
9, 0x9c 0xb2
27 (7.71%)
509 (1.42%)

N209
31, 0x10 0x72
0 (0.00%)

15020 (41.98%)

N128
28, 0x70 0x32
48 (13.71%)
643 (1.80%)

N133
5 (1.43%)
75 (0.21%)

1

N134
16, 0x00 0x28
22 (6.29%)
434 (1.21%)

N302
26, 0xc4 0xe3
0 (0.00%)

3539 (9.89%)

N272
38, 0xe9 0xca
0 (0.00%)

10840 (30.30%)

N129
0 (0.00%)
12 (0.03%)

0

N296
22, 0x80 0x06
48 (13.71%)
516 (1.44%)

N303
0 (0.00%)
12 (0.03%)

0

N304
0 (0.00%)

3527 (9.86%)
0

N273
0 (0.00%)

312 (0.87%)
0

N305
16, 0x00 0x28
0 (0.00%)

9705 (27.12%)

N306
0 (0.00%)

3497 (9.77%)
0

N307
0 (0.00%)

6208 (17.35%)
0

N297
36 (10.29%)
343 (0.96%)

2

N298
12 (3.43%)
173 (0.48%)

2

N235
0 (0.00%)
38 (0.11%)

0

N173
8, 0x20 0x89
22 (6.29%)
396 (1.11%)

N287
57, 0x14 0x00
1 (0.29%)
50 (0.14%)

N277
21 (6.00%)
346 (0.97%)

2

N288
0 (0.00%)
12 (0.03%)

0

N289
1 (0.29%)
38 (0.11%)

1

(b) LL, week 2 dataset at 241st update period

Figure 5.3. (Best viewed in color and electronically to allow enlargement) The synthetic
LL data lacks consistency, which causes erratic, strobing trees, with clusters appearing
and disappearing. Note the large number of empty clusters (small gray squares) in
Figure 5.3(b).

66 Chapter 5. Monitoring Abnormal Traffic Using ADHIC

(a) The LL dataset

(b) CCSL dataset

Figure 5.4. Temporal analysis of packet distribution over one week periods in the LL
dataset and our lab (CCSL).

5.3. Synthetic Background Traffic: DARPA Dataset 67

wave has been adjusted to account for this. The top of the crest of the wave in both
figures denotes noon, and the bottom of the valley denotes midnight.

Surges of traffic are more pronounced in the LL dataset, fitting much more closely
to the passage of daytime (see Figure 5.4(a)). The nighttime hours contain far less
traffic than our lab captures, providing at times only a few hundred packets over ten-
minute intervals—something remarkable for a network with thousands of machines.
In contrast, our lab (Figure 5.4(b)), with many fewer (but real) machines, has a
steady baseline of thousands of packets in the same sized intervals.

5.3.4 Distributions of (p, n)-grams

The breakdown of traffic in the LL dataset compared to our lab’s capture in Table 5.2
does not show any irregularities. However, if we look at the traffic at shorter time
periods (10 minutes), we can see that some protocols are over-populating the traffic.
This is exemplified by Figure 5.5 with the large amount of DNS traffic over a 10
minute time period.

The graph in Figure 5.5 shows a single cluster—before any splits have occurred—
dominated by approximately 85% DNS traffic. This is the first 40 minutes of the
second week of the dataset. Little explanation is available for such a large amount
of DNS traffic effectively flooding the network. Observing LL dataset’s output trees
makes it easy to detect such a behavior.

Figure 5.6 looks at offsets of the 1000 most frequent (p, n)-grams in three periods
of the CCSL and LL datasets. While the percentages of (p, n)-grams throughout
the three different periods of CCSL show consistency between day and night, the
percentages of the LL datasets do not. Moreover, the consistency difference is also
visible when examining the 10-minute period against the 3-hour period it is part of.
The discrepancy with the LL dataset can be clearly seen among the day (3-hour and
10-minute) and night (3-hour) time periods with payload (i.e., p > 53) and TCP
header (i.e., 37 > p > 54) (p, n)-grams. Note that this is not the case with the very
consistent real traffic also in the figure.

68 Chapter 5. Monitoring Abnormal Traffic Using ADHIC

File /home/acowpert/NetAdhict/IEEEPaper/data/LinconLabs/concatenated/ll-2.tcpdump
 Time 4
Queues 1

Last 10 Minutes 37824
Last 180 Minutes 104815
Total Packets 104815

N1
37824 (100.00%)
104815 (100.00%)

20

Figure 5.5. Example of high volumes of DNS traffic in the LL dataset. DNS is illus-
trated as the large, light blue wedge.

5.3.5 Summary

Similar to the “crud” discussed by Mahoney et al. and McHugh, ADHIC leaves a
portion of the analyzed traffic unclassified, found in the furthest right leaf of the
tree. In our analysis of the LL datasets, we have noticed a lower amount of this
unclassified traffic. Most traffic is successfully classified through the ADHICT port-
based reference classifier; however, particular protocols are unknown. Compared to
the traces from our lab, there is a much lower quantity of unclassified traffic. While
the lack of unclassified traffic does point to a lack of “crud,” it is also potentially due
to the greater variety of network protocols currently in use today, when compared to
the 1999 simulation.

To summarize, ADHIC quickly revealed a number of unusual traffic patterns in
the LL dataset, illustrating shortcomings in its simulation of normal network traffic.
Some of these patterns, such as the unusually uniform distribution of packets [110],
have been previously noted. Other observations (in particular, the extreme temporal

5.3. Synthetic Background Traffic: DARPA Dataset 69

Figure 5.6. Comparison of the CCSL and LL traffic captures over three periods (two
3-hour periods and one 10-minute period), separated by packet type. The x-axis
represents the two 3-hour datasets (morning and evening) of both datasets along with
the last 10 minutes of the 3-hour morning time period of each. The y-axis describes
at what packet offset p those (p, n)-grams are found (Ethernet header, IP header,
port fields, TCP header and payload). The z-axis (height) of the graph denotes the
percentage of (p, n)-grams contained within each packet offset range.

70 Chapter 5. Monitoring Abnormal Traffic Using ADHIC

variation) we believe are novel.
What is notable with this analysis is the ease with which we could identify the

unusual properties of the datasets. The temporal variation manifests as a remark-
ably dynamic tree that “strobes” in a way that virtually never happens with traces
gathered from production networks. A modest amount of subsequent analysis then
revealed the other characteristics, such as the lack of “crud,” identified by past re-
searchers.

The LL dataset was designed to provide a high-level view of network data, one that
reveals large-scale patterns that may or may not follow the bounds of IP addresses and
ports. While such functionality is potentially valuable when monitoring production
networks, here we show that it is also a potentially valuable tool for the researcher,
one that complements standard packet aggregate counts and manual packet and flow-
level inspection. While there are many patterns that it does not readily capture (such
as flow counts), we believe the LL dataset’s ability to unify high-level and low-level
network traffic views make it a powerful addition to the network researcher’s toolbox.

The problem of creating network datasets for research purposes is a difficult
one. Synthetic and anonymized datasets are essential resources; however, artifacts in
them can lead to conclusions that do not hold on production networks. We believe
lightweight clustering strategies such as those employed on the LL dataset hold the
potential for proactively identifying data artifacts in network data—captured, syn-
thetic, and anonymized—so they may be factored into experimental design. Such
work should increase the quality of research results and reduce the need for later
critiques.

6 (p, n)-gram Characteristics in Network Traf-
fic

The previous chapters have shown evidence of how ADHIC can segregate different
kinds of network traffic without having any explicit models of traffic. In this chapter
we begin exploring the characteristics of (p, n)-grams that enable applications like
ADHIC, both for the purpose of better understanding under what circumstances we
can expect ADHIC to be an effective clustering algorithm, and to provide a foundation
for other potential uses for (p, n)-grams.

The first part of this chapter explores the characteristics of (p, n)-grams that we
have observed in our formal and informal experiments. Most of the key observations
are explored in later chapters; others, however, are more a reflection of our own
experiences and should be seen as potentially needing further validation. The overall
framework, though, is important to understand in order to place the later chapters
in the appropriate context.

We then introduce a novel use of Shannon entropy as a metric of content similarity
between network packets. In Chapter 8 we use this measure to empirically calculate
entropy models of individual network protocols with different design structures. This
shows the mapping between design structures of individual protocols and the corre-
sponding content similarities and (p, n)-gram distributions. Then in Chapter 9 we
utilize this entropy definition in building a conceptual model that generalizes and
explains the (p, n)-gram characteristic distributions observed in network traffic.

71

72 Chapter 6. (p, n)-gram Characteristics in Network Traffic

6.1 (p, n)-gram Characteristics

As introduced in Section 1.3, there are two main characteristics of (p, n)-grams that
give them the ability to be used for traffic characterization applications. The first
characteristic is their ability to capture semantically-relevant structural differences
between packets of different protocols. This counts for their fingerprinting function-
ality, and it is composed of two parts:

a) Frequent (p, n)-grams calculated in a network traffic reflect semantic design struc-
tures of the corresponding network protocols. We call these frequent (p, n)-grams
“structural” (p, n)-grams (briefly introduced in Section 1.2).

b) Protocols with different design structures feature different frequency and offset
distributions of structural (p, n)-grams. This allows structural (p, n)-grams to
uniquely fingerprint structured protocols in network traffic.

The second characteristic of (p, n)-grams is their rapidly-dropping-off frequency
distribution behavior. This characteristic accounts for their fingerprinting efficiency
as it assures a representation of network protocols with a small number of structural
(p, n)-grams. Consequently, protocol design structures can be represented by a small
set of (p, n)-grams in the corresponding network traffic.

Both of the characteristics of (p, n)-grams are inherited from the encapsulated
IP packet structure design. Moreover, finding structural (p, n)-grams through their
relative high frequency can be done automatically without a priori knowledge about
the involved protocol specifications.

We start with discussing the efficiency characteristic first, and then we discuss
the two parts of the functionality characteristic. We finally discuss how these (p, n)-
gram characteristics can be leveraged to meet the traffic characterization application
requirements.

6.1. (p, n)-gram Characteristics 73

6.1.1 Rapidly-Dropping-Off Frequency Distribution

Figure 6.1 shows the general common “frequency distribution” behavior we observe of
(p, n)-grams in network traffic. This distribution represents the relationship between
frequency and rank (ordinal index) of (p, n)-grams in network traffic. Frequency
distribution is directly related to the impact of content similarities found between
network packets.

Typically, the frequency distribution of (p, n)-grams shows a rapidly-dropping-off
curve with a “power-law-like” shape similar to that of Zipf’s law [203], where the first
few (p, n)-grams have very high packet matching frequencies, whereas the remaining
majority have low frequencies.

1,000

0 4000

F
r
e
q

u
e
n

c
y

Ordinal index of (p,n)-grams

A: High Freq.
(p,n)-grams

4

B: Med Freq.
(p,n)-grams

C: Low Freq.
(p,n)-grams

j k

A B C

Figure 6.1. (Best viewed in color) Frequency distribution of (p, n)-grams on a normal
graph scale. Three different frequency-level regions of (p, n)-grams can be recognized
in the graph, namely: Regions A, B, and C.

The scatter graph shows three regions of distinguishable (p, n)-gram frequency

74 Chapter 6. (p, n)-gram Characteristics in Network Traffic

levels, namely: Region A, B, and C. Note that, for clarity purposes, the very long
tail that extends Region C to the right only partially appears on the graph.

Region A is a very small one that covers the period [1,j], and contains the first
portion of the curve. This portion declines very fast and contains the most frequent
(p, n)-grams in the inspected network traffic. Contrarily, Region C is the longest
one covering the period [k,m] where m is the total number of distinct (p, n)-grams
calculated in the network trace.

The portion of Region C displayed on the graph constitutes the beginning of a long
tail of a power-law-like curve, where the total number m may go to several millions1.

Extending the x-axis in Figure 6.1 to include all calculated (p, n)-grams in Region
C shows a long straight line (long-tail) that moves slowly down approaching 1 on
the y-coordinate. This long tail of Region C contains (p, n)-grams with the lowest
percentage of packet matching frequency.

Finally, Region B covers the period [j,k], and contains the rounded part of the
curve that connects Regions A and C. Region B contains (p, n)-grams with medium
packet matching percentages.

Note that calculating (p, n)-grams for different network traces might give different
values of j and k on the x-coordinate, depending on the size of the examined trace and
the nature of network protocols it is composed of. Our experiments, however, show
that similar period sizes on the x-coordinate are usually observed when inspecting
different trace sizes of the same network traffic (Chapter 7 provides statistical details).

Re-plotting Figure 6.1 on a log-log scale shows a power-law-like behavior that
we conjecture to follow “Zipf’s law” (See Appendix A.2). That is, a straight power
regression line with a slope (power exponent) close to a negative unity. Figure 6.2
shows this behavior on a log-log-scale scatter graph.

The empirical analysis presented in Chapter 7 uses multiple traces from two inde-
pendent datasets to provide statistical evidence of this general frequency distribution

1This number can go up to the size of the (p, n)-gram domain space, that is: (packetSize− n+
1) × 28n. Therefore, if we use n = 2, and assume the common maximum Ethernet packet size of
1,500, we get a domain space of: (1, 500− 2 + 1)× 28∗2 = 98, 238, 464 (p, n)-grams.

6.1. (p, n)-gram Characteristics 75

slope ≈ -1

1,000

1 10000

Fr
e
q

u
e
n

cy
 (

lo
g

-s
ca

le
)

Ordinal index of (p,n)-grams (log-scale)

Figure 6.2. Frequency distribution of (p, n)-grams on a log-log scale. Notice how the
distribution behavior is close to a straight line with a slope of negative unity and a
good fit around the regression line.

behavior. We describe this behavior as a rapidly-dropping-off frequency distribution
that appears as a straight line on a log-log scale graph with a slope close to -1 and
slightly varying from trace to trace. This behavior is what we refer to as “power-law-
like” distribution.

But the question remains: how can this rapidly-dropping-off distribution behavior
of (p, n)-grams be seen as a good fit for the traffic characterization problem? In
essence, our research shows that (p, n)-grams that can be used to characterize and
fingerprint network traffic appear in the first two regions of Figure 6.1: Regions A

and B. This finding is further discussed in Section 6.1.2, and later in Chapter 8.

Therefore, the rapidly-dropping-off frequency distribution behavior assures that
only a small set of distinguishable (p, n)-grams is required to fingerprint network
traffic. This gives space efficiency and threshold setting advantage for (p, n)-gram-
based traffic characterization applications. Section 6.1.3 discusses this issue in more
detail.

76 Chapter 6. (p, n)-gram Characteristics in Network Traffic

Finally, it is worth noting that the power-law-like behavior shown in Figure 6.2
reflects Regions A and B and a portion of Region C. Extending the graph to include
the long-tail (p, n)-grams in Region C usually shows deviation from the power-law-like
distribution with more flattened slopes that are not very close to unity.

6.1.2 Capturing Differences in Protocol Structural Designs

The other main characteristic of (p, n)-grams in network traffic is their ability to cap-
ture structural design differences between packets of different protocols. In principle,
this characteristic accounts for the fingerprinting functionality of (p, n)-grams, and
it is due to the semantic meanings of frequent (p, n)-grams. We discuss this char-
acteristic in two steps. The first step discusses the semantic meanings of frequent
(p, n)-grams, while the second one shows how different protocols feature different
distribution behaviors of (p, n)-grams.

Semantic Meaning of Frequent (p, n)-grams

One of the advantages that using the offset p gives to (p, n)-grams over n-grams is the
additional semantic meaning within network packets. That is, knowing the specific
field in which an n-gram appears in a packet gives another dimension to its substring
content. Consider for example how finding the two (p, n)-grams (54, 0x47 0x45) and
(55, 0x45 0x54) in a packet implies that these two bytes are consecutive. Moreover,
knowing that they are part of the application header field (offsets 54 and 55) may
further suggest that they belong to an HTTP GET request packet (the hexadecimals
0x47, 0x45, and 0x54 represent ‘G’, ‘E’, and ‘T’ respectively).

Another advantage of p is the additional domain space that it adds to (p, n)-grams.
This gives (p, n)-grams more richness while describing network packets. That is, the
number of all possible n-gram values in a packet is equal to 28n, whereas, the number
of all possible (p, n)-grams is equal to (packetSize− n+ 1) × 28n.

Re-plotting the three regions in Figure 6.1, with offsets of (p, n)-grams on the

6.1. (p, n)-gram Characteristics 77

y-axis, gives us their “offset distribution” in network traffic. Figure 6.3 shows the
general behavior of this distribution, which gives the relationship between offset and
rank (ordinal index) of (p, n)-grams. Offset distribution is directly related to the
impact of structural designs in network packets2.

0

400

0 4000

O
ff

s
e
t

Ordinal index of (p,n)-grams

j k

A B C

Header

Payload

Figure 6.3. Offset distribution (OD) of (p, n)-grams. The shaded area represents fre-
quent payload (p, n)-grams that are application-dependent.

In principle, (p, n)-grams in Regions A and B, in Figure 6.3, reflect semantic de-
sign structures in the corresponding network protocols. These (p, n)-grams either
represent application-specific packet structures or represent packet header fields re-
vealing common information about network topology and traffic behavior. Again, we
call these (p, n)-grams “structural” (p, n)-grams based on their semantic meaning.

2Note that offsets are counted starting from the beginning of the packet’s Data-link header (e.g.,
Ethernet header) with offset 0 being the first byte. Appendix B.2 provides a brief overview of the
IP packet structure.

78 Chapter 6. (p, n)-gram Characteristics in Network Traffic

Focusing more on (p, n)-grams in Region A (i.e., period [1,j]), shows that they
are all located in the packets’ header fields. Those (p, n)-grams mainly represent
common network information (e.g. IP and MAC addresses, ports, etc.) or traffic
behavior parameters (e.g. QoS parameters, total length, TimeToLive, etc.). In typical
IP network traffic, many of these packet header fields have similar structures and
common values across different protocols. Therefore, (p, n)-grams in this region may
not always be the best to distinguish network protocols from each other.

Region B (i.e., period [j,k]), is where frequent payload (p, n)-grams start to appear
in addition to the other frequent header (p, n)-grams. The payload (p, n)-grams (in
the shaded area) are mostly application-dependent or protocol-specific (p, n)-grams
representing protocol structural fields. This representation allows them to be used
to distinguish between different protocols. An example of what payload (p, n)-grams
might be pointing to is the sequence “ipp://”, which is located in the payload URI
field within the CUPS packets.

Semantic (p, n)-grams, in Regions A and B, can be simply found through their rel-
atively high frequency in network traffic. Our ADHIC clustering algorithm (discussed
in Chapter 3) relies on automatically finding these structural (p, n)-grams in the two
regions, and using them as discriminators to classify network traffic. Note that the
small size of both regions explains why protocol structural designs in network traffic
can be represented by a small set of frequent (p, n)-grams.

On the other hand, (p, n)-grams in the third region C (i.e., period [k,m]) repre-
sents the majority infrequent (p, n)-grams that either belong to unstructured payload
contents or to header fields with infrequent contents such as checksum. Those (p, n)-
grams are very infrequent and, thus, can’t be used to represent common protocol
patterns.

It is important to note that frequent (p, n)-grams in both regions, A and B, reflect
content similarities between network packets. The similarity level differs from offset
to offset depending on the packet field. For example, higher content similarity is
usually found between packets at the header’s “IP version” field than at any another

6.1. (p, n)-gram Characteristics 79

deep offset within the packets’ payload. Section 6.2 introduces a novel use of Shannon
entropy [156] as a metric to measure content similarity between network packets at
fixed offsets. We use this metric to explain content similarities between network
packets and their impact on (p, n)-gram distributions.

Different Protocols have Different Distribution Behaviors

Different network protocols have different levels of content similarity between their
packets. Our experiments show that calculating frequency and offset distributions of
(p, n)-grams generally gives slightly different behaviors depending on the nature of
the inspected network traffic. Behavior differences are mainly due to the types and
volumes of protocols constituting the inspected network traffic.

In principle, (p, n)-grams represent common patterns in the various packet fields
of network traffic. Therefore, structural differences between network packets cause
the representational behavior of (p, n)-grams to be protocol dependent. Obviously,
this has its direct impact on their frequency and offset distributions. Our experiments
show that distribution differences between network traces appear when their traffic
consists of different protocol types and/or volumes. These differences are more evident
when the distributions are calculated for single-protocol traces with different protocol
types (e.g., HTTP vs. DNS).

To visualize these differences, Figure 6.4 shows the (p, n)-gram frequency and off-
set distributions of two single-protocol traces, where each trace represents a different
protocol. The differences between the two protocols are evident in terms of their
frequency distribution slopes (0.82 vs. 1.69) and in terms of their offset distribu-
tion scatter graphs (i.e., patterns and areas of concentration). Chapter 8 provides
empirical examples that show how different single-protocol traffic produce different
frequency and offset distribution behaviors depending on their protocol types and
application modes of operation.

Our experiments suggest that the frequency and offset distributions of (p, n)-grams
for any network trace are mainly influenced by the following parameters:

80 Chapter 6. (p, n)-gram Characteristics in Network Traffic

1,000

1 1000

Fr
e
q

u
e
n

cy

Rank

slope = -1.69
slope = -0.82

0

200

0 1000

O
ff

se
t

Rank

.

Figure 6.4. Protocol-dependent (ARP in red triangles and HTTP in green diamonds)
(p, n)-grams frequency and offset distributions.

1) Network topology: Topology of the inspected network directly impacts (p, n)-
grams that represent network-mapped fields, such as IP and MAC addresses.

2) Protocol types and volumes: Depending on their specific packet design structures,
individual protocols constituting the network trace have their impact on the
overall distributions of (p, n)-grams. Moreover, protocols with relatively high
volumes have more chance to affect the overall (p, n)-grams distributions.

3) Mode of operation: Different operation modes result in different (p, n)-gram distri-
bution behaviors for the same protocol. For example, using the HTTP protocol
to surf text-based Websites generates a different distribution behavior of (p, n)-
grams than that generated by using the HTTP protocol to download binary
files. Similarly, both distributions are different than that generated by using
the HTTP protocol for HTTP tunneling (i.e., using an HTTP packet as a wrap-
per to encapsulate packets of other protocols [17]).

Monitoring the impact of these parameters on (p, n)-grams distribution is what
we rely on to build our network protocol classification and security applications (see
Section 6.1.3). For example, ADHIC can differentiate between TCP and UDP, and

6.1. (p, n)-gram Characteristics 81

between IPP and HTTP protocols based on their differences in (p, n)-gram distribu-
tion behaviors. By the same technique, ADHIC can even differentiate between HTTP
Web surfing traffic and HTTP-like P2P traffic. These classification and security mon-
itoring functionalities of ADHIC were discussed in Chapters 4 and 5.

6.1.3 Mapping (p, n)-gram Characteristics with Applications

One of the main research objectives we discussed in Chapter 1 has been to find
network packet features that can be calculated without a priori knowledge of the
involved protocols and can be used to efficiently characterize network traffic. In this
section, we briefly discuss how the main (p, n)-gram characteristics presented so far
can be leveraged to meet these application requirements.

First, the semantic meanings of frequent (p, n)-grams give them adequate repre-
sentation of the different network protocol packets. This representation coupled with
the ability to capture protocol structural differences are the two (p, n)-grams’ func-
tionality characteristics that we use to fingerprint network protocols and distinguish
between different protocols in network traffic. Not only can (p, n)-grams reflect the
type and size of the main running protocols, but they can also reflect their mode of
operation. We further employ this functionality to implement our traffic clustering
and security monitoring applications.

Second, using (p, n)-grams in pattern matching gives a time efficiency advantage
over the regular n-gram pattern matching technique. That is, (p, n)-grams require
only a sublinear time in the size of the packet for packet matching as opposed to the
regular linear time required in looking at every byte in a packet using n-gram pattern
matching. In addition, the rapidly-dropping-off distribution with a power-law-like
behavior gives an additional space efficiency advantage of (p, n)-grams. This distri-
bution behavior implies that the structural (p, n)-grams are easily distinguishable
from the rest in the long tail due to their unique high frequency. It also implies that
only a small set of structural (p, n)-grams are required for the traffic characterization
applications.

82 Chapter 6. (p, n)-gram Characteristics in Network Traffic

Third, (p, n)-gram characteristics are naturally inherited from the hierarchical and
encapsulated IP packet design. This gives (p, n)-grams an applicability advantage to
be used to characterize network traffic without a priori knowledge of the specific
protocol packet structures.

Thus, we leverage (p, n)-grams and their characteristic distributions to build a
traffic characterization framework of three applications. In the first application, traffic
clustering (discussed in Chapters 3 and 4), we use the ability to automatically find
structural (p, n)-grams in the complex network traffic to build an effective traffic
clustering system, where structural (p, n)-grams can be used as a proximity measure of
semantic similarity between network packets. This clustering application allows traffic
to be classified into equivalence classes that closely approximate standard measures
of network traffic.

In the second application (traffic monitoring, discussed in Chapter 5), we watch
over time for temporal changes to the (p, n)-gram distribution behavior. This allows
us to signal instances of deviation from the expected normal behavior of the network
traffic. For example, ADHIC can use sudden changes in the (p, n)-grams distribution
behavior to indicate abnormal behavior, such as, a single-protocol surge (e.g., worm,
flash crowd, etc.) dominating the network traffic.

In the third application, protocol fingerprinting (will be discussed in Chapter 8),
we rely on the differences found between network protocols in order to fingerprint
their different types. Those differences are mainly in terms of 1) the sets of repre-
sentative structural (p, n)-grams, 2) their frequency distributions, and 3) their offset
distributions, to fingerprint the different protocol and traffic types.

Finally, the implied deep packet inspection is a common privacy concern when
dealing with content-based network traffic characterization techniques. However, in
this (p, n)-gram-based approach, structural (p, n)-grams are only calculated through
their high frequency, and they only constitute short packet strings that represent
protocol structures. We, therefore, conjecture that inferring protocol structures using
(p, n)-grams would not reveal private information or raise privacy concerns except for

6.2. Entropy as a Metric to Measure Content Similarity 83

some highly frequent network information, such as server IP-addresses. We discuss
this further in Chapter 10.

6.2 Entropy as a Metric to Measure Content Similarity

This section introduces a novel use of Shannon entropy [156] to describe content
similarity in network traffic. The main purpose of this is to define an abstract model
that allows us to generalize and conceptually explain the two main characteristics
of (p, n)-grams, namely: 1) their rapidly-dropping-off frequency distribution, and 2)
their ability to capture protocol design structures.

In particular, we introduce using Shannon entropy as a metric to measure the level
of content similarity at fixed offsets in network packets. In addition to presenting
our empirical results, Chapters 8 and 9 utilize this entropy definition in building a
conceptual model that explains the two characteristics of (p, n)-grams.

6.2.1 Entropy Model Definition

Shannon entropy is commonly used to measure randomness in an event. When applied
to an n-byte field (data source), Shannon entropy can be defined to give the number
of bits required to encode data based on its content value repetitions. For example, an
entropy of 6 bits calculated on a 1-byte field means that all the different values seen
in that field can be encoded, on average, using 6 bits only (i.e., with the remaining 2
bits being redundant). This definition of entropy gives an indication of how repeated
(and hence similar) the values that appear at the corresponding field are.

We use this entropy definition to express variances in packet contents at fixed
fields. That is, for all the inspected packets in a sample, we check the different values
found at a specific field and their repetitions. The higher the entropy, the higher the
level of content variances or dissimilarity in that field (i.e., less repetition). Using
this definition, we observe that protocols with very similar packet contents, such as

84 Chapter 6. (p, n)-gram Characteristics in Network Traffic

broadcast and multicast protocols, feature low entropy at most of their packet fields.
This is to be compared with encrypted protocols whose packet entropy is high at
most of their packet’s payload fields.

Our application of entropy definition on network packets may apply to any 1-
byte-long field at a fixed offset p {p: 1, 2, . . . , packet-size - 1} in the network packet
(i.e., (p, n)-grams with n = 1). In particular, we define a random variable X, for each
possible byte value at offset p, with 28 = 256 outcomes {xi : 0x00, 0x01, . . . , 0xFF},
and then, Shannon entropy is defined as:

H(X) = −
28∑
i=1

pr(xi) ∗ log2(pr(xi)) (6.1)

Where:

a) pr(xi) is the probability that X is in the state xi, and

b) pr(xi) ∗ log2(pr(xi)) is defined as 0 if pr(xi) = 0.

In this definition, H(X) is bounded by two values: 0 ≤ H(X) ≤ 8. That is, if we
have a sample size of 28 (p, n)-grams, where:

1. all (p, n)-grams are identical, then pr(xi) = 1, and log2(pr(xi)) = 0. Thus,

H(X) = −
28∑
i=1

1 ∗ 0 = 0 bits.

2. all (p, n)-grams are different, then pr(xi) = 1
28
, and log2(pr(xi)) = −8. Thus,

H(X) = −
28∑
i=1

1

28
∗ (−8) = − 1

28
∗ 28 ∗ (−8) = 8 bits.

Therefore, an entropy of 0 at offset p means that the same byte value appears in
all packets at that offset, whereas an entropy of k (0 ≤ k ≤ 8) means that there is
an average number of 2k distinct byte values that appear in the packets at the same
offset.

Since entropy is expressed in a logarithmic scale, a linear difference between two
entropy levels (e.g., 6 and 7) implies an exponential difference in the corresponding

6.2. Entropy as a Metric to Measure Content Similarity 85

(p, n)-grams similarity level (i.e., a total of 26 vs. 27 distinct (p, n)-grams in the same
field).

6.2.2 Applying Entropy Model to Network Traffic

The purpose of defining Shannon entropy on network packets is to use it as a metric
to measure content similarities between network packets at fixed offsets. Figure 6.5
shows this novel use of Shannon entropy on a scatter graph with entropy calculated
on a random network traffic trace. Points in the graph represent entropies calculated
at each packet offset (i.e., from offset 0 to offset 1499).

0

8

0 550

E
n

tr
o

p
y

Packet offset

header payload

0

max

0

Figure 6.5. Shannon Entropy calculated at each 1-byte-long packet offset. Note that
the maximum entropy on the y-axis is equal to 8 bits, whereas the maximum packet
offset for Ethernet packets is equal to 1500− 1 = 1499.

A closer look at the graph, taking into consideration the two packet portions

86 Chapter 6. (p, n)-gram Characteristics in Network Traffic

(header and payload), shows that packet fields in the header portion possess lower
entropies than those in the payload. This can be simply explained through the types
of contents that exist in each portion. In essence, packet header fields usually contain
network parameters with common values, such as IP addresses, protocol ID, TTL,
etc. This is in comparison with the payload fields that usually contain infrequent
data. Note, however, that due to the protocol design structures within the payload
portion, some of the payload fields possess lower entropies than others.

0

1

2

3

4

5

6

7

8

0 25 50 75 100 125 150 175 200

E
n

tr
o

p
y

Packet offset

Figure 6.6. Shannon Entropy calculated for every 1-byte offset for two different proto-
cols (CUPS in green diamonds, and MP3 streaming in red squares). Notice how each
scatter graph represents the structural designs in the corresponding protocol.

Therefore, when the entropy graph is calculated for packets of one protocol type,
the structural designs of the protocol become more evident in the payload portion.
Figure 6.6 shows a scatter graph with entropies calculated on two traces, each rep-
resenting one protocol type. The first graph (green diamonds) represents a protocol

6.2. Entropy as a Metric to Measure Content Similarity 87

(CUPS) that features high content similarity at both the header and payload por-
tions of the packet. This indicates that there are more structured fields in the payload
portion than just data streaming fields.

On the other hand, the second graph (red squares) represents a data streaming
protocol (MP3) where the majority of the payload portion features high entropy,
except for a few fields with relatively lower entropy. Those fields with relatively lower
entropies represent protocol design structures within the packet payload. Chapter 8
discusses this in more detail and gives examples of empirically calculated entropy for
several protocol types.

Chapters 7 and 8 utilize this entropy definition to build a conceptual model that we
use to generalize and explain the two main characteristics of (p, n)-grams in network
traffic, along with their functionality and efficiency features for traffic characterization
applications. The model specifically uses statistics of Internet traffic as a test-case
to generalize the empirically observed characteristic distribution behaviors of (p, n)-
grams in the context of the current design and implementation of IP protocols.

In particular, Chapter 7 shows that packet fields with low entropy levels are mainly
found in the packets’ header portion as well as the short structural fields of the packets’
payload portion. On the contrary, packet fields with high entropy levels are mainly
found in the packets’ long payload portion. Comparing the size of the two types in an
average-size Internet packet shows that low entropy fields constitute a much smaller
portion of the total packet size than the other ones.

On the other hand, Chapter 8 shows that when entropy is calculated on different
protocols, the structural design differences between protocols appear in the shape
of fields (at various offsets, with different sizes) featuring relatively low entropies.
Therefore, calculating frequent (p, n)-grams will capture those relatively low entropy
fields which at the same time represent their protocol types.

One of the advantages of using our application of Shannon entropy with network
traffic is its ability to find design structures in the inspected packets without any
knowledge about their protocol specifications. This could be helpful in the process

88 Chapter 6. (p, n)-gram Characteristics in Network Traffic

of reverse engineering proprietary protocols. We propose exploring this feature as a
topic of future research in Chapter 10.

7 Frequency Distributions of (p, n)-grams

This chapter and the following one use empirical analysis to show how a small set
of frequent (p, n)-grams can be calculated to capture protocol design structures and
uniquely fingerprint individual protocols in network traffic. In particular, this chap-
ter provides statistical evidence for the rapidly-dropping-off distribution behavior of
(p, n)-grams. This specific distribution behavior implies that the interesting frequent
(p, n)-grams (required to fingerprint the protocols’ high-level structural designs) only
constitute a small set of the total domain of (p, n)-grams. This characteristic accounts
for the efficiency advantage in using (p, n)-grams to characterize network protocols.

The chapter first describes our experimental procedure and rationale. It then
presents our empirical analysis and results supporting the power-law-like distribution
behavior of (p, n)-grams. More experiments are also presented to test their distribu-
tion behavior when using different sizes of n (1 ≤ n ≤ 16), and different lengths of
network traces. Chapter 9 provides a conceptual model that explains and generalizes
our empirical results of the (p, n)-grams’ frequency distribution behavior.

7.1 Experiments Procedure and Rationale

Experiments here follow a general procedure to analyze and validate (p, n)-gram fre-
quency distribution behaviors in network traffic. The following steps describe this
procedure for all inspected traces of network traffic:

Step 1: Calculate (p, n)-gram frequencies: The first step is to calculate packet match-

89

90 Chapter 7. Frequency Distributions of (p, n)-grams

ing frequencies of all distinct (p, n)-grams in the inspected network trace.

Different sizes of n (n = 1, 2, ..., 16) are tried in Section 7.2.2 in order to compare
their behaviors and choose the proper size of n. Based on our results, we choose to
use a default size of (n = 2). This choice is based on our observation that frequent
(p, n)-grams with n ≥ 3 usually represent long patterns of the same protocol in
network packets, whereas frequent (p, n)-grams with n = 1 are more likely to represent
patterns (short or long) of more than one protocol at the same time. (p, n)-grams
with n = 2, on the other hand, combine these two representation advantages, which
make them a better choice for our traffic characterization applications. We further
discuss our choice of the default size of n in Section 7.2.3.

Step 2: Calculate the distribution’s model: This step graphs frequency on the y-axis
versus rank (ordinal index) on the x-axis, on a log-log scale, using the frequency
data obtained in step 1. It then calculates the slope of the regression line (i.e.,
model or power-law exponent α) using the following conventional slope formula:

slope =

n∑
i=1

(xi − x̄)(yi − ȳ)

n∑
i=1

(xi − x̄)2
= −(α) (7.1)

where x̄ and ȳ are the means of the x and y values respectively.

Note that we calculate the frequency distribution behavior of the first 1,000 most
frequent (p, n)-grams only. We choose this specific number because we observe that
the distribution behavior of (p, n)-grams may follow more than one regime as we
consider (p, n)-grams from the third concentration Region (i.e., Region C, introduced
in Section 6.1).

This is analogous to the frequency distribution behavior of natural language words
which deviates from Zipf’s law after considering their long tail (i.e., rank ≥ 5,000), as
discussed in Section A.2. Therefore, in most of our experiments, we test the first 1,000

7.1. Experiments Procedure and Rationale 91

most frequent (p, n)-grams only, in order to 1) achieve consistency, and 2) exclude
(p, n)-grams of Region C from the frequency distribution computation1.

Step 3: Validate the model’s goodness of fit: The third step informally validates the
calculated model through calculating its goodness of fit using R2 (the coefficient

of determination) [42]. R2 measures the strength of the relationship between
frequency on the y-axis and rank on the x-axis. More specifically, it represents
the proportion of common variation in the two variables y and x through the
following formula:

R2 =

n∑
i=1

(xi − x̄)(yi − ȳ)

2

√
n∑
i=1

(xi − x̄)2
n∑
i=1

(yi − ȳ)2

2

(7.2)

R2 is commonly used in the literature to measure the goodness of fit of regression
lines in power-law distributions [30, 7, 33]. The range of R2 goes between 0.00 and
1.00, where a value of 1.0 means a perfect fit, and a value of 0.0 means no fit.
Multiplying R2 by 100 gives the percentage of variance in common between the two
variables [66]. For example, a value of R2 = 0.90 in a (p, n)-grams’ frequency-vs-rank
graph is interpreted as: 90% of the variability in the (p, n)-gram’s frequency can be
attributed to or explained by the variance in the (p, n)-gram’s ordinal index.

Using R2 as the only parameter to deduce goodness of fit may not be always
accurate [30]. However, it is good enough for the purpose of this research where the
main focus is to verify the rapidly-dropping-off distribution behavior of (p, n)-grams
rather than to determine the exact distribution behavior model.

Step 4: Confirm our findings: We confirm our findings of the calculated (p, n)-gram
distributions through testing two conditions, namely: trace independence, and
scale invariance. For trace independence, we try two independent datasets from

1Our tests with all the traces extracted from the two datasets show that the average size for
Region A in these datasets is close to one hundred (p, n)-grams.

92 Chapter 7. Frequency Distributions of (p, n)-grams

different network environments (CCSL and MD). For each dataset, we try many
traces from random dates, and during selected periods of time that represent
different network behaviors and modes of operation. On the other hand, for
scale invariance, we try traces with different time sizes (1-sec to 1-week) in
order to ensure that the calculated frequency distribution behavior scales with
the trace size.

It is important to note, however, that in this research, we don’t assert a firm
compliance of (p, n)-grams frequency distribution to Zipf’s law. Instead, we assert a
rapidly-dropping-off frequency distribution of (p, n)-grams and conjecture that it fol-
lows a power-law-like behavior similar to that of Zipf’s law. Although we provide sta-
tistical evidence to support our conjecture, we believe that assuring an accurate Zipf’s
law behavior requires experiments with multiple enterprise datasets, and needs error
parameters that are more sensitive than R2 (such as the ones suggested by Clauset
et al. [29, 30]). Within the scope of this research, assuring a rapidly-dropping-off
distribution behavior of (p, n)-grams is sufficient to ensure the required applications’
efficiency.

7.2 Rapidly Dropping Off Distribution Behavior

Section 4.1.1 describes the datasets we used to analyze (p, n)-gram frequency distri-
butions in network traffic. This section presents the experiments that we did to test,
validate, and confirm the distribution behavior of (p, n)-grams in network traffic using
multiple traces from the CCSL and MD datasets at various random dates and op-
eration modes. The experiments also study the distribution behavior using different
sizes of n, and different trace lengths.

7.2. Rapidly Dropping Off Distribution Behavior 93

7.2.1 Empirical Analysis

Table 7.1 shows the power-law models calculated for several 3-hour traces from the
CCSL dataset using a default size of (n = 2). These network traces were randomly
selected to cover four different time periods: two in the morning (4am-7am and 8am-
11am), one in the afternoon (1pm-4pm), and one in the evening (5pm-8pm). In
addition, Table 7.2 shows the power-law model calculated for four randomly selected
3-hour traces from the MD dataset.

Our choice of the four specific CCSL times is based on their representation of
the different working activity types we have in the CCSL lab. In the early morning
(4am-7am), no users are expected to be in the lab. Therefore, network traffic captures
at that time are usually dominated by automated routine network-related packets,
such as ARP, HSRP, and EIGRP. Appendix B.2 provides full names and references
for these network protocol acronyms.

During the second morning period (8am-11am) and the first afternoon period
(1pm-4pm), on the other hand, most of the students come to the lab and start using
their machines to run applications, execute shell scripts, check their emails, surf
the Internet, print documents, etc. Protocols such as HTTP, SSL, SSH, and CUPS
are commonly found during these time periods. Finally, during the evening period
(5pm-8pm), some students may play media applications, and download media files.
Protocols, such as RTP and others are examples of protocols commonly found during
this period.

Both tables show the calculated model or power exponent α, which represents the
slope of the regression line in a log-log-scale graph multiplied by -1. They also show
its goodness of fit measure R2 (coefficient of determination) which ranges from 0.0
to 1.0, where 1.0 means a perfect fit. In addition, the tables show the percentages of
the TCP, UDP, non-IP, and other IP protocols in the corresponding network trace2

as well as the total size, and the average packet length for each trace.

As discussed in Section 7.1, R2 measures the strength of correlation between two

2Note that the Aug traces are the only traces that do not include non-IP protocol packets.

94 Chapter 7. Frequency Distributions of (p, n)-grams

Aug 13 Dec 11 Jan 20 Apr 8
Fri. 4-7am Sun. 4-7am Fri. 4-7am Sat. 4-7am

α 0.72 1.01 1.21 1.10
R2 0.81 0.94 0.91 0.93
TCP (%) 5.00 % 38.90 % 18.35 % 16.05 %
UDP (%) 84.46 % 36.96 % 46.06 % 50.62 %
Other IP (%) 10.55 % 6.16 % 4.89 % 8.28 %
Non-IP (%) 0.00 % 17.98 % 30.71 % 25.04 %
avg pack size (B) 147.44 94.27 80.52 95.42
trace size (MB) 7.4 9.4 9.5 6.1

Aug 19 Dec 15 Jan 24 Apr 5
Thu. 8-11am Thu. 8-11am Tue. 8-11am Wed. 8-11am

α 0.73 1.03 1.05 1.07
R2 0.87 0.95 0.97 0.94
TCP (%) 38.07 % 42.50 % 77.44 % 41.68 %
UDP (%) 55.11 % 31.42 % 11.87 % 35.93 %
Other IP (%) 6.82 % 5.04 % 1.61 % 4.44 %
Non-IP (%) 0.00 % 21.04 % 9.08 % 17.95 %
avg pack size (B) 217.79 326.27 180.99 213.4
trace size (MB) 17 39 59 24

Aug 16 Dec 13 Jan 26 Apr 6
Mon. 1-4pm Tue. 1-4pm Thu. 1-4pm Thu. 1-4pm

α 0.71 1.16 1.13 1.08
R2 0.91 0.95 0.98 0.98
TCP (%) 51.32 % 61.72 % 63.78 % 70.69 %
UDP (%) 43.39 % 16.80 % 27.65 % 22.70 %
Other IP (%) 5.29 % 3.06 % 1.52 % 1.65 %
Non-IP (%) 0.00 % 18.42 % 7.05 % 4.96 %
avg pack size (B) 428.41 587.37 238.49 352.86
trace size (MB) 41 124 96 119

Aug 16 Dec 12 Jan 22 Apr 5
Mon. 5-8pm Mon. 5-8pm Sun. 5-8pm Wed. 5-8pm

α 0.72 1.14 1.29 1.07
R2 0.85 0.96 0.94 0.94
TCP (%) 29.81 % 48.77 % 45.71 % 37.73 %
UDP (%) 62.26 % 28.12 % 22.02 % 41.80 %
Other IP (%) 7.93 % 3.05 % 3.33 % 6.27 %
Non-IP (%) 0.00 % 20.06 % 28.94 % 14.20 %
avg pack size (B) 189.42 184.43 73.15 262.13
trace size (MB) 13 37 13 24

Table 7.1.Observing the (p, n)-grams power-law-like distribution behavior in the CCSL
dataset. This table gives the power exponent α calculated for randomly selected 3-hour
traces from the CCSL dataset.

7.2. Rapidly Dropping Off Distribution Behavior 95

Nov 1 Nov 5 Nov 7 Nov 13
Thu. 12-3pm Mon. 4-7pm Wed. 2-5pm Tue. 12-3pm

α 0.89 1.07 1.21 0.95
R2 0.88 0.94 0.96 0.91
TCP (%) 71.41% 95.77% 84.00% 96.23%
UDP (%) 25.12% 0.98% 12.65% 1.93%
Other IP (%) 0.20% 0.20% 0.20% 0.38%
Non-IP (%) 3.27% 3.05% 3.14% 1.46%
avg pack size (B) 823.36 1213.76 952.65 1001.39
trace size (MB) 96 134 115 58

Table 7.2. Observing the (p, n)-grams power-law-like distribution behavior in the MD
dataset. This table gives the power exponent α calculated for different 3-hour traces
from the MD datasets.

variables (i.e., frequency and ordinal index of (p, n)-grams in our case). That is,
multiplyingR2 by 100 represents the percent of variance in common [66]. For example,
a value of R2 = 0.94 in this table, means that 94% of (p, n)-gram frequencies are
directly attributable to their ordinal indexes according to the computed regression
line (with slope of −α) and vice versa.

Focusing on the values of α in both tables shows that they are mainly close to 1.0,
but vary slightly from one trace to another. Similarly, the values of R2 are mostly
≥ 0.91, which indicate that the model has a good level of fit. The consistent value of
the slope (α), its goodness of fit (R2), and its slight variation from trace to trace, all
support our conjecture of the power-law-like behavior (introduced in Section A.2) of
(p, n)-grams frequency distribution in network traffic.

Our observations suggest that the larger and more diverse the network trace, the
higher the goodness of fit (i.e., R2) we get for the model. This is similar to the case
of the word frequencies in natural languages that we present in Section 10.3. The
larger and more comprehensive the natural language corpora, the more precise the
Zipf’s law behavior of the words frequency distribution.

Another look at the two tables shows how different traces consist of different
volumes of protocol types. Further analyzing their impacts shows that the differences
observed in the values of α are due to the differences between the types and volumes

96 Chapter 7. Frequency Distributions of (p, n)-grams

of the protocols constituting each trace. More specifically, we found that although the
values of α are close to 1 (in most of the traces), they may go either slightly lower or
slightly higher, depending on the dominant protocols in the trace, their percentages,
structural designs and modes of operation.

This explains the impact of the specific time period during which the network trace
was captured. Basically, the value of the power exponent α, as well as the goodness
of fit, depend on the temporally running applications and their percentages in the
trace. For example, the relatively low value of α in the CCSL Aug traces is mainly
due to the missing non-IP (e.g., ARP) packets whose value of α is usually relatively
high compared to the other IP protocols. On the contrary, the high percentage of
ARP packets in the Jan 20 (4-7am), and Jan 22 (5-8pm) traces contributes to their
relatively high value of α.

Chapter 8 studies the behaviors of (p, n)-gram frequency distributions for individ-
ual protocols (i.e., protocol-specific network traces). It shows that, for each protocol,
the distribution relies on the special design structures found in the protocol’s cor-
responding packets. It also observes a rapidly-dropping-off frequency distribution of
(p, n)-grams with a power-law-like behavior for most of the IP protocols that were
tested. The main exception to this common behavior was for the broadcast and
multicast protocols, such as EIGRP and HSRP. Those protocols feature similar or
identical contents for their entire packet bodies.

For all the mixed-protocol traces we tested in Tables 7.1 and 7.2, multicast and
broadcast protocols (i.e., those that don’t follow a power-law-like distribution behav-
ior) constitute a very limited traffic volume compared to the rest of the running pro-
tocols. This limits their impact on the overall distribution behavior of (p, n)-grams,
especially as we only consider the first 1,000 frequent (p, n)-grams in our experiments.

Two questions may arise at this point of the discussion, namely: 1) do we get the
same (p, n)-gram frequency distribution behavior when using different sizes of n? 2)
Does the power-law-like distribution behavior of (p, n)-grams scale with traffic length?
We discuss the answers to these questions and others in the following subsections.

7.2. Rapidly Dropping Off Distribution Behavior 97

7.2.2 Different Sizes of n

We conducted several experiments to test the (p, n)-gram frequency distribution be-
haviors with different sizes of n. Figure 7.1 and Table 7.3 summarize a subset of our
empirical results with values of n between 1 and 16. Our results suggest that smaller
values of n (i.e., n ≤ 6) show a closer compliance with the power-law-like behavior
than larger values.

1,000

10,000

100,000

10 100 1000

Fr
e
q

u
e
n

cy

Ordinal index of most frequent (p,n)-grams

n=1

n=2

n=3

n=4

n=5

n=6

n=7

n=8

n=9

n=10

n=11

n=12

n=13

n=14

n=15

n=16

Figure 7.1. (Best viewed in color) (p, n)-gram frequency distributions with different
sizes of n (1-hour CCSL trace). Note that as the size of n gets larger, the line becomes
more flattened and less smooth (i.e., consisting of connected short line segments instead
of connecting points).

In other words, as n increases, the slope starts to deviate from unity, and the
goodness of fit decreases. This can be more clearly recognized by looking at Figure 7.1.
Note that as n increases, the line becomes 1) more flattened (resulting in lower values
of α), and 2) less smooth (resulting in lower values of R2).

98 Chapter 7. Frequency Distributions of (p, n)-grams

n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8
α 1.034 1.047 1.035 1.039 1.015 0.983 0.947 0.908
R2 0.977 0.981 0.983 0.982 0.982 0.982 0.982 0.979

n=9 n=10 n=11 n=12 n=13 n=14 n=15 n=16
α 0.888 0.846 0.807 0.765 0.720 0.671 0.629 0.595
R2 0.976 0.972 0.968 0.962 0.955 0.947 0.938 0.936

Table 7.3. Power exponent α behaviors with different sizes of n (1-hour CCSL trace).

The more flattened-line behavior (i.e., α < 1) is due to the additional matching
constraint that is added by increasing the size of the matching substring. Thus, the
larger the n, the less frequent the (p, n)-grams become. Table 7.4 shows this behavior
on the first 10 frequent (p, n)-grams, using three different sizes of n (2, 3, and 4).

The first column of each table (labeled %) represents the (p, n)-gram’s matching
frequency percentage with respect to the total number of packets in the inspected
network trace. Note, for example, how the first (p, n)-gram with n = 2 has a matching
frequency of 72.15%, as opposed to 48.43% and 32.04% in the case of the first (p, n)-
gram with n = 3 and n = 4, respectively.

(p, 2)-grams (p, 3)-grams (p, 4)-grams
% p 1st 2nd % p 1st 2nd 3rd % p 1st 2nd 3rd 4th

72.15 0 45 00 48.43 0 45 00 00 32.04 39 00 00 00 00
71.85 38 00 00 46.52 16 86 75 e1 31.98 40 00 00 00 00
70.27 16 86 75 29.43 39 00 00 00 31.91 41 00 00 00 00
57.05 6 40 00 29.43 40 00 00 00 27.55 38 00 00 01 01
53.46 1 00 00 29.37 42 00 00 00 27.48 40 01 01 08 0a
51.10 17 75 e1 29.36 41 00 00 00 27.48 39 00 01 01 08
40.71 12 86 75 24.86 38 00 00 00 27.29 38 00 00 00 00
36.63 28 00 00 24.75 38 00 00 01 25.28 28 00 00 00 00
33.13 40 00 00 24.73 39 00 01 01 20.23 16 86 75 e1 3a
32.22 39 00 00 24.66 41 01 08 0a 17.21 34 00 00 00 00

Table 7.4. List of the first 10 most frequent (p, n)-grams and their matching frequencies
using three different sizes of n (2, 3, and 4). This sample was calculated from a 4-week
CCSL network trace. Note that for all (p, n)-grams, the offsets (p) are reported in
decimal, while the actual bytes (1st, 2nd, 3rd, and 4th) are reported in hexadecimal.

On the other hand, the less smooth line behavior (with lower goodness of fit of
the linear regression line) is because frequent (p, n)-grams with larger values of n
usually represent the same long patterns in the inspected traffic (further discussed

7.2. Rapidly Dropping Off Distribution Behavior 99

in Section 7.2.3). (p, n)-grams matching and overlapping substrings of these long
patterns would feature similar frequencies. Thus, they show as disconnected straight
horizontal lines on the frequency distribution graph instead of a diagonal line of
connecting points as is the case with smaller values of n.

7.2.3 Our Default Size of n

Based on the discussion in Section 7.2.2, applications that use (p, n)-grams to distin-
guish between different traffic types need to carefully set their size of n. The size of n
has an impact on the pattern lengths that (p, n)-grams can recognize. Larger values
of n are usually more suitable to recognize long patterns, however, they obviously
can’t represent short patterns whose sizes are shorter than n.

Moreover, we observe that frequent (p, n)-grams with n ≥ 3 usually represent long
patterns of the same protocol in network packets, whereas frequent (p, n)-grams with
n = 1 are more likely to represent patterns (short or long) of more than one protocol
at the same time. This means that, from a functionality point of view, there might
be more than one good size of n for an application. Therefore, if efficiency is not
a concern, this may suggest using (p, n)-grams with different sizes of n in the same
application, where each size has its own functionality advantage.

On the other hand, the size of n has an impact on efficiency. Consider for example
the impact on the overall (p, n)-grams sample space. The size of (p, n)-grams’ sample

space in a network trace is equal to the number of calculated distinct (p, n)-grams in
the trace3. Dealing with a significantly larger size of (p, n)-grams sample space may
cause an efficiency degradation to the system due to the number of (p, n)-grams to
be considered during the process of calculating (p, n)-gram frequencies.

Table 7.5 shows the domain space size (assuming a maximum Ethernet packet size
of 1,500) and the actual sample space size computed for (p, n)-grams with different

3This is less than or equal to the (p, n)-grams domain space, which represents the total number
of possible distinct (p, n)-grams that can be represented by n bytes. Domain space can be simply
calculated using (packetSize− n+ 1)× 28n.

100 Chapter 7. Frequency Distributions of (p, n)-grams

sizes of n, in a short 1-hour CCSL network trace. Note that while domain space grows
exponentially with larger sizes of n, the actual sample space starts with a relatively
small value at n = 1 (360,875), a larger value at n = 2 (29,447,300), and then grows
slowly after n = 3 (39,846,657). This suggests that using (p, n)-grams with size n = 1

gives the most efficient performance.

n=1 n=2 n=3 n=4 n=5 n=6
Sample space 360,875 29,447,300 39,846,657 41,416,971 42,491,928 43,429,463
Domain space 383,744 98,304,000 2.514e+10 6.438e+12 1.648e+15 4.219e+17

n=7 n=8 n=9 n=10 n=11 n=12
Sample space 43,993,236 44,503,647 45,003,856 45,489,899 45,900,143 46,233,942
Domain space 1.080e+20 2.765e+22 7.078e+24 1.812e+27 4.639e+29 1.187e+32

n=13 n=14 n=15 n=16
Sample space 46,557,734 46,867,934 47,175,689 47,405,809
Domain space 3.040e+34 7.783e+36 1.992e+39 5.100e+41

Table 7.5. Sample space and domain space of (p, n)-grams with different sizes of n
(1-hour CCSL trace).

Taking both points (functionality and efficiency) into consideration, we tried our
applications with different sizes of n, and found that values between 1 and 4 give
the most accurate traffic characterization results. Out of the four values, we found
that using (p, n)-grams with n = 2 gives a good tradeoff between functionality and
efficiency in most of our experiments. That is, they are relatively more efficient than
(p, n)-grams with (n ≥ 3) and at the same time they combine the two representation
advantages of (p, n)-grams that exist with larger and smaller values of n. This is
what makes (p, n)-grams with n = 2 a better choice for our traffic characterization
applications.

7.2.4 Different Trace Lengths

An interesting question that we wanted to explore with (p, n)-gram distributions was
whether their power-law-like behavior scales with the length of the network traffic or

7.2. Rapidly Dropping Off Distribution Behavior 101

not. We tested this scalability question using various traces from the CCSL and MD
datasets. Table 7.6 and Figure 7.2 show an example of how using different lengths of
network traces may impact their (p, n)-gram frequency distributions.

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1 10 100 1000

Fr
e
q

u
e
n

cy

Ordinal index of the most frequent (p,n)-grams

1-sec

10-sec

10-min

1-hour

3-hour

1-day

1-week

Figure 7.2. (Best viewed in color) (p, n)-grams frequency distribution with different
capturing time periods, when n = 2 (CCSL network traces).

10-min trace 1-hour trace 3-hour trace 1-day trace 1-week trace
α R2 α R2 α R2 α R2 α R2

n=1 1.07 0.97 1.03 0.98 1.07 0.98 n/a n/a n/a n/a
n=2 1.05 0.97 1.05 0.98 1.05 0.98 1.02 0.97 1.04 0.97
n=3 1.02 0.98 1.03 0.98 1.00 0.98 0.97 0.97 0.98 0.96
n=4 0.99 0.98 1.04 0.98 0.97 0.98 0.93 0.96 0.94 0.98

Table 7.6. Power exponent α behaviors with different capturing time periods (10-min,
1-hour, 3-hour, 1-day, and 1-week sample traces)

Basically, (p, n)-gram distributions look similar across the different trace lengths.

102 Chapter 7. Frequency Distributions of (p, n)-grams

That is, almost all tested lengths of network traces (1-week, 1-day, 3-hour, 1-hour,
and 10-minute) give similar behaviors of (p, n)-gram frequency distributions. We call
this behavioral characteristic scale invariance, and describe it as a behavior that does
not change if the length of the system is multiplied by a common factor.

We find, however, that with relatively short traces (e.g., 1-sec trace in Figure 7.2)
the distribution may deviate from the common behavior, due to the effect of spikes in
the captured network traffic. That is, short traces are usually dominated by one or a
few protocol-specific spikes, which impact the (p, n)-grams distribution accordingly.
In other words, the frequency distribution takes the same behavior as the dominating
protocol in the spike.

This explains why the 1-sec trace doesn’t show similar behavior to the longer ones
in Figure 7.2. A closer look at this trace shows that it was captured during an SSH
spike, and that it is mostly populated with SSH packets. This gives it an SSH-similar
(p, n)-grams distribution behavior that is slightly different from the commonly found
one with mixed-protocol traces. Chapter 8 further explains this special case.

7.2.5 Packet Sampling

As discussed earlier in Chapter 6, the (p, n)-gram frequency distribution in network
traffic follows a rapidly-dropping-off distribution with a power-law-like behavior. Be-
cause this distribution decays very quickly, very few (p, n)-grams are frequent enough
to be candidates for splitting. Thus, it becomes feasible to estimate (p, n)-gram
frequencies using packet samples, further increasing the efficiency of the algorithm.
Section 3.3.2 discusses how we implement packet sampling in ADHIC.

Figure 7.3 plots the (p, n)-gram frequency distributions for a 3-hour dataset using
different sampling rates (50%, 20%, 10%, 5%, 3%, 2%, and 1%). Note that (p, n)-
gram frequency distributions are not noticeably affected by packet sampling. That
is, calculating (p, n)-gram frequencies while performing packet sampling can still re-
semble the general composition of the (p, n)-grams frequency distribution behavior of
the underlying network.

7.2. Rapidly Dropping Off Distribution Behavior 103

Figure 7.3. (p, n)-gram frequency distributions feature sampling invariance. Note how
the (p, n)-gram frequency distribution does not seem to be affected by the rate at which
packets are sampled.

8 Pattern Capturing Using (p, n)-grams

This chapter discusses the pattern capturing characteristic of (p, n)-grams, which gives
(p, n)-grams the desired functionality to be used to fingerprint individual structured
protocols, as long as their corresponding protocols differ in their design structures.
It starts by discussing the semantic meanings of frequent (p, n)-grams in network
traffic, which are crucial to their pattern capturing characteristic. It also shows
how we utilize our entropy definition on network packets (introduced in Section 6.2)
to calculate entropy models of individual network protocols with different design
structures. Protocol entropy models give a visualization aid to map design structures
of individual protocols and the corresponding content similarities and (p, n)-gram
distributions.

The chapter then uses traces of individual protocols to calculate their (p, n)-gram
distribution behaviors. It shows that differences between protocol structural designs
are reflected in the corresponding (p, n)-gram frequency and offset distribution be-
haviors. Our methodology is to use structural (p, n)-grams to fingerprint network
protocols by leveraging their ability to capture differences between network protocols
in their design structures. Chapters 4 and 5 already implemented this fingerprinting
methodology in our traffic clustering and security monitoring applications.

Our traces of individual protocols were extracted from the CCSL and MD datasets
(introduced in Section 4.1). Therefore, recalculating (p, n)-gram characteristics and
distribution behaviors using these complementary traces also serves as a “cross-
validation” of the concluded (p, n)-gram distribution behaviors presented in Chap-
ter 7.

104

8.1. Semantic Meanings of Frequent (p, n)-grams 105

8.1 Semantic Meanings of Frequent (p, n)-grams

As discussed in Section 6.1.2, offset p adds semantic meanings to (p, n)-grams that
give (p, n)-grams adequate representation of the different network packet types. These
semantic meanings can be visualized using graphs of (p, n)-grams offset distribution.
For example, Figure 8.1 plots the (p, n)-grams offset distribution in Region A and
part of Region B (both regions are defined in Section 6.1.2), for three different sizes
of n (n = 1, 2, and 3) using a random 3-hour trace from the CCSL dataset.

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800 900 1,000

O
ff

se
t

Ordinal index of most frequent (p,n)-grams

n=1
n=2
n=3

Header

Payload

A B

p1

p2

p3

j

Figure 8.1. (Best viewed in color and electronically to allow enlargement) (p, n)-gram
offset distribution graph showing protocol patterns in network traffic with three dif-
ferent sizes of n (n = 1, 2, 3). Circles in the graph (p1, p2, and p3) point to examples
of common patterns in some of the component protocols.

The scatter graph in this figure visualizes the byte-sequence patterns representing
protocol design structures in network packets. It also shows that Region A has a
heavy concentration of header (p, n)-grams whereas the displayed portion of Region

106 Chapter 8. Pattern Capturing Using (p, n)-grams

B has a mixture of header and payload (p, n)-grams. It is common for these patterns
to appear as continuous or fragmented diagonal lines on the scatter graph, where the
length of the diagonal line is proportional to the pattern length in the corresponding
network packets.

For example, the first circle p1 in Figure 8.1 indicates a common pattern in the
Ethernet STP (Spanning Tree Protocol) packets. The lines in the graph correspond to
a byte-sequence between offsets 17 and 51 in the payload portion of the STP packets.
Moreover, the second circle p2 indicates another common pattern in some TCP IPP
(Internet Printing Protocol) packets. This pattern covers an offset range between
100 and 170, and represents the printer’s details negotiated between participating
systems. It includes sequences like “attributes-natural-language” in the “operation-
attributes name” field of the IPP request packets. On the other hand, the third
circle p3 indicates a pattern in some TCP SSHv2 (Secure Shell Version 2) packets
that appears in the offset range between 135 and 198. This pattern represents the
encryption algorithm being negotiated between communicating parties. It includes
sequences like “diffie-hellman-group1-sha1” in the “key-algorithms string” field of the
SSHv2 Key Exchange Initialization packets.

Patterns captured by structural (p, n)-grams may reflect protocol types, design
structures, as well as modes of operation. This reflected semantic meaning of fre-
quent (p, n)-grams along with their ability to capture protocol differences in design
structures are the two keys for the (p, n)-grams’ ability to fingerprint network proto-
cols. Capturing design structures is what we discuss in the following sections.

A careful look at Figure 8.1 shows that the continuous lines representing protocol
patterns are more visible when n = 3. (p, n)-grams with n = 1, on the contrary,
mostly do not show these lines and are rather scattered in the chart. As discussed
in Section 7.2.3, common (p, n)-grams with n = 1 usually belong to more than one
pattern in different protocol packets. That is, they are more likely to represent more
than one protocol or session at the same time.

(p, n)-grams with n = 2, on the other hand, may either represent specific protocol

8.2. Protocol-Dependent Entropy Models 107

patterns in the network packets, or be part of more than one protocol pattern within
the various network packets. Therefore, for visualization purposes, a size of n ≥ 3 may
give a more clear representation of the patterns. However, for traffic characterization
purposes, we usually use a size of n = 2 as it can also accommodate shorter patterns
or multiple-protocol patterns that may not be captured otherwise.

8.1.1 ADHIC without header (p, n)-grams

As discussed in Section 5.1, we examined how well ADHIC can segregate protocols
even if header information becomes useless (we configured NetADHICT to ignore the
first 38 bytes of each packet). We found that ADHIC sometimes performs better
when no header information is given during (p, n)-gram generation. This is due to
the way ADHIC chooses its (p, n)-grams, and the richness of frequent payload (or
protocol-specific) (p, n)-grams in the captured traffic. ADHIC may pick a payload
(p, n)-gram earlier in the tree that works better with packets seen later in the traffic,
resulting in better trees and improved segregation results.

Figure 8.2 gives a closer look at the most frequent (p, n)-grams when calculated
with and without the headers. Note the left shifting of the points when we ignore
more of the headers. This shift is due to the exclusion of more frequent header (p, n)-
grams. The more header (p, n)-grams we exclude, the more payload (p, n)-grams
come into the 1000 most frequent (p, n)-grams list.

8.2 Protocol-Dependent Entropy Models

In Section 6.2, we define Shannon entropy on network packets in order to use it as
a metric to measure their content similarities. When applied to network packets,
Shannon entropy represents the average number of bits that can encode data within
a field. Figure 6.5 shows a typical entropy model that we get for network traces from
the CCSL and MD datasets.

108 Chapter 8. Pattern Capturing Using (p, n)-grams

Figure 8.2. Most frequent (p, n)-grams calculated on the whole packets, without Ether-
net headers (p ≥ 14), without IP headers (p ≥ 34), and without ports (p ≥ 38). Even
when all headers are ignored, it is easy to find many common payload (p, n)-grams.

Each point in the entropy model graph represents the average number of bits that
are required to encode 1-byte of data at the corresponding packet offset. Therefore,
the lower the entropy level at an offset, the higher the content similarities between
packets at that offset. For example, if all the packets in a trace feature one of two
value options (say a1 and a2) at an offset p1, with equal probability, then only one
bit (i.e., log2(2) = 1) is required, on average, to encode data at this offset. That is, a
bit value of “0” may represent a1, and a value of “1” may represent a2, or vice versa.
Applying Equation 6.1 in this case, gives an entropy of 1 at offset p1 on the graph.

A quick look at the typical entropy values in Figure 6.5 shows that most of the
header offsets feature relatively low entropy levels, as opposed to high entropy levels
in the payload portion. This general entropy model is what we usually get when
inspecting original traffic captures from the CCSL and MD datasets. However, as

8.2. Protocol-Dependent Entropy Models 109

different protocols possess different specifications and design structures, we hypothe-
size that calculating entropy models exclusively for individual protocols gives different
model behaviors. Similarly, (p, n)-grams frequency and offset distribution behaviors
of individual protocols are going to be different.

We verify these behavior differences between individual protocols in this chapter.
First, we calculate entropy models for traces of individual protocols, and then we
discuss the impact of these entropy model differences on their corresponding distribu-
tion behaviors of (p, n)-grams (Section 8.3). Differences in entropy models between
network protocols explain the (p, n)-grams’ ability to fingerprint individual network
protocols when they differ in their design structures.

0

1

2

3

4

5

6

7

8

0 50 100 150 200 250

E
n

tr
o

p
y

Packet offset

TCP Protocols

POP

AIM

IPP

HTTP

SSH

SSL

Payload Header

Figure 8.3. (Best viewed in color and electronically to allow enlargement) Shannon
entropy models calculated for individual TCP protocols, namely: POP, AIM, IPP,
HTTP, SSH, and SSL.

Our experiments here use special traces that were manually extracted from the

110 Chapter 8. Pattern Capturing Using (p, n)-grams

CCSL and MD datasets. Each trace exclusively represents one network protocol type.
Figures 8.3, 8.4, and 8.5 show entropy model graphs calculated for individual network
protocols. The graphs represent six TCP protocols (POP, AIM, IPP, HTTP, SSH, and
SSL), six UDP protocols (HSRP, DNS, CUPS, SIP, RTP, and MP3-Streaming), and
an Ethernet protocol (ARP) and other IP protocols (EIGRP and ICMP) respectively.

0

1

2

3

4

5

6

7

8

0 50 100 150 200 250

E
n

tr
o

p
y

Packet offset

UDP Protocols

HSRP

DNS

CUPS

SIP

RTP

MP3-Str

Header Payload

Figure 8.4. (Best viewed in color and electronically to allow enlargement) Shannon
entropy models calculated for some individual UDP protocols, namely: HSRP, DNS,
CUPS, SIP, RTP, and MP3-Streaming.

It is obvious from the three figures that individual protocols feature different
entropy models. Packet offsets with relatively low entropy levels correspond to special
patterns or structural packet fields in which contents are highly similar. The entropy
model graphs visualize the differences between individual protocols in terms of their
special packet specifications and content types. Take for example, the field differences
(e.g., offsets and lengths) between packets of Web protocols (e.g., HTTP), multicast

8.2. Protocol-Dependent Entropy Models 111

0

1

2

3

4

5

6

7

8

0 50 100 150

E
n

tr
o

p
y

Packet offset

Eth & IP Protocols

IP EIGRP
IP ICMP
ETH ARP

Figure 8.5. (Best viewed in color and electronically to allow enlargement) Shannon
entropy models calculated for the EIGRP, ICMP and ARP protocols.

protocols (e.g., EIGRP), streaming protocols (e.g., RTP), and encrypted protocols
(e.g., SSH).

Entropy models calculated from traces of individual network protocols are directly
related to the frequency and offset distribution behaviors of their (p, n)-grams. Con-
sider, for example, multicast protocols, such as HSRP and EIGRP protocols, which
feature low entropy values at the majority of their packet offsets (including both the
header and payload portions). Experimenting with a trace of 1,293,451 HSRP pack-
ets and another trace of 258,756 EIGRP packets gave a total number of only 102
distinct (p, n)-grams for HSRP, and 83 distinct (p, n)-grams for EIGRP1. Frequent

1This further explains why (p, n)-grams of multicast protocols do not follow the rapidly drop-
ping off distribution behavior featured by most of the other TCP/IP protocols (as introduced in
Section 7.2.1).

112 Chapter 8. Pattern Capturing Using (p, n)-grams

(p, n)-grams within the payload low entropy fields are mainly what we use to uniquely
fingerprint individual protocols. We further discuss this feature in Section 8.3.

On the other hand, encrypted protocols (e.g., SSL and SSH protocols) and stream-
ing protocols (e.g., MP3-Streaming) feature high entropy values in most of their
packet fields. High entropy values imply a high number of distinct (p, n)-grams at
each field, which may impact their ability to be used for unique protocol fingerprint-
ing. However, note in the graphs, that in spite of the common high entropy values,
there are some packet fields that feature relatively low entropy values (e.g., several
fields in the MP3-Streaming protocol, and fields around offset 150 and offset 200 in
the SSL and SSH protocols respectively). These fields represent payload patterns and
design structures in each protocol, whose frequent (p, n)-grams can be leveraged for
protocol fingerprinting.

8.3 Capturing Design Structures in Individual Protocols

This section studies (p, n)-gram distribution behaviors of individual protocols using
traces of single-protocol network traffic. The purpose of this study is to test the ability
of structural (p, n)-grams to capture differences in design structures between individ-
ual protocols. More specifically, the section measures their capturing ability by the
impact of the specific design structures of network protocols over their corresponding
(p, n)-grams offset and frequency distribution behaviors.

8.3.1 Offset Distribution Behaviors

(p, n)-gram offset distribution graphs for traffic of individual protocols show interest-
ing pattern shapes of each protocol. Figure 8.6 shows examples of these distributions
calculated for eight different protocols within a 1-hour random CCSL trace. The pro-
tocols are ARP, CUPS, DNS, HTTP, ICMP, SMTP, SSH, and SSL (Appendix B.2,
provides a list with protocol names, acronyms, and references).

8.3. Capturing Design Structures in Individual Protocols 113

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800 1000

O
ff

se
t

Ordinal index of most frequent (p,n)-grams

ARP

CUPS

DNS

HTTP

ICMP

SMTP

SSH

SSL

Figure 8.6. (Best viewed in color and electronically to allow enlargement) Offset distri-
bution of the most frequent 1,000 (p, n)-grams for individual protocols, using a 1-hour
random CCSL trace.

Basically, lines in the scatter graph represent special patterns in the packets of
each protocol. These patterns constitute content similarities between same-protocol
packets, which reflect their protocols’ special design structures. Plotting the (p, n)-
grams offset distribution scatter graph for each protocol visualizes these patterns as
continuous or fragmented lines, where the length of each line reflects the pattern’s
length and varies from one point to a wide offset range.

Some protocols in Figure 8.6 feature horizontal pattern lines while others feature
diagonal pattern lines. Different line shapes have different interpretations. For ex-
ample, the diagonal lines usually represent common patterns that span consecutive
bytes within packets. The SSL diagonal line is one good example which represents a
common byte sequence describing the certificate information exchanged by the SSL

114 Chapter 8. Pattern Capturing Using (p, n)-grams

communicating parties. Another example is the SMTP diagonal lines which repre-
sent a special-value padding that spans a packet offset range between 100 and 700.
The horizontal lines, on the other hand, mostly represent more than one pattern
that appear at the same offset (i.e., different 1-byte value options) with similar fre-
quency. The horizontal lines of the ARP and ICMP protocols are good examples of
this behavior.

Figures 8.7 and 8.8 show more focused scatter graphs of the (p, n)-grams offset
distributions for individual protocols. The graphs represent four single-protocol traces
extracted from 1-week-long CCSL and MD traces. The two figures compare the
distributions between TCP and UDP protocols, that is, TCP IPP and TCP MSNMS
versus UDP CUPS and UDP SIP.

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000

O
ff

se
t

Rank

TCP IPP

.

0

50

100

150

200

250

0 200 400 600 800 1000

O
ff

se
t

Rank

TCP MSNMS

.

Figure 8.7. (p, n)-gram patterns in two TCP protocols, namely: TCP IPP, and TCP
MSNMS.

Each point in the graphs represents a structural (p, n)-gram indicating a special
design structure in the corresponding protocol. These points may also be part of lines
representing long patterns in their protocols. For example, some of the lines in the
IPP protocol’s graph represent packet patterns that correspond to the IPP “Printing
Operation” attributes, such as charset, language, and printer URI.

8.3. Capturing Design Structures in Individual Protocols 115

0

50

100

150

200

250

0 200 400 600 800 1000

O
ff

se
t

Rank

UDP CUPS

.

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800 1000

O
ff

se
t

Rank

UDP SIP

.

Figure 8.8. (p, n)-gram patterns in two UDP protocols, namely: UDP CUPS, and UDP
SIP.

Similarly, some of the lines in the CUPS protocol’s graph map to parameters of
the CUPS “Browsing Protocol”, such as printer URI, location, make and model, etc.
Lines in the SIP and MSNMS graphs, on the other hand, represent patterns of the
SIP “Message Headers” attributes, such as frequently dialled phone numbers, and
host addresses, and patterns of the MSNMS “MSN Messenger Service” parameters,
such as the language preference and content type, respectively.

Although the pattern lines in these scatter graphs exist in both types, they are
more visible in the UDP protocol graphs than in the TCP ones. Differences between
TCP and UDP protocols are commonly observed especially when comparing UDP
control protocols with TCP streaming protocols.

In addition, Figures 8.9 and 8.10 compare low and high entropy protocols. That is,
they compare two multicast protocols IP EIGRP and UDP HSRP, and two encrypted
protocols TCP SSL and TCP SSH. For the EIGRP and HSRP multicast protocols,
both the header and payload portions of the packet feature (p, n)-grams with high
frequency.

On the other hand, the majority of the high frequency (p, n)-grams of the SSH and

116 Chapter 8. Pattern Capturing Using (p, n)-grams

0

20

40

60

80

100

0 40 80 120 160 200

O
ff

se
t

Rank

IP EIGRP

.

0

20

40

60

80

100

0 40 80 120 160 200

O
ff

se
t

Rank

UDP HSRP

.

Figure 8.9. (p, n)-gram patterns in two low entropy protocols, namely: IP EIGRP, and
UDP HSRP.

0

50

100

150

200

250

0 200 400 600 800 1000

O
ff

se
t

Rank

TCP SSL

.

0

50

100

150

200

250

0 200 400 600 800 1000

O
ff

se
t

Rank

TCP SSH

.

Figure 8.10. (p, n)-gram patterns in two high entropy protocols, namely: TCP SSL,
and TCP SSH.

SSL encrypted protocols are in the packet header portion. However, there are still
some common patterns in their packet payload portion (fields between offsets 100 and
200 for TCP SSL and TCP SSH). Some of these patterns represent the encryption
algorithms negotiated between the communicating parties.

8.3. Capturing Design Structures in Individual Protocols 117

8.3.2 Frequency Distribution Behaviors

This section tests the impact of protocol design structures over (p, n)-gram frequency
distributions of the corresponding protocols. Table 8.1 summarizes our empirical
results after testing the (p, n)-gram frequency distribution behaviors for 22 traces
of different individual protocols. In addition to the values of α and R2, the table
provides entries for average packet size, number of packets in the trace, and number
of distinct (p, n)-gram instances calculated in the trace. The single-protocol traces
used in these experiments were all extracted from 1-week-long traces from the CCSL
and MD datasets (Appendix B.2 provides protocol names and references for all used
protocol acronyms).

The examined single-protocol traces include nine traces of individual TCP pro-
tocols (i.e., HTTP, IPP, SMTP, SSH, SSL, MSMMS, MSNMS, POP, and AIM),
nine UDP protocols (HSRP, NBNS, MP3-Streaming, CUPS, DNS, SIP, RIP, RTP,
NBDGM), two traces of other IP protocols (i.e., ICMP, and EIGRP), and a trace
of a non-IP protocol (i.e., ARP). This is in addition to a trace of header-only TCP
packets that usually constitute a high percentage (about 40%) of the total number
of packets in any network traffic [4, 164, 191]. In addition to the results provided by
Table 8.1, Figure 8.11 plots the (p, n)-gram frequency distribution behaviors of some
of these protocols on a scatter graph.

A careful look at both the figure and table shows that the majority of the distribu-
tions feature a general rapidly dropping off behavior of (p, n)-grams. The multicast
or broadcast router protocols HSRP and EIGRP are two exceptions though (note
their α and R2 values). These two protocols feature low entropy levels, where content
similarities span their entire packets. This implies that all (p, n)-grams at all offsets
are very frequent; a feature that can be further observed in the very low number of
distinct (p, n)-grams in both traces (i.e., 83 distinct (p, n)-grams in 258,756 EIGRP
packets; and 102 distinct (p, n)-grams in 1,293,451 HSRP packets).

Despite the general rapidly dropping off distribution behavior, we observe that
each protocol has its own specific behavior type. That is, for some protocols, α is close

118 Chapter 8. Pattern Capturing Using (p, n)-grams

Non-IP IP IP TCP TCP TCP
ARP EIGRP ICMP headers HTTP IPP

α 1.69 0.17 1.43 1.22 0.82 0.75
R2 0.93 0.27 0.94 0.91 0.88 0.87
Avg pack size 60 74 81.63 64.15 1255.2 131.28
packets 869,565 258,756 23,963 1,888,325 684,335 486,936
(p, n)-grams 22,790 83 170,744 1,200,566 90,671,438 1,918,481

TCP TCP TCP TCP TCP TCP
SMTP SSH SSL MSMMS MSNMS POP

α 0.72 1.20 1.29 1.47 0.81 0.92
R2 0.78 0.97 0.96 0.93 0.97 0.88
Avg pack size 1,101.89 213.61 405.83 1,116.98 179.47 346.49
packets 25,982 238,123 275,465 97,881 3,758 116,252
(p, n)-grams 6,259,473 25,057,270 47,326,238 57,211,409 202,919 5,332,559

TCP UDP UDP UDP UDP UDP
AIM HSRP NBNS MP3-Str CUPS DNS

α 0.77 0.59 1.51 1.29 1.35 0.91
R2 0.93 0.58 0.90 0.94 0.79 0.96
Avg pack size 323.34 62 92.14 383.71 160.5 167.66
packets 11,079 1,293,451 176,379 248,642 128,278 66,945
(p, n)-grams 802,373 102 241,075 29,834,449 21,778 761,937

UDP UDP UDP UDP
SIP RIP RTP NBDGM

α 0.60 1.80 0.76 1.18
R2 0.59 0.69 0.88 0.85
Avg pack size 469.43 125.99 214 246.52
packets 27,395 41,538 184,270 62,493
(p, n)-grams 42,551 35,611 3,638,410 170,719

Table 8.1. Power-law slope calculated for different protocols. AIM, POP, RTP, and
SIP protocols were extracted from the MD Nov 1-week trace. All other protocols were
extracted from the CCSL Apr 1-week trace.

to unity (e.g., POP, DNS, and SSH), whereas for others, it is not (e.g., ARP, HSRP,
and RIP). Even for those that are close to unity, they are still slightly different. These
behavior differences are due to the different design structures in network protocols
which impact their corresponding (p, n)-gram distribution behaviors.

In other words, frequent (p, n)-grams in network traffic belong to packet fields that
feature relatively low entropy levels. These fields are mainly either common header
fields representing network information (e.g., MAC addresses, protocol ID, padding,
etc.), or payload fields representing specific protocol design structures. Therefore,

8.3. Capturing Design Structures in Individual Protocols 119

100

1,000

10,000

100,000

1,000,000

10,000,000

1 10 100 1000

F
r
e
q

u
e
n

c
y

Ordinal index of the most frequent (p,n)-grams

SSH

SSL

HSRP

EIGRP

ARP

HTTP

RTP

DNS

CUPS

IPP

MSNMS

SIP

Figure 8.11. (Best viewed in color) (p, n)-gram frequency distributions for traces of
individual protocol traffic. The majority of them follow a rapidly dropping off behavior,
but each protocol features a specific behavior model.

changes in the protocol type and/or network topology impact the overall (p, n)-gram
distributions.

For example, ARP is an Ethernet protocol whose main purpose is to map be-
tween IP addresses and their hardware MAC addresses. This type of task is best
suited to short packets with very structured payloads. HTTP, on the other hand,
is a TCP protocol that is mainly used to transfer Web contents, including text and
media, between Internet systems. This task requires part of the packet payloads to
be structured, whereas the other part needs the longest allowed Ethernet packet size
in order to carry the desired contents.

Moreover, as packets of the two protocols transfer different types of contents,
HTTP packets are relatively dissimilar (with higher entropy) compared to the ARP

120 Chapter 8. Pattern Capturing Using (p, n)-grams

packets. For example, in one of the experiments we performed with two single-
protocol short traces of ARP and HTTP, we found 5,054 distinct (p, n)-grams in
58,725 ARP packets, as opposed to 2,427,821 distinct (p, n)-grams in 12,378 HTTP
packets.

8.3.3 Discussion

It is important to note that the patterns and distribution behaviors of individual
protocols discussed above are consistent under the same network topology and mode
of operation (e.g., network setup, application purpose, etc., discussed in Section 6.1.2).
While network topology impacts header (p, n)-grams that represent network-mapped
fields, such as IP and MAC addresses, mode of operation impacts the payload (p, n)-
grams used to transfer data.

These consistent protocol-dependent distribution behaviors of (p, n)-grams are
what we leverage to fingerprint the different protocols in network traffic. We show how
we implement this fingerprinting methodology for traffic clustering and monitoring
applications in Chapters 3, 4, and 5.

Another careful look at Table 8.1 shows that for some protocols (e.g., EIGRP
and HSRP), the goodness of fit of the linear regression line is relatively low (compare
the results summarized in Tables 7.1 and 7.2). This further confirms that not all
single-protocol traces follow power-law-like (p, n)-gram frequency distributions.

Nevertheless, the power-law-like distribution behavior observed in mixed-protocol
network traffic is a natural result of two factors, namely: 1) a power-law-like distri-
bution is the behavior featured by the majority of the individual protocols; and 2)
protocols that don’t follow a power-law-like distribution constitute a low percentage
of the total traffic (e.g., EIGRP and HSRP in our case) which reduces their impact
on the overall distribution behavior of the network traffic.

This explains what we observed in Section 7.2.1 that the values of α in mixed-
protocol traces are similar but vary from trace to trace. In essence, the specific α
values depend on the component protocols and their volumes within the trace.

9 Conceptual Model

The purpose of this chapter is to support our statistical evidence of the observed
(p, n)-gram frequency distribution behaviors (Chapters 6, 7, and 8) in network traffic
through an abstract conceptual model. That is, we build a conceptual model to
explain and generalize our empirical results in the context of the current design and
implementation of Internet protocols. The model serves as a formal approximation to
validate our empirical observations, and ensure that they are not dataset dependent.

In particular, the model first supports the rapidly dropping off frequency distri-
bution of (p, n)-grams in network traffic using recent Internet traffic statistics along
with our definition of Shannon entropy on network packets (introduced in Section 6.2).
The model then explains the power-law behavior using features of the common un-
derlying topology of networks, as well as the common usage of Internet applications
and protocols. It makes an analogy with other network models that follow power-law
distributions, and uses the rich-get-richer rule to describe how the current implemen-
tation of Internet protocols impacts the different levels of richness in network packet
fields.

9.1 Rapidly Dropping Off Frequency Distribution

The model uses recent Internet traffic statistics to compare the size of low entropy
fields to the size of high entropy fields in an average-size Internet packet. Low entropy
fields are those fields in the packet’s header or payload that contain structural (p, n)-

121

122 Chapter 9. Conceptual Model

grams representing protocol-specific design structures.

The model shows that the size of low entropy packet fields within an “average-size”
Internet packet is much smaller than that of high entropy fields. More specifically, it
shows that low entropy packet fields constitute almost 9% of the overall packet size
as compared to 91% for the high entropy packet fields.

The process of comparing high and low entropy fields in Internet packets goes
through two steps:

Step 1: Identify the different types of packet contents in network packets using recent
statistics of Internet traffic. The different content types are distinguished by
their corresponding entropy levels using our definition of Shannon entropy for
network packets (introduced in Section 6.2). This step classifies packet fields
into two types: high entropy fields and low entropy fields.

Step 2: Calculate an approximate average size of Internet packets using recent enter-
prise Internet traffic statistics. The average packet size is expressed in terms of
its two components: low entropy and high entropy fields. This is then used to
compare the size of the two types of packet fields.

The two steps are further explained in the following subsections.

9.1.1 Step 1: Identify the Main Different Types of Packet Contents

The purpose of this step is to identify the main types of packet contents, with respect
to their entropy levels, considering the network protocols commonly found in Internet
traffic. The step relies on some recent Internet statistics that give an approximate
estimate of the types and volumes of these protocols. This approximation is then
used to identify the types of packet contents in Internet traffic.

According to a 2008/2009 Internet study by IPOQUE [81] (a European provider
of Internet traffic management solutions), P2P traffic generates the highest traffic
volume in all their monitored regions (these include Europe, Africa, South America,

9.1. Rapidly Dropping Off Frequency Distribution 123

and Middle East) ranging from 43% to 70%. This is followed by Web usage traffic
ranging from 16% to 34%, and then media streaming traffic ranging from 4% to
10% [154]. These statistics give a general approximate estimate of traffic types and
volumes in Internet traffic. The actual protocol types and volumes, however, may
vary for different networks1.

Taking into account the above statistics of Internet protocols, we classify the types
of their packet fields, with respect to their contents’ entropy levels, into two types:
low entropy fields, and high entropy fields. We use our Shannon entropy definition
for network packets (introduced in Section 6.2) to further discuss the fields of these
two content types, as follows:

1. High entropy fields: Contents of this type have a large domain of value options.
The two common examples of high entropy contents are binary data and text
data. Examples of binary data include encrypted data, compressed data, and
binary streaming data, whereas examples of text data are Web surfing payloads,
Internet text streaming, and text emails. Both of these types are mainly found
in the packets’ payload portion.

Byte values of binary data can take any of the possible binary combinations.
This gives (p, n)-grams of binary data a distribution close to the uniform dis-
tribution, where each (p, n)-gram has the same probability (pr(xi) = 1

28
). Cal-

culating entropy’s upper bound for a 1-byte binary data gives:

H(X) = −
28∑
i=1

pr(xi) ∗ log2(pr(xi)) = −
28∑
i=1

1

28
∗ log2

(
1

28

)
= log2(2

8) = 8 bits

This means that if we consider a 1-byte field with binary data, we expect a
maximum number of distinct (p, n)-grams of 28 = 256 (p, n)-grams.

On the other hand, values of text data are usually represented in one of the
1CCSL traces, for example, contain relatively limited P2P traffic as they were captured at a

university research lab. However, the protocols making the highest volume in the CCSL traces are
the Web usage protocols (e.g., HTTP and HTTPS), followed by the streaming protocols (e.g., RTP
and RTSP). Table 4.1 provides a list of the protocols and their percentages.

124 Chapter 9. Conceptual Model

character encoding schemes, such as, ASCII, UTF-8, etc. To simplify our en-
tropy calculations, we assume text streaming with an ASCII representation,
where each text character has an equal probability to appear.

The full ASCII table has a range that goes between 0x00 and 0xFF, and covers
three types of codes: control characters (between 0x00 and 0x1F), text char-
acters (between 0x20 and 0x7F; that is, a total of 96 text characters), and
extended codes (between 0x80 and 0xFF).

This means that in a common text sequence a byte can take any of the 96
values. Thus, by assuming that all characters have the same probability, we
get: pr(xi) = 1

96
, provided that xi consists of one character, and pr(xi) = 0,

otherwise (i.e., control characters and extended codes). Therefore, an entropy
upper bound for any 1-byte text sequence is equal to:

H(X) = −
28∑
i=1

pr(xi) ∗ log2(pr(xi))

= −
28−96∑
i=1

0 ∗ 0 −
96∑
i=1

1

96
∗ log2

(
1

96

)
= log2(96) ≈ 6.58 bits

A high level of entropy within a packet field results in low frequency levels of
its (p, n)-grams. (p, n)-grams with low frequency mainly constitute the (hori-
zontal) long tail of Region C in the frequency distribution graph discussed in
Section 6.1.1.

2. Low entropy fields: Contents of this type either take a fixed value or vary
between a limited number of value options within network packets. Fields of
this type are usually found in the packets’ header portion or as part of protocol-
specific structural fields in the packets’ payload portion.

Examples of this content type in the packets’ header portion include ETHER
type field (e.g., 0x08 0x00 in a pure IP network trace), and common packet
header fields, such as total length, receive window size, protocol id, padding, etc.

9.1. Rapidly Dropping Off Frequency Distribution 125

Even actively changing fields, such as ports, MAC addresses, and IP addresses
sometimes correspond to limited-option domains within individual networks. A
common exception to this behavior is the checksum field which is usually found
within the header portion but features high entropy content.

On the other hand, examples in the packets’ payload portion include protocol-
specific structural fields, such as URI field in CUPS packets, key_algorithms
string in SSHv2 protocol, request version in the HTTP protocol, etc. These
fields, however, are usually very short compared to the rest of the payload.

The entropy of (p, n)-grams in these fields depends on the number of value
options and their probabilities. This number may vary from field to field, but
it is usually limited by a small domain size rendering its entropy’s upper bound
level relatively low compared to those of binary contents.

In order to calculate entropy’s lower bound for this type, we assume that all
(p, n)-grams belong to a fixed value z, where pr(xi) equals 1 when xi = z, and
0 otherwise. This gives:

H(X) = −
28∑
i=1

pr(xi) ∗ log2(pr(xi))

= −
28−1∑
i=1

0 ∗ 0 −
1∑
i=1

1 ∗ log2(1) = log2(1) = 0 bits

This means that if we consider a 1-byte field with fixed-value data, we expect
a low entropy behavior where the minimum number of distinct (p, n)-grams
that can be found is 20 = 1 (p, n)-gram. This explains why the majority of
(p, n)-grams in these fields feature high frequency.

A low level of entropy within a packet field results in high frequency levels of
its (p, n)-grams. (p, n)-grams with high frequency mainly constitute Regions A
and B in the frequency distribution graph discussed in Section 6.1.1.

126 Chapter 9. Conceptual Model

9.1.2 Step 2: Compare the Sizes of Low and High Entropy Fields

This step makes an approximate comparison between the size of low entropy fields
and high entropy fields in an average-size Internet packet. This comparison is one of
the arguments we use later to support and explain the rapidly dropping off frequency
distribution behavior of (p, n)-grams.

As was discussed in the first step, most of the packet header fields feature con-
tents with low entropy levels, whereas most of the payload fields feature high entropy
contents. On the other hand, both low entropy payload fields (i.e., fields representing
protocol design structures) and high entropy header fields (e.g., checksum) are usu-
ally very short compared to the size of the other fields in the header and payload,
respectively.

We simplify our calculations by ignoring those short fields at both packet portions,
and assuming that header fields are low entropy in general, whereas payload fields
are high entropy. This simplification allows us to make our comparison based on
the size-ratio between header and payload fields in an average-size Internet packet.
Taking this into account, this step starts by calculating an approximate average size
of Internet packets, and then uses that to express the ratio between the two packet
portions: header and payload.

Recent observations of network traffic show that packet sizes feature a bimodal
distribution with two distinct modes [4, 164, 191]. While almost 50% of the packets
feature the maximum allowable data size, another 40% are much shorter and are
header-only packets. The sizes of the other 10% of the packets have random distri-
bution, and are mainly dependent on the nature of the running applications [191].

The maximum length of an IP-datagram allowed by the Ethernet is defined by
the Maximum Transmission Unit (MTU) parameter and is usually bounded by 1,500
bytes in most Ethernet LANs [144]. However, old implementations of TCP [145] use
a maximum segment size of 576 bytes. According to a test study by Agilent [177],
about 11.5% of the tested Internet traffic was packets with a maximum size of 576
bytes, whereas about 10% was packets with a maximum size of 1,500 bytes [178].

9.1. Rapidly Dropping Off Frequency Distribution 127

We use these statistics as an approximation to simplify our calculations. Thus, if
we denote the size of the packet’s headers portion by Sh and the size of the payload
portion by Sp, we may describe four common types of packet sizes in Internet traffic,
as follows:

1. Header-only packets: Those packets constitute about 40% of the total number
of packets, and consist of headers only, where the majority of them have a total
size of Sh = 14 (Ethernet header) + 40 bytes (IP-datagram) = 54 bytes.

2. Full-size packets (with a maximum IP-datagram size of 1,500 bytes): Those
packets constitute about 10% of the total number of packets, and consist of
headers and payloads, with a total size of Sh + Sp = 14 (Ethernet header) +
1,500 bytes (IP-datagram) = 1,514 bytes.

3. Full-size packets (with a maximum IP-datagram size of 576 bytes): Those pack-
ets constitute about 11.5% of the total number of packets, and consist of headers
and payloads, with a total size of Sh + Sp = 14 bytes (Ethernet header) + 576
bytes (IP-datagram) = 590 bytes.

4. Full-size packets (with variable IP-datagram maximum sizes): Those packets
constitute 50% - (11.5% + 10%) = 28.5% of the total number of packets, and
consist of headers and payloads with variable sizes. To simplify our calcula-
tions, we assume that these packet types will have an average IP-datagram size
between 576 and 1,500. This gives a total packet size of 14 bytes (Ethernet
header) + (576+1,500)

2
bytes (IP-datagram) = 1,052 bytes.

5. Other packets: Those packets constitute 10% of the total number of packets,
and consist of headers and payloads with random sizes. Again, to simplify our
calculations, we assume that the random sizes packets will have an average IP-
datagram size of 1,500

2
. This gives a total packet size of Sh + Sp = 14 bytes

(Ethernet header) +1,500
2

bytes (IP-datagram) = 764 bytes.

Using the above observations, statistics, and approximations, we now calculate an
approximate average size of Internet packets as follows:

128 Chapter 9. Conceptual Model

54 bytes * 40% + 1,514 bytes * 10% + 590 bytes * 11.5% + 1,052 bytes * 28.5% +
764 bytes * 10% ≈ 617.07 bytes.

This means that in an average Internet packet size, the payload portion, which
mainly features medium to high entropy (p, n)-grams, constitutes a high percentage
of about 617.07−54

617.07
≈ 91% of the total packet size as opposed to a low percentage of

9% for the header portion, which mainly features low entropy (p, n)-grams.

Even if we assume the shortest possible sizes for the above last two types of packet
sizes (i.e., 590 bytes for type 4 and 54 bytes for type 5), we get:
54 bytes * 40% + 1,514 bytes * 10% + 590 bytes * 11.5% + 590 bytes * 28.5% + 54
bytes * 10% = 414.4 bytes.

This is still a high percentage of ≈ 87% for the payload portion compared to 13%
for the header portion.

Finally, the average packet size, in practice, may differ from network to network
depending on the specific types of network protocols (e.g., P2P, media streaming,
Web traffic, etc.) dominating the network traffic and their volumes. However, even
our experiments with the CCSL January 2006 dataset (Table 4.1), which features a
low volume of P2P and media streaming traffic, shows an average packet size of about
364 bytes. This gives a percentage ratio of 364−54

364
≈ 85% for the payload portion as

opposed to 15% for the header.

9.1.3 Conclusion

Our discussion so far has shown that the size of low entropy packet fields within an
average-size network packet is much smaller than that of the high entropy packet
fields. This implies that frequent (p, n)-grams (i.e., (p, n)-grams within the low en-
tropy packet fields) are relatively few compared to infrequent ones.

In addition to their relatively small size in network packets, low entropy fields
feature many fewer distinct (p, n)-grams than high entropy fields (further discussed
in Section 6.2.1). That is, entropy is expressed in a logarithmic scale, and thus, a
linear difference between two entropy levels implies an exponential difference in the

9.2. Power-Law Behavior 129

corresponding (p, n)-grams similarity level.

These two arguments constitute our basis to conceptually conclude the rapidly
dropping off frequency distribution behavior of (p, n)-grams in Internet traffic. Again,
this behavior is directly related to the inherited structure and layering design of the
IP network packets, where IP packets feature encapsulated structures.

9.2 Power-Law Behavior

Our empirical analysis in Section 7.2 suggests that the distribution exhibited by (p, n)-
grams in network traffic follows a power-law behavior. The purpose of this section
is to conceptually explain this behavior by making an analogy with other network
models that follow power-law distributions. For example, Barabasi et al. [10] explain
the power-law distribution behavior in the scale-free networks model. They state that
the two main features that make scale-free networks follow a power-law distribution
are 1) new nodes get continuously added to the system, and 2) the system follows the
“rich-get-richer” rule.

Barabasi et al. state that as a new vertex joins the system, it will connect to
existing vertices with a probability that is proportional to their degrees at the time
of joining. That is, the higher the degree of a vertex in the network, the higher the
chance that a new node, joining the network, will connect to it and increase its degree.
Similarly, Adamic et al. [1] explain the power-law distribution in the number of links
a site receives. They correlate the number of links a site already has with the number
of links a site receives as new sites join the Internet.

In the case of (p, n)-grams, on the other hand, the frequency distribution behavior
is merely a reflection of the underlying network topology and the involved Internet
protocols and applications. This can be explained by considering a system that
inspects packets of network traffic for (p, n)-gram frequencies. In this system, different
frequency levels of (p, n)-grams can be envisioned as different levels of richness, where
a rich (p, n)-gram means a frequent (p, n)-gram coming from a low entropy field with

130 Chapter 9. Conceptual Model

a high level of content repetition. This system shows the following two features:

1. Addition of new packets: New network packets continuously get added to the
system as long as there are network activities. Each packet adds to the system

a) Header (p, n)-grams that mainly reflect the specific network setup, topology,
and parameters.

b) Payload structural (p, n)-grams that mainly reflect the running protocols
and applications within the network.

c) Payload non-structural (p, n)-grams that mainly reflect the current data
transfer for each running application.

2. Rich-get-richer rule: As a new packet arrives to the system, its extracted (p, n)-
grams will add to the frequencies of the existing ones with a probability that is
proportional to their current frequencies. This is because

a) Common (p, n)-grams in the headers mainly represent information about
active network systems (switch, server, network printer, etc.) and their pa-
rameters. Therefore, the more active the system, the more traffic it handles,
and thus the more frequent those common header (p, n)-grams become.

b) Common structural (p, n)-grams in the payloads mainly represent structural
designs in the packets of active protocols or applications. Again, the more
active the application, the more relevant packets are in the traffic, and thus,
the more frequent those structural (p, n)-grams become.

c) Payload non-structural (p, n)-grams mainly represent session-specific data
transfers which usually differ in each packet. Therefore, (p, n)-grams from
new network packets are not likely to add to the frequencies of existing ones.

As described in Section 7.2.1, there are few protocol types (e.g., broadcast and
multicast protocols) that do not seem to feature the rich-get-richer phenomenon nor
to follow a rapidly dropping off distribution behavior. Examples include the EIGRP

9.2. Power-Law Behavior 131

and HSRP multicasting protocols that produce almost identical packets repeatedly in
the network. However, when the (p, n)-grams frequency distribution is calculated for
the entire Internet traffic of a network system, the impact of these types of protocols
on the overall distribution is very limited due to their relatively small volume.

10 Concluding Remarks

Our dissertation contributes to the on-going research on network traffic characteriza-
tion and management. It gives a new perspective to the high-level understanding of
the complex traffic through using the (p, n)-grams representation. This representation
complements existing approaches with a simple yet meaningful analysis of network
traffic. In this chapter, we summarize our contributions, highlight key limitations of
our work, and propose some research ideas for future work.

10.1 Contributions

The research started with studying content similarities between network packets and
the patterns that they may create. Our goal has been to find a way that allows
for establishing a quick high-level understanding of traffic contents when inspecting
an unknown network trace. Our approach was to find a representation that can 1)
capture those patterns 2) efficiently enough to allow real-time traffic analysis, and 3)
without making assumptions about what they look like or where in the packet they
can be found while at the same time 4) give some intuition about their semantics.

Researching existing content-based analysis approaches with these requirements
in mind brought us to some of the gaps that the (p, n)-grams representation can fill.
Using (p, n)-grams has an efficiency advantage similar to that of using specific packet
fields (such as ports and flow field) because it doesn’t require looking at the entire
packet to detect a pattern. At the same time, however, it has the packet-wide gen-

132

10.1. Contributions 133

eralized pattern matching advantage of n-grams. (p, n)-gram-based analysis provides
extra semantic meanings to the captured patterns that can distinguish between pat-
terns in headers and payloads, and does not go through the complexity and overhead
of full packet pattern matching.

This thesis is the first to research the (p, n)-grams characteristic distributions in
network traffic and how that can be used to fill in some of the gaps in the current
approaches of traffic analysis. Summarizing our achievements in this research work
highlights the following four main contributions.

10.1.1 ADHIC for Traffic Clustering

Our first contribution was to develop ADHIC as a light-weight unsupervised traffic
clustering algorithm. This work addresses our first hypothesis (Section 1.3), and
shows how ADHIC can automatically discover structural patterns within network
packets based on the frequency levels of their corresponding (p, n)-grams.

What makes ADHIC special is that it captures structural patterns at protocol,
sub-protocol, and cross-protocol levels without assuming a priori knowledge of net-
work protocols. In addition, ADHIC uses those patterns to efficiently cluster network
traffic into semantically meaningful equivalence classes that closely approximate stan-
dard measures of network traffic even if packet ports were maliciously altered or obfus-
cated. Examples include separating IP from non-IP, TCP from UDP, email from web
traffic, etc. ADHIC’s hierarchical decomposition of traffic also shows semantically-
based divisions within protocols such as web traffic on non-standard ports and high
traffic URLs, or encrypted packets negotiating the same encryption algorithm.

Much of the structure that ADHIC typically finds would also be found through
traditional analysis techniques. However, because ADHIC looks at traffic with no pre-
existing biases (i.e., through frequency distributions), it also clusters using unconven-
tional measures. For example, (p, n)-grams corresponding to special-value padding,
Ethernet frame addresses, and payload contents can all be found in ADHIC decision
trees. It is also common for ADHIC to cluster control packets with zero-length pay-

134 Chapter 10. Concluding Remarks

loads, such as SYN, FIN, RST, or ACK, together, away from data packets. Using
these unconventional features allows ADHIC to be consistent in its classification of
network traffic even if header data is omitted.

10.1.2 ADHIC for Traffic Monitoring

Our second contribution was to design and test ADHIC for traffic monitoring pur-
poses. We design ADHIC to update its binary decision trees by the beginning of a
pre-configured time window in order to adapt to the temporal changes in network traf-
fic. ADHIC, in return, consistently produces new graphs of the binary tree reflecting
its dynamic changes over time.

Monitoring ADHIC’s graphs allows for interesting incidents to be detected, such
as high bandwidth consumers (on an application, host, or network basis), repetitive
network transmissions, temporal changes in network traffic, and even patterns that
are related to packet sizes. In addition, the dynamically changing graphs allows to
monitor network traffic for evasive protocols and unexpected behaviors in protocol
types and volumes. For example, ADHIC allowed us to identify an abnormal growth
or shrinkage in traffic volumes and types (e.g., P2P flash crowd) and focus the atten-
tion on a limited number of clusters. This was despite the fact that the P2P packets
were obfuscated to appear as HTTP packets running over port 80.

In summary, ADHIC allows network administrators and researchers to have a dif-
ferent view of network traffic. This has its advantage in promptly and conveniently
alerting administrators to abnormal or malicious traffic activities. Additional poten-
tial applications of ADHIC include network performance analysis, real-time alerts of
flash crowds or worm activities, and dynamic DoS-resistant bandwidth management.

10.1.3 Characteristic distributions of (p, n)-grams

Our third contribution was to research the characteristic distributions of (p, n)-grams
in network traffic. This work addresses our second hypothesis (Section 1.3) and shows

10.1. Contributions 135

that (p, n)-gram frequencies in network traffic follow a power-law-like behavior where
(p, n)-grams with relatively high frequency represent the short rapidly dropping off
portion of the distribution curve before the long tail. These (p, n)-grams constitute
the common structural patterns in network traffic which are a small subset of the
total set of (p, n)-grams in the long tail.

Our conclusion of a power-law-like behavior is based on extensive empirical anal-
ysis along with a conceptual model that we build to validate our observations and
ensure they are not dataset dependent. On the one hand, our empirical analysis used
various traces taken from two independent network datasets to provide statistical
evidence of the characteristic distributions in network traffic. The conceptual model,
on the other hand, modeled (p, n)-gram variances in the different packet fields using
Shannon entropy, and used that to explain and generalize the main characteristics of
(p, n)-grams in the context of IP-protocol design and implementation.

The power-law-like distribution behavior of (p, n)-grams has special functional
meanings and applications. In essence, it means that 1) structural patterns do exist,
and that 2) they constitute a small subset that 3) can be easily distinguished from the
other (p, n)-grams. This demonstrates that structural (p, n)-grams can be efficiently

calculated through observing their special frequency levels in network packets without
requiring any previous knowledge about the participating protocols or their packet
structures.

Finally, since the high frequencies of structured (p, n)-grams are measured relative
to all others, some efficient packet sampling can be used during traffic inspection with-
out negatively impacting the overall frequency analysis. These efficiency advantages
come in addition to the fast sub-linear pattern matching with (p, n)-grams (compared
to the linear complexity of matching with n-grams).

10.1.4 Fingerprinting with (p, n)-grams

Our fourth contribution was to research the ability of (p, n)-grams to fingerprint
network traffic. This work addresses our third hypothesis (Section 1.3) and shows

136 Chapter 10. Concluding Remarks

that structural (p, n)-grams can form a “fingerprint” of network protocols that may
be used to identify them in a fashion similar to that of hand-crafted regular expression
signatures.

In this capacity, our research demonstrated the ability of (p, n)-grams to capture
high-level structural patterns in network traffic irrespective of flows. We show that
those structural patterns are not location or type restricted and may pertain to dif-
ferent categories such as protocols, sub-protocols, high-volume communication flows,
and frequently communicating hosts.

Again, our study used both empirical analysis and a conceptual model to test
and explain the pattern-capturing and fingerprinting capabilities of (p, n)-grams in
network traffic. Our empirical analysis tested various traces from two independent
network datasets in order to provide statistical evidence of the (p, n)-grams’ semantic
representation of protocol and sub-protocol structures. We also used our entropy-
based model to build entropy models for different TCP and UDP protocols. Those
protocol entropy models give a visualization aid to map design structures of individual
protocols to the corresponding content similarities and (p, n)-gram distributions.

The key advantages of using (p, n)-grams for fingerprinting are that 1) it can be
done without assuming a priori knowledge about the inspected traffic and existing
protocols, and that 2) it allows for unexpected (non-traditional) means to infer net-
work protocols. For example, we observe that using (p, n)-grams in characterizing
network traffic can discover payload patterns within protocols and sub-protocols that
can go cross-flow in network packets.

We conclude that the special fingerprinting and characteristic distributions of
(p, n)-grams are what enable applications like ADHIC to do efficient clustering and
monitoring with a combination of classical and unexpected means of classification.
Understanding (p, n)-grams characteristics helps in identifying what may improve
ADHIC’s effective clustering algorithm, and also provides a foundation for other po-
tential uses for (p, n)-grams.

10.2. Limitations 137

10.2 Limitations

A primary goal in researching the use of (p, n)-grams in network traffic analysis was
to efficiently capture the high level semantic structure of network traffic without using
domain-specific information. Both our empirical results and conceptual models sug-
gest that the captured protocol structures have a close correlation with the semantics
that are of interest to network administrators, researchers, and security officers. We
find these results both promising and remarkable: (p, n)-grams representation is both
simple and effective. However, these findings still come with limitations.

First, (p, n)-grams representation inherently requires structure within network
packets to operate well. That is, the more encrypted packets in the inspected traffic,
the fewer payload structural (p, n)-grams that can be captured. For example, although
we have shown that ADHIC can often segregate encrypted and obfuscated packets,
this is mainly done by recognizing other structured protocols and then assigning
the remaining traffic to default clusters. Our evidence from the RMC experiments
suggests that this behavior holds in larger and more complex environments.

However, the question remains as to whether this behavior will persist with the
trend we see in newly evolving protocols (i.e., more encryption, compression, obfus-
cation, and P2P style traffic). We suspect that these encrypted packets would still
contain unencrypted header fields (e.g., flags, checksums, options, paddings, etc.) as
we see with some of the common encrypted traffic (e.g., SSL and SSH). These header
fields may produce some identical (p, n)-grams per protocol within the same flow
session. This, however, needs to be verified in future experimentation.

Second, a potential disadvantage of using (p, n)-grams may rise in the case of
pattern jitters. This is where the same pattern appears at different offsets in similar
packets. However, our experiments and empirical data suggest that this problem may
not be noticeable as the afflicted (p, n)-grams are usually few compared to the other
semantic ones in the same packets.

Third, a common problem that faces using deep packet inspection (which (p, n)-
grams uses) in traffic analysis is their violation of privacy policies. We, however, con-

138 Chapter 10. Concluding Remarks

jecture that the current implementation of (p, n)-grams analysis does not raise major
privacy concerns. This is because 1) (p, n)-grams usually represent short sequences of
bytes scattered in the whole packet bodies and because 2) structural (p, n)-grams are
solely calculated and found through their frequency distributions. This means that
it is most likely that private data and user PII (Personally Identifiable Information)
will not be captured as they are presumably not common in the traffic. If, however,
they turn out to be common enough to be replicated in almost 5% of the traffic or
more, then this may represent an area that is worth investigation.

Fourth, an ADHIC-specific limitation we have in our design of the splitting trees
is that it requires a minimum volume size of each traffic type (i.e., relative to the
overall traffic) in order to be clustered independently. This brings a limitation in
catching stealthy attacks or protocols with relatively small volumes, when ADHIC
is being considered for security monitoring purposes. We suspect that this problem
can be partly addressed by considering shorter maturation window sizes. This allows
frequent (p, n)-grams that only appear in a short period of time to be captured. Note,
however, that this will make the analysis part more costly. It will also make ADHIC
less immune to the impact of the commonly occurring network traffic spikes that
don’t represent a security concern.

10.3 Future work

Ultimately, our research highlights using (p, n)-grams-based network traffic analy-
sis to complement other existing approaches and strategies. There are fundamental
limitations to any approach to understanding network behavior that does not incorpo-
rate protocol-level knowledge. Knowledge-based approaches, however, will always lag
the latest applications or malicious software. A generic (p, n)-grams-based approach
holds the promise of revealing new patterns of behavior before they become signifi-
cant problems, as well as mitigating those problems when they do occur. Thus, with
the research results of (p, n)-grams characteristics we believe that further exploring

10.3. Future work 139

other (p, n)-grams-based approaches to extracting patterns in network behavior is a
rich area for future research.

With respect to clustering with (p, n)-grams, we would like to develop a better
measure of “semantically meaningful” clusters. To this point, we have verified the
quality of our clusters through the use of our reference classifier and standard network
analysis tools. (p, n)-grams analysis, however, finds significant patterns that these
tools miss. We hope to develop additional measures, ones potentially based upon
entropy minimization or other standard machine learning measures [44], that will
“upper bound” the structure extraction ability of (p, n)-grams-based clustering.

Moreover, there are other ADHIC-specific algorithm enhancements and configu-
ration settings that we would like to try for further accuracy and performance im-
provements. These include 1) optimizing the (p, n)-gram selection process for better
entropy, 2) using multi (p, n)-grams at decision nodes, 3) using specially-seeded trees
to study network behaviors, 4) experimenting with clustering based on the packet
header fields only to test performance with encrypted traffic, and 5) adding a proto-
col identification capability to ADHIC through profiling traffic at cluster nodes.

Finally, as discussed in Chapter 2, Matrawy et al. [113] proposed using (p, n)-
grams for DOS mitigation. Our work in this thesis, however, lays the conceptual and
empirical foundation for using (p, n)-grams for this type of “diversity-based traffic
management”. A next step in this research could be to study the feasibility of miti-
gating such DOS damage through an adaptive bandwidth allocation scheme that we
add to our clustering algorithms. This could be done by allocating equal bandwidth
shares on a per-set cluster basis so that any one use of the network will be prevented
from excluding other users and uses.

Appendices

140

A. Using Frequency Analysis in Natural Lan-
guage Processing

Texts of natural languages possess a number of characteristics that can be used in the
process of language identification and text categorization. In their survey, Sibun et
al. [161] have listed some of these characteristics, including unique accented letters,
special sequences of letters, common words, and frequent n-grams.

Several algorithms were proposed to address the language identification problem
using one or more of these text-based characteristics [24, 45, 141, 61, 18]. Grothe
et al. [58] made a comparative study between two common approaches for modelling
natural languages based on frequency analysis, namely: word-based and n-gram-
based. While the n-gram-based approach relies on frequencies of common n-grams,
the word-based approach may either rely on word frequencies, or on identifying special
short words that are language specific.

With their ability to efficiently capture specific language semantics, n-grams have
been successfully used in the areas of natural language identification, text categoriza-
tion, and subject classification [78, 12]. Our research takes advantage of the common
research similarities between using n-grams for natural language processing and using
(p, n)-grams for network traffic analysis.

When applied to network traffic, however, n-grams can’t capture network protocol
semantics. To compensate for that, our research uses (p, n)-grams instead. Offset p in
(p, n)-grams substitutes the missing built-in semantic meaning that n-grams feature
in natural languages.

This section presents how frequency analysis of words and n-grams is used in the

I

II Appendix A. A. Using Frequency Analysis in Natural Language Processing

process of natural language processing. It discusses the n-grams’ functionality and
efficiency features in natural language processing as a template to our (p, n)-gram-
based approach.

A.1 Advantages of using Frequency Analysis

Using words’ frequency analysis in natural language processing comes with two main
characteristics. The first characteristic is their ability to capture specific language
semantics. That is, the most common words in a document can identify the language
and subject types of a document [24]. For instance, given any article, the set of the
most frequent words is highly correlated with the article’s language type (e.g., “of”
and “the” for English vs. “de” and “la” for French). Moreover, the set of the second
most frequent words is more correlated with the article’s subject (e.g., “atom” and
“molecule” for chemistry vs. “cell” and “plasma” for biology).

The second characteristic of using word’s frequency analysis in natural language
processing is their usage efficiency. That is, the same words that can represent the
language and subject of a document are very few compared to the rest of the words.
This characteristic is better described by Zipf’s law [203], in which George Zipf [149]
found a special power-law relationship between frequencies of English words and their
ranks. Zipf’s law states that the frequency of any word in a corpora is inversely
proportional to its rank:

fr = f1 ∗ r−1 (A.1)

That is, the most frequent word in an English corpora appears twice as often as the
second most frequent word, and thrice as often as the third most frequent word, etc.

f1 = 2 ∗ f2 = 3 ∗ f3 = ... = r ∗ fr = (r + 1) ∗ fr+1 (A.2)

where: r = rank, and fn = frequency of the rth most frequent word in the corpora.

A.2. Language Identification and Text Categorization using n-grams III

Zipf’s law implies that there are few words that are very common, whereas major-
ity of the words are infrequent. In other words, in a given article, there are very few
words that are 1) very common, 2) easily distinguishable from the rest, and 3) they
represent the language and subject types of the article. Zipf’s law is further discussed
in Section A.2.

The two characteristics of words in natural languages allow for language iden-
tification and text categorization applications. These characteristics explain their
effective functionality, and their efficiency in terms of reducing the required space
and computation complexities.

Since n-grams constitute inflection forms or morpheme components of the full
words in natural languages, the same characteristics of words extend to n-grams [24].
This gives n-gram-based applications the same functionality and efficiency advantages
in the process of natural language identification and text categorization.

A.2 Language Identification and Text Categorization us-
ing n-grams

The process of identifying an unknown document’s language, using n-gram or word
frequencies, typically goes through the following steps [24]: First, all possible natural
languages are profiled and modelled using their most frequent words or n-grams.
Second, the unknown document is profiled using its most frequent words or n-grams.
Third, the unknown document’s profile is checked against all the previously calculated
language profiles using a similarity distance function. Thus, the language profile with
shortest distance determines the language type of the unknown document.

Two parameters are to be set before the identification process: 1) the similar-
ity distance function, and 2) the number of n-grams or words to be considered in
profiling [11]. Several distance functions were proposed to measure similarities [58],
including: ranking order [24], relative entropy [161], Bayesian decision rule [45], vector
space model [37, 141], and Monte Carlo sampling [140]. Depending on the distance

IV Appendix A. A. Using Frequency Analysis in Natural Language Processing

function used, the number of n-grams needed to be considered for high performance
profiling varies from one function to another. For example, 400 n-grams work well
using the ranking order function.

In spite of their similar functionality and efficiency features, many research studies
have found n-gram-based approaches to be more advantageous for language identifi-
cation than word-based ones [37]. This finding can be explained by more than one
reason. First, misspelling in a long word affects the entire word, but may only im-
pact a small number of shorter n-grams. Misspelling errors may come from various
reasons, such as: erroneous data entry, and scanning and OCR (Optical Character
Recognition) problems. Second, n-grams provides more flexibility while dealing with
stream text, due to their short fixed size [112]. Third, unlike whole words, n-grams
achieve automatic word stemming results when considering different words that share
the same root (e.g., ‘work’, ‘working’, ‘worked’, ‘works’, etc. share the same n-gram
root: ‘work’) [24].

Cavnar et al. [24] introduced an accurate, yet efficient, n-gram-based approach
for language identification and subject classification. Their approach uses a simple
similarity distance function that is based on the ranking order of most frequent n-
grams. In spite of its simple and fast implementation, the approach achieves an
accuracy level of 99.8% of text characterization and language identification when
applied on Usenet newsgroup articles in different languages and different subjects.

As a special case, Vega et al. [152] used weighted n-grams with size n = 3 to check if
the document is written in a specific language (Indonesian in this case). This strategy
is useful when the inspected languages don’t have enough vocabulary differences. For
example, Malay and Indonesian share almost 80% of their vocabularies.

Damashek [37] used n-grams for spelling and error corrections, text compression,
and text search and retrieval. His research demonstrates how n-grams are useful in
categorizing text in a non-restricted multilingual environment. Damashek introduced
Acquaintance; an approach that uses n-grams along with another vector space tech-
nique. Acquaintance gives a similarity measure that can work with a large collection

A.2. Language Identification and Text Categorization using n-grams V

of documents in a non-restricted range of topics without requiring a priori knowledge
of the document’s content or language.

Martins et al. [112] used n-grams to identify the language used in Internet web
pages. Online text might differ from that in document collections in more than
one way. For example, text in web pages usually contains more spelling errors, and
may feature multiple languages in the same page. Moreover, hyperlinks are usually
displayed as part of the text in the online documents. In their experiments, Martins
et al. achieved accurate results by using a heuristic-based n-gram algorithm along
with some proper similarity measures.

A similar work was done by Baykan et al. [11] who tried to identify the language
of Internet web pages using their URL addresses only. They used n-grams with size
n = 3 along with other methods. Due to the short size of URL addresses, better results
were achieved when custom-made features were used, like: country code, number of
hyphens, and dictionary with city names. Those extra features were most useful when
non-English web pages use URLs with English-looking words.

B. Power-Law Distributions

A power-law frequency distribution describes a distribution where there are few fre-

quent incidents, andmany infrequent ones. Power-law distributions are found in many
phenomena in physics and economics [143], where they appear ubiquitously in various
fields [99]. An example is the distribution of city populations in a country. There
are few major cities in any country compared to many small towns. Other examples
include people income, earthquake levels [129], and company sizes in a country [7].

Simply put, a power law is a polynomial relationship between two entities x and
y, such that:

y = P (x) = cx−α (B.3)

where: c is a constant, and α is called the power exponent. Taking the log on both
sides gives:

log(y) = log(cx−α) = log(c) + log(x−α) = c′ + (−α)log(x) (B.4)

Drawing the power-law function (B.4) on a log-log scale gives a straight line like
in Figure B.1, where -α is the slope and c′ is the intercept.

Power-law distributions also exist in computer and network related systems. Hu-
berman et al. [70] found that power-law distributions apply to the number of pages
found in a Website. In computer networks, Barabasi et al. [10] found that vertex
connectivities (degrees) follow a power-law distribution. Albert et al. [3] generalized
this power-law model to the World Wide Web, where vertices represent documents

VI

B.1. Zipf’s Law VII

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30 35 40 45 50

y

x

Power-law

0.1

1

10

lo
g

(
y
)

log(x)

Power-law (log-log)

Figure B.1. Power law on a normal scale (left) and a log-log scale (right). Note the
power law’s straight line on the log-log graph, where the slope equals the negative of
the power exponent α (e.g., in this graph, α = 1, and slope = −1).

and edges represent hyperlinks.

Power laws have other interesting behavioral features. Their statistical relation-
ships do not change at different measurement scales. This is usually referenced as
“scale-free” distribution [129]. In addition, power laws feature smooth curves that
usually has its impact on the system operational expectations and frequency thresh-
olds [24]. These features and others of power laws have brought a special interest
among researchers to further study power laws, their types and applications [25].

B.1 Zipf’s Law

Power-law relationships take different forms depending on the exponent’s value. Zipf’s
law [203] is a special form where the exponent is equal to unity (i.e., 1). Zipf’s law
describes the frequency distribution of words in texts of natural languages. It states
that the frequency f of the r-th word (ordered by their frequency rank) in an English

VIII Appendix B. B. Power-Law Distributions

corpus is inversely proportional to its rank r, thus:

f = cx−α (B.5)

where c is a constant, and α is close to unity [30, 129].

To give a real-life example of this relationship, we experimented with the frequency
list [92] extracted by Adam Kilgarriff from the British National Corpus [49]. This
list contains about 1,000,000 distinct words taken from a corpus of about 100,000,000
words. Our test shows that the most frequent word reported in the corpus was “the”
with frequency of 6,187,267.

The second and third most frequent words were “of”, and “and” with frequencies
of 2,941,444, and 2,682,863 respectively. Notice that the frequency of occurrence of
“the” is approximately twice as often as the frequency of “of” and three times as often
as the frequency of “and”. In this experiment, it is evident how the very high frequent
words (e.g., “of”, “the”, “is”, “if”, etc.) are few in number, whereas the infrequent
ones (e.g., “parachute”, “optimum”, “navigating”, etc.) constitute the majority of
the English language words.

We also did the same experiment with a French corpus. We used the frequency
list [184] extracted by Jean Veronis from the Monde Diplomatique 1987-1997 [53].
This list contains over 150,000 distinct words taken from a corpus of 11,139,376 words.
Our experiment shows the same Zipf’s law distribution behavior.

Figure B.2 shows the frequency/rank graph for these English and French corpora.
Note how the most frequent 1,000 words adhere to Zipf’s law for both corpora with a
slope very close to unity (-0.999 for English corpus, and -1.016 for French) along with
a good model fitness calculated by the coefficient of determination R2 [42], where R2

takes a value between 0.00 and 1.00, with 1.0 indicating a perfect fit. We further
discuss R2 and how to interpret it in Section 7.1.

Zipf’s law was also found to apply to other languages (e.g., Chinese language) [59],
and to n-grams as well [24]. In addition, Quan et al. [59] reported that when Zipf’s
law is tested on huge language corpora, the slope behavior starts to deviate from

B.2. Power-Laws: From Observations to Applications IX

slope = -0.999
R2 = 0.996

slope = -1.016
R2 = 0.988

100

1000

10000

100000

1000000

10000000

1 10 100 1000

F
r
e
q

u
e
n

c
y

Rank of language words

English

French

Figure B.2. Zipf’s law for the English and French corpora (first 1,000 entries).

unity (i.e., α = 1) at high word ranks. In particular, Zipf’s law was found to best
apply to the first 5,000 English and French words and first 1,000 Chinese words.

A power-law distribution is said to precisely follow Zipf’s law when the power
exponent is strictly equal to 1. The term “Zipf-like” distribution, on the other hand,
describes a power-law distribution where the value of the power exponent is close
to 1, but varies from trace to trace [19]. Examples of Zipf-like distributions include
those observed in Web sites’ page hits [71], and Web caching [19].

B.2 Power-Laws: From Observations to Applications

What makes a system follow a power-law distribution? Although there is no definite
answer, there might be more than one way to explain the basis of this distribution
behavior. One of the common explanations is the “rich-get-richer” rule [47], also
known as “preferential attachment” [10]. For instance, in the power-law city popula-
tion model, the bigger the city, the higher the chance that more people will join the

X Appendix B. B. Power-Law Distributions

city (e.g., new comers, newly born babies, etc.).
In the scale free network problem, the rich-get-richer rule can be observed during

the continuous expansion of the network. That is, newly added vertices are usually
attached to others that are already well-connected in the system. In other words,
the probability that an old vertex gets connected with a newly added one is directly
proportional to the old vertex’s degree.

Understanding the power-law behavior of a system potentially has useful appli-
cations. Mitzenmacher [117] emphasized that research on power law has to move
from observation, modelling and interpretation to validation and application. For
example, relying on the findings of Barabasi et al. [10] about the power law distri-
bution of vertex degrees in a system, Balthrop et al. [9] suggested an effective way
to stop the spread of computer viruses through targeting highest degree vertices for
immunization.

C. IP Packet Structure

XI

XII Appendix C. C. IP Packet Structure

ETHER
0 – 5: 6 bytes: Destination MAC Address
6 – 11: 6 bytes: Source MAC Address
12 – 13: 2 bytes: Type (usually: 0x08,0x00, i.e., IP)

IP
14: 1 byte: IP version (4 bits: e.g., 0x4: IPv4) + Length (4 bits: e.g., 0x5: 20 bytes)
15: 1 byte: Type of Service
16 – 17: 2 bytes: Total Length
18 – 19: 2 bytes: Identification (aid in assembling the fragments of a datagram)
20 – 21: 2 bytes: Flags (3 bits) + Fragment Offset (13 bits)
22: 1 byte: TimeToLive
23: 1 byte: Protocol (ICMP:0x01, IGMP:0x02, TCP: 0x06, UDP: 0x11)
24 – 25: 2 bytes: Header Checksum
26 – 29: 4 bytes: Source IP Address
30 – 33: 4 bytes: Destination IP Address
34 – 36: 3 bytes: Options (optional)
37: 1 byte: Padding (optional)

TCP (1st column if “options” and “padding” were not used in the IP header; 2nd column otherwise)
34 – 35: 38 – 39: 2 bytes: Source Port
36 – 37: 40 – 41: 2 bytes: Destination Port
38 – 41: 42 – 45: 4 bytes: Sequence Number
42 – 45: 46 – 49: 4 bytes: Acknowledgement Number
46: 50: 1 byte: Header Length (4 bits e.g., 0x8: 8 words) + Reserved (4 bits: set to 0)
47: 51: 1 byte: Flags (CWR, ECE, URG, ACK, PSH, RST, SYN, FIN)
48 – 49: 52 – 53: 2 bytes: Receive Window Size (e.g., 0x01F5 for 501)
50 – 51: 54 – 55: 2 bytes: Checksum
52 – 53: 56 – 57: 2 bytes: Urgent Pointer (usually set to 0s if URG is not set)
54 – 73: 58 – 77: 20 bytes: Options (optional)
74 – ...: 78 – ...: Data (this field contains the Application header, if any)

UDP (1st column if the “options” and “padding” were not used in the IP header; 2nd column otherwise)
34 – 35: 38 – 39: 2 bytes: Source Port
36 – 37: 40 – 41: 2 bytes: Destination Port
38 – 39: 42 – 43: 2 bytes: Length
40 – 41: 44 – 45: 2 bytes: Checksum
42 – ...: 46 – ...: Data (this field contains the Application header, if any)

Table C.1. IP Packet Structure

D. Protocol References

XIII

XIV Appendix D. D. Protocol References

Acronym Protocol Name Reference
IPv4 Internet Protocol version 4 [84]

TCP Transfer Control Protocol [176]
MS WBT/RDP Microsoft Remote Display Protocol [122]
IPP Internet Printing Protocol [82]
IMAP Internet Message Access Protocol [76]
IMAPS IMAP over TLS [77]
HTTP Hypertext Transfer Protocol [68]
HTTPS HTTP over TLS [69]
SSH Secure Shell [171]
RTSP Real Time Streaming Protocol [151]
MYSQL MYSQL Protocol [124]
SMB Server Message Block [166]
MSNMS Microsoft Network Messenger Service [121]
XMPP Extensible Messaging and Presence Protocol [169]
TCP Sophos Anti-virus application packets [198]
URD URL Rendezvous Directory for SSM [183]
TCP No Payload TCP (headers only) control packets
NBSS NetBIOS Session Service [128]
Bit Torrent Bit Torrent Protocol [16]
IRC Internet Relay Chat Protocol [87]
NNTP Network News Transfer Protocol [131]
TELNET TELNET Protocol [180]
FTP File Transfer Protocol [54]
SMTP Simple Mail Transfer Protocol [167]
CVS Concurrent Versions System [35]
POP Post Office Protocol [138]
AIM AOL Instant Messenger [2]

UDP User Datagram Protocol [182]
DNS Domain Name Service [41]
CUPS Common UNIX Printing System [34]
IPSec Internet Protocol Security Protocol [83]
WHO Messages Produced by the Unix WHO Command [189]
XDMCP X Display Manager Control Protocol [196]
RTP Real-time Transport Protocol [150]
MS SQL Microsoft SQL Protocol [123]
NBDGM NetBIOS Datagram Service [126]
DCE_RPC Distributed Computing Environment/Remote Procedure Calls [38]
Bit Torrent Bit Torrent Protocol [16]
MDNS Multicast Domain Name Service [116]
Ganglia Distributed Monitoring System [55]
NBNS NetBIOS Name Service [127]
RIPv1 Routing Information Protocol [146]
HSRP Hot Standby Router Protocol [67]
DHCP Dynamic Host Configuration Protocol [40]
SNMP Single Network Management Protocol [168]
NTP Network Time Protocol [132]
SRVLOC Service Location Protocol [170]
SIP Session Initiation Protocol [165]

ICMP Internet Control Message Protocol [73]
IGMP Internet Group Management Protocol [74]
EIGRP Enhanced Interior Gateway Routing Protocol [48]

ARP Address Resolution Protocol [6]
RARP Reverse Address Resolution Protocol [142]
IPX Internet Packet Exchange [86]
IPv6 Internet Protocol version 6 [85]
STP Spanning Tree Protocol [173]
DTP Dynamic Trunking Protocol [43]

Table D.1. Protocol References

References

[1] L. Adamic, B. Huberman, A. L. Barabasi, R. Albert, H. Jeong, and G. Bianconi.
Power-Law Distribution of the World Wide Web. Science, 287(5461):2115a–,
2000.

[2] AIM. Aol instant messenger. http://dashboard.aim.com/aim.

[3] R. Albert, H. Jeong, and A. Barabasi. Internet: Diameter of the world-wide
web. Nature, 401:130–131, 9 September 1999.

[4] H. Anderson. Fixed Broadband Wireless System Design, page 338. Wiley, 2003.

[5] R. Antonello, S. Fernandes, D. Sadok, J. Kelner, and G. Szabo. Deterministic
finite automaton for scalable traffic identification: The power of compressing
by range. In Network Operations and Management Symposium (NOMS), 2012
IEEE, pages 155–162, 2012.

[6] ARP. Address resolution protocol. http://www.rfc-editor.org/rfc/
rfc826.txt.

[7] R. Axtell. Zipf distribution of u.s. firm sizes. Science Magazine, 293:1818–1820,
7 September 2001.

[8] C. Bacquet, A. Zincir-Heywood, and M. Heywood. Genetic optimization and
hierarchical clustering applied to encrypted traffic identification. In Computa-
tional Intelligence in Cyber Security (CICS), 2011 IEEE Symposium on, pages
194–201, 2011.

[9] J. Balthrop, S. Forrest, M. E. J. Newman, and M. Williamson. Technological
networks and the spread of computer viruses. Science Magazine, 304:527–529,
23 April 2004.

[10] A. Barabasi and R. Albert. Emergence of scaling in random networks. Science
Magazine, 286:509–512, 15 October 1999.

[11] E. Baykan, M. Henzinger, and I. Weber. Web page language identification based
on urls. In Proceedings of the VLDB Endowment, Auckland, New Zealand, 2008.

XV

http://dashboard.aim.com/aim
http://www.rfc-editor.org/rfc/rfc826.txt
http://www.rfc-editor.org/rfc/rfc826.txt

XVI References

[12] K. R. Beesley. Language identifier: A computer program for automatic natural-
language identification on on-line text. In Proceedings of the 29th Annual Con-
ference of the American Translators Association, pages 47–54, Seatle, Washing-
ton, 1998.

[13] L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule, and K. Salamatian. Traffic
classification on the fly. SIGCOMM Comput. Commun. Rev., 36(2):23–26, 2006.

[14] L. Bernaille, R. Teixeira, and K. Salamatian. Early application identification.
In Proceedings of CONEXT, 2006.

[15] R. Beverly. A robust classifier for passive tcp/ip fingerprinting. In Passive
and Active Network Measurement, volume 3015 of Lecture Notes in Computer
Science, pages 158–167. Springer Berlin Heidelberg, 2004.

[16] bittorrent.org. Bittorrent protocol specification. http://www.bittorrent.
org.

[17] K. Borders and A. Prakash. Web tap: Detecting covert web traffic. In In
Proceedings of the 11th ACM Conference on Computer and Communication
Security, pages 110–120, 2004.

[18] G. Botha, V. Zimu, and E. Barnard. Text-based language identification for the
south african languages. In Proceedings of the17th Annual Symposium of the
Pattern Recognition Association of South Africa, 2007.

[19] L. Breslau, P. Cue, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching
and zipf-like distributions: Evidence and implications. In In INFOCOM, pages
126–134, 1999.

[20] C. Brown, A. Cowperthwaite, and A. Hijazi. Analysis of the 1999 darpa/lin-
coln laboratory ids evaluation data with netadhict. In Proceedings of the IEEE
Second Symposium on Computational Intelligence for Security and Defense Ap-
plications, CISDA ’09, Ottawa, Canada, July 2009.

[21] J. Caballero, S. Venkataraman, P. Poosankam, M. Kang, D. Song, and A. Blum.
Fig: Automatic fingerprint generation. In Proc. 14th Ann. Network and Dis-
tributed System Security Symp. (NDSS), 2007.

[22] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson. Touching from a distance:
website fingerprinting attacks and defenses. In Proceedings of the 2012 ACM
conference on Computer and communications security, CCS ’12, pages 605–616,
New York, NY, USA, 2012. ACM.

[23] CAIDA. The cooperative association for internet data analysis. http://www.
caida.org.

http://www.bittorrent.org
http://www.bittorrent.org
http://www.caida.org
http://www.caida.org

References XVII

[24] W. Cavnar and J. Trenkle. N-gram-based text categorization. In Proceedings of
the 1994 Symposium on Document Analysis and Info Retrieval (SDAIR), pages
161–175, Las Vegas, NV, USA, 1994.

[25] N. Chater and G. Brown. Scale-invariance as a unifying psychological principle.
Elsevier Science, 69(3):B17–B24, 1999.

[26] T. Choi, C. Kim, S. Yoon, J. Park, B. Lee, H. Kim, and H. Chung. Content-
aware internet application traffic measurement and analysis. In Proceedings of
IEEE/IFIP NOMS, April 2004.

[27] B. Chun, J. Lee, H. Weatherspoon, and B. N. Chun. Netbait: a distributed
worm detection service. Technical report, Intel Research, 2002.

[28] Cisco. Cisco ios netflow. www.cisco.com/web/go/netflow.

[29] A. Clauset, C. Shalizi, and M. Newman. Power-law distributions in empirical
data. http://www.santafe.edu/~aaronc/powerlaws/.

[30] A. Clauset, C. Shalizi, and M. Newman. Power-law distributions in empirical
data. E-print: arXiv:0706.1062v1, 7 June 2007.

[31] G. Combs et al. Wireshark. http://www.wireshark.org, 2007.

[32] CoralReef. Traffic analysis tool by caida. http://www.caida.org/tools/
measurement/coralreef.

[33] C. Cunha, A. Bestavros, and M. Crovella. Characteristics of www client-based
traces. Technical report, Boston University, 1995.

[34] CUPS. Common unix printing system. http://www.cups.org/
documentation.php.

[35] CVS. Concurrent versions system. http://www.nongnu.org/cvs/.

[36] A. Dainotti, A. Pescape, and K. Claffy. Issues and future directions in traffic
classification. Network, IEEE, 26(1):35–40, 2012.

[37] M. Damashek. Gauging similarity with n-grams: Language independent cate-
gorization of text. Science Magazine, 267:843–848, 10 February 1995.

[38] DCE-RPC. Distributed computing environment - remote procedure calls.
http://www.samba-tng.org/docs/tng-arch/tng-arch05.html.

[39] F. Dehghani, N. Movahhedinia, M. Khayyambashi, and S. Kianian. Real-time
traffic classification based on statistical and payload content features. In Intel-
ligent Systems and Applications (ISA), 2010 2nd International Workshop on,
pages 1–4, 2010.

www.cisco.com/web/go/netflow
http://www.santafe.edu/~aaronc/powerlaws/
http://www.caida.org/tools/measurement/coralreef
http://www.caida.org/tools/measurement/coralreef
http://www.cups.org/documentation.php
http://www.cups.org/documentation.php
http://www.nongnu.org/cvs/
http://www.samba-tng.org/docs/tng-arch/tng-arch05.html

XVIII References

[40] DHCP. Dynamic host configuration protocol. http://www.ietf.org/rfc/
rfc2131.txt.

[41] DNS. Domain name service. http://www.ietf.org/rfc/rfc1035.txt.

[42] N. Draper and H. Smith. Applied Regression Analysis, page 245. Wiley-
Interscience, 1998.

[43] DTP. Dynamic trunking protocol. http://www.cisco.com.

[44] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification, 2nd ed.,
chapter Unsupervised Learning and Clustering. Wiley, 2001.

[45] T. Dunning. Statistical identification of language. Technical report, New Mexico
State University, 1994.

[46] M. Dusi, M. Crotti, F. Gringoli, and L. Salgarelli. Tunnel hunter: Detecting
application-layer tunnels with statistical fingerprinting. Computer Networks,
53(1):81 – 97, 2009.

[47] D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning about
a Highly Connected World. Cambridge University Press, 2010.

[48] EIGRP. Enhanced interior gateway routing protocol. http://www.cisco.
com/univercd/cc/td/doc/cisintwk/ito_doc/en_igrp.htm.

[49] EngCorpus. British national corpus. http://www.natcorp.ox.ac.uk/.

[50] J. Erman, M. Arlitt, and A. Mahanti. Traffic classification using clustering
algorithms. In Proceedings of ACM SIGCOMM MineNet Workshop, September
2006.

[51] J. Erman, A. Mahanti, M. Arlitt, I. Cohen, and C. Williamson. Offline/realtime
traffic calssification using semi-supervised learning. In In IFIP Perfermance,
October 2007.

[52] C. Estan, S. Savage, and G. Varghese. Automatically inferring patterns of
resource consumption in network traffic. In Proceedings of ACM SIGCOMM,
2003.

[53] FreCorpus. Monde diplomatique 1987-1997. http://www-a2k.is.
tokushima-u.ac.jp/member/kita/NLP/lex.html.

[54] FTP. File transfer protocol. http://www.ietf.org/rfc/rfc0959.txt.

[55] Ganglia. Distributed monitoring system. http://ganglia.sourceforge.
net/.

http://www.ietf.org/rfc/rfc2131.txt
http://www.ietf.org/rfc/rfc2131.txt
http://www.ietf.org/rfc/rfc1035.txt
http://www.cisco.com
http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/en_igrp.htm
http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/en_igrp.htm
http://www.natcorp.ox.ac.uk/
http://www-a2k.is.tokushima-u.ac.jp/member/kita/NLP/lex.html
http://www-a2k.is.tokushima-u.ac.jp/member/kita/NLP/lex.html
http://www.ietf.org/rfc/rfc0959.txt
http://ganglia.sourceforge.net/
http://ganglia.sourceforge.net/

References XIX

[56] M. Gebski, A. Penev, and R. K. Wong. Protocol identification of encrypted
network traffic. In IEEE / WIC / ACM International Conference on Web
Intelligence (WI 2006), Hong Kong, China, 2006.

[57] X. Gong, N. Kiyavash, and N. Borisov. Fingerprinting websites using remote
traffic analysis. In Proceedings of the 17th ACM conference on Computer and
communications security, CCS ’10, pages 684–686, New York, NY, USA, 2010.
ACM.

[58] L. Grothe, E. D. Luca, and A. Nurnberger. A comparative study on language
identification methods. In Proceedings of teh 6th International Language Re-
sources and Evaluation (LREC’08), Marrakech, Morocco, 2008.

[59] L. Q. Ha, P. Hanna, J. Ming, and F. Smith. Extending zipfï£¡s law to n-grams
for large english and chinese corpora. In Proceedings of International Conference
Cognitive Modeling in Linguistics, Sofia, Bulgaria, 2007.

[60] P. Haffner, S. Sen, O. Spatscheck, and D. Wang. Acas: automated construction
of application signatures. In Proceedings of the 2005 ACM SIGCOMM workshop
on Mining network data, MineNet ’05, pages 197–202, New York, NY, USA,
2005. ACM.

[61] J. Hakkinen and J. Tian. n-gram and decision tree based language identification
for written words. In Proceedings of workshop on Automatic Speech Recognition
and Understanding (ASRU ’01), 2001.

[62] T. Hastie, R. Tibshirani, and J. Friedman. Hierarchical Clustering, pages 520–
528. Springer, 2009.

[63] A. Hijazi, H. Inoue, A. Matrawy, P. van Oorschot, and A. Somayaji. Towards
understanding network traffic through whole packet analysis. Technical Report
TR-07-06, Carleton University, 2007.

[64] A. Hijazi, H. Inoue, A. Matrawy, P. van Oorschot, and A. Somayaji. Discovering
packet structure through lightweight hierarchical clustering. In Proceedings of
IEEE International Conference on Communications (ICC’08), Beijing, Chiina,
2008.

[65] A. Hijazi, H. Inoue, and A. Somayaji. Lightweight unsupervised hierarchical
network traffic clustering. In Workshop on Machine Learning in Adversarial
Environments for Computer Security (NIPS’07), Whistler, BC, Canada, 2007.

[66] T. Hill and P. Lewicki. Statistics methods and applications. http://www.
statsoft.com/textbook/, StatSoft, Tulsa, OK, 2007.

[67] HSRP. Hot standby router protocol. http://www.ietf.org/rfc/rfc2281.
txt.

http://www.statsoft.com/textbook/
http://www.statsoft.com/textbook/
http://www.ietf.org/rfc/rfc2281.txt
http://www.ietf.org/rfc/rfc2281.txt

XX References

[68] HTTP. Hypertext transfer protocol. http://www.ietf.org/rfc/rfc2616.
txt.

[69] HTTPS. Http over tls. http://www.ietf.org/rfc/rfc2818.txt.

[70] B. Huberman and L. Adamic. Internet: Growth dynamics of the world-wide
web. Nature, 401:131–132, 9 September 1999.

[71] B. Huberman, P. Pirolli, J. Pitkow, and R. Lukose. Strong regularities in world
wide web surfing. Science Magazine, 280:95–95, 3 April 1998.

[72] IANA. Internet assigned numbers authority. http://www.iana.org.

[73] ICMP. Internet control message protocol. http://www.ietf.org/rfc/
rfc792.txt.

[74] ICMP. Internet group management protocol. http://www.ietf.org/rfc/
rfc1112.txt.

[75] M. Iliofotou, P. Pappu, M. Faloutsos, M. Mitzenmacher, S. Singh, and G. Vargh-
ese. Network monitoring using traffic dispersion graphs. In ACM Internet
Measurement Conference (IMC’07), 2007.

[76] IMAP. Internet message access protocol. http://www.ietf.org/rfc/
rfc2060.txt.

[77] IMAPS. Imap over tls. http://tools.ietf.org/html/rfc2595.

[78] N. Ingle. A language identification table. The Incorporated Linguist, 15(4):98–
101, 1976.

[79] H. Inoue, A. Hijazi, and D. Jansens. Netadhict. http://www.ccsl.carleton.
ca/software.

[80] H. Inoue, D. Jansens, A. Hijazi, and A. Somayaji. NetADHICT: A tool for un-
derstanding network traffic. In Proceedings of the USENIX 21st Large Installa-
tion System Administration Conference (LISA’07), Dallas, TX, USA, November
2007.

[81] IPOQUE. Ipoque. http://www.ipoque.com/.

[82] IPP. Internet printing protocol. http://www.ietf.org/rfc/rfc2911.txt.

[83] IPSec. Internet protocol security protocol. http://rfc.net/rfc2401.html.

[84] IPv4. Internet protocol version 4. http://www.ietf.org/rfc/rfc0791.txt.

[85] IPv6. Internet protocol version 6. http://www.ietf.org/rfc/rfc2373.txt.

http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2818.txt
http://www.iana.org
http://www.ietf.org/rfc/rfc792.txt
http://www.ietf.org/rfc/rfc792.txt
http://www.ietf.org/rfc/rfc1112.txt
http://www.ietf.org/rfc/rfc1112.txt
http://www.ietf.org/rfc/rfc2060.txt
http://www.ietf.org/rfc/rfc2060.txt
http://tools.ietf.org/html/rfc2595
http://www.ccsl.carleton.ca/software
http://www.ccsl.carleton.ca/software
http://www.ipoque.com/
http://www.ietf.org/rfc/rfc2911.txt
http://rfc.net/rfc2401.html
http://www.ietf.org/rfc/rfc0791.txt
http://www.ietf.org/rfc/rfc2373.txt

References XXI

[86] IPX. Internet packet exchange. http://www.apps.ietf.org/rfc/rfc1132.
html.

[87] IRC. Internet relay chat protocol. http://www.ietf.org/rfc/rfc1459.
txt?number=1459.

[88] A. Jain, M. Murty, and P. Flynn. Data clustering: A review. ACM Computing
Surveys, 31(3):264–323, 1999.

[89] T. Karagiannis, A. Broido, N. Brownlee, K. Claffy, and M. Faloutsos. Is p2p dy-
ing or just hiding? In I. C. S. Press, editor, Proceedings of IEEE GLOBECOM,
Dallas, Texas, November 2004.

[90] T. Karagiannis, A. Broido, M. Faloutsos, and K. Claffy. Transport layer iden-
tification of p2p traffic. In ACM Internet Measurement Conference (IMC’04),
Taormina, Sicily, Italy, 2004.

[91] T. Karagiannis, K. Papagiannaki, and M. Faloutsos. Blinc: multilevel traffic
classification in the dark. In Proceedings of the 2005 conference on Applica-
tions, technologies, architectures, and protocols for computer communications,
SIGCOMM ’05, pages 229–240, New York, NY, USA, 2005. ACM.

[92] A. Kilgarriff. Frequency list of the british national corpus. http://www.
kilgarriff.co.uk/bnc-readme.html.

[93] H. Kim and B. Karp. Autograph: Toward Automated, Distributed Worm Sig-
nature Detection. In Proceedings of the 13th USENIX Security Symposium,
August 2004.

[94] G. Klass. Just Plain Data Analysis: Finding. Rowman and Littlefield Publish-
ers, 2008.

[95] C. Kreibich and J. Crowcroft. Honeycomb - Creating Intrusion Detection Sig-
natures Using Honeypots. In Proceedings of HOTNETS-II, 2003.

[96] P. Kumpulainen, K. HÃďtÃűnen, O. Knuuti, and T. Alapaholuoma. Internet
traffic clustering using packet header information. In Proceedings of the 14th
Joint International IMEKO TC1+TC7+TC13 Symposium, 2011.

[97] W. Leland, M. Taqq, W. Willinger, and D. Wilson. On the self-similar nature
of Ethernet traffic. In ACM SIGCOMM, pages 183–193, 1993.

[98] W. Leland, M. Taqqu, W. Willinger, and D. Wilson. On the self-similar nature
of ethernet traffic (extended version). IEEE/ACM Transactions on Networking,
2(1):1–15, 1994.

[99] W. Li. Zipf’s law everywhere. Glottometrics, 5:14–21, 2003.

http://www.apps.ietf.org/rfc/rfc1132.html
http://www.apps.ietf.org/rfc/rfc1132.html
http://www.ietf.org/rfc/rfc1459.txt?number=1459
http://www.ietf.org/rfc/rfc1459.txt?number=1459
http://www.kilgarriff.co.uk/bnc-readme.html
http://www.kilgarriff.co.uk/bnc-readme.html

XXII References

[100] W. Li, K. Wang, S. Stolfo, and B. Herzog. Fileprints: identifying file types by
n-gram analysis. In 6th IEEE Information Assurance Workshop, West Point,
NY, 2005.

[101] Z. Li, R. Yuan, and X. Guan. Accurate classification of the internet traffic
based on the svm method. In Proceedings of IEEE International Conference on
Communications (ICC’07), 2007.

[102] M. Liberatore and B. N. Levine. Inferring the source of encrypted http connec-
tions. In Proceedings of the 13th ACM conference on Computer and communi-
cations security, Alexandria, VA, 2006.

[103] Lincoln Laboratory, MIT. DARPA intrusion detection data sets,
2008. http://www.ll.mit.edu/mission/communications/ist/corpora/
ideval/data/index.html.

[104] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das. The 1999 darpa
off-line intrusion detection evaluation. Computer Networks, 34(4):579 – 595,
2000. Recent Advances in Intrusion Detection Systems.

[105] R.-T. Liu, N.-F. Huang, C.-N. Kao, and C.-H. Chen. A fast pattern matching
algorithm for network processor-based intrusion detection system. In Perfor-
mance, Computing, and Communications, 2004 IEEE International Conference
on, pages 271–275, 2004.

[106] W. Lu, G. Rammidi, and A. A. Ghorbani. Clustering botnet communication
traffic based on n-gram feature selection. Comput. Commun., 34(3):502–514,
Mar. 2011.

[107] J. Ma, K. Levchenko, C. Kreibich, S. Savage, and G. M. Voelker. Unexpected
means of protocol inference. In Proceedings of the 6th ACM SIGCOMM confer-
ence on Internet measurement, IMC ’06, pages 313–326, New York, NY, USA,
2006. ACM.

[108] R. Mahajan, S. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and S. Shenker.
Controlling High Bandwidth Aggregates in the Network. In ACM SIGCOMM
Computer Communications Review, July 2002.

[109] R. Mahajan, S. Floyd, and D. Wetherall. Controlling High Bandwidth flows
at the congested router. In Proceedings of the International Conference on
Network Protocols (ICNP’01), 2001.

[110] M. V. Mahoney and P. K. Chan. An analysis of the 1999 DARPA/Lincoln
Laboratory evaluation data for network anomaly detection. In Proceedings of
the Sixth International Symposium on Recent Advances in Intrusion Detection,
pages 220–237. Springer-Verlag, 2003.

http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/index.html
http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/index.html

References XXIII

[111] M. V. Mahoney and P. K. Chan. Learning rules for anomaly detection of hostile
network traffic. In Proceedings of the Third IEEE International Conference
on Data Mining, ICDM ’03, pages 601–, Washington, DC, USA, 2003. IEEE
Computer Society.

[112] B. Martins and M. J. Silva. Language identification in web pages. In Proceedings
of the 2005 ACM symposium on Applied computing, Santa Fe, New Mexico,
2005.

[113] A. Matrawy, P. van Oorschot, and A. Somayaji. Mitigating network denial-of-
service through diversity-based traffic management. In Applied Cryptography
and Network Security (ACNS’05). Springer, 2005.

[114] A. McGregor, M. Hall, P. Lorier, and J. Brunskill. Flow clustering using ma-
chine learning techniques. In In PAM, 2004.

[115] J. McHugh. Testing intrusion detection systems: a critique of the 1998 and
1999 DARPA intrusion detection system evaluations as performed by Lincoln
Laboratory. ACM Trans. Inf. Syst. Secur., 3(4):262–294, 2000.

[116] MDNS. Multicast domain name service. http://www.multicastdns.org/.

[117] M. Mitzenmacher. Editorial: The future of power law research. Internet Math-
ematics, 2(4):525–534, 2006.

[118] A. Moore and K. Papagiannaki. Toward the accurate identification of network
applications. In C. Dovrolis, editor, Passive and Active Network Measurement,
volume 3431 of Lecture Notes in Computer Science, pages 41–54. Springer Berlin
Heidelberg, 2005.

[119] A. W. Moore and D. Zuev. Internet traffic classification using bayesian analysis
techniques. In Proceedings of ACM SIGMETRICS, 2005.

[120] MRTG. Multi router traffic grapher (mrtg). http://oss.oetiker.ch/mrtg/.

[121] MSNMS. Microsoft network messenger service. http://messenger.msn.com.

[122] MSRDP. Microsoft remote display protocol. http://support.microsoft.
com/default.aspx?scid=kb;EN-US;q186607.

[123] MSSQL. Microsoft sql protocol. http://www.microsoft.com/sql/default.
mspx.

[124] MySQL. Mysql protocol. http://www.redferni.uklinux.net/mysql/
MySQL-Protocol.html.

http://www.multicastdns.org/
http://oss.oetiker.ch/mrtg/
http://messenger.msn.com
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q186607
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q186607
http://www.microsoft.com/sql/default.mspx
http://www.microsoft.com/sql/default.mspx
http://www.redferni.uklinux.net/mysql/MySQL-Protocol.html
http://www.redferni.uklinux.net/mysql/MySQL-Protocol.html

XXIV References

[125] Z. Nascimento, D. Sadok, and S. Fernandes. A hybrid model for network traffic
identification based on association rules and self-organizing maps (som). In
ICNS 2013, The Ninth International Conference on Networking and Services,
2013.

[126] NBDGM. Netbios datagram service. http://rfc.net/rfc1001.html.

[127] NBNS. Netbios name service. http://rfc.net/rfc1001.html.

[128] NBSS. Netbios session service. http://www.keyfocus.net/kfsensor/help/
AdminGuide/adm_NBT.php.

[129] M. Newman. Power laws, pareto distribution and zipf’s law. Contemporary
Physics, 46(5):323–351, 2005.

[130] T. Nguyen and G. Armitage. A survey of techniques for internet traffic clas-
sification using machine learning. Communications Surveys Tutorials, IEEE,
10(4):56 –76, quarter 2008.

[131] NNTP. Network news transfer protocol. http://www.faqs.org/rfcs/
rfc977.html.

[132] NTP. Network time protocol. http://www.faqs.org/rfcs/rfc1305.html.

[133] D. Pack, W. Streilein, S. Webster, and R. Cunningham. Detecting http tunnel-
ing activities. In in 2002 IEEE, Workshop on Information Assurance,. 2002.
United States Military Academy, West Point, NY: IEEE, 2002.

[134] V. Paxson. Bro: a system for detecting network intruders in real-time. Com-
puter networks, 31(23):2435–2463, 1999.

[135] V. Paxson and S. Floyd. Wide area traffic: the failure of Poisson modeling.
IEEE/ACM Transactions on Networking, 3(3):226–244, 1995.

[136] P. Piskac and J. Novotny. Using of time characteristics in data flow for traffic
classification. In I. Chrisment, A. Couch, R. Badonnel, and M. Waldburger, edi-
tors, Managing the Dynamics of Networks and Services, volume 6734 of Lecture
Notes in Computer Science, pages 173–176. Springer Berlin Heidelberg, 2011.

[137] D. Plonka. A network traffic flow reporting and visualization tool. In
Proceedings of USENIX Large Installation System Administration Conference
(LISA’00), 2000.

[138] POP. Post office protocol. http://www.ietf.org/rfc/rfc1939.txt.

[139] L. Portnoy, E. Eskin, and S. Stolfo. Intrusion detection with unlabeled data
using clustering. In In Proceedings of ACM CSS Workshop on Data Mining
Applied to Security (DMSA-2001), pages 5–8, 2001.

http://rfc.net/rfc1001.html
http://rfc.net/rfc1001.html
http://www.keyfocus.net/kfsensor/help/AdminGuide/adm_NBT.php
http://www.keyfocus.net/kfsensor/help/AdminGuide/adm_NBT.php
http://www.faqs.org/rfcs/rfc977.html
http://www.faqs.org/rfcs/rfc977.html
http://www.faqs.org/rfcs/rfc1305.html
http://www.ietf.org/rfc/rfc1939.txt

References XXV

[140] A. Poutsma. Applying monte carlo techniques to language identification. In
In Proceedings of Computational Linguistics in the Netherlands (CLIN, pages
179–189. Rodopi, 2001.

[141] J. Prager. Linguini: Language identification for multilingual documents. In
Proceedings of The 32nd Annual Hawaii International Conference on System
Sciences, 1999.

[142] RARP. Reverse address resolution protocol. http://www.ietf.org/rfc/
rfc903.txt.

[143] W. Reed. The pareto, zipf and other power laws. Economics Letters, 74:15–19,
2001.

[144] RFC. A standard for the transmission of ip datagrams over e. http://tools.
ietf.org/html/rfc879.

[145] RFC. The tcp maximum segment size and related topics. http://tools.
ietf.org/html/rfc879.

[146] RIPv1. Routing information protocol. http://www.faqs.org/rfcs/
rfc1058.html.

[147] M. Roesch et al. Snort-lightweight intrusion detection for networks. In Proceed-
ings of the 13th USENIX conference on System administration, pages 229–238.
Seattle, Washington, 1999.

[148] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield. Class-of-service mapping
for qos: a statistical signature-based approach to ip traffic classification. In
Proceedings of the 4th ACM SIGCOMM conference on Internet measurement,
pages 135 – 148, 2004.

[149] R. Rousseau. George kingsley zipf: life, ideas, his law and informetrics. Glot-
tometrics, 3:11–18, 2002.

[150] RTP. Real-time transport protocol. http://www.ietf.org/rfc/rfc3550.
txt.

[151] RTSP. Real time streaming protocol. http://www.rtsp.org/.

[152] V. V. S. and S. Bressan. Continuous-learning weighted-trigram approach for
indonesian language distinction: A preliminary study. In In Proceedings of 19th
International Conference on Computer Processing of Oriental Languages, 2001.

[153] Sandvine. Sandvine’s network data analytics. http://www.sandvine.com/
products/network_data_analytics.asp.

http://www.ietf.org/rfc/rfc903.txt
http://www.ietf.org/rfc/rfc903.txt
http://tools.ietf.org/html/rfc879
http://tools.ietf.org/html/rfc879
http://tools.ietf.org/html/rfc879
http://tools.ietf.org/html/rfc879
http://www.faqs.org/rfcs/rfc1058.html
http://www.faqs.org/rfcs/rfc1058.html
http://www.ietf.org/rfc/rfc3550.txt
http://www.ietf.org/rfc/rfc3550.txt
http://www.rtsp.org/
http://www.sandvine.com/products/network_data_analytics.asp
http://www.sandvine.com/products/network_data_analytics.asp

XXVI References

[154] H. Schulze and K. Mochalski. Internet study 2008/2009. Technical report,
ipoque, 2009.

[155] S. Sen, O. Spatscheck, and D. Want. Accurate, scalable in-network identifi-
cation of p2p traffic using application signatures. In Proceedings of the 13th
International World Wide Web (WWW) Conference, May 2004.

[156] C. E. Shannon. A mathematical theory of communication. The Bell System
Technical Journal, pages 27: 379–423, 623–656, 1948.

[157] T.-F. Sheu, N.-F. Huang, and H.-P. Lee. A novel hierarchical matching algo-
rithm for intrusion detection systems. In Global Telecommunications Confer-
ence, 2005. GLOBECOM ’05. IEEE, volume 3, pages 5 pp.–, 2005.

[158] T.-F. Sheu, N.-F. Huang, and H.-P. Lee. In-depth packet inspection using a
hierarchical pattern matching algorithm. Dependable and Secure Computing,
IEEE Transactions on, 7(2):175–188, 2010.

[159] A. Shrivastav and A. Tiwari. Network traffic classification using semi-supervised
approach. In Machine Learning and Computing (ICMLC), 2010 Second Inter-
national Conference on, pages 345–349, 2010.

[160] G. Shu and D. Lee. A formal methodology for network protocol fingerprint-
ing. Parallel and Distributed Systems, IEEE Transactions on, 22(11):1813–
1825, 2011.

[161] P. Sibun and J. C. Reynar. Language identification: Examining the issues.
In Proceedings of the 5th Annual Symposium on Document Analysis and Info
Retrieval (SDAIR), 1996.

[162] S. Singh, C. Estan, G. Varghese, and S. Savage. The EarlyBird System for Real-
time Detection of Unknown Worms. Technical report - cs2003-0761, UCSD,
2003.

[163] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated Worm Fingerprint-
ing. In Proceedings of 6th USENIX Symposium on Operating Systems Design
and Implementation (OSDI’04), December 2004.

[164] R. Sinha, C. Papadopoulos, and J. Heidemann. Internet packet size distribu-
tions: Some observations. Technical Report ISI-TR-2007-643, USC/Informa-
tion Sciences Institute, May 2007. Orignally released October 2005 as web page
http://netweb.usc.edu/~rsinha/pkt-sizes/.

[165] SIP. Session initiation protocol. http://www.ietf.org/rfc/rfc3261.txt.

[166] SMB. Server message block. http://samba.anu.edu.au/cifs/docs/
what-is-smb.html.

http://netweb.usc.edu/~rsinha/pkt-sizes/
http://www.ietf.org/rfc/rfc3261.txt
http://samba.anu.edu.au/cifs/docs/what-is-smb.html
http://samba.anu.edu.au/cifs/docs/what-is-smb.html

References XXVII

[167] SMTP. Simple mail transfer protocol. http://www.faqs.org/rfcs/rfc821.
html.

[168] SNMP. Single network management protocol. http://www.faqs.org/rfcs/
rfc1157.html.

[169] Sophos. Anti-virus application packets. http://www.sophos.com/.

[170] SRVLOC. Service location protocol. http://tools.ietf.org/html/
rfc2608.

[171] SSH. Secure shell. http://www.ietf.org/rfc/rfc4252.txt.

[172] S. Stolfo, K. Wang, and W. Li. Towards stealthy malware detection. Advances
in information security, 27:231–249, 2007.

[173] STP. Spanning tree potocol. http://www.rfc-editor.org/rfc/rfc4318.
txt.

[174] Q. Sun, D. Simon, Y. Wang, W. Russell, V. N. Padmanabhan, and L. Qiu.
Statistical identification of encrypted web browsing traffic. In Proceedings of
IEEE Symposium on Security and Privacy, Oakland, California, USA, 2002.

[175] G. Szabó, J. Szüle, Z. Turányi, and G. Pongrácz. Multi-level machine learning
traffic classification system. In ICN 2012, The Eleventh International Confer-
ence on Networks, pages 69–77, 2012.

[176] TCP. Transfer control protocol. http://www.apps.ietf.org/rfc/rfc793.
html.

[177] A. Technologies. A measurement company. http://www.agilent.ca/.

[178] A. Technologies. Mixed packet size throughput. Technical report, Agilent
Technologies, 2001. Released as white-paper on the web. PDF file: 1MxdP-
ktSzThroughput.pdf.

[179] F. Tegeler, X. Fu, G. Vigna, and C. Kruegel. Botfinder: finding bots in network
traffic without deep packet inspection. In Proceedings of the 8th international
conference on Emerging networking experiments and technologies, CoNEXT ’12,
pages 349–360, New York, NY, USA, 2012. ACM.

[180] TELNET. Telnet protocol. http://www.ietf.org/rfc/rfc0854.txt.

[181] N. Tuck, T. Sherwood, B. Calder, and G. Varghese. Deterministic memory-
efficient string matching algorithms for intrusion detection. In INFOCOM 2004.
Twenty-third AnnualJoint Conference of the IEEE Computer and Communica-
tions Societies, volume 4, pages 2628–2639 vol.4, 2004.

http://www.faqs.org/rfcs/rfc821.html
http://www.faqs.org/rfcs/rfc821.html
http://www.faqs.org/rfcs/rfc1157.html
http://www.faqs.org/rfcs/rfc1157.html
http://www.sophos.com/
http://tools.ietf.org/html/rfc2608
http://tools.ietf.org/html/rfc2608
http://www.ietf.org/rfc/rfc4252.txt
http://www.rfc-editor.org/rfc/rfc4318.txt
http://www.rfc-editor.org/rfc/rfc4318.txt
http://www.apps.ietf.org/rfc/rfc793.html
http://www.apps.ietf.org/rfc/rfc793.html
http://www.agilent.ca/
http://www.ietf.org/rfc/rfc0854.txt

XXVIII References

[182] UDP. User datagram protocol. http://www.ietf.org/rfc/rfc0768.txt.

[183] URD. Url rendezvous directory for ssm. http://newsroom.cisco.com/dlls/
fspnisapi5992.html.

[184] J. Veronis. French word frequency list. http://www.up.univ-mrs.fr/
~veronis/data/DiploFreq.ZIP.

[185] K. Wang, G. Cretu, and S. Stolfo. Anomalous payload-based worm detection
and signature generation. In Proceedings of the Eighth International Symposium
on Recent Advances in Intrusion Detection (RAID’05), 2005.

[186] K. Wang, J. Parekh, and S. Stolfo. Anagram: A content anomaly detector re-
sistant to mimicry attack. In Proceedings of the ninth International Symposium
on Recent Advances in Intrusion Detection (RAID’06), 2006.

[187] K. Wang and S. Stolfo. Anomalous payload-based network intrusion detection.
In In Proceedings of the Seventh International Symposium on Recent Advance
in Intrusion Detection (RAID’04), 2004.

[188] Y. Wang, Y. Xiang, J. Zhang, and S. Yu. Internet traffic clustering with
constraints. In Wireless Communications and Mobile Computing Conference
(IWCMC), 2012 8th International, pages 619–624, 2012.

[189] WHO. Messages produced by the unix who command. http://en.
wikipedia.org/wiki/Who_(Unix).

[190] N. Williams, S. Zander, and G. Armitage. A Preliminary Performance Compar-
ison of Five Machine Learning Algorithms for Practical IP Traffic Flow Classi-
fication. ACM SIGCOMM Computer Communications Review, October 2006.

[191] C. Williamson. Internet traffic measurement. IEEE Internet Computing,
5(6):70–74, November 2001.

[192] R. S. Wong, T.-S. Moh, and M. Moh. Efficient semi-supervised learning bit-
torrent traffic detection - an extended summary. In Proceedings of the 13th in-
ternational conference on Distributed Computing and Networking, ICDCN’12,
pages 540–543, Berlin, Heidelberg, 2012. Springer-Verlag.

[193] C. Wright, L. Ballard, F. Monrose, and G. Masson. Language identification of
encrypted voip traffic: Alejandra y roberto or alice and bob? In Proceedings of
the 16th Annual USENIX Security Symposium, Boston, MA, 2007.

[194] C. Wright, F. Monrose, and G. Masson. On inferring application protocol
behaviors in encrypted network traffic. Journal of Machine Learning Research,
pages 6: 2745–2769, 2006.

http://www.ietf.org/rfc/rfc0768.txt
http://newsroom.cisco.com/dlls/fspnisapi5992.html
http://newsroom.cisco.com/dlls/fspnisapi5992.html
http://www.up.univ-mrs.fr/~veronis/data/DiploFreq.ZIP
http://www.up.univ-mrs.fr/~veronis/data/DiploFreq.ZIP
http://en.wikipedia.org/wiki/Who_(Unix)
http://en.wikipedia.org/wiki/Who_(Unix)

References XXIX

[195] C. Wright, F. Monrose, and G. Masson. Using visual motifs to classify encrypted
traffic. In Proceedings of the 3rd international workshop on Visualization for
computer security (VizSEC’06, New York, NY, USA, 2006.

[196] XDMCP. X display manager control protocol. http://www.xfree86.org/
current/xdmcp.pdf.

[197] K. Xinidis, I. Charitakis, S. Antonatos, K. Anagnostakis, and E. Markatos. An
active splitter architecture for intrusion detection and prevention. Dependable
and Secure Computing, IEEE Transactions on, 3(1):31–44, Jan.-March 2006.

[198] XMPP. Extensible messaging and presence protocol. http://www.xmpp.org/
specs/.

[199] S. Zander, T. Nguyen, and G. Armitage. Self-learning ip traffic classification
based on statistical flow characteristics. In In PAM, 2004.

[200] S. Zander, T. Nguyen, and G. Armitage. Automated traffic classification and
application identification using machine learning. In Proceedings of IEEE LCN,
2005.

[201] J. Zhang, R. Perdisci, W. Lee, U. Sarfraz, and X. Luo. Detecting stealthy
p2p botnets using statistical traffic fingerprints. In Dependable Systems Net-
works (DSN), 2011 IEEE/IFIP 41st International Conference on, pages 121–
132, 2011.

[202] M. Zhang, H. Zhang, B. Zhang, and G. Lu. Encrypted traffic classification
based on an improved clustering algorithm. In Trustworthy Computing and
Services, pages 124–131. Springer, 2013.

[203] G. K. Zipf. The Psychobiology of Language. Houghton-Mifflin, 1935.

http://www.xfree86.org/current/xdmcp.pdf
http://www.xfree86.org/current/xdmcp.pdf
http://www.xmpp.org/specs/
http://www.xmpp.org/specs/

	Abstract
	Acknowledgment
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Packet Similarities
	(p,n)-grams
	Hypotheses
	Related Publications
	Independent and Collaborative Work
	Thesis Organization

	Background and Related Work
	Analyzing Traffic Using Ports and Flows
	Analyzing Traffic Using Payloads (Deep-Packet Inspection)
	Using n-grams Representation To Analyze Network Traffic

	Analyzing Traffic Using Behavior Information and Other Header Fields
	Characterizing Encrypted Traffic

	Analyzing Traffic Using Machine Learning and Statistical Analysis
	Protocol Fingerprinting
	Protocol Inference and Identification

	Our Work in Context

	Introducing ADHIC
	Rationale Behind ADHIC
	How ADHIC Works
	Introducing ADHIC Trees
	Traffic Clustering within the Tree
	Basic Tree Operations

	ADHIC Performance
	(p,n)-gram Representation
	Packet Sampling

	Clustering Network Traffic Using ADHIC
	Experimental Setup
	Datasets Description

	The Reference Classifier
	Parameter Settings

	An ADHIC Decision Tree
	ADHIC Training Time
	Header vs. payload (p,n)-grams
	Encrypted packets

	ADHIC vs. the Reference Classifier
	Testing ADHIC with Other Networks

	Monitoring Abnormal Traffic Using ADHIC
	Clustering without header information
	Clustering P2P traffic
	Synthetic Background Traffic: DARPA Dataset
	Traffic Distribution of LL Dataset
	Testing the LL Dataset with ADHIC
	Temporal Distribution of Traffic
	Distributions of (p,n)-grams
	Summary

	(p,n)-gram Characteristics in Network Traffic
	(p,n)-gram Characteristics
	Rapidly-Dropping-Off Frequency Distribution
	Capturing Differences in Protocol Structural Designs
	Mapping (p,n)-gram Characteristics with Applications

	Entropy as a Metric to Measure Content Similarity
	Entropy Model Definition
	Applying Entropy Model to Network Traffic

	Frequency Distributions of (p,n)-grams
	Experiments Procedure and Rationale
	Rapidly Dropping Off Distribution Behavior
	Empirical Analysis
	Different Sizes of n
	Our Default Size of n
	Different Trace Lengths
	Packet Sampling

	Pattern Capturing Using (p,n)-grams
	Semantic Meanings of Frequent (p,n)-grams
	ADHIC without header (p,n)-grams

	Protocol-Dependent Entropy Models
	Capturing Design Structures in Individual Protocols
	Offset Distribution Behaviors
	Frequency Distribution Behaviors
	Discussion

	Conceptual Model
	Rapidly Dropping Off Frequency Distribution
	Step 1: Identify the Main Different Types of Packet Contents
	Step 2: Compare the Sizes of Low and High Entropy Fields
	Conclusion

	Power-Law Behavior

	Concluding Remarks
	Contributions
	ADHIC for Traffic Clustering
	ADHIC for Traffic Monitoring
	Characteristic distributions of (p,n)-grams
	Fingerprinting with (p,n)-grams

	Limitations
	Future work

	Appendices
	A. Using Frequency Analysis in Natural Language Processing
	Advantages of using Frequency Analysis
	Language Identification and Text Categorization using n-grams

	B. Power-Law Distributions
	Zipf's Law
	Power-Laws: From Observations to Applications

	C. IP Packet Structure
	D. Protocol References
	References

