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Abstract

This thesis proposes a novel approach for determining behavior of safety-critical soft-

ware running on a distributed service-oriented message-passing microkernel. By reli-

ably learning software behavior, we can detect anomalous behavior in safety-critical

software at runtime with minimum overhead. We designed, implemented and eval-

uated an online anomaly detector for the QNX microkernel operating system. The

approach is based on previous work that found that software behavior can be deter-

mined via short sequences of the system calls they emit. We add to this the sequence

of message headers passed between processes on a per-thread basis. Our method was

evaluated on QNX self-driving car software and was shown to be powerful, efficient

and well-suited for safety-critical software running on embedded systems. We claim

that our system would enhance the reliability of safety-critical software by detecting

unexpected operational errors over the entire system, thus preventing damage and

potentially, loss of human life.

v



Acknowledgements

First, I would like to extend my gratitude to my supervisor and honest advisor in

every meaning of the word, Anil Somayaji. His patience, understanding, guidance

and care has given me the courage and the freedom to innovate in a way that best

suits the person that I am.

Second, I would like to thank everyone from the QNX family who contributed di-

rectly or indirectly to this work: Dan Dodge and Adam Mallory, for listening when no

one else did. Ronald Yu, for his direct contribution and support. Christopher Hobbs

and Patrick Lee from the Safety team for their invaluable advice and encouragement.

Gordon Bell and Ahmed Sobhy for their support in setting up the experiments. Brian

Stecher, Elad Lahav, you have taught me everything Kernel I know; thank you.

Yomna Abdelaziz, this thesis would not have been what it is without your metic-

ulous review that went above and beyond.

Lastly, to the most important people in my life, my family. My father Gamal

Alsharnouby, mother Shahira Elkharboutly and my sister, Zaza Elsharnouby whom

without, I would not have been where I am today. Your sacrifice is immeasurable.

Hafsah and Omar Alsharnouby, you are the reason I do everything I do, thank you

for believing in me and helping run all my experiments.

Yosra Abdelaziz, my best friend and wife, this thesis is dedicated to you. while(1)

printf("Thank you!\n");

vi



Chapter 1

Introduction

A safety-critical system is one that either directly or indirectly ensures the safety of its

operators and users. The correct function of these systems is critical and their failure

to mitigate or control a hazard could result in financial loss, injury, death, loss of vital

equipment or damage to the environment [5]. Safety-critical systems are pervasive in

our everyday lives, from microwave ovens to vehicles, planes, nuclear power stations,

medical and space systems. With our increasing dependence on such systems and

their growing complexity, safety-critical software is becoming much harder to develop

while ensuring its correctness and safety [48].

Safety-critical software failures could be catastrophic. The effects of such failures

are not only limited to its human operators and users but could extend to other

entities indirectly related to it. Due to the complexity of such systems, the processes

by which these systems are developed are quite complex and error prone. The input

and involvement from a variety of professionals with both general and domain-level

expertise is often required. Fundamental software engineering principles lie at the

heart of developing dependable safety-critical systems. From requirements gathering

and definition to verification, validation and certification, each of these processes is

a complex task in its own right. Selecting the right combination of these different

processes to meet the requirements and build reliable software in a cost-effective

manner is of the utmost importance [48].

Despite the highest level of standards used in developing safety critical systems,

runtime errors and bugs are never completely eliminated. Deficiencies in the software

development process usually get a fair share of the blame due several reasons in-

cluding incorrect or incomplete requirements, misleading specifications, poor design,

miscommunication between teams and insufficient quality assurance. No matter how

careful a safety-critical system is designed and developed, mistakes are made and er-

rors are introduced along the way. Software can be very fragile; attempts to fix errors
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in software can introduce other errors, and a simple unnoticed error could prove to

be disastrous and costly.

Over the past few decades, there has been many advancements in the methods

that aid the development of safety-critical software systems. Powerful techniques such

as mathematically proving the correctness of the software through formal verification,

using Modified Condition/Decision Coverage (MC/DC) exist for validating and test-

ing software. Similarly, advanced simulators are used to simulate an environment that

closely resembles the system’s operational environment. Nonetheless, as important

as each of the software-engineering methods are, handling and recovering from op-

erational errors is the hallmark of any system that is deemed reliable, safety-critical

and fault-tolerant. It is vital for a safety-critical system to have some form of error

detection and recovery capabilities to prevent latent software errors from becoming

faults and causing hazards [40]. Such systems are known as fault-tolerant systems

[5][32].

Several safety standards such as ISO-26262 for automotive functional safety and

DO-178C for airborne systems recommend the use of some form of anomaly detection

during the safety-critical system’s operational phase. Anomaly detectors would enable

a safety-critical system to detect errors and engage its fail-safe modes or other error

correction functions before errors become disastrous.

Our work focuses on detecting anomalous software processes in safety-critical op-

erating environments. We define anomalous behavior as one that deviates from the

expected, normal behavior of the system. We claim that such anomalies can be pow-

erful indicators of undesirable behavior that could potentially lead to a fault and

perhaps a catastrophic failure.

To the best of our knowledge, current research is lacking in defining system behav-

ior and hence, identifying misbehavior becomes problematic. Many works of research

use the term “behavior” to refer to a model of software behavior built using select

features. Those features would be ones that are believed to best represent how a

system or a component should be acting. This model is built by learning or watch-

ing the system run for a while. The model is then used to infer misbehavior in a

running system if its features do not match the expectation of the model or cross a

predetermined threshold. This is different from what we believe the behavior of a
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system should be defined as. Behavior cannot be defined by a set of features. This

is because the complexity of software and the unbounded amount of system states

that result from the interactions of all the system components make it very difficult

to assume and foresee a set of features by which a system’s behavior can be defined

by. It is highly unlikely that the selected features would be sufficiently representative

of a continuously evolving software. Rather, we define behavior as the way a process

interacts with the rest of the system from the kernel’s perspective. A process would be

unable to perform almost any function without interacting with other components,

for example, the kernel via system calls. This is further amplified in a microkernel-

based operating system, where a process has to not only interact with the microkernel

but with many other microservices for performing critical tasks.

Much of the fault-detection research work focuses on detecting anomalies from

individual component(s) that are elected to be most critical. Since most systems are

composed of highly interconnected components, we believe that in order to effectively

detect faults, the system should be monitored as a whole. Isolating specific processes

or components might distort the view of what is actually happening. This could result

in delaying an action that could have been taken at an earlier and more appropriate

stage and preventing an error from becoming a fault. Such a technique could prove to

be even more powerful on a message-passing microkernel where high interconnectivity

between its microservices is a core part of its design. An anomaly detector that

monitors the behavior of the entire system however, must have a negligible impact on

the system’s performance and its ability to fully achieve its functional requirements.

Using the safety-certified message-passing QNX microkernel, we implemented an

anomaly detector using a technique first proposed by Forrest et al. [26]: short-

sequences of system calls. Since most of the system calls on a QNX microkernel are

implemented using message passing, our anomaly detector builds behavioral profiles

for the system processes using short-sequences of system calls and messages passed

between a process and the kernel and between a processes and another. We leverage

the high interconnectivity and the distributed micro-architectural nature of processes

running on a message-passing microkernel to our advantage; the effects of a misbehav-

ing process can be quickly seen throughout the entire system. Using message-passing

microservices running on a microkernel, we can determine behavioral anomalies of
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the interconnected processes over the entire system and not just a single process or a

few data points. We believe that our technique is a powerful indicator of what normal

behavior should be and that it can be used as a detector of abnormal behavior with a

fair level of confidence. We take advantage of the fact that safety-critical software is

subjected to an excruciating level of testing and build behavioral profiles during the

verification phase. We also make the claim that our anomaly detector can be used

during the verification phase itself to detect missing tests as new software patches are

added to the product before it is shipped. Our solution is non-intrusive and is suitable

for embedded systems as it runs with very low CPU usage and memory footprints;

an average of 1.2% CPU usage and 4.5 MB of memory on a highly active self-driving

car system.

1.1 Contributions

This work presents an online, real-time anomaly detection mechanism for system-

wide behavioral anomaly detection. The detector is suitable for use on safety-critical

message-passing microkernels. This thesis makes the following contributions:

• A novel online anomaly detection method using short sequences of messages

emitted by individual processes’ threads. This work is an extension of the

previous work of building models using short-sequences of system calls emitted

by processes [67] and detects behavioral anomalies on a process thread-level.

The design, implementation details and validation of the proposed detection

method along with the framework for collecting the required traces at runtime

are described.

• A lean and efficient mechanism to extract the information we need from a

safety-critical microkernel is implemented.

• Real-life self-driving car technology is used to evaluate the effectiveness of our

methodology for its ability to detect true positives with very low false-positive

rates. We demonstrate that our solution can be used in an embedded environ-

ment to monitor all the processes in the system efficiently.
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1.2 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 outlines a high-level overview

of the software-engineering processes involved in developing fault-tolerant systems

along with the deficiencies found in the processes. This is followed by background

material on anomaly-detection for safety-critical systems including the anomaly de-

tector that this work is based on.

In Chapter 3 we argue our point-of-view for adopting behavioral-based anomaly

detection for safety-critical systems and explain the gap we found in the current

research. We also introduce the design guidelines we adopted for developing our

anomaly detector and the rationale behind them.

The design details of our implementation are explained in Chapter 4 followed by

an evaluation on a real production system in Chapter 5. Finally, Chapter 6 has the

discussion of the results, our conclusion and future work



Chapter 2

Background

2.1 Introduction to Safety-Critical Systems

2.1.1 Notorious Failures

Malfunction in safety-critical software can have severe consequences. Simple software

errors can have the most dire consequences. On the 4th of June, 1996, the European

heavy-lift launch vehicle Ariane 5 veered 90 degrees off course and exploded 37 seconds

after lift-off [78]. A 64-bit floating point to a 16-bit signed integer conversion error

caused the complete failure of its Inertial Reference System [78]. This resulted in

the loss of guidance and altitude information and the halt of the on-board flight

computers. Other errors could result in loss of human life and are easy to miss at

any of the stages of development process. A timing-based calculation error in a US

Patriot missile-defense system resulted in a failure to intercept a Scud missile. This

caused the miscalculation of the incoming Scud missile’s trajectory, killing 25 US

soldiers and injuring 97 on February 25, 1991 [30]. Errors could also occur during the

operation of the system due to a fault or deterioration of the hardware it depends

on. On Monday October 29 2018, a Boeing 737 MAX dove into the Java sea off the

coast of Indonesia, killing all 189 people on board [68]. The pilots on board failed

to deal with the misbehaving flight computer. Erroneous readings from one of the

plane’s Angle of Attack sensors [2][6] caused both the human and the computer pilots

to excessively point the plane’s nose downward to prevent the plane from what they

believed to be stalling. Errors could also be a result of misuse, or lack of training

and user manuals. On May 9th, 2015, Spanish ground workers installed new software

wiping out all the engine data on an Airbus A400M cargo and troop carrier. The

on-board software failed to warn the pilots of the missing data required to run the

engines. As a result, three of the four engines failed in mid-air, killing four crew

members [31]. Lastly, errors could be maliciously introduced in a system on purpose

6
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from individual or nation-state actors. Such errors are a result of failure to protect

and secure safety-critical systems. In the summer of 2015, two researchers were able

to remotely hijack and fully control an unaltered Jeep Cherokee while it was driving

on the highway, bringing it to a halt [56] [29]. This forced Chrysler to recall 1.4

million cars. Fortunately, the failure caused by the software error did not result in

loss of life or property. On a more catastrophic scale, Stuxnet, the cyber-warfare

malware was discovered in 2010. The malware targeted industrial control systems

(SCADA) causing substantial damage at Iranian nuclear power plants [47]. While no

one claimed responsibility, the malware is highly advanced and is believed to be an

act of war instigated by various nation states.

2.1.2 Properties of Safety-Critical Systems

NASA’s Safety Guidebook [5] considers software to be safety-critical if it falls under

one of these categories:

• Software that controls or monitors other safety-critical hardware or software.

• Software that provides information upon which safety-critical functions are re-

liant.

• Software that performs offline functions related to safety-critical software.

• Software that shares the same physical platform as safety-critical software.

Availability and reliability are two key components and the distinguishing factors

of safety-critical software. Unreliable software is one that fails to provide the correct

answer in a timely fashion as a result of any sort of error, be it a requirements

gathering error, a design error, a software bug or even faulty hardware. On the other

hand, software with an availability problem fails to provide the correct answer in a

timely fashion within the time period that the answer is required [32]. Hobbs, C.

in his book titled Embedded Software Development for Safety-Critical Systems [32],

uses the term “dependability” to describe both the availability and the reliability of

a system. We will use his definition and make no distinction between a reliable and

an available software but rather assume that both are required to keep the system

safe.
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A dependable system is one that never fails. Even though such a system might not

have been created yet, a system that has an extremely low probability of failure for its

intended purpose is deemed dependable. In reality, software systems would never be

free from errors and faults, but it becomes troublesome when errors or faults become

failures. The ANSI/IEEE standard defines a software error as “a software-related dis-

crepancy between a computer, observed, or measured value of condition and the true,

specified, or theoretically correct value of condition”. The International Federation

of Automatic Control (IFAC) SAFEPROCESS technical committee defines a fault

as “an unpermitted deviation of at least one characteristic property or parameter of

the system from the acceptable/usual/standard condition” [37]. They define a failure

as “a permanent interruption of a system’s ability to perform a required function un-

der specified operating conditions” [37]. An error can be introduced into code by a

software developer [32] or in the requirements gathered by a product manager. This

error might lead to a fault or it might go unnoticed. As an example, a memory leak

in code is an error, however, if the leak is small in a system that has a large amount

of available memory, that error might never transpire into a fault. On the contrary,

if this memory leak led to the exhaustion of system memory and the safety-critical

system came to a halt, resulting in the improper function of the system, thereby

causing unintended consequence, then this is considered a failure. Similarly, an error

does not necessarily become a failure. If an error changes the behavior of the system

in a way that is not noticeable to an outside observer of the system, then a failure

might never occur. For example, if the system memory management unit thrashes

and causes higher CPU usage, this results in a small delay in performing its tasks,

but not a failure.

2.1.3 The Software Engineering Process

Much of the software engineering processes specific to building safety-critical systems

are spread out across various stages of the development life cycle; be it before devel-

opment starts, during development and verification, or at the operational phase of

the software. Generally, the process usually starts with a high-level overview of what

is intended to be built; the marketing requirements. Following is a detailed require-

ments document that specifies the software requirements that must be delivered. An
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analysis of the risks and hazards involved in using the products is performed and

new safety requirements are created and added to the main software requirements

list. At this point, software designers and architects design the product based on the

requirements specified, producing yet a different set of high-level and detailed design

documents. System and software developers build the system based on the detailed

design before it is handed off to the verification team(s) to confirm that the system is

built correctly and matches the required specifications. Usually, an external auditor

verifies the compliance of the entire development life cycle to one or more certification

bodies before the safety-critical product can be deployed in the field.

Jet Propulsion Laboratory’s Lutz, R. describes in his report titled Software En-

gineering for Safety: A Roadmap [53], six key software-engineering areas he deems

important for the proper development of a safety-critical system: hazard analysis,

safety requirements specification and analysis, designing for safety, testing, certifica-

tion and standards, and resources. Each one of these points is a vast area of research

in the world of safety engineering. Some of this research is widely adopted in practice

and some is simply pure theory on paper.

Hazard and risk analysis lie at the heart of developing safe systems [53]. This

analysis identifies both the hazards and risks involved in operating the final system

being developed. This phase is particularly important since the entire project’s safety

requirements are derived from this analysis [32]. After identifying all hazards that

might result in a possible occurrence of an accident, i.e., risks [53] as a result of

using the product, risk mitigations are developed. The mitigations in-turn become

what is commonly known as safety requirements. The safety requirements generated

along with understanding how often and in what ways the system can possibly fail

(failure analysis) are the cornerstone of the well-structured legal argument as to why

the system is believed to be safe (the safety case) [32]. Safety requirements affect

the system’s requirements by defining the hazards that must be avoided and ones

that must be handled during the operation of the final product [53]. Safety analysis

techniques such as functional hazard assessment, fault tree analysis and failure mode

effects analysis are some of the most prominent and proven techniques in the field

[79]1. Tribble et al. conducted a safety analysis on a flight guidance system [79]. They

1This paper can also be found on NASA’s Technical Report Server
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stated that building a realistic model of the software that is accurate enough such

that it represents the true complex nature of the final product is one of the major

challenges that face safety analysis. They investigated the use of other techniques

such as using formal methods to validate requirements, model checking and theorem

proving, in addition to other well known traditional methods.

The design of safety-critical systems should be as simple as possible [40]. The

safety-critical software’s complexity and the complexity of its interfaces must be re-

duced to a minimum [5]. Several key software design elements exist when developing

software with safety in mind. Having functional safety boundaries where safety-

critical and non-safety critical software do not mix comes at the forefront. If the two

systems were to mix, sufficient analysis needs to be made to mitigate the risk of the

non-safety critical component affecting the safety-critical counterpart negatively [40].

Much of designing for safety has to do with the implementation process. Multiple

factors are taken into account, such as the choice of the software implementation

languages. Some languages may be prone to programmer error more than others, for

example, by allowing the programmer unfettered access to memory or having am-

biguous syntactical rules that lead to undefined behavior. Reducing code complexity

through eliminating concurrency problems is highly desirable [40]. Even though this

goal is difficult to achieve, it is possible to minimize concurrency as much as possi-

ble. Having an independent component that acts as a verifier to ensure the system

is behaving correctly and as safely as expected is considered good design [40]. Upon

discovery of an unsafe condition, the verifier takes the appropriate action to return

the system to a known safe state, also known as the Design-Safe state [5][32]. The

use of well studied and commonly practiced design methodologies such as structure

analysis, object-oriented analysis, or model-based development [5] are highly encour-

aged practices during the design phase. The security of a safety-critical system is

also considered during the design process. It has become quite apparent that en-

suring the safety-critical system is secure from intentional attacks is tightly-coupled

with its safety. Consider the Jeep attack [56] or Stuxnet[47]; the cyber-warfare mal-

ware that attacked industrial control systems at Iranian nuclear power plants causing

substantial damage [47]. The system’s security is paramount for its safety.

Other standard practices include but are not limited to: defensive programming
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habits such as validating inputs and outputs, unit and regression tests, static analy-

sis and other content management tools to ensure the code adheres to a pre-defined

set of rules, and having multiple independent inspectors review the code before it

is committed. Depending on the certifying authority, some of these practices are

highly desirable and some may be required. Aside from an exhaustive list of pro-

gramming best practices, NASA’s Software Safety Guidebook [5] states two software

development cardinal rules that are worth noting:

• No single event or action shall be allowed to initiate a potentially hazardous

event.

• When an unsafe condition or command is detected, the system shall:

– Inhibit the potentially hazardous event sequence.

– Initiate procedures or functions to bring the system to a predetermined

“safe” state.

Software specification is an immensely important subject. Failure to specify the

exact and correct software specification can lead to the development of the wrong

product or even worse, the development of a product that contains errors and be-

comes operational with the errors unnoticed. A system that is perfectly designed,

built and tested to idealistic standards can still contain errors if the system require-

ments are incorrect or contain errors [79]. Lutz et al. [52] show that most safety-

critical software errors are due to errors in software specification that lack the correct

requirements for the proper functioning of the system. After their analysis of the

errors occurring during the integration and system testing of the spacecrafts Voyager

and Galileo, they made recommendations that pointed to deficiencies in the require-

ments analysis. They deemed the requirements incomplete, lacking precision and

failing to identify safety-critical hazards early on. One recommendation was the use

of formal specification techniques in addition to natural human language to enable

teams to specify more accurate and complete requirements.

There is no doubt that the proper verification and testing of safety-critical systems

is one of the best ways to eliminate errors and improve software reliability. The role

of testing is critical to both safety-critical systems and their certification [53]. Faulty
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software that becomes operational must not have undergone enough testing [81]. The

purpose of software testing is to ensure the correctness of software in accordance

to both the system or software requirements as well as the safety requirements in

order to discover faults and eliminate failures as best as one possibly can. Testers

execute the final production system or component of a system in either a real or a

simulated environment, subjecting it to anomalous conditions in order to verify that

it exhibits the correct and specified behavior [5]. There are many pitfalls that a

verification team could fall into, including not properly understanding either or both

of the safety and non-safety requirements. These misinterpretations might lead to

the improper testing of requirements. Sometimes the testing error is subtle, such as

the failure to test boundary conditions that have coincidentally never been seen in

reality. At other times, a major software-critical functionality is missed during testing

2. Another pitfall is making invalid or incomplete assumptions about the operational

environment, the users or the operation of the software in the field [53]. Testing

various components individually is a lot less difficult than testing the entire system

when all the components are integrated together. The integration test team must

have a complete and accurate understanding of the expected overall system behavior,

its operational environment, and users. Verification teams usually go to great lengths

to simulate harsh environments, such as shooting the equipment with electron guns

to induce random bit flips or purposefully introducing faults into software via other

software through what is commonly known as Fault Injection Testing [32]. As Lutz,

R. puts it: ”It is infeasible to test a safety-critical system enough to quantify its

dependability” [53].

2.1.4 Emergent Behavior

Most sufficiently complex safety-critical systems are a result of several components

developed in isolation by different teams. If one were to assume that each individual

component was a perfectly functional unit in its own right, the same assumption can-

not be made about the final product when these components are integrated together.

Their aggregate is an entirely new system and the reliability of the final product does

2This is the author’s own opinion from having experienced such issues with several verification
teams
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not equal the sum of the reliability of each individual component. Even if we assume

that the individual components are built and verified to be flawless using perfect re-

quirements and specification, the final aggregate system may still fail [44]. To add to

this, it is very difficult to find a system, be it safety-critical or not, where every single

component is built from scratch. Component reuse is a fact of life. The assumption

that because a component was deemed reliable in the past, it will be equally reli-

able when used in a different system, is a fallacy that many designers and quality

assurance engineers fall into. Langer et al. state that the test coverage of integration

tests as commonly practiced are far smaller compared to individual module tests,

even though new interactions arise when combining the individual modules together,

resulting in far more combinations that having a standalone module [46]. The end

product, running in its own environment, might exhibit new behaviors that were not

accounted for during the system’s design. New errors and faults might be activated

as a result of environmental factors, faulty hardware or having the system pushed

more towards its theoretical limits in a way that was not verified in the lab.

2.1.5 Fault Tolerance and Redundancy

Having multiple different components in a safety-critical system that perform the

same function increases redundancy. These components could be identical copies of

each other’s implementation (in hardware, software or both) or they could be com-

pletely different but nevertheless perform the same function. These components could

operate in parallel, for example by voting on a specific output, or they could be act-

ing as backups, waiting to step in, in case of the primary component’s failure. A

high-level redundancy design coupled with a robust fault diagnosis scheme would be

required to ensure that safety-critical systems can meet the stringent safety require-

ments of aircraft operations[35]. Analytical redundancy, in which two or more ways

are used to determine a value or a variable is more effective compared to hardware

redundancy but it is more challenging. This is further divided into quantitative model

and qualitative model-based methods [37]. Sometimes constraints, be they physical,

such as weight or size, financial, or even power consumption limitations, prohibit the

inclusion of redundant systems. Such systems might not be considered as reliable or

as safe [20]. This further increases the need to have anomaly-based error detection
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as a core component in safety systems. If faults can be detected at runtime and

the appropriate action taken in a timely manner, the system’s correct function and

performance would be ensured in both the absence and presence of faults, thereby

increasing its reliability [35].

Runtime anomaly detection is not but one of the several fault tolerance techniques

in common use. Software Fault Prediction (SFP) uses machine learning techniques to

build models that can be used to predict potential and fault prone software modules in

the early stages of the development life cycle, before deployment [54]. Engineers can

then direct their efforts towards the software modules with the highest fault prediction

results, by for example, directing their testing efforts to these modules in case the

verification resources are scarce. Another technique is N-Version programming, in

which multiple versions of the same software are independently developed [5]. All

versions are run in parallel and perform the same computation. A mismatching output

could mean that a fault has occurred in one of the modules and several techniques

exist to resolve the conflict, such as majority voting. This allows the components to

vote on the correct answer and isolate the faulty module [58]. Another technique is

Lockstepping, which involves running software or hardware in tandem, synchronous

operations. It is a highly regarded fault-tolerance technique. The use of hypervisor-

based methods to implement virtual lockstepping is suggested by Jeffery et al. [39]

and Iturbe et al. propose adding an additional CPU core to ARM’s Cotex-R5 Dual-

Core Lock-Step solution to enhance the system’s fail safe functions and increase its

reliability [38].

Fault-Containment Regions are areas on the system to isolate safety and non-

safety critical components. Their main purpose is to prevent faults from migrating

between the different critical regions [5]. Errors that develop in the fault-contained

regions must be detected and isolated by error detection mechanisms and prevented

from knocking out other critical functions [43]. This is a critical fault-tolerance tech-

nique especially in systems where safety and non-safety critical components might

run side by side and improves the safety-argument of validating such mixing [43].

Another common technique that increases the fault tolerance of a safety-critical

system is the use of a high-assurance backup system [14]. In case of a failure in the pri-

mary functional module, a more trimmed-down, highly trusted backup system takes
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control. This backup system does not provide the same functionality as the primary

system. Its only task is to ensure the operational safety of the system until the fail-

ure conditions are removed. Essentially, the backup system provides a trimmed-down,

baseline functionality. Simplex architecture is a famous fault-tolerance architecture

used in this field [5]. Seto et al. [64] describe the architecture in detail and propose

using it as a fail-safe mechanism for upgrading safety-critical controller software. Bak

et al. [12] propose a system-level Simplex architecture which provides operational

guarantees for both the critical software as well as the hardware it is running on.

2.2 Anomaly Detection for Fault Tolerance and Error Detection

A common technique for achieving fault-tolerance is by using various anomaly de-

tection methods [32]. Fault-detection and isolation, in which anomaly detection falls

under, spans multiple disciplines such as chemical, nuclear and aerospace engineer-

ing [35]. Chandola et al. [19] conducted an extensive literature survey on the various

anomaly detection methods and their uses and a survey of fault detection methods was

presented in [60]. The IEEE Standard Glossary of Software Engineering Terminology

[4] partly defines a fault as “an incorrect step, process or data definition in a com-

puter program”. As per the standard, the terms “error” and “bug” are synonymous.

The standard also defines fault-tolerance as “the ability of a system or component to

continue normal operation despite the presence of hardware or software-faults”.

Anomalies can be classified in two categories; point anomalies and contextual

anomalies [19][32]. Anomalies in specific data points that are outliers with respect to

the rest of the data are known as point anomalies. Point anomalies are anomalous

no matter what the circumstance or the context is. Most of the anomaly detection

research is directed towards detecting point anomalies [19]. On the other hand, if

the surrounding conditions or context is taken into consideration, this is referred to

as a contextual anomaly. Contextual anomaly detectors rely on both behavioral and

contextual attributes in order to detect anomalous behavior [19].

Compared to security-centric anomaly detection, the prevalence of literature on
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online 3 anomaly detection for safety-critical operating systems or safety-critical soft-

ware from a safety perspective is sparse. This indicates to us the lack of popular-

ity of anomaly-detection based techniques for fault-tolerance and error detection in

safety-critical operating systems. For our literature review we sampled many common

anomaly detection techniques for fault tolerance and referenced one or two from each

of the categories. We tried to reference literature with a high citation count, but

this was not always possible. Our main focus was similar work to ours that utilized

the underlying operating system and paid particular attention to the types of data

collected to build the behavioral model(s). Nevertheless, other detectors, such as

hardware module based detectors were included in our review.

Anomaly detectors can either be online or offline. Online anomaly detectors build

a model they believe best represents the system’s behavior from various predetermined

sources during the system’s execution. This model is continuously updated with the

runtime data as the system is executing, using efficient online algorithms [42]. Once

the model is ready for use, online detectors determine anomalies and raise alarms

during the system’s runtime. On the other hand, offline detectors require all the

data generated during the system’s execution to be presently available in order to

build their models and detect anomalies. Offline detectors have the advantage of

executing on machines that are more powerful than the typical low to moderate

power embedded systems. An example of one such system is Signal Processing for

Trace Analysis, SiPTA [83]. SiPTA extracts a set of predetermined event types after

the entire event trace data has been collected from a live system. These events are

then modeled as signals and represent the system’s normal or correct operational

behavior. This model is then fed into a signal-processing algorithm to further extract

its periodic features after which various scores are assigned to each. During detection

time (offline), a binary classifier is used to determine if a score associated with the

data traces is anomalous or benign compared to scores generated from the model of

normal behavior.

Salem et al. [63] presented another offline behavioral anomaly detector to analyze

discrete process event trace data generated by a kernel. Their work relies on the fact

that embedded systems typically have recurrent behavior. They propose a technique,

3Versus offline anomaly-detection
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inter-arrival curves, which is based on arrival-curves to extract high-level features

and build a training model. The model uses the upper and lower bounds to the

number of events that can occur within a specified time period to represent system

behavior. During the training phase, event curves are generated per trace and then

aggregated to provide input into a two-stage curve classifier that detects and measures

the deviation from the training model. During testing time (offline), the inter-arrival

curves from the trace data are generated and the classifier is used to detect whether

the traces are anomalous.

Offline detectors are not suitable for all use cases; they suffer from some issues

that might make them less ideal than their online counterpart. They require an

extensive amount of data from previously executed system runs which might not be

feasible in some use cases, especially those where the operating environment of the

system changes frequently. Some offline detectors run post-mortem (after the system

has finished execution), or remotely, on a different machine. This is another major

limiting factor as it prohibits them from raising alarms as bugs occur in real time

[24]. Raising alarms as bugs occur in real time is necessary for detecting anomalies

before they become major failures. Offline systems usually do not have the flexibility

of updating their models on-the-fly, at runtime, if new system behavior needs to be

incorporated in its model of normal behavior.

Much of the literature on anomaly detection for safety-critical systems revolves

around error detection in data collected from hardware components such as sensors

and other key system components. This data is usually collected non-invasively, using

components external to the core system or via embedded event tracing facilities. A

model is built and different methods are then used to analyze the model and detect

outliers or events that do not conform to the general pattern in the model. Gosh

et al. [28] built a finite state automaton-based model to represent the behavior of

Programmable Logic Controllers (PLC) used in manufacturing control. They use

simple events, such as the boolean status of signals. The model, which is a simple set

of state transition rules, is built using captured data from what they believe to be a

fault-free manufacturing system. At runtime, the model is used to detect two types

of behavioral anomalies: errors occurring in state transitions and errors that occur in

the duration of those transitions. Chen et al. [20] developed a hardware module that
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detects anomalies in unmanned aerial vehicles at runtime. Their anomaly detector

is based on the common supervised learning algorithm, least-squares support vector

machine (LS-SVM). They use LS-SVM to predict and classify flight data generated

from key sensors and components into anomalous and normal groups at runtime.

Liu et al. pre-process continuous and discrete flight data then convert them into

discrete sequences [49]. Each sequence is further divided into smaller subsequences

upon which variable length n-grams are obtained. The Unique n-grams are identified

and used as the feature space for the training data-set. Each subsequence is an input

feature vector to a one-class Support Vector Machine (SVM). The learnt classifier is

then used to detect anomalous flight data in realtime.

Bovenzi et al. propose using online statistical analysis at an OS level to detect

anomalous user-level processes. Their solution does not have a training or profiling

phase to understand how the system is expected to behave. They use indicators such

as system call errors, disk I/O timeouts, process scheduling delays and time to acquire

semaphores [15]. The indicators are collected at regular intervals and the time series

is analyzed for anomalies based on the computation of upper and lower thresholds.

Suspicious changes in the features of their model are considered to be a result of a

fault activation. They base their analysis on injected faults at runtime and show that

their algorithm can detect the breach of their calculated upper and lower threshold

ranges (as well as global threshold). They then assume that this “anomaly” is a result

of an activation of a fault and is not part of the normal system behavior.

Several operating system reliability techniques are based on detecting system

hangs or delays, be it the operating system or applications running atop. These

methods are often concerned with the liveness property of a system versus its correct-

ness. A hang condition can be either a result of infinite loops, also known as active

hangs, or a result of permanent or extended wait conditions, known as passive hangs

[18]. Irrera et al. [36] argue that critical systems are too complex and have highly

non-deterministic behavior that renders online fault detection for safety-critical sys-

tems too difficult of a task. This non-determinism is the result of multiple factors such

as multi-threading and the use of shared resources. This can cause a safety-critical

application to hang, and hence their development of an application hang detector.

They model normal behavior through various operating system parameters, namely
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system calls, OS signals, scheduling timeout, waiting times on semaphores, holding

times for critical sections, processes and threads exit codes, and I/O throughput. For

each of the monitored events, they associate pre-configured upper and lower threshold

values which they determine from a training phase. At runtime, if an event deviates

above or below the threshold within a given specified temporal window, an alarm

is raised. Wang et al. [80] developed a framework for runtime system hang detec-

tion and application checkpointing. One of the functions of their kernel module is to

detect hangs in the operating system and its applications in order to provide a low-

latency error detection and recovery mechanism. Their work relies on using various

CPU debugging facilities and counters to non-invasively 4 instrument the operating

system. An example of one such instrumentation is keeping track of a process con-

text switching frequency; a breakpoint is set to trap on the kernel’s scheduling entry

point and their profiling work is performed in their custom exception handler when

the generated software exception is raised. Some instrumented values are profiled in

order to provide more accurate thresholds before assuming a hang condition. Their

related works section provides an excellent list of similar solutions in both academia

and industry.

While these reliability techniques have merit for certain use cases, for example

in systems were high-availability is required, we believe that they cannot be the sole

fault-tolerance technique in a system. Without doubt, system hangs represent a

critical system failure, but they are merely one type of failure that could possibly

occur. We also argue that reaching a state where the system has already hung, is a

late stage if not a final one in the fault-detection life cycle. Such solutions are not

suitable for all the complex operating environments that systems could be subjected

to. For those, as we have argued earlier, a holistic view of the system’s behavior must

be taken into account. We would rather have a system revert to its design or fail-

safe state if it is performing the incorrect function or misbehaving than have a lively

system that never hangs but executes erroneously. Furthermore, in some cases, the

hang detection algorithms require a pre-determined threshold that is tuned during the

training phase such as the work by Carrozza et al. [18]. This is not very well suited

for systems with highly dynamic environments and might require adaptive threshold

4In their opinion. Our opinion differs.
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techniques like the one presented by Bovenzi et al. [16].

Program control flow is considered to be a powerful indicator of normal behavior

that can be leveraged to detect behavioral anomalies and software bugs. Argus [24],

an online bug detection tool, collects samples of pre-determined events that best rep-

resent the normal control-flow behavior of programs at runtime. Using the samples,

an extended finite state automaton is used as a model of the programs’ normal con-

trol flow. Each state in the ext-FSA, represents an event and the transitions between

them are augmented with the distribution of their transition frequency. During de-

tection time, a window of a fixed size is slid over the generated control-flow events

and the contents of the window are then checked against the model raising an alarm

if a certain threshold is crossed. In Lorenzoli et al.’s work, a more detailed model is

automatically generated in an attempt to fully capture the behavior of software using

an ext-FSA [50]. The ext-FSA uses both the constraints on the data as well as the

interaction between components via method invocations. The relationship between

them is also incorporated in the model.

Huang, H. et al. created a runtime error detector for avionics software using the

common machine learning clustering technique, K-means [34]. The detector collects

data from carefully hand-selected program variables such as aircraft altitude and

vertical velocity during testing. A set of time-series signals is built from the collected

events. Features and clusters are then extracted from the time-series signals. Using

logistic regression, a fault-probability model is generated and an alarm is raised if the

probability that certain data is erroneous exceeds a predetermined threshold. Their

binary classifier was tested using a normally behaving autopilot simulator and another

with two injected faults: an integer overflow and a unit conversion error.

Even though it is an offline diagnostic tool, Chopstix [13] attracted our attention.

Chopstix is an offline diagnostic tool developed primarily for production systems.

With a very low overhead, Chopstix continuously collects system-level events that it

believes best describe the behavior of the entire system. Events such as CPU utiliza-

tion, L2 Cache misses, page allocation and scheduling delays are logged at a very high

frequency using a probabilistic data structure along with detailed contextual infor-

mation. A human operator can then use Chopstix to analyze misbehavior. Chopstix

uses a predefined set of rules in order to correlate anomalies and uncover the root
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cause before they become major system faults. Chopstix has a few commonalities

with our proposed anomaly detector: i) it uses low-level operating system events for

detecting behavioral anomalies; ii) it stores the events in a compact efficient manner

with a very low CPU overhead (less than 1%).

Langer et al. propose two methods for anomaly-based error detection. In [44],

the Angluin learner is used to infer a minimal deterministic finite state automation

(DFA) that represents the normal behavior of a distributed system. They claim

that the system states and control flow are directly correlated to its communication

behavior and use network trace data to build a DFA. They show that in theory

and by using synthesized trace data, detecting anomalies using this technique works

very well. However, they could not conclude the same using real-world data since

it was more complex that expected. The DFA is built using data generated during

the testing phase. This closely aligns with our philosophy. Based on the exhaustive

testing any safety-critical system is expected to be subjected to, they assume that

the normal behavior of a system during its operational phase should not be different

than any of its verification test cases. Thus, generating the model of normal behavior

during the final product testing should be enough. Langer et al. made an attempt

to train an artificial neural network (ANN) on the discrete events generated by a

distributed system’s network traffic [45]. The ANN is then used to forecast message

sequences, comparing its prediction to the values generated at runtime. Deviations

in the predicted versus actual values allows them to detect behavioral anomalies in

the internal state of the software generating this traffic. Their choice of using an

ANN comes from the fact that other mathematical models cannot fully cover the

behavior of complex systems that exhibit discontinuous behavior or that the model

would be infeasible to calculate. Again, this work has great similarity to ours; the

messages being sent on a network are directly correlated to the internal state of the

software sending or receiving them. A deviation from the normal traffic is used to

indicate an anomaly in the system’s behavior. Considering that our work is based on

a message-passing system, our anomaly detector also builds a behavioral model out

of the messages being sent and received by processes, be it kernel calls or others. It

is worth noting that Langer et al. have also proposed using their anomaly detector

to detect the lack of testing during the product verification phase in order to detect



22

missed test cases [46]. To the best of our knowledge, this is the only literature other

than ours that makes such a proposal.

Fault screeners are simple algorithms that detect errors in data based on unary

program invariant [23] checking [7]. Systems that are exposed to radiation, such as

space systems, have a higher probability of hardware failure due to single-event upsets.

Racunas et al. propose a fault screener as the processor fault-tolerance algorithm

to handle such events [61]. The static instructions generated by a process and their

expected valid values are used to learn program behavior. They show that consistent

upper and lower bounds can be calculated for the valid value space and show that

these bounds are violated in the presence of a fault or abnormal program behavior.

Abreu et al. [7] investigated and compared the use of several fault screeners: Bloom

filters, bitmask and range screeners.

One of the techniques that had a common occurrence in the literature was the use

of Markov models. Baah et al. built an offline anomaly detector that can detect faults

at runtime using a fully observable Markov model [11]. The model is built during

a training phase and its parameters are estimated using the Baum-Welch algorithm.

During training, the program to be monitored is instrumented to collect predicate

information and the results collected during a test suite execution. The predicates

are then translated into states which represent some of the program semantics and

capture its behavior. The generated states are then used as an input to a clustering

algorithm and the unique clusters are used to represent states in the Markov model.

During detection time, if the probabilities of state transitions exceed a pre-computed

threshold, an alarm is raised. Bowring et al. use the sequence of method calls and

program branches as features for a Markov model representing program behavior

[17]. In order to create an aggregate representation of a program’s executions, they

devised a technique to cluster Markov models of a program’s executions and create

Markov model-based classifiers that model a collection of the program’s executions.

The classifiers are enhanced using an incremental active learning technique and the

classifier is applied to a set of unlabeled program execution data. The outputted

labeled data is then used as an input to the classifier in the next stage or increment,

thus retraining the classifier.

Lu et al. built a behavioral model from various system timing measures such as
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instruction and data cache mistimings, interrupt service routines, system and func-

tion calls and various other software execution timings [51]. They used three separate

classification-based anomaly detection methods: i) a range-based classifier that uti-

lizes the upper and lower bounds of executions times, ii) a distance-based classifier

that creates a three dimensional sphere from timing data and uses the Euclidean

distance to the sphere’s center compared with the sphere’s boundary as a measure

of anomaly, iii) a one-class SVM that defines a normal class for timing data. They

implemented their detector on a hardware module that taps into the processor’s trace

port.

Yoon et al. tackle the safety and security of industrial plant control systems [82].

Using the Gaussian Kernel Density estimation, they created a statistical learning-

based intrusion detection mechanism based on software execution times. They utilize

the multicore nature of realtime embedded systems and use one of the cores to monitor

the other. A hardware Timing Trace Model (TTM) is used to monitor a specific

application for deviations in runtime execution signatures. In case of an anomaly,

the monitoring core takes control of the system to ensure an uninterrupted error and

fault free execution (fault-tolerance). The software being monitored is modified to

add a special trace instruction at various locations around code blocks. When the

TTM receives a specific trace instruction from the monitored core it reads some of

its processor state, the timestamp and the program counters are well as the process

identifier of the executing task. The non-parametric probability density estimation

function of execution times is estimated using the Kernel Density Estimation method

with a Gaussian kernel function.

Non-intrusively, Moreno et al. introduce a novel runtime monitoring technique

based on power consumption analysis of a CPU for anomaly detection [57]. They em-

ploy signal processing techniques for signal pattern recognition for classifying system

behavior and detecting program anomalies. The core principal is that a CPU gen-

erates a unique power consumption profile when executing different software loads.

This power profile can be detected using external monitoring devices. Anomalous

behavior or perturbations in the running software causes a deviation from this power

consumption profile that can be easily detected at runtime. This work is one of the
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few that closely matches our idea of behavioral anomaly detection. No specific pro-

gram features or variables were selected to build an understanding of normal behavior,

rather, the resulting outcomes and effects a running system has from an outside ob-

server’s perspective: an external device monitoring power consumption in their case

and a trusted entity (the kernel) monitoring emitted messages and kernel calls.

2.3 Process Homeostasis

Process Homeostasis, or pH, is the name of a real-time host-based anomaly detection

and response prototype developed by Somyaji A. as part of his PhD dissertation

[67]. pH employs a simple, yet powerful heuristic to detect diversions in a program’s

normal behavior utilizing short-sequences of system calls that was first introduced by

Forrest et al. as a profiling technique [26]. The prototype developed for this thesis

is based on the same core principal.

2.3.1 Process Homeostasis and Immunological Basis

Process homeostasis refers to the biological organism’s ability to maintain a stable in-

ternal environment suitable for the organism’s ideal functioning [67]. The destruction

of foreign pathogens, the constant monitoring and correction of temperature, acidity

and other chemical imbalances are all part of an organism’s homeostatic nature [67].

The natural immune system plays a vital role in protecting animals from harmful

pathogens. The immune system is capable of generating detectors such as T cells, B

cells and antibodies by which it distinguishes the body’s own cells from foreign ones

[25]. Once an antigen has been recognized, the detector cells bind to it, thus signaling

the start of a destruction process via general purpose scavenger cells. To recognize a

pathogen, the immune system’s detectors bind to short-sequences of proteins or pep-

tides found in the pathogen. The binding regions on the detector cells are generated

through a pseudo-random genetic process. The detector cells that could bind to the

body’s own cells (autoimmune disease) are eliminated [25].

pH attempts to mimic how the biological immune system works by giving the

system a sense of self or the ability to distinguish between the system’s self and non-

self. Such separation enables pH to maintain a homeostatic and stable system. Once

pH defines the system under normal operating conditions, it is capable of detecting
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any foreign activity or anything that is non-self. This powerful biological technique

enables the immune system to defend against foreign bodies that it hasn’t seen before

or hasn’t previously encountered their signature. The definition of self cannot be too

specific, or too narrow, that the immune system would mistakenly identify variants

of itself as foreign. It also cannot be too general that it would allow infections to go

unnoticed.

Forrest et al. [27] deduced important properties from the natural immune system

that a security system must have in order to be effective. First, just like the immune

system, detection must be distributed over multiple sites; detection is not localized

to one part of the body. Similarly, for software ecosystems, detection must be spread

across the entire system as well. Different running copies of software on the same

local system, as well as software running on interconnected systems must have multi-

ple detection mechanisms. Furthermore, these detection mechanisms must be unique

to each running instance of software. This diversity allows a more powerful localized

detection mechanism and prevents a single vulnerability from compromising the en-

tire system or a network of systems. Second, the immune system utilizes multiple

detectors each with their own input in the decision making process, thus detection is

probabilistic. This greatly decreases the misclassification of legitimate events (false-

positives) in the system as a whole, on the account of reducing the detection rate

of malicious activity in local sites. Lastly, the probabilistic nature of the immune

system’s detection enables it to recognize foreign objects that it has not encountered

previously. This would allow a security system to detect zero-day vulnerability.

Forrest et al. [26] showed that short-range, temporarily-ordered sequence of sys-

tem calls (modeled after peptides [25]) can be used as a reliable fingerprint of pro-

cesses’ normal behavior. They showed that the fingerprint uniquely identifies system

processes, has low variance and most importantly, sequences generated by an ill-

behaving process can be easily and efficiently identified at runtime when comparing

to a baseline sequence. The short-range sequence of system calls are those invoked

during the normal operation of a process and are only a subset of all the possible

permutations of system calls found in the program’s source code. A profile of normal

behavior must withstand variations under normal operating conditions and hence be

resilient to false-positives. At the same time the profile should be easily disturbed by
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real intrusions in order to have a high detection rate [33].

pH defines a system’s self by building a profile of normal behavior for each process

in the system. Naturally and by definition, a system’s self is the manifestation of its

normal behavior. The normal profile is built using the type and relative order of

system calls issued by a process. Using system calls allows pH to observe process

behavior without knowing its internals or implementation details. pH treats the

running instance of program code as a black box emitting observable data and employs

only one type of detector and effector [33], an abnormal system call detector and an

effector that delays anomalous ones [67].

It is important to differentiate between a process’ normal behavior, legal behavior

and all possible behavior. Normal behavior is all behavior seen when a process is

operating under its normal, intended operating conditions, i.e., the software’s primary

function. Legal behavior is all normal behavior in addition to exceptions that might

potentially occur during normal operation, for example, low disk space or a missing

file. All possible behavior encompasses legal and normal behaviors in addition to all

possible branches and illegal paths that the software could potentially take. This is

due to imperfections in code and/or hardware and includes exploited vulnerabilities

such as buffer overflows and hardware faults [67]. Given this definition, pH observes

normal program behavior under the assumption that normal program behavior is

almost always safe program behavior [67].

One evident problem with pH is the difficulty of defining self, given the dynamic

nature of systems, without having to modify that definition later on. Consider a

system where profiles of normal behavior have been established; what then, if a new

program was installed? Without the ability to modify the definition of the normal

behavior, the newly installed program and the changes in behavior it creates in the

system will be wrongfully flagged as foreign or anomalous. pH handles this problem

by allowing the system’s profiles to be modified at runtime.

2.3.2 Overview

pH is implemented as a patch to the Linux kernel and has three main parts: a utility

to trace system calls invoked by all processes on the system, a utility to analyze the

traced system calls, and a utility to react to anomalies by slowing down the invocation



27

Figure 2.1: Training and testing overview.

of the offending call. pH sits between user space processes and the kernel right at the

system call entry point in the kernel. System calls are a critical component to software

running on any operating system. System calls are a predefined set of function calls

used by processes to interact with the kernel in order to perform functions that the

process itself does not have the privilege or ability to perform, such as allocating

system memory, opening a file or communicating with hardware. System calls are

implemented through a pre-defined software interrupt that traps into the kernel and

is serviced by a privileged (Ring 0) routine.

Monitoring a process at the system call level does not detect or prevent corruptions

within the process itself, for example, a buffer overflow attempting to change the result

of a calculation within the process’ own address-space. However, if a vulnerability,

or an error in the process were to cause any kind of system-wide malicious activity,

such as spawning a root shell or sending a command to another driver or another

critical system-level component, it would certainly need to interface with the kernel

by invoking system calls.

pH starts in training or learning mode. It builds a profile of system call sequences

collected under normal operating conditions. A profile exists per monitored process.

pH monitors all processes on the system. Once pH decides that it has seen enough

system calls and that it has adequate information that enables it to start detect-

ing anomalous system calls sequences, it locks the profile down, creates a copy and

switches into detection or testing mode. In testing mode, if an anomaly is detected,

pH delays the offending system call by putting the invoking process to sleep for a cal-

culated amount of time. Both the original and the copied profiles are stored on disk

and loaded into kernel memory on process execution. Figure 2.1 shows an overview

of the process.
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open    read    mmap    mmap    open    getrlimit    mmap    read    read    write    fork    close

open    read    mmap    mmap    open    getrlimit    mmap    read    read    write    fork    close

open    read    mmap    mmap    open    getrlimit    mmap    read    read    write    fork    close

open    read    mmap    mmap    open    getrlimit    mmap    read    read    write    fork    close

open    read    mmap    mmap    open    getrlimit    mmap    read    read    write    fork    close

Figure 2.2: A sliding window over the system call sequence.

2.3.3 Training Phase

During pH’s training phase, pH builds a compact structure that represents a gen-

eralization of all the system calls observed per monitored process by using a simple

heuristic called the lookahead pairs method. pH’s designer has set a few constraints

on the method to be used. Primarily, the method should be able to:

• Converge as fast as possible at a fixed state during training phase.

• Efficiently determine the membership of patterns during the detection phase.

• Capture different and unique system call types with an acceptable limit on the

size of generated data.

• Permit fast and incremental updates.

• Detect anomalous events that occur with low-frequency.

• Run high speed with a low and acceptable performance overhead.

As shown in figure 2.2, a window of a pre-determined size is slid across the system

call sequence. For the calls found within the same window, pH records which system

calls come before the one currently being invoked and at which position. This is

implemented as a circular buffer of size (window length + 1) that gets updated every

time a system call is invoked.

A two-dimensional N-by-N table (shown in 2.3), where N is the number of discrete

system calls in the system, is used to store the relative positions of the calls. Each

cell in the table contains a one dimensional array representing the sliding window of

a fixed size. The rows of the table represent the current call being invoked and the
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columns represent the previous calls. Their intersection yields the one dimensional

array that indicates the relative positions between the current and all previous system

calls that have occurred in the past. Specifically, “window-size” previous system calls.

To give an example of how the table is updated, Figure 2.5 shows a sample se-

quence (open, read, mmap, mmap, open, getrlimit, mmap, read, read, write, fork,

close) with a window size of eight. The first open call is inserted into the circular

buffer and causes no update since it is the only element in the buffer. Next, read

is inserted. This causes pH to iterate through the circular buffer starting from the

element that precedes the current one, i.e open. Next, the row indexing the current

system call or “read” is selected along with the column indexing the previous call or

“open”. The intersection yields an array of size eight (the window size) that needs to

be updated with open’s relative position to the current read call within the window.

Since open is the first system call preceding read, the first position in the window is

marked.

The third mmap call causes the mmap row and the read column to be updated at

position one. As well, it causes the mmap row and the open column to be updated at

position two (since open is two positions away from mmap within the window). This

same operation is repeated as more system calls are invoked. Skipping ahead to the

ninth invocation of read, the read row is updated at columns read, mmap, getrlimit,

open, mmap, mmap, read and open at positions 1,2,3,4,5,6,7 and 8 respectively.

To that extent, for any given window with size L and a current system call S,

there are L - 1 pairs: { (S , S-1), (S, S-2), ... (S, S-L)} can be formed for any window

given. The set of all unique pairs form the compact model of behavior under normal

operating conditions. The model serves as an approximation or a generalization of

how the program is expected to behave.

Termination of the Training Phase

Once pH is convinced that it has seen enough system calls that represent the process’

normal behavior or is instructed to do so by the system administrator, a duplicate of

the training data is created. This copy is used at runtime during the detection phase

to classify system call invocations whether they are benign or anomalous. The copy

of the training profile will be referred to as the testing profile from here on. pH then
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Figure 2.3: An NxN table of windows of size 8.

turns on a flag stating that this particular training profile belonging to a program

is complete, thus signaling the start of the detection phase for this program. The

testing profile is never directly updated by pH. Both the training and testing data

are stored in files on a permanent storage medium to persist across system reboots.

Every program on the system has (unless explicitly ignored) a pair of training and

testing files.

In order for pH to autonomously terminate the training phase for an executable,

a couple of conditions must be met. pH must make this crucial decision with ut-

most care. A premature termination of training can result in a high percentage of

false-positives, since pH would not have captured enough sequences to represent the

program’s normal behavior. To determine stabilization in training data, pH uses a

simple heuristic that allows it to monitor the occurrence of new system call sequences

both in terms of system calls and in terms of unit time.

Figure 2.4 shows the flow chart of the heuristic. Two main measures are required

for this decision:

1. A ratio of the number of consecutive calls ignored (last mod count in Figure

2.4) to the total number of calls made (train count in figure 2.4). In other

words, how many calls occurring in sequence have been ignored and not added

to the training data because they already exist in relation to the total number
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of sequences ever seen. The count of ignored calls since the profile was last

updated would also indicate that the profile has not been updated for count

calls and hence frozen. If this ratio crosses a certain threshold, pH marks the

training profile as ’frozen’. The threshold is a configurable runtime parameter;

by default, pH sets this value to 4.

2. The amount of time the profile has been frozen. Every time a profile is marked

as frozen, the time stamp of the event is recorded. Once a preset amount of

time has passed (a week by default) the profile is marked as ’normal’

2.3.4 Detection Phase

On program startup, pH will attempt to locate its testing profile. If the file has

already been loaded in memory due to the same program being started before, pH

will use the in-memory testing data. Otherwise, pH will locate the file on disk and

load it in memory. Since program behavior is being profiled, it is important to note the

distinction between a process and a program. A process is the runtime manifestation

of some program code; multiple instances of the same program code will point to the

same training data.

Similar to the training phase, incoming system calls are added to a circular buffer.

On each insertion, the compact testing data table (previously the training table) is

checked for mismatches. For a system call n inserted, the table at row n is checked for

every call preceding it in the circular buffer. Thus, for every call n preceded by a call

m at position p, the table is checked at row n and column m. The row and column

intersection contains the relative position array, which in turn is checked at position

p for a true or false value. A call that has never been seen during training within

that particular window (or circular buffer) will result in window size - 1 mismatches.

2.3.5 Reaction Phase

pH reacts to anomalies by delaying the anomalous system call’s invocation, this in-

cludes the processes’ ability to load new programs with the execve system call. The

length of the delay is calculated in proportion to the number of recently illegitimate

calls and is meant to give the system administrator the chance to evaluate whether
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Figure 2.4: last mod count keeps count of the number of system calls ignored.
train count is the total number of system calls ever seen for that process.
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this is the correct behavior and to delay the potential attacker. The idea behind the

proportional delays is that true security violations will generate more illegitimate calls

in succession, or very close to one another, thus, the more clustered the anomalies

are, the larger the delay. pH maintains a locality frame count or LFC to keep track

of such clusters.

Tolerization and Sensitization

In order to help reduce the false positives in the field, pH implements two additional

processes. If pH detects more than anomaly limit anomalies at runtime pH decides

that normalizing the process was incorrect or perhaps pre-mature. pH accepts the

behavior as normal or tolerizes it, cancels the processes’ monitoring, and restarts its

training.

On the other hand, in order to prevent pH from automatically learning anomalous

behavior through tolerization, a threshold tolerize limit for the locality frame count

(LFC) is set in place. Since LFC is an indication of clustered anomalies, the likelihood

that the anomalous sequence will bring a true positive is high. If this threshold is ever

exceeded, the profile’s training dataset is deleted and all previously learned sequences

are deleted.



Chapter 3

System-Wide Behavioural-based Anomaly Detection:

Rationale and Design Principals

In this chapter we present our own opinion and argue the need for adopting behavioral-

based anomaly detection for fault-tolerant systems. After having reviewed the litera-

ture and presented the state of the art in the field, we could clearly see the gap in the

research and product development that our solution fills. We also present the critical

design guidelines that we adopt for our anomaly detector and the rationale behind

them.

3.1 The Need for Behavioral Anomaly Detection

Detecting behavioral anomalies can play a vital role in safety-critical software, in

particular, detecting deviations from what is believed to be normal behavior. Con-

ventional methods of error detection, such as assertion-based methods, are not enough

for detecting errors at runtime. The highly variable nature of the processes’ opera-

tional environments produce new relationships between system entities and program

variables [34]. These new conditions might not have been accounted for during de-

velopment and verification, leaving bugs that do not violate the rules of the program

undetected [24]. Thus the need for fault detection mechanisms that could learn the

intended behavior of software instead of what has actually been implemented.

Faults do not have clear and concise signatures, due to the complex relationships

between components, some of which are off-the-shelf components. Failure signatures

cannot be predicted. Asserting specific conditions at runtime is important, however,

runtime asserts alone are an incomplete method of being fault-tolerant. Software

faults can be detected either explicitly, via detecting a specific pattern that is known

to be produced by a particular fault or implicitly, by detecting an anomaly in a

component that is indirectly linked [55]. Even though a safety-critical process could

appear to be behaving normally, an abnormally high CPU usage or a misbehaving

34
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sensor driver can be an early indicator of a fault that is about to occur. Some faults

cannot be detected through explicit patterns and assertions; they can only be detected

through recognizing anomalous behaviour that does not match normal expectations.

As we have stated before, validating the correctness and completeness of the soft-

ware specifications and requirements unto which the entire system is based is no trivial

task. The software specifications are often wrong or incomplete [46], rendering some

of the verification efforts useless. To this date, based on our literature and market

product reviews, we are not aware of a system or process that achieves this task as

well as correlates these requirements to source code and test specifications ensuring

the correctness of the full development life cycle. This increases the dependence on

the observed product behavior and common sense. In many cases, important corner

cases and system stress tests are missed. A behavioral anomaly detector can make

sure that a safety critical system does not fail as it experiences situations it was not

designed to handle. An anomaly detector can provide an early warning as it detects

abnormal behavior, allowing the system to handle the potential fault and fail safely.

No matter how much effort is being put into testing and verification, it will al-

ways be insufficient to catch all latent software errors before the system is deployed

and used in the field. Researchers have categorized bugs into two major categories:

deterministic and non-deterministic. Deterministic bugs can be easily detected and

are a result of a particular combination of input to the program [65], also known as

Bohrbugs. Non-deterministic bugs seem chaotic and result from the presence of a

particular set of inputs along with other external factors [65], also known as Mandel-

bugs. These external factors are dependent on the system’s operational environment

and state and are highly variable. Thus, an unknown combination of events in a given

environment can result in triggering a hidden Mandelbug. This makes Mandelbugs

very difficult to occur during the verification phase. Meanwhile, it is not possible to

detect errors that do not result in system breakdowns [46]. This showcases the need

for a runtime mechanism that can learn how software should behave; making it fea-

sible to detect errors, or anomalies leading to errors, that have not been seen during

the controlled verification tests. Test coverage is inherently insufficient and cannot be

relied on to cover all possible system states that are produced when integrating dif-

ferent system modules and testing them in all their operational environments. Even
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though best efforts have to be made, covering every single possible operational envi-

ronment does not seem feasible. This is further exacerbated by the presence of the

elusive Mandelbug.

3.1.1 The Difficulty of Feature Selection

Most anomaly detectors we have seen use specific software features or variables as

basis of profiling software (e.g. in [15] [80] [24][34][13][11][51]). This might not be the

most accurate technique; while these carefully chosen features might provide some

form of behavioral anomaly detection, they do not provide a holistic and complete

view into how system components truly behave. These select features are nothing but

a small window into the outcome of some of the actions a process takes. What if the

choice of features was incomplete? How can one determine those features when there

is an unbounded number of system states that result from the complex interactions of

the different components in the system. Sometimes the features selected are incorrect,

such as error logs [59] that have no formal definition, or the presence of concrete

requirements, and are left up to the developer’s prerogative [22]. Sometimes the

features are not resilient to the dynamic nature of systems and the dynamic work

loads they can be subjected to, such as process scheduling times [15], CPU utilization

[13] or other general system timings [51]. These might represent point anomalies in

a specific context, but are not necessarily anomalous in a different context. Using

specific features is analogous to a security guard keeping a list of features of employees

that are allowed to enter a restricted area, say eye and hair color, height and weight.

This security guard can be easily fooled by anyone mimicking the features on his

list. Furthermore, an employee changing their hair color or gaining weight would

be considered an anomaly and disallowed into the building. The security guard did

not have enough foresight to consider the complex interactions that occur in people’s

lives that could result in weight gain, making this a difficult task to achieve. A more

intelligent security guard would be able to profile people based on their behavior, the

way they talk, walk and conduct themselves.

Feature selection is a difficult task and the effectiveness of an anomaly detector

is heavily dependent on this selection; an inferior set of features can result in an

anomaly detector learning an ineffective model of normality [41]. In addition to the
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inaccuracy of using a select subset of features, determining this subset is in itself a

non-trivial problem that fault prediction algorithms face, given the vast amount of

features that a complex system has [36]. Various research have gone to length in order

to accurately identify the most valuable features for fault prediction such as the one

presented by Irrera et al. [36] and the work presented by Kloft et al. [41] in which

they propose using machine learning techniques to aid in feature selection.

3.2 Thread Homeostasis: The Design Principals

This section describes the general and high level design principals behind our system-

wide thread behavior anomaly detector using short sequences of messages and system

calls. The details of the implementation are described in chapter 4.

3.2.1 Sequences of System Calls as a Behavioral Profile

From an outside observer’s point of view, be it the kernel or a system process, we view

the behavior of a process as the way it interacts with other system components. A

process can bootstrap itself, open files, create shared memory objects and semaphores,

use pipes, send messages and invoke the kernel among other things. Thinking back

to the security guard analogy, this is how the process walks and talks. In order for

a process to complete any of these functions, it has to interact with the kernel via

system calls. For the design of our anomaly detector, we build upon previous seminal

work in the field by Forrest et al., that a process’ normal behavior can be defined via

the short sequence of system calls it emits [26]. Our anomaly detector’s design follows

pH’s, the behavior anomaly detector designed and developed by Somayaji et al. [67]

and described in detail in chapter 2.3. pH uses the system call types along with their

relative order to build a behavioral model for every process.

Using pH’s heuristic, the lookahead-pairs method (described in section 2.3), a

generalization of the process behavior is modeled in a compact profile. This model

allows us to profile the process’s natural and general behavioral without being too

specific as to the exact sequence of system calls it should be emitting. The system

calls emitted by a processes are bound to vary from one run to another, a model that

is not representative of such variance in behavior will be rendered useless with too

many false-positives. We monitor the process in its natural operating environment
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until we are convinced we have seen enough of all of its legitimate natural behavioral.

Any deviance from this model is regarded as un-natural and thus anomalous behavior.

Thus, we build an approximation of the process’ normal behavior while maintaining

the sensitivity towards novel sequence and anomalies as described in pH’s design

guidelines [67].

One could argue that sequences of systems calls, as a selected profiling feature,

could suffer from the same feature selection issues we described in section 3.1.1.

However we believe that building a compact model of system calls that processes emit

allows us to determine its behaviour at a very granular and yet more generic level.

Consider an error detector that decides to track the number of open file descriptors

that belong to a process; instead of keeping count, we monitor the sequence of system

calls a process has been invoking. An anomalous number of open file descriptors will

surely be reflected in the erroneous calls to fopen() found in the sequence, without

having to specifically identify what we’re looking for beforehand. This removes the

burden of having to select variables or extract important features to build a model

of what the normal operating characteristics are believed to be. The number of open

file descriptors is not in itself the behavior of a process but rather is the result of an

action, the call to fopen().

3.2.2 System-wide Profiling Using Sequences of Messages

Given that our anomaly detector is specifically designed to run on a message-passing

microkernel, modeling sequences of system calls is not enough. Many critical system

services, such as the filesystem and process manager are implemented as user-level

system services. These services can only be communicated with via messages. In

addition, many system calls are actually implemented using the microkernel’s message

passing utilities. For this reason, our anomaly detector builds a compact profile of

both system calls and messages that a process sends. This allows us to capture

the full behavior of a process with regards to its interaction with microkernel as

well as any other process in the system it communicated with. Profiling all inter-

process messaging allows us to create a system-wide behavioral profile of all the system

processes’ interactions and enables us to detect anomalies in the process network.
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3.2.3 Thread-based Profiling

Since the behavior of a process is the result of the aggregate behavior of its running

threads, our anomaly detector builds bahvioral profiles for every thread running on the

system. We utilize the concept of a process only to group its thread’s profiles together.

Profiling individual thread behaviors allows us to eliminate unwanted changes in

behavior that occur due to factors outside of the thread’s control, such as thread

scheduling or thread pools. This is further expanded on in Chapter 4. We explicitly

define the normal behavior of a system in terms of the short sequences of system

calls and messages emitted by each thread in the system and hence the name Thread

Homeostasis (tH).

3.2.4 The System As a Network of Message-Passing Threads

Sufficiently complex systems are composed of highly-coupled components. An ab-

normal behavior in a minor component that is not directly connected to the core

operation of the system can potentially bring the entire system down. While iso-

lating specific components in a safety-critical system for monitoring might have its

merits, monitoring the entire system for faults and anomalies is essential for effective

anomaly detection. One does not know where and how a fault can be introduced in

the system. A perturbation of anomalies in one part of the system can be a strong

early warning sign that a fault is about to happen in a critical system component.

This would allow the fault-tolerant system to react in a timely manner. A hang or

a system crash are far too late in the fault detection stages. We view the system as

a network of highly communicating, interconnected threads and attempt to learn the

entire network’s behavior as well as detect anomalies over the network as a whole.

3.2.5 A Lightweight Anomaly Detector

An anomaly detector cannot change system properties in such a way that the core

functional requirements of a system are violated. Sensitive functional requirements

such as stringent timing deadlines that must be met might be violated given a detector

that presents a heavy load and overburdens the system. As such, tH must have a low

memory and CPU utilization overhead that fits the criteria of running on embedded
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systems in order to learn and detect anomalies in an online, real-time manner. The

detector should be as minimally intrusive as possible as not to alter the underlying

system’s behavior. We view system threads and processes as black boxes and observe

their behavior from an external entity using a reliable source of information, the

kernel. Modifications to the running software or the underlying operating system

might alter the state of the system and require further verification, testing, and

perhaps even re-certification, which might decrease the acceptance of adopting such

technology. Having to modify the software to support anomaly detection means that

third-party, off-the-shelf components cannot be monitored as-is and must be either

modified or excluded from being monitored.

3.2.6 tH as a User-level System Process

An error in the anomaly detector itself might compromise the safety of the entire

system if not properly isolated from other critical functions. Another advantage

of using a microkernel-based operating system for our implementation is that the

anomaly detector will be running as a regular user process, just like all the other

system services. Its failure to operate correctly is completely isolated from other

safety-critical functions.

3.2.7 Building Behavioral Profiles During Verification

Safety-critical systems are subjected to an excruciating level of testing and verifica-

tion. Many safety-critical systems require certification before being allowed to operate

in the field. Certification bodies such as ISO 26262 for automotive functional safety

usually have very high standards when it comes to fault-tolerance testing and veri-

fication of the correctness of these systems [66] [62]. As a result, they are subjected

to an excruciating level of verification. We are of the opinion that safety-critical

software should experience a large percentage of the modes of operation it will be

subjected to when deployed. We make the assumption that if a misbehavior is not

seen during testing it should not be seen during deployment. That is not to say that

the operational environment of the system must exactly match the test environment,

but it must be as close as humanly possible. We utilize this to our advantage and use

the verification phase to learn the expected behavior of software before it becomes
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operational. More importantly, since we know that verification would most likely be

incomplete, we cannot claim that we are learning how the system should behave from

the verification phase, as this would be incomplete learning. Rather, we ought to

claim that we are learning how the system should not be behaving in the

field.

If an anomaly is observed in the field, this might be an indicator that i) an actual

anomaly is present or ii) an incomplete test coverage was performed, or iii) a false-

positive was detected. However, an anomaly occurring during the verification phase

can be an indicator that i) some normal behavior was never experienced during the

testing stage, indicating to a shortcoming in the test coverage, or ii) unnecessary

functions exist in the product that do not conform to the system’s specification.

These are serious enough indicators of a problem somewhere in the development life

cycle that warrants an investigation. Using an anomaly detector as part of the critical

software development life cycle might prove to be a useful tool.

3.2.8 Low False-Positive Rate

The false alarm rate is defined as the rate of misclassified normal behavior. An ideal

anomaly detection system would be one that has a 100% detection rate and a 0%

false alarm rate. False alarms depend on how well the model captures the normal

behavior of a program while ignoring the information that does not generalize well.

The false alarm rate remains one of the top limiting factors of how usable and effective

an anomaly detector is [10]. Even for very low false positive rates, the amount of data

generated, thousands of kernel calls per second in our case, would translate into a

considerable number of false-positives [10]. This renders the system completely useless

or even dangerous to use, since users habituate and learn to ignore warning messages

[8], which sometimes are very serious true positives. Thus, an anomaly detector must

strike the perfect balance between maintaining a tolerable rate of false positives,

while having a higher rate of true positive detection. In contrast to general purpose

desktop machines, embedded safety-critical systems naturally have more concise and

limited operations. They are mostly created to perform a few precise functions. This

makes them a fertile ground for more successful behavioral profiling and modeling

efforts. We hypothesize that safety-critical processes might show an acceptable level
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of behavioral determinism that makes it easier to profile their behavior. Deviations

from a learnt behavioral model can be marked as anomalous with a higher degree of

confidence than their general purpose desktop machine counterpart.

The next chapter details the technical design based on the guidelines presented in

this chapter, followed by a field evaluation. Much could be achieved by learning how

to not behave.



Chapter 4

Thread Homeostasis on a Message-Passing Microkernel

Based on pH’s core concept of modeling the behavior of processes using short se-

quences of system calls, we propose a new online anomaly detector, Thread Home-

ostasis (tH). Our system is specifically tailored for use on a message-passing microker-

nel, namely, the QNX™ realtime safety-critical operating system. tH differs from pH

in two key areas: i) as opposed to profiling user-level processes, it profiles and builds

behavioral models for every thread in a user-level process in the system, and ii) in

addition to using system calls for profiling behavior, tH extends this profiling mecha-

nism to include unique identifiers of messages used in all inter-process communication,

including the messages sent to system-level services.

tH is an online and non-invasive anomaly detector. It relies on QNX’s highly

granular tracing facilities to capture data at runtime and update its models. This

chapter describes the design, technical details and the rationale behind the newly

proposed system and its operating environment.

4.1 The Design approach

Before we get into the details of tH’s design, it is important to shed some light on how

we came to our design decisions. We adopted an iterative development methodology.

Initially, we started with an attempt to port pH directly onto QNX as is, without any

change. However, due to the message-based system call implementation, this proved

to be impossible. A new technique had to be created to account for the fact that

not all system calls are implemented as traps into the microkernel but rather some

are delivered to the microkernel as messages. This led to the extension of profiling

to all message-based interprocess communication. We developed a mock client-server

application to verify the correctness and performance of our detector. Stress testing

demonstrated issues that led to further design changes to tH and to the QNX kernel.

After our controlled testing showed positive results, we started field evaluations with

43
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real deployed applications. This led to a decision to build per-thread as opposed to

per-process models. The following section describes tH’s technical details and design.

4.2 The QNX™ Operating System

QNX is a POSIX-compliant, real-time, message-passing, preemptible microkernel.

QNX is primarily used in embedded safety-critical systems such as medical equipment

and automotive systems. QNX is a true microkernel; applications, device drivers

and other system critical services run in isolation in user-space. The microkernel

implements a few core functions such as thread, timer, synchronization, message-

passing, signal, and scheduling services. Other common operating system services

such as process and memory management are not part of the microkernel and run in

regular user-space. This allows for a greater isolation between critical services such

as drivers and the kernel itself. In addition, it enables critical system components to

be restarted upon failure without the need to restart the entire system.

Message passing is QNX’s main interprocess communication mechanism and is

a core fundamental function upon which QNX relies on. Message passing allows a

process to send a message to another receiving process synchronously. In order for

a message to be received, the message receiving process, or server, creates what is

known as a channel. Each channel has a unique identifier. A process wanting to

send a message to another process must first connect to this unique channel ID along

with the receiving process ID, thereby creating a connection. Each connection has

a unique identifier and refers only to the receiving process, thread, and channel IDs.

Messages are the primary communication mechanism between regular user processes

and system-level processes such as the process manager.

Thus, as shown in figure 4.1, the QNX microkernel, along with a set of user-

space privileged and non-privileged services connected to the message-passing bus,

form a fully functional operating system. QNX only has 88 system calls 1 that are

implemented as an exception or a trap into the microkernel. The rest of the system

calls are implemented as messages to the appropriate system service such as the

process or the memory manager. As an example, in a traditional monolithic kernel

such as Linux, a process wishing to create a new process calls the spawn() system call,

1As of QNX version 7.0
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Figure 4.1: The QNX message-passing bus.

however, on QNX™, calling spawn() results in a message being sent to the process

manager, using the MsgSend*() API, with a PROC SPAWN message header type.

The rest of the message payload would include all the required spawn parameters and

flags. Since messages are synchronous, the process manager receives and performs the

request while the sending process is blocked, waiting for its reply. The MsgSend()

API itself is a true system call implemented as a trap into the microkernel, but its

only function is to deliver a payload on a specific channel ID to a specific process.

Most of the system calls on the QNX operating system are implemented as messages

and delivered via the message-passing infrastructure. For the rest of this thesis, we

refer to system calls implemented via messages as kernel calls and calls implemented

as a direct trap into the kernel as system calls.

QNX provides comprehensive instrumentation utilities. The instrumented version

of the micokernel includes tracing facilities that provide a highly customizable and

configurable trace data stream. This enables real-time monitoring of a QNX system

at runtime. QNX states that there is a small 2% performance overhead when us-

ing the instrumented versus the non-instrumented version of the microkernel. QNX

provides APIs (the System Analysis Toolkit (SAT)) for programs wishing to use the

logging facilities. Since the data rate of the trace logging stream is quite high, log-

ging applications usually enable tracing for a few seconds before saving the massive

amount of information to a file for later offline processing. As the system operates,

the microkernel fills the trace data buffer. When a preset buffer threshold is reached,
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the kernel calls a handler function pre-configured via the trace logging application.

The application would then consume trace data, freeing up the kernel trace buffers

to free up room for more trace data. The kernel buffers themselves are pre-allocated

and set up by the trace logging application and installed in the kernel via the trace

logging setup kernel calls. The trace data generated by the microkernel is highly

configurable; a trace logging application can use the tracing APIs to set filters and

exclude or include specific types of data. The different types of data are divided into

classes and events. For example, one can enable the THREAD class, which generates

thread-related trace events such as which thread is currently running on which CPU,

or the KERNEL CALL class which generates trace events when any kernel call is

made by any process in the system. There are two generic tracing modes, a wide

mode and a fast mode. Wide mode generates more in-depth logging information,

such as the full argument list for kernel calls. Fast mode provides only a subset of

the full information in a very compact form. Wide mode generates more data, while

fast mode generates data faster. A The size of a MsgSendv() trace data is 8 bytes in

fast mode and 24 bytes in wide mode.

To piece the different components together, Figure 4.2 shows an overview of the

operations involved when a process spawns a child. The numbered steps are described

as follows:
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• (1) Process 4 is started. It will be acting as a server to receive communication

via messages. It creates a channel via a system call and the microkernel assigns

the channel ID 3 for Process 4.

• (2) Process 4 needs to spawn a child process. This is done via calling the

kernel call spawn. Spawn() is implemented in libc as a message to the process

manager. When process 4 was first initialized, a connection to the process

manager communication channel was automatically created.

• (3) Process 4 (libc) calls MsgSend() with the appropriate payload. The des-

tination is Process 1, the process manager and the payload include a message

header (PROC SPAWN) and the message body which contains the rest of the spawn

parameters.

• (3a) Since MsgSend() itself is a system call, it traps into the microkernel (3b)

which copies the message from the source, Process 4, to the destination process

manager (3c).

• (4) The process manager creates a new process with the help of a few system

calls into the microkernel and responds back to process 4 with the appropriate

spawn() return value, unblocking it.

• (5) The child process happens to be a client of its parent, Process 4. It is now

free to connect to process 4’s known channel 3 in order to send requests. The

same set of steps are repeated but this time, the destination process is not the

process manager but rather Process 4.

• (6) Meanwhile, the microkernel tracing facilities are enabled and update a pre-

setup shared memory area with the encoded trace data of the various operations

described.

• (7) The anomaly detector, which includes a trace logging component, is sent

an interrupt 2 from the microkernel indicating that there is data available. The

anomaly detector then consumes the data from the shared memory and updates

its models.
2a pseudo-interrupt to be accurate as it is not a result of a true interrupt generated by the

interrupt controller
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Qnet, QNX’s native networking protocol, enables message-passing across dis-

tributed QNX nodes on a network. This allows an entire network of trusted nodes

to appear as one operating system running on distributed network of CPUs. One

can send a message to spawn a process transparently on a remote node on a Qnet

network. For this reason, any message being sent to a channel must include the Qnet

node identifier. This identifier is 0 if the message is intended for the local node,

otherwise the remote node ID is used.

QNX offers PPS, a persistent publish and subscribe utility. PPS enables writers

to easily publish information and readers to subscribe to notifications from certain

publishers. The published information is persistent across system reboots. tH uses

PPS to publish different types of information that can be easily subscribed to from a

command line.

The QNX operating system has been chosen for our implementation for a few

key technical reasons. First, QNX’s microkernel architecture means that all services

(such as drivers, filesystem, etc.) are running outside the kernel as user-level processes.

These processes mainly communicate via messages. The system is heavily dependent

on message-passing so much so that most of the highly used system calls on UNIX-like

systems are implemented via messages to system-level services that provide core OS

functionality such as process and memory management. This means that regardless

of the way applications are implemented, communication via message-passing is guar-

anteed to occur. Second, since drivers and other critical system processes are not part

of a big monolithic kernel, they too can be monitored and profiled. This means that

tH can profile and detect anomalies in critical operating system services. Lastly, the

QNX kernel is a safety certified microkernel 3; its unique position in the embedded

safety-critical market makes QNX a suitable target for this type of anomaly-based

fault detection work as we can test our solution with real safety-critical products and

collect meaningful data results from real-life applications.

4.3 Profiling Thread Behaviour

Thread Homeostasis profiles threads and not executables. An executable has one

profile that contains a single profile for every thread created by the process. This

3ISO 26262 and IEC 61508 certified
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design decision was made after going through the first round of experimentation with

profile-based models. In the first round of the detector’s implementation, we collected

trace data and built models for every process in the system. We ran experiments to

determine the false-positive rates for the new detector and calculated the average

normalization times. The details of the experiment are described in detail in the

following chapter. The results were astonishingly satisfactory yet, not perfect. For

some deterministic processes in the system, we expected false positive rates to be as

low as 0% and the time taken to learn the process behavior to be low. However, this

was not the case.

A simple controlled test application was built to try and further analyze the prob-

lem. The test application included a server and client processes that communicate

via messages. Both the amount of communicated messages and the variability of

the message types were configurable. A series of test cases were built to verify the

correctness of our implementation. All the stress tests passed excepts for one, the

multi-threaded client test. It took almost twice as much time to learn the normal

behavior of a client with 4 threads than it did with just one thread. Any variability

introduced in the messages sent by any of the threads would greatly affect the results.

To add to this, right after the client has normalized, anomalies start being detected

without any change in behavior.

Even though, every thread in the process has a separate sequence buffer, the

per-process model was being updated at non-deterministic times depending on which

thread is currently executing. Essentially, thread messages were being interleaved.

This caused the model to think it has observed a new sequence during training,

when in fact, it did not. This resulted in a much higher normalization or learning

time. Performance measures were being recorded and we have seen this effect in the

amount of excessive profile thawing (frozen to unfrozen) as a result of the believed-to-

be-new sequence. Also, given a multicore system, threads are running concurrently

on different CPUs; the trace data is received and combined from all the different

cores. There is no guarantee that they will be correctly ordered except if we read

their timestamps. This has two issues: i) if two threads have the same timestamp,

which one comes first? and ii) the message trace data comes in at a very high rate,

stopping to parse and compare the time stamps and waiting long enough to make
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sure that no future event would be received with a timestamp earlier than the current

one would result in a great performance hit. We have implemented such timestamp

parsing mechanism and seen the performance penalty. The CPU usage rises from an

average of 1.2% to a whopping 15%, an unacceptable performance hit.

After further analysis, we determined that we had to build profiles for individual

threads and not for the entire process. Hence the name Thread Homeostasis.

4.4 A Thread Network Behavioral Model

Given pH’s promising experimental results and the nature of the target implementa-

tion environment, we decided to further extend pH’s modeling technique to include

inter-process communication in addition to system calls. Since a system can be viewed

as a network of interconnected processes and threads that communicate with the ker-

nel as well as with one another, we hypothesised that including communication ID

used for inter-process communication in the short sequences of calls would allow fur-

ther insight into the behavior of a process and its threads. This is particularly true

in environments that heavily rely on IPC to perform their functions. This new model

would be a powerful indicator of the system’s natural behavior. The process is no

longer viewed as an isolated entity, but rather a node in a larger network. Given

a per-thread behavioral model, it will be much harder for an anomalous user-space

process to send messages to another process without going unnoticed. This should

result in an anomaly at many different levels in the system:

1. In the profile of the anomalous process, since it has never been seen sending

such messages.

2. In the profile of the receiving process since it never received such messages.

3. Possibly in the profile of the receiving process as it sends a response to the

anomalous process.

4. Possibly in the profile of the anomalous process as it receives the response.

5. Possibly in the profile of other processes: if as a result of the anomalous mes-

sages, the receiving process has performed an action that requires sending a

message to yet another process or issued a system call.
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Thus, anomaly detection would be performed on the system as a whole and not on

an isolated instance of a binary. A fault that causes a process to communicate with

another in such a way that has never been seen during verification should be easily

detected through our model. We believe that this holistic view of the system would

allow errors to be observed at a much earlier stage before becoming faults. We will

no longer refer to a sequence of system calls but rather the sequences of messages

used for both process-to-process and process-to-kernel communication.

Typically, in multi-process scheduling-based operating systems, different processes

communicate with one another. However, there is no mandate or rule that restricts

system architects from building their entire safety-critical functionality using just

one process along with a monolithic kernel that includes all the required drivers. By

implementing tH on QNX, we guarantee a system in which a high level of inter-process

connectivity and communication is built into its core design philosophy.

4.4.1 System call identification

As discussed, system calls are either implemented via a trap into the kernel or

via a message-send to the system-level services. In order to build the model of

message-sequences, the first question we had to answer was: If we are building a

two-dimensional table of look-ahead pairs of messages, how can we uniquely identify

a message from a thread to another so that we use this identifier as an index in our

table? Messages do not have a clear unique identifier that we can use. In a traditional

monolithic kernel, system calls are traps into the kernel and are assigned unique num-

bers to identify them. Similarly, on QNX, trap-based system calls can be uniquely

identified by their number. However, this is not the case for the message-based calls.

A message payload consists of a message header or the command number followed by

the command parameters. The same message header can be sent by any process to

another or by a process to the kernel. As an example, PROC SPAWN is the message

head that is sent to the process manager when calling spawn(); sending a message

header with the same value as PROC SPAWN (numerical value 0x0010) to the serial

driver would perform a completely different action. Message headers alone cannot

uniquely identify a message. Rather, information about the source and destination

must be included: the source and destination process and thread identifiers, pid and



52

tid, the pid of the receiving process, the channel identifier unto which the message

is received, the node identifier (node id) on a Qnet network and finally, the message

identifier or the message head. These values combined uniquely identify a message.

We have modified the QNX microkernel to encode this data and send it to tH

through the trace logging facilities every time a message is sent. Figure 4.4 shows the

minimal 96-bits received by tH in addition to the kernel calls number. The source

process index and thread ID are used by tH to identify the appropriate thread profile

to update. The remaining 64-bits are composed of the 32-bit message head OR’d

with the process index 4 of the receiving process, the channel ID and the node ID to

produce [PID TO (12-bits)| CHID (12-bits) | NID (8-bits) | MESSAGE HEAD

(32-bits)]. Messages sent to a kernel service always have a destination process ID

of 1, the process manager. This message identifying 64-bit value is then stored in an

array. The array’s index is then used to directly update the look-ahead pairs table.

Thus, large 64-bit values are converted into zero-based array index values. In case of

a trap-based system call, the microkernel only sends the 32-bit system call number

along with the source process and thread IDs. Figure 4.3 shows an example data flow

as a process sends a message to another until the unique message ID is stored in the

message ID list.

4.4.2 Interprocess Message Identification

Messages sent from a process to another are uniquely identified using the same tech-

nique that the message-based kernel calls are identified. From the microkernel’s point

of view, there is no difference between sending a kernel-call message to the processes

manager or sending a message to another process.

4.5 Modifying the Instrumented Kernel

Due to some performance challenges (discussed in section 4.8), the QNX microkernel

was modified to tailor it to tH’s specific needs. We modified the instrumented kernel

to replace the current KERNEL CALL EXIT trace event 5 with our own. The new event

4The process index is the unique bottom 12-bits of a process and are all what’s need to identify
a process.

5A trace event sent every time a kernel call concludes and exits the kernel
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contains the exact information that tH needs without requiring all the extra event

types. Recall that tH creates a single 64-bit value of the tuple (process ID, channel

ID, node ID) of the receiving process OR’d with the message head (the first 32-bits

of the message). Instead of emitting all this data from the kernel, we had the kernel

create this 64-bit mask of the values we needed and include it in the trace so that tH

could use it directly. The sending process ID was also replaced with the first 12 bits

of the process ID; enough data for tH to directly index into its process list to uniquely

identify a process. Similarly, for the thread and node IDs, only the bottom 12-bits

were used. Thus, the process, thread, and node indexes (indexes versus IDs now)

were OR’d together to generate one 32-bit field. The 32-bit field for the timestamp

was not required (see section 4.8) and therefore was replaced with the process, thread,

and node indexes. The final emitted information is shown in Figure 4.4. This single

KERNEL CALL EXIT trace event now contains the required information that tH needs

in as little space as possible.

4.6 Runtime Structure and Organization

tH is divided into three main core components. The first is a core anomaly detection

component that runs agnostic of the operating system, it maintains a generic view

of the process and thread information, builds the models and detects anomalies.

This core component is also responsible for saving and loading saving profiles to and

from disk. The second component performs the QNX dependent functions, such as

setting up trace logging with the kernel, parsing trace information and presenting it

to the anomaly detector through a predefined API. The third component is the user

interface component. For this, we used persistent-publish and subscribe (PPS) to

present various pieces of information to the user.

Figure 4.5 shows an enumerated outline of the main data structures used at run-

time. The components and the data flowing into them are described as follows:

1. tH starts and sets up tracing with the microkernel. Using the trace logging API,

tH installs a shared memory area that the kernel will be using as a buffer to

store the trace data. tH also sets up the handler or pseudo-interrupt handler.

This is used by the kernel to inform tH of the availability of the trace data.
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Figure 4.5: tH’s components and data flow.

2. tH reads the json configuration file and extracts runtime parameters. These

include the size of the local memory area to copy the trace data into, the size of

the sequence window, the time tH has to wait before a frozen profile is marked

as normal and the location of the profile’s folder on disk. If training or testing

profiles exist on disk, tH reads and loads them into memory.

3. Based on the pre-setup tracing filters (‘kernel call exit’ events) the microkernel

writes the trace data into the pre-installed memory region.

4. The kernel interrupts tH via the pseudo interrupt handler, notifying it that new

data exists.

5. tH copies the trace data into its local buffer, freeing up the shared memory area

for further kernel traces.

6. Using the source pid index in the trace data, the master process information

table is accessed to retrieve the process structure. The trace data tells us that
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a specific thread, belonging to specific process has issued a kernel call. If this

kernel call is a MSG SEND kernel call, it means that the process has sent a message

and the trace data will contain the unique message identifier described above.

7. The thread specific structure is retrieved along with the thread specific sequence

window.

8. The unique message identifier is stored in the message identifier list and its

index is retrieved. If it already exists, its index is returned. The thread-specific

sequence window is updated with the index.

9. Depending on whether the thread is in the testing or training phase, the correct

look-ahead pairs table is updated. Given that the unique 64-bit message ID is

now translated to a zero-based index, this is a fast O(1) access.

10. The PPS interface is updated accordingly. If the thread is still in train-

ing, the interface is updated to reflect statistical data, such as normal count,

last mod count and profile status (frozen, thawed). If the thread has nor-

malized and is in testing phase, the interface is updated to show if the trace

contained any anomalies.

Given the per-thread model, the different profile states, frozen, thawed and nor-

mal, happen at the thread level.

4.7 Other Differences from pH

This section presents some other minor differences from the original pH implemen-

tation. These design decisions were made to better suit the embedded safety-critical

nature of tH’s use case.

4.7.1 Dual Runtime Modes

To reduce false positives, pH has a unique algorithm to allow the addition of training

data during testing (see Section 2.3.5). If during testing, a certain sequence is seen

frequently enough, the testing profile is unlocked, the new sequence added and train-

ing restarts for that process. We believe this is ideal for a general-purpose system,
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however, not for our use case. If tH is to be used on critical infrastructure, then it is

safe to assume that the expectation would be to have the testing profiles generated

during production then simply installed and used during deployment. From our ex-

perience in the field, critical systems that do not have deterministic behavior are not

popular and allowing for tH to train in an operational system would greatly hamper

its adoption. In addition, we make the assumption that safety-critical systems are

deterministic in nature and that exhaustive verification and system tests will be per-

formed for safety and certification purposes. This verification phase is when tH will

be profiling and learning the system behavior. We do not expect any deviance in the

learnt behavior. Any occurrence of anomalous behavior during testing time is only

considered a failure of complete test coverage or actual anomalous behavior but not

a false-positive.

Having said that, we allow the addition of anomalies to the profiles if the entire

system is considered to be in the learning phase. Even if the thread profile has

normalized, if the system is in learning mode, we add the “anomaly” as a valid

sequence to the profile. After having run the first round of experiments, we noticed

that one of the processes, the sensor process, generated anomalies on the same training

dataset. The sensor has multiple threads, and two of them raised anomaly alarms.

The first found 36 anomalies in 1423946 calls and the other 14 anomalies in 4110899

calls. After further investigation, it became clear that another process, Parallax,

was the main user of the sensor. Parallax had not yet normalized and thus, was

exhibiting new behavior and interacting with the sensor in new ways. Meanwhile,

the sensor had normalized and locked its profile thinking that these new interactions

were anomalous. One might think that increasing the time-to-normal time might solve

this problem, but it doesn’t. The sensor needs to know that Parallax has normalized

before it locks its profiles regardless of the time-to-normal time. There was an easy

and straight forward solution to this problem: If we are in learning mode, any anomaly

encountered would be regarded as normal and added as a legitimate sequence to the

testing profile even if the thread profiles have normalized and locked themselves.

Running tH in detection mode disables this feature and never adds new sequences.

the entire tH process now has two runtime modes, learning mode and detection mode.

Both Parallax and Sensor are described in detail in the next chapter.
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4.7.2 Monitoring Critical Processes only

Even though this goes against our design philosophy, we profile and monitor the

behavior of the system’s thread network. tH can be configured to monitor specific

processes only. This was useful to us when we ran the mock client/server application;

we did not need to be bothered by any other system events and excluded all other

processes in the system. This is also useful if a specific subset of processes that are

deemed critical need to be monitored excluding other not-so-important ones.

4.7.3 Configurable window size

pH’s original implementation used a sliding window size of 9. Luckily, this allowed

the use of a single byte in the master sequencing table to represent an intersection

of two message identifier entries in the table (current and previous). Each bit in the

window indicated whether the previous system call has been seen before the current

system call, during training. This is optimal in terms of storage space, since a byte

is the least amount of space that could be used. In terms of run-time performance,

the worst case scenario is shifting at most eight bits to flip the last bit.

tH allows the efficient use of a variable configurable size window. During initial-

ization, a global small table is built that allows an O(1) lookup of the physical bit

location within the n-sized window, given the current and previous message IDs. The

physical bit location can then be used to flip the required bit in the master sequenc-

ing table. This configurable window size would allow us to easily experiment with

different window sizes in the future. For now, the window size is 8.

4.7.4 System Call Delays

As discussed earlier, pH reacts to anomalies by delaying the corresponding anomalous

system calls. The concept behind a delay is to give a system administrator enough

time to determine the validity of such a sequence, approving or rejecting the applica-

tion behavior. Reacting to anomalies on a safety-critical system is a huge undertaking

that can have serious consequences. We believe that reaction to anomalies must be

done on a case-by-case basis by those who have intimate knowledge of the system. A

generic reaction that fits all use cases in such sensitive environments is not suitable.



59

As such, tH does not react to anomalies but rather has a functional interface to no-

tify those who subscribe to alarms from anomalous traces. The reaction is left up to

them.

4.8 Implementation Challenges

4.8.1 Customizing Trace Logging for tH

Initially, we used the original stock instrumented kernel. We instructed the microker-

nel through the trace logging API to send us trace data every time a kernel call was

entered in the kernel. This allowed us to trace both trap-based system calls and any

message sent via the MsgSend() kernel call. Trace logging was enabled in wide mode,

since we needed the extra information associated with the events. Unfortunately,

the ‘kernel call entered’ trace event was not enough; it lacked other information we

needed. We were forced to ask the kernel for more types of trace events in order for

us to have the required information. This drastically increased the size of the trace

data and negatively affected tH’s performance. Some of the missing data included:

1. The channel ID of the receiving process. This is required for the unique message

ID creation. The ‘kernel call entered’ trace event only included the connection

ID used by the sending process. This meant that we had to ask the kernel to

send us trace events every time a process connects to a channel. This way we

could maintain internal lists of connection ID to channels for cross reference.

Now that we are tracing channel connection events, we had to trace connection

detach events as well so that we could remove the channel ID from our internal

lists.

2. The issuing thread ID. The ‘kernel call entered’ trace event only included the ID

of the CPU the kernel call was running on. In order to obtain this information,

the ‘thread running’ event was enabled. This event is issued every time a thread

becomes runnable on a CPU. An internal list of CPU IDs and current threads

running on them was created for cross reference.

Table B.1 shows a detailed description of all the trace events collected from the

kernel. The trace data generated by the instrumented kernel is extensive and highly
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granular; its primary purpose is to debug a system over a brief period of time. Even if

one could provide enough storage space to store all the generated trace data, parsing

this information was meant to be performed offline and not in a live, online, and

continuous fashion. tH has a hard requirement to run full-time and monitor all the

processes in the system with a minimum overhead. Given all the extra information

we were requesting from the kernel, tH’s performance degraded and became CPU

intensive 6. At times, CPU usage rose to 20% on particular quad core machines

running a fairly quiet system. We started seeing warning messages indicating that

trace events were being dropped because tH could not keep up with parsing this

sheer amount of trace data while updating multiple cross-reference lists and behavior

models. Something had to be done; after all, what good is an anomaly detector

running on an embedded safety-critical system that consumes all the CPU resources?

This led to the initial decision to modify the QNX kernel in order to tailor the

KERNEL CALL ENTER 7 trace event to tH’s specific needs. Each event now included:

• A time stamp of when the kernel call exit occurred. This is a 32-bit field and

is required for the receiver of the trace data to sort out of order trace events as

we will see later.

• The process ID of the process that issued the kernel call. This is a 32-bit field.

• The thread ID of the thread that issued the kernel call. This is a 32-bit field.

• The kernel call number, part of a 32-bit header.

• If this is a message send kernel call then the following is also included:

– The process ID (32-bits) of the message receiving thread.

– The channel ID (32-bits) of the message receiving thread.

– The node ID (32-bits) of the message receiving thread.

– The first 32-bits of the message header being sent.

This brings the total trace data size to 228 bits in addition to a constant header

size of 32 bits. The instrumented QNX kernel generates two types of trace data

6The instrumented kernel’s overhead did not increase but rather tH’s parsing of data in realtime
7An tracelogging event logged every time a system call is called
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events; simple and combine event [3]. A simple event is a trace data event that is at

most 96 bits in size. These events are used when an entire event’s data can fit in 96

bits or less. A combine event however is an event type that has a variable length.

Combine events are used to represent events that need to supply more than 96 bits

of data. The kernel creates multiple combine events and adds them to a queue ready

to be consumed. However, due to performance constraints, the kernel does not wait

for all the combine events belonging to one trace event to be added to its internal

trace queue holding up other kernel calls. The kernel services other kernel calls and

adds their trace data to the queue before going back to enqueue the original combine

events. Thus, the combine events of different traces are interleaved 8.

As a result, tH would then have to recognize that the trace data is a combined

event (part of the trace data header) and use the time stamp to re-order events in

order to get the correct view of the trace data. This re-ordering of combine events

is time consuming and extremely CPU intensive. Looking at the required data, we

realized that we could indeed compress our data into 96 bits (from an original 128

bits) and turn the multiple combine events emitted on every KERNEL CALL ENTER to

a single simple event. This eliminated the need to have a 32-bit timestamp field as

we are guaranteeing that the newly added kernel trace event will never generate a

combine event. As a result, we were able to reuse the time stamp field and optimize

the trace logging message sent to tH as described in section 4.5 to a single simple

event, 96-bits in size. 40% of the code in tH was eliminated due to this kernel change.

tH’s CPU usage dropped from 20% to an average of 1.2% CPU on a heavily utilized

system.

4.8.2 Kernel Call Restarts

Having incorporated the above performance enhancement, we were ready to run a

real-life test on one of the services used in production, the Sensor service described in

the next chapter. The test ran for over three days without successfully normalizing

and freezing the profile. We went back to our test harness and analyzed the trace

data generated for our proximity client that sends two different types of messages in

a tight loop, message header number 1024 followed by 1025. The expectation was to

8See interleaved events in the System Analysis Toolkit Guide [3]
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see this sequence in the trace data:

MSG SEND:1024 ,MSG SEND:1025 ,MSG SEND:1024 ,MSG SEND: 1 0 2 5 . . .

Except the following sequence is what was actually observed:

MSG SEND:1024 , MSG SEND:1024 , MSG SEND:1024 , MSG SEND:1025 ,

MSG SEND:1025 , MSG SEND:1024 , MSG SEND:1025 , MSG SEND:1025 . . .

When tH receives the MSG SEND trace from the kernel, it indicates that the process

in question has entered the kernel via the MsgSend kernel call and that the kernel is

about to start processing its request but the process has not yet exited the kernel.

The QNX kernel was further instrumented using the existing kernel tracing APIs to

determine when a kernel call is done and exits the kernel back to the user process.

Here is the result:

MSG SEND:1024 , MSG SEND:1024 , MSG SEND:1024 , MSG SEND EXIT: 1024 ,

MSG SEND:1025 , MSG SEND:1025 , MSG SEND EXIT: 1025 ,

MSG SEND:1024 , MSG SEND EXIT:1024 , MSG SEND:1025 ,

MSG SEND:1025 , MSG SEND EXIT:1025 . . .

Using the mock client that sends two types of messages, the sequence shows that

indeed, the QNX kernel was behaving correctly and as expected. We were seeing the

same kernel calls in succession 4.3% of the time (69043 out of 1572634 calls). However

we have a major philosophical bug in our implementation of the anomaly detector:

kernel-call restarts.

Any thread wishing to have the microkernel perform an operation on its behalf

issues a system call. Only one CPU is allowed to be in the kernel at a time. Usually,

system calls are very short in duration to reduce the oveall latency of the system.

However, a situation may arise that a low priority thread is in the kernel while a

higher priority thread is waiting to get into the kernel. To reduce the latency for the

more important system operations, the microkernel is fully preemptible. This means

that the higher priority thread will kick the lower priority one out of the kernel and

take its place. All the operations that the lower priority thread has completed in the

kernel will be unwound. The next time this lower priority task runs, the preempted

system call will be restarted from the beginning. Having said that, there might

be a point in the system call’s lifetime where the kernel would need to manipulate
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certain shared data structures. If this is the case, the kernel locks itself. This blocks

preemption by a higher priority thread and allows the kernel to safely modify common

variables without the risk of yielding and leaving them in an inconsistent state. If

needed, the kernel could potentially disable interrupts to block an interrupt service

routine (ISR) from interrupting it. The kernel is usually locked for a very small

amount of time to minimize interrupt and higher priority thread latency.

Unfortunately, given the kernel call restarts, we had no hope in having determin-

istic behaviour that we could extract a normal pattern from. The kernel call restarts

were happening 4.3% of the time; their occurrence was unpredictable depending on

timing, interrupts and scheduling priorities of other threads in the system. A change

had to be made.

Instead of asking the kernel to send us trace data whenever a kernel call starts, we

flipped things around. We asked the kernel to send us trace data when the kernel call

is exiting. This guarantees the elimination of the kernel call restart problem and pro-

vides determinism. This meant that whenever we receive a KERNEL CALL ENTER trace

event, we would then have to wait for the KERNEL CALL EXIT in the trace data since we

need the information from both the KERNEL CALL ENTER and the KERNEL CALL EXIT

events. Unfortunately, asking the kernel to send us KERNEL CALL EXIT trace events

in addition to all the KERNEL CALL ENTER trace events only doubled the size of the

trace data 9, requiring more CPU usage. In addition, more complex tH code had to

be added to synchronize between the kernel call starts and the kernel call exit trace

events so that the former could be eliminated appropriately. This change was more

error prone.

Eventually, the decision was made to add a new KERNEL CALL EXIT trace event

that included all information that our modified KERNEL CALL ENTER event included.

Since there is no need for the KERNEL CALL ENTER events, they were disabled. Now

tH is receiving a compact stream of KERNEL CALL EXIT events containing all the

information it needs as shown in Figure 4.4 and described in section 4.5. This

eliminated the need for most of the other trace data previously required and

more than one third of the code in tH required to build its internal data struc-

tures. NTO TRACE KERCALLENTER was replaced with a NTO TRACE KERCALLEXIT,

9One KERNEL CALL EXIT event for every successful non-preempted KERNEL CALL ENTER event.
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KER CONNECT ATTACH, KER CONNECT DETACH and NTO TRACE THRUNNING were no

longer required. tH is now much leaner (40% of the code was eliminated), less com-

putationally intensive (an average of 1.2% versus 20%), and more powerful as our

results will show.

4.9 The 32-bit versus 16-bit Message Header Dilemma

Figure 4.4 shows the three 32-bit values sent in the trace data when the MsgSend

kernel call is invoked by a process. The last value is the first 32-bits of the message

payload. Our intention is to differentiate between them for profiling. All messages

to the QNX kernel (procnto) use a 16-bit message type in their header, and the rest

of the message contains the data, including the second 16-bits of the message head.

Our decision to include the additional 16-bits of message data was made based on the

assumption that usually, specialized safety-critical software does not have too much

variance in their messages. Too much variance means that we will not be able to

easily profile the system. Using our test harness, we ran some field evaluations using

the 32-bit value and determined that the average number of different 32-bit message

types is around ten. Table ?? shows the number of different 32-bit message headers for

some of the system processes we profiled. Some of these processes are quite complex

such as Parallax, a process responsible for decision making in autonomous vehicles,

devb-umass [70], QNX’s mass storage device driver, drm-intel, QNX’s direct rendering

manager for Intel Graphics [69], Screen [77], QNX’s graphics compositing windowing

subsystem, and fs-nfs3 [71], QNX’s network file system driver. There doesn’t seem

to be a high variability in the different types of messages, therefore, using the entire

32-bits might be suitable. However, one test made us re-evaluate this decision: the

QNX port of Google’s Blink browser engine (BlinQ) [21].

Even though our work here targets specialized safety-critical software with a very

small and limited functionality, pushing the limits during this design phase helps us

gain further insight into the data we are attempting to model.

Table C.1 shows the trace data collected from the web browser for approximately

10 hours. The browser was left running an active HTML5 openGL test. The first

column shows the destination process, followed by the 16-bit message header and the

32-bit header. The last row shows their total count. In total, Blinq sent 61688997
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Process Name # Distinct Kernel calls Total kernel calls
launcher 10 7630
qterminal 20 12615
devb-umass 16 13520
io-hid 1 1707578
slog2info 6 88418
parallax 9 117872451
drm-intel 8 35086592
screen 11 7313114
analogclock 5 442815
fs-nfs3 17 9372245
slogger2 3 433

Table 4.1: Total number of distinct kernel calls of 32-bit message headers

messages to 11 different processes in the system. There were 52 distinct 16-bit message

types and 85 distinct 32-bit message types. The maximum ratio between them is 1:9

(1 16-bit header has 9 different 16-bit pays loads). As an example, in the process

with index 1, the process manager is sent one message of a single 16-bit header,

0x0100, however if we include the entire 32-bit header with the extra 16 bits of the

data payload we’d find five extra distinct types: 0x0001, 0x0000, 0x0003, 0x0005, and

0x0007.

Although the results in Table 4.1 are not conclusive, we still opted for reducing the

message header to 16-bits for the first round of experiments to avoid non-deterministic

behavior resulting from the greatly varying payloads. The entire 32-bit payload and

perhaps even more will be part of our experiments in the future.

4.9.1 A Summary of the Technical Contributions

The following list summarizes the technical contributions of this work:

1. Thread Homeostasis, tH, is an anomaly detector based on pH’s system call

profiling concept was created for the QNX operating system.

2. tH profiles running system threads.

3. In addition to system calls, tH builds models from sequences of message iden-

tifiers used in interprocess communication.
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4. A novel approach to uniquely identify an IPC message was created.

5. The QNX microkernel was modified to customize the trace data generated. This

allowed tH to run full-time with low CPU usage overhead while both collecting

and parsing a continuous stream of compact trace data in real-time with low

latency.

4.10 Usage

4.10.1 Starting up the anomaly detector

Ideally, tH should be started on system boot right after the kernel and before any

other programs have started. This enables tH to capture all system calls made by

any process right from its inception. However, tH can be started at any point in time,

either before or after the process(es) being monitored have started.

Configuration file

A configuration file is required as a command-line argument for tH. JSON was chosen

to represent the configuration file since it is trivial to extend and add support for

future configuration options.

The list below shows a sample configuration file. The configuration file structure

and description are as follows:

• buf size: Allows configuring the kernel tracing buffer size. Not Implemented.

• win size: The size of the sliding window. The current default is 8 and the max-

imum is 32. This option has been added so that we could run future experiments

with different window sizes.

• mon list: A comma-separated list of processes to monitor. If this list is empty,

all processes are monitored by default, otherwise, the monitoring is only limited

to this list. A few sub-options identify a process:

– The sub-field id is the process identifier

– type specifies whether id contains a process name or a process ID (cur-

rently only process name is supported).
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• exc list: This is a comma-separated list of processes to exclude from monitor-

ing. Not Implemented.

• prof path: The full path to profile data. Existing profiles will be read from

there and new profiles will be created at this path.

• notify: Will be used to specify a specific process to notify when anomalies

occur. Not Implemented.

• normal wait: This is the time (in seconds) that tH will keep the profiles frozen

before it deems it normal.

{
” bu f s i z e ” : 64 ,

” w in s i z e ” : 8 ,

”mon l i s t ” : [

{
” id ” : ” proc /boot/ io−bluetooth ” ,

” type” : 2 ,

” desc ” : ” b luetooth d r i v e r ” ,

” w in s i z e ” : 8 ,

” no t i f y ” : 1

} ,
{

” id ” : ” proc /boot/btman” ,

” type” : 2 ,

” desc ” : ” b luetooth manager” ,

” w in s i z e ” : 8 ,

” no t i f y ” : 1

}
] ,

” e x c l i s t ” : [

] ,

” pro f path ” : ”/home/myqnx7/ tH roo td i r ” ,

” no t i f y ” : 1 ,

” normal wait ” : 180

}

Listing 4.1: Configuration file example.

4.10.2 Status Information

As mentioned earlier, QNX persistent publish and subscribe (PPS) is used as the main

interface for tH. Figure 4.6 shows the PPS interface director listing. There are two

different types of information that tH presents, a general overview of the system using

the status object and specific thread information using the per-process object. The

status object contains a summary and general status information and thread specific

information that is represented by objects with matching process IDs, concatenated
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with the thread ID names. The listing below shows a part of the output from the

status object as read from command line:

Figure 4.6: PPS interface directory list.

@status

anom count:n:0

pid 241689::DETECTING:NORMAL:0

pid 241689 tid 1::DETECTING:NORMAL:0

pid 241689 tid 2::DETECTING:NORMAL:0

pid 241689 tid 7::DETECTING:NORMAL:0

pid 274460::LEARNING:THAWED

pid 274460 tid 4::DETECTING:NORMAL:0

pid 274460 tid 5::DETECTING:NORMAL:0

pid 274460 tid 6::LEARNING:THAWED

pid 274460 tid 7::DETECTING:NORMAL:0

pid 274460 tid 8::LEARNING:FROZEN

s t a t e : : r u nn i n g

Listing 4.2: PPS process information example.

The entries under the status object are as follows:

• anom count: The total number of anomalies found across all threads and

process so far.

• pid number : The status of process with ID number. A process can be in

several modes: normal, learning and frozen or learning and thawed. If the

process is normal, this means that all its threads have normalized. If all the

threads have frozen, the process’s state is LEARNING:FROZEN. Otherwise,

the process remains in the LEARNING:THAWED status.

• pid number tid : Similar to the process ID information above but specific to

thread ID.

• state: tH’s running status, running or none if tH is disabled.

anoma l i e s :n : 0

f r o z e n : n : 1

l a s t mod count :n :1230

normal count :n :1300

pa th : : . / t e s t c l i e n t

s equence s :n : 24

state::NORMAL
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t ime to norma l :n :1000

t r a i n c oun t : n : 1 300

t e s t c oun t : n : 1 0 00

t i d : 1

Listing 4.3: PPS process information example.

Under each process ID the following entries and their description are found:

• anomalies: The number of anomalies seen during testing.

• frozen: 1 if the thread is currently frozen, 0 otherwise.

• last mod count: The number of system calls that have occurred since last

modification.

• normal count: The number of normal calls seen while in training phase before

the profile is locked.

• path: The location of the process binary on the filesystem.

• sequences: The number of sequences that have inserted (not the number of

look-ahead pairs).

• state: The state of the thread. Could be one of: normal, frozen or thawed.

• time to normal: The amount of time taken for this thread to fully train,

normalize and lock the profile.

• train count: Total number of system calls seen during training.
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Field Evaluation

After having verified the expected behaviour of tH using the test harness, we now

evaluate it on real in-field software. The evaluation is split into two parts: the

learning phase and the detection phase. Testing whether tH will be able to determine

a behavioral pattern, freeze a profile and then normalize, is an important deciding

factor on whether tH is practical for in-field use. If processes do not have deterministic

behaviour, tH will not be able to normalize or will require a very long time until it

thinks it has observed all possible combinations of messages and kernel calls. The

argument here is that embedded software has enough deterministic behaviour that

can be profiled by our detector. More importantly, a lack of deterministic behavior

would mean that tH would detect anomalies in perfectly normal data. The purpose

of this experiment is to evaluate the false-positive rate generated by tH while running

perfectly normal software.

Even though we run a few experiments to evaluate tH’s ability to detect true

positives, these experiments are in no way extensive or in-depth. The creation of an

unbiased faulty dataset for evaluating an anomaly detector correctly is no trivial task.

Due to timing constraints, we purposefully left this type of evaluation to a future work

where a proper fault-injection framework will be used to inject faults into the running

software for an attempt to introduce behavioral anomalies observable by tH.

5.1 The Evaluation Data

Ideally, tH would be evaluated on a system with some level of safety-critical func-

tionality, after all, most of the systems that use QNX are safety-critical systems.

Originally, we intended to test tH on one of QNX’s autonomous vehicles [1]: create

a software load with our kernel change, build a system identical to the one on the

vehicles including tH, upload it to the vehicle then train and test tH while driving

around the city. However, we were bound by ethical and legal constraints due to the

70
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Figure 5.1: The various sensors and processes used to record and replay sensor data.

high risk level associated with such an experiment. Thankfully, we found the next

best alternative, simulating driving around the city using real-life, high resolution

sensor data.

While driving the QNX demo autonomous vehicle [1] around various cities, the

Blackberry QNX team recorded some of the data received from various sensors used

by the vehicle. The sensors generating the high-resolution data included a GPS, an

Inertial Measurement Unit (IMU), an Infrared (IR) sensor, a LiDAR, a Radar, and left

and right cameras. The data was recorded for later offline analysis and simulations.

Each recording session usually lasts for a few seconds, since the sensors generate a

very high volume of data. This data can be replayed offline to the exact same software

stack that is responsible for part of the autonomous driving, street object detection.

From the software’s perspective, the car believes it is driving over that same section

of the map with the exact same sensor inputs even though it is sitting idle in the lab.

QNX’s Advanced Driver Assistance Systems (ADAS) [75] represent a core software

component for autonomous (and non-autonomous) vehicles running QNX. The Sensor

service software is part of this package [76]. Sensor is used to capture data from various

inputs, including multiple cameras around the vehicle, radar, LiDAR, IMU and GPS

sensors and present it to other system components. In order to provide the ability

to simulate real-world data of a self-driving car, the Sensor software was designed to
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sensor inputs from high-definition recordings instead of reading the live feed from a

hardware sensor.
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Figure 5.2: Parallax/Sensor System overview.

Sitting on top of Sensor is another layer of software that would be making decisions

based on the captured data streams from the multitude of sensors around the car.

Fortunately, QNX has its own demo implementation of such decision making software,

Parallax. Parallax is an internally developed, 1, highly complex piece of software used

for analyzing images and various sensor data in order to detect objects, patterns,

and pedestrians. QNX ADAS customers would usually have their own algorithms

that enable autonomous vehicles to make the right decision. Figures 5.2 and 5.1

show an overview of how all the components connect together. The Sensor services

collects data from all the input sources. Parallax asks Sensor for the data, makes its

calculations, then outputs the data to the screen using the Screen process [77]. Since

we run our tests on an Intel-based system, the screen uses Intel Direct Rendering

Manager (DRM) server to utilize the GPU [69]. The sensor data is stored on a USB

key and hence the use of the USB disk driver devb-umass [70]. All of this runs on the

safety-certified QNX operating system and the board support package layer (system

bootup layer). Figure 5.3 shows screen shots of various Parallax.

1Currently for internal use and demo purposes.
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The software stack is quite sophisticated and CPU intensive. At the time of this

experiment, Parallax contained 42,443 lines of code in addition to 10 shared libraries

it links to. Parallax consumes an average of 64% of the CPU. The Sensor service has

2,107 lines of code and on average uses 13% of the CPU. Screen consumes 2% of the

CPU and has 57,683 lines of code in addition to the libraries it links to. Intel-drm

has 10,464 lines of code and consumes 11% of the CPU.

The recorded data is divided into multiple datasets. Each dataset consists of 7 files,

one for each sensor recording. A manifest file is added to each dataset containing the

physical location on the USB key of each of the files was well as the type of sensor the

data represents (radar, Lidar, GPS, IR, IMU or light/right Camera). This manifest

file is passed to the Sensor process as part of its initialization, enabling it to read the

corresponding dataset files. The length of each dataset ranges from 5 to 15 seconds

of recordings, with an average size of 3 gigabytes per dataset. Because the length of

the recordings is very short due to the high volume of data generated, the recordings

for each dataset is replayed in a continuous loop. The car “thinks” it is driving over

the same area over and over again. In total, we had 16 datasets.

Figure 5.3: Parallax screenshots.
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Process Name Process Description
devb-umass The driver for a USB mass-storage interface [70]. All of the rere-

corded sensor data were stored on a drive and hence the inclusion
of this driver.

io-hid Manager for human interface devices such as a touch screen or a
mouse [72]

slog2info A QNX client to display messages from the system log [73].
io-pkt The network driver [74]

Table 5.1: Other QNX system binaries involved in the evaluation and their description

5.1.1 The Run

The field tests were run on an Intel x86 64 Beebox [9]. The Beebox used has a quad-

core 2.08GHz Intel Celeron 64-bit processor with 2 MB L2 of Cache, 2GB of ram and

a 32GB eMMC. The system has an Intel HD Graphics for Intel Celeron Processor.

In addition to the services mentioned above, Table 5.1 shows all the other binaries

that are not a core part of the test but where utilized during the test runs.

After the system has booted up, a USB key containing all the sensor data that

Parallax and Sensor will be streaming was mounted. The Screen and Intel-drm ser-

vices were then started, followed by Sensor. To start streaming data and simulate

driving, Parallax was started. Finally, tH was started over a remote SSH session.

5.2 The Learning Phase

During the learning phase, we attempt to teach tH the behavior of the software stack.

Initially, we selected three datasets for training. The datasets were over 7.5 gigabytes

in size for a total 28 seconds of driving.

For the first dataset, the simulation was run in a continuous loop until the

critical processes under test had normalized. tH was run with a time-to-normal

value of 3,600 seconds, that is, profiles would remain frozen for 1 hour before they

normalize if they haven’t seen new sequences within that time period. The choice

of this particular time-to-normal value was not arbitrary. In the previous version of

tH, where we profiled processes as opposed to threads, we ran our experiments with

different time-to-normal values (180s, 600s, 1200s, 3600s,10800s) over seven datasets

for each value. Table 5.2 along with the graphs in Appendix E show the false positives
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Process Name 180s 600s 1200s 3600s 10800s
Parallax 5.97E-06% 81E-06% 2.18E-06% 5.32E-06% 4.38E-06%
Sensor 7.87E-05% 3.54E-05% 1.49E-04% 8.32E-05% 3.25E-05%
Intel-drm 2.47E-06% 2.75E-06% 2.99E-06% 4.93E-06% 1.93E-06%
Screen 1.68E-05% 7.66E-06% 1.98E-05% 1.94E-05% 2.15E-05%
devb-umass 1.55E-03% 6.71E-03% 7.23E-03% 7.91E-03% 7.54E-03%
io-pkt-v6-hc 3.48E-01% 2.11E+00% 1.83E+00% 0.00E+00% 0.00E+00%

Table 5.2: Average false positives for different time-to-normal profiles for profile-
based models

generated during testing. We concluded that the time-to-normal values did not have

any significant effect on the false-positive rate for our testing datasets. Even though

the tests ran for a long time, they were, in reality, a few seconds of real intensive

sensor data replays run in a continuous loop. After normalization was complete for

the first dataset, the training profiles were saved to disk.

In order to augment datasets 2 and 4 after the profiles have been normalized

and locked, we ran tH in learning mode. As described in Section 4.7.1, this allows

tH to add more data to the already locked profiles. After no new behavior has

been detected for over an hour, tH was manually terminated and allowed to save its

augmented profiles to disk. A tool was developed to parse through the binary profiles

and produce human-readable results.

It is worth noting that many of the processes in the system did not normalize

or were not profiled at all. This was due to the fact that they were inactive during

our test, such as the PCI-server or the pipe process. Others were profiled but tH was

terminated once our main processes under test normalized and did not get a chance to

see enough kernel calls during their lifetime, such as the SSH daemon. Even though

we SSH’d into the machine to run tH, there was hardly any traffic on the network to

exercise the daemon and build a profile.

As we incrementally added more traing datasets, we could see more threads nor-

malizing as threads that were inactive before have now become active.
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5.2.1 Using Multiple Datasets For Training

After profiling the system behavior using the three datasets, we decided to evaluate

our training methodology before putting tH through the real testing rounds and

producing the final results. We ran testing on two datasets, using the augmented

training profiles. Both tests ran for four hours each, 960 times longer than each

loop iteration. Tables 5.3 and 5.4 show the results. For the first test set, Parallax,

Sensor, Screen and Intel-drm, slog2info, io-hid and io-pkt showed no anomalies for the

whole run. The Anomaly/Train Count column shows the total number of calls made

during this period; all processes’ threads have been highly active during the testing

phase. However, the Sensor process has one out of six threads showing anomalies

with a total of three anomalies in 9379052 calls. The USB disk driver, devb-umass,

had three anomalous threads out of 11 active threads, with a rate of four anomalies

in 56315359 calls. This comes to a total of 4/40 anomalous thread. The second

dataset shows similar results: Parallax has two out of six anomalous threads at a

rate of 0.00000166%, Sensor has two anomalous threads out of five, at a rate of

0.000035306% and the USB disk driver has 3/11 anomalous threads with a rate of

0.005429176%. This was quite a high percentage. We came to the quick realization

that training using three datasets was not enough: tH was not experiencing enough

software behaviour and was generating a higher rate of false-positives that we have

initially anticipated.

Thread Pools

After carefully investigating the source code for the anomalous processes, we con-

cluded that their use of thread pools is the root cause of the anomalies we observed.

Consider a thread pool consisting of three threads, de-queing a queue of tasks num-

bered 1 through 10. At the first run, thread 1 works at 100% of the time and performs

all the work. If during training, threads 2 and 3 never performed any work or per-

formed less work that usual, tH will build a profile for them that does not accurately

reflect their possible behavior. To account for this variation, we need to stress the

system and exercise all the threads so that we can learn all their possible behaviors.

Given that the datasets we have for training have a short duration (15 seconds each

on a loop), this wasn’t made possible even when training over multiple datasets. The
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Process Name-Thread ID Anomaly/Train Count (%) Total False Positives
Parallax-0 0/7342025 (0%)
Parallax-6 0/416263 (0%)
Parallax-7 0/416222 (0%)
Parallax-8 0/416210 (0%)
Parallax-9 0/24646353 (0%)
Parallax-10 0/53123282 (0%)
Parallax-11 0/0 (NA)
Parallax-12 0/0 (NA) 0/86360355
Sensor-4 0/1681517 (0%)
Sensor-5 0/1685225 (0%)
Sensor-6 3/973325 (0%)
Sensor-7 0/2241408 (0%)
Sensor-8 0/2797577 (0%)
Sensor-9 0/2797577 (0%)
Sensor-10 0/0 (NA)
Sensor-11 0/0 (NA) 3/9379052
Screen-1 0/773724 (0%)
Screen-2 0/25059466 (0%)
Screen-7 0/276072 (0%) 0/26109262
Intel-drm-7 0/117363 (0%)
Intel-drm-14 0/25645754 (0%)
Intel-drm-15 0/0 (NA)
Intel-drm-17 0/0 (NA)
Intel-drm-18 0/28809443 (0%)
Intel-drm-19 0/22448047 (0%)
Intel-drm-20 0/26402958 (0%) 0/103423565
devb-umass-1 0/55776515 (0%)
devb-umass-2 1/795 (0.125%)
devb-umass-3 0/533095 (0%)
devb-umass-6 0/769 (0%)
devb-umass-7 3/732 (0.409%)
devb-umass-8 0/756 (0%)
devb-umass-9 0/748 (0%)
devb-umass-10 1/702 (0.142%)
devb-umass-11 0/685 (0%)
devb-umass-12 0/552 (0%)
devb-umass-13 0/10 (0%) 4/56315359
io-pkt-v6-hc 0/39 (0%) 0
slog2info 0/28745 (0%) 0
io-hid 0/552127 (0%) 0

Table 5.3: False positive results for testing dataset 4 - 2.9 gigabytes of sensor record-
ings
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Process Name-Thread ID Anomaly/Train Count (%) Total False Positives
Parallax-0 1/6188982 (0.0000001%)
Parallax-6 0/350115 (0%)
Parallax-7 0/350117 (0%)
Parallax-8 0/350115 (0%)
Parallax-9 0/14424971 (0%)
Parallax-10 1/38584735 (0.00000002%)
Parallax-11 0/0 (NA)
Parallax-12 0/0 (NA) 1/60249035
Sensor-4 0/1681517 (0%)
Sensor-5 2/1505501 (0.000001%)
Sensor-6 3/898650 (0.00003%)
Sensor-7 0/1972340 (0%)
Sensor-8 0/2439137 (0%)
Sensor-9 0/0(NA)
Sensor-10 0/0 (NA)
Sensor-11 0/0 (NA) 3/8497145
Screen-1 0/653087(0%)
Screen-2 0/21155044 (0%)
Screen-7 0/275981(0%) 0/22084112
Intel-drm-7 0/141064 (0%)
Intel-drm-14 0/0 (NA)
Intel-drm-15 0/0 (NA)
Intel-drm-17 0/28305912 (0%)
Intel-drm-18 0/14033855 (0%)
Intel-drm-19 0/22365322 (0%)
Intel-drm-20 0/24906751 (0%) 0/89752904
devb-umass-1 0/36017(0%)
devb-umass-2 1/690 (0.144%)
devb-umass-3 0/13496 (0%)
devb-umass-6 0/695 (0%)
devb-umass-7 1/669 (0.149%)
devb-umass-8 0/749 (0%)
devb-umass-9 0/680 (0%)
devb-umass-10 1/714 (0.14%)
devb-umass-11 0/741 (0%)
devb-umass-12 0/695 (0%)
devb-umass-13 0/111 (0%) 3/55257
io-pkt-v6-hc 0/38 (0%) 0
slog2info 0/28745 (0%) 0
io-hid 0/551968 (0%) 0

Table 5.4: False positive results for testing dataset 5 - 0.5 gigabyte of sensor recordings
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use of thread pools or thread pool-like behaving threads run in a non-deterministic

behavior as a result of either thread schedule and/or the variation in the coming

workload for each thread. Since the short duration of the datasets was a limiting

factor to experiencing the software behavior in full during training on a small number

of datasets, an obvious solution was to modify the training methodology and add

more datasets to the training.

Stress Testing the Disk Driver

The USB disk driver, devb-umass showed the greatest number of anomalies during

the initial testing phase. Almost every single test run showed a few anomalies in a

devb-umass thread. It is highly dependent on multiple threads sharing the same work

queues (thread pools). One way to exercise all the legal behavior of all its threads is

to stress test the driver. Fortunately, QNX has a series of tools for such a task. The

stress tests were run and the driver’s profiles saved. From that point on, devb-umass

showed 0 anomalies in every single preliminary test run 2.

The 50/50 Split

After augmenting the training with one more dataset, we re-ran the test on the same

dataset we showed in Table 5.4. The new testing results with the augmented training

shows an improvement. The previously anomalous threads in the disk driver, as well

as the Sensor and Parallax processes, have completely disappeared. However, new

anomalies have been introduced in another Sensor thread and an Intel-drm thread,

which was previously inactive, and became more active based on the work load and

thread scheduling priorities. We concluded that indeed, adding more training data

does improve the quality of the behavioral models and reduce the false positives

detected.

As a result we split our datasets into two sets at random, a set for training and

another for testing. Training was performed on datasets 1 through 7 and testing

was performed on datasets 8 through 16. tH was run with all the training datasets

and allowed to augment its locked profiles with new behavior. The learning was

2Preliminary test runs were executed for one hour.
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terminated manually after 12 hours of seeing no new behavior. The total size of the

datasets was 4.8 gigabytes.

Testing on the Training datasets - A Quick Sanity Check

After augmenting the training with the extra datasets we ran the testing on all

datasets we had used for training for over two hours each. Initially, after learning on

a dataset, running a test on the same training dataset would still yield, on average,

one or two anomalous threads with an average of three anomalies each. We could see

clearly that some threads remain inactive (0 anomalies/0 total message count) during

training, then becoming active while testing the exact same dataset. As explained

previously in section 5.2.1, by design, this is due to the thread pool-like behaviour of

some threads. Different threads were being non-deterministically scheduled to handle

incoming tasks and tH was not getting the chance to observe their behavior during

training. Adding more training datasets, allowed thread pool participating threads

to experience more work and thus allow tH to learn a more complete picture of their

possible behavior. As the training datasets were incrementally added, we have seen

the thread anomalies drop down to 0 anomalous threads for all seven training datasets

over a two-hour testing period. This is not to claim that we have learnt the behavior

of the thread pools in full, but rather that we have learnt enough, given our limited

training datasets’ sizes. We are now ready to start testing.

5.2.2 tH Usage Statistics

To collect CPU usage statistics, we ran top and sampled tH’s CPU usage. tH uses on

average, 1.2% of the CPU and 4.5 MBs of memory at runtime (stack and heap space).

The save disk profiles had a total size of 17.7 KB. This is quite a small footprint for

such a complex system.

5.2.3 Process Normalization Results

Table 5.5 shows a summary of the number of threads that normalized per-process

along with their average and maximum normalization times. There was an error in

calculating the normalization times in two of the intel-drm’s threads and their data

was excluded. On average, all active threads in the main processes (Parallax, Sensor,
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Process Normal (active) Avg. Time Max Time Avg. Msg Msg
Name /Total Threads to Normal to Normal Count /Second
Parallax 8/11 7972 19190 357577012 18633
Sensor 7/10 9744 46482 37964068 3896
Screen 4/14 3724.5 4091 262041049 70356
Intel-drm 10/21 3474 5353 243709074 70152
devb-umass 13/13 7587 23007 115235735 1189
io-pkt-v6-hc 1/5 70936 70936 19133 0.29
slog2info 1/1 3708 3708 762018 205
io-hid 1/6 3602 3602 14688381 4077

Table 5.5: Normalization statistics (seconds)

Screen, Intel-drm) normalized in 1.8 hours. The thread with the highest normalization

time took 13 hours, an outlier compared to the rest of the threads. Initially, some

threads did not normalize during training on the first and main training dataset but

normalized later while augmenting the training with the extra datasets as described in

Section 5.2.1. In addition, some threads were not active during training, for example,

Parallax’s main thread or idle threads that are part of a thread pool and did not get

a chance to execute. As a result, there is a lack of full thread normalization count

(the Normal/Total Threads column). The per-thread process normalization times are

shown in the Appendix A.1. The total number of threads in the processes under test

is 81 (active and non-active) out of which 45 where active. 100% of all active threads

in the system normalized (45 threads). The data shows that Intel-drm sent 70,152

messages per second, the rate of messages sent during the training period, followed by

Screen, Parallax, devb-umass and then Sensor in descending order of message rates.

Table 5.6 shows the normalization data per profile. As expected, the time taken

to normalize with the per-profile method was much lower. The profile sees the data

from all the different threads and combines them into one profile. The data rate for

the entire process is much higher than its per-thread counterpart and thus tH freezes

and normalizes much faster. As well, the compact model has more permutations from

all the thread system calls and is less likely to detect that a sequence is anomalous

(as we’ll prove later). This decreases the likelihood of a process to thaw after it has

been frozen.
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Process Avg. Normalization
Name in Seconds
Parallax 31040
Sensor 3603
Screen 3611
Intel-drm 10922
devb-umass 55119
io-pkt-v6-hc 27061
slog2info 3619
io-hid 3602

Table 5.6: Normalization statistics for the per-process profiling method

It is important to realize that there is a single in-kernel trace data buffer, there-

fore the fact that we’re monitoring the entire system greatly affects the time taken to

normalize. What is important and should remain constant, is the number of events

taken to normalize. We have implemented an additional feature that allows tH to

instruct the kernel to monitor the Parallax process only. This way, there would be

no other trace data generated except for Parallax’s. Running tH with this configura-

tion showed normalization times that are slightly less and on average have the same

number of events generated before a process normalizes.

5.3 The Testing Phase

tH’s ability to profile software behavior is highly dependent on whether it will think of

normal data as anomalous or benign. The testing sets are high-resolution recordings

of several sensor input data of the autonomous vehicle driving at different locations.

The total size of the test data was 4.8 gigabytes for a maximum of 15 seconds of

driving (a minimum of 5). All the tests ran in a continuous loop for exactly 12

hours. A script was developed to start and terminate the tests. Ideally, tH would

have been trained well enough and would not find any mismatches in the system call

sequences. Running the test for 12 hours each was not an arbitrary decision. We

initially started running the tests for over 24 hours and noticed that in all the runs,

we were not recording any new anomalies past the 3 hour run-time. In addition, it was

not feasible to run all these tests for a longer period of time due to time constraints.

Running the tests for longer shows less false positive rates as the number of messages
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keep increasing and the anomalies generated remain constant.

The tests were run remotely via a secure remote terminal (SSH) into the embedded

system over the intranet. Hence the inclusion of the io-pkt, the network drive, in our

results.

Table 5.7 shows the results per testing dataset. Unfortunately, three of the testing

datasets were corrupt and we ended up with 6 datasets only as opposed to the 9

datasets we had planned to test with. The first column in the table is a combination

of the process name and thread ID, followed by the number of anomalies reported out

of the total calls seen during testing. The last column shows the average false-positives

for the entire process. Table 5.8 shows the summary of the results.

The total number of tested running threads is 45. All the threads in the core

processes (Parallax, Sensor, and Screen), showed zero anomalies in all the test

runs. The GPU driver, drm-Intel showed anomalies in two of the six datasets: both

anomalies appeared in thread 21 (1/45 threads), 1/186,878,492 (0.000000535%) and

2/195,985,082 (0.00000102 %) anomalies. The USB flash driver showed anomalies

in three of the six datasets: in two datasets, thread 4 (1/45 threads), 3/2315

(0.129589633%) and 2/66 (3.03030303%) anomalies and in the other dataset, threads

4 and 21 (2/45 threads) showed 1/71 (1.408450704%) and 1/1444 (0.069252078%)

anomalies respectively. The other support processes such as io-okt, slog2info and

io-hid showed no anomalies in all six datasets.

Process - Set Set Set Set Set Set

Thread ID 1 2 3 4 5 6

Parallax-0 0/33812744 0/23949869 0/14236830 0/33812322 0/33281734 0/35395620

Parallax-6 0/0 0/0 0/0 0/1058102 0/1000216 0/1076343

Parallax-7 0/962748 0/1090750 0/1057923 0/967162 0/881667 0/940404

Parallax-8 0/854818 0/967274 0/898050 0/937632 0/848803 0/909797

Parallax-9 0/831194 0/931742 0/839093 0/22114515 0/26658432 0/31374106

Parallax-10 0/37921481 0/31912732 0/18644677 0/98737722 0/92637253 0/103117400

Parallax-11 0/86724565 0/97495376 0/74821427 0/0 0/0 0/0

Parallax-12 0/0 0/0 0/0 0/0 0/0 0/0

Total % 0% 0% 0% 0% 0% 0%
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Sensor-4 0/4752335 0/5037517 0/4865351 0/4812122 0/4762835 0/5024051

Sensor-5 0/4782273 0/5037517 0/4854295 0/4812122 0/4796520 0/5035120

Sensor-6 0/2930950 0/2929943 0/2932986 0/17843295 0/17612668 0/18533258

Sensor-7 0/17976442 0/6753514 0/1727998 0/15520688 0/15247503 0/16113234

Sensor-8 0/15554401 0/8433901 0/1728123 0/2312811 0/2326762 0/2370077

Sensor-9 0/2317209 0/3402894 0/3402435 0/0 0/0 0/0

Sensor-10 0/0 0/0 0/0 0/0 0/0 0/0

Total % 0% 0% 0% 0% 0% 0%

Screen-1 0/1162670585 0/950560598 0/525434677 0/1406358189 0/1258094712 0/914563944

Screen-2 0/57460340 0/65387103 0/57329720 0/63350821 0/59402457 0/64231233

Screen-6 0/834574 0/835745 0/835865 0/837104 0/836297 0/833634

Screen-7 0/0 0/0 0/0 0/0 0/0 0/0

Total % 0% 0% 0% 0% 0% 0%

Intel-drm-6 0/489132 0/497661 0/479823 0/535294 0/513495 0/460392

Intel-drm-7 0/0 0/0 0/0 0/0 0/0 0/0

Intel-drm-14 0/0 0/0 0/0 0/0 0/0 0/0

Intel-drm-15 0/0 0/0 0/13066559 0/0 0/0 0/0

Intel-drm-16 0/33930946 0/35469330 0/29320667 0/34288888 0/31343971 0/37341598

Intel-drm-17 0/31299497 0/36844188 0/31406731 0/34851092 0/33176156 0/38257197

Intel-drm-18 0/32759761 0/34380182 0/32782650 0/35443673 0/31070878 0/30335954

Intel-drm-19 0/31920048 0/35005735 0/30326565 0/33859799 0/32979838 0/35310895

Intel-drm-20 0/29229022 0/35312620 0/30117836 0/33361612 0/32393358 0/33681805

Intel-drm-21 1/27250086 0/33010963 2/28484251 0/33716209 0/32107750 0/31759378

Total % 0% 0% 0% 0% 0% 0%

devb-umass-1 0/129514955 0/162852297 0/197252847 0/127576290 0/139912922 0/146890056

devb-umass-2 0/2320 0/2280 0/2174 0/2292 0/2246 0/4971

devb-umass-3 0/1179673 0/1518491 0/1097283 0/1109493 0/1618036 0/1300704

devb-umass-4 0/72 0/46 3/2315 0/50 2/66 1/71

devb-umass-6 0/2225 0/2312 0/2217 0/2366 0/2343 0/2333

devb-umass-7 0/2288 0/2297 0/2189 0/2304 0/2250 0/2361

devb-umass-8 0/2153 0/2303 0/2136 0/2268 0/2290 0/2259
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devb-umass-9 0/2189 0/2087 0/2043 0/2178 0/2215 0/2221

devb-umass-10 0/2050 0/2193 0/1982 0/2144 0/2196 0/2134

devb-umass-11 0/1855 0/1989 0/1925 0/1902 0/1902 0/1918

devb-umass-12 0/1524 0/1274 0/1314 0/1420 0/1521 1/1444

devb-umass-13 0/475 0/180 0/590 0/345 0/203 0/149

devb-umass-14 0/51 0/9 0/31 0/52 0/21 0/9

Total % 0% 0% 0% 0% 0% 0%

io-pkt-v6-hc 0/115 0/116 0/115 0/116 0/116 0/116

slog2info 0/85998 0/86237 0/86048 0/86443 0/86255 0/86008

io-hid 0/1669183 0/1671475 0/1671758 0/1674230 0/1672609 0/1667283

Table 5.7: False-positive results for all testing datasets

Total False-Positives Per Process Per Dataset
Process 1 2 3 4 5 6
Parallax 0 0 0 0 0 0
Sensor 0 0 0 0 0 0
Screen 0 0 0 0 0 0
Intel-drm 1/186,878,492 0 2/195,985,082 0 0 0
devb-umass 0 0 3/198,369,046 0 2/141,548,211 2/148,210,630
io-pkt-v6-hc 0 0 0 0 0 0
slog2info 0 0 0 0 0 0
io-hid 0 0 0 0 0 0

Table 5.8: Summary of the testing results over all datasets after 12 hours of repeated
testing

5.4 Brief Fault Detection Tests

As mentioned before, we have not conducted an intensive investigation into the true

purpose of the anomaly detector: detecting real true-positive anomalies. We realize

that this is a limitation to our work presented here. The creation of these tests

requires a careful study so that the results are not biased in our favor and true real-

world anomalies are tested. We leave this to future investigations. However, there

are some brief tests we could conduct to validate in a way the effectiveness of our

proposal. This is not conclusive in anyway, but nevertheless serves its purpose.
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5.4.1 Removing a Sensor

For this test, we attempt to simulate disconnecting the right and left cameras by

removing their file from the system. After starting one of the datasets (dataset 1), the

right and left camera files were removed. As a result of interacting with the file system

residing on the USB flash drive in a way that was not experienced during learning,

two threads of the USB driver showed anomalous behaviors: thread 11 generated

seven anomalies and thread 7 generated two anomalies. Immediately following the

file removal, Sensor thread 5 generated 10 anomalies as a result of not being able to

read the sensor input data (the camera files).

Another test we conducted was removing sensors from the configuration before

we started the test run. All the sensors were removed except for the first camera.

After 5 minutes, the test was terminated. Parallax’s thread 6 was showing a constant

rate of anomalies to come to a total of 777254/19842367 (3.917143554%). This is an

undoubtedly detectable rate.

5.4.2 Physically Interacting with the System

During training tH, we did not interact with the car system at all, we let it “drive”

on its own without any interference. Thus tH is not expecting this sort of behavior.

In this test we physically interacted with the system in order to see if tH will notice

any difference in the way the system behaves.

The Keyboard

Parallax supports the ability to enable and disable different views on the screen (3D

object rendering view, LiDAR view, etc.). As expected, tH did not like our inter-

action and deemed the system behaviour abnormal. After one key press, Parallax’s

thread 1 showed 18 anomalies. By the time we got to the letter q, thread 1 showed

519 anomalies and slog2info’s thread 1 had 81 anomalies and Screen’s thread 2 had

14 anomalies. Intel-drm’s threads 16 and 17 showed three and seven anomalies

respectively.
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The Mouse

Table 5.9 shows the results after connecting and moving a mouse. A constant flurry

of anomalies was generated and we terminated the test after a few seconds.

Process Anomalies Thread ID(s)
Parallax 974 0
Sensor 0 NA
Screen 1529 6
Intel-drm 6 16
devb-umass 9 10
io-pkt-v6-hc 0 NA
slog2info 0 NA
io-hid 24 1

Table 5.9: Summary of the anomalies generated after connecting and moving a mouse
for a few seconds

The anomalies generated for both the keyboard and mouse tests were a constant

rate of anomalies. For this reason, it did not make sense to show the anomaly as a

percentage of the total calls.

5.4.3 Changing the restart order

In our experience, embedded systems have a pre-defined static list of process boot

order. This list does not usually change. Part of the way tH works is by using process

IDs to distinguish between the different messages a process sends (see 4). If a process

does not have the same ID, for example via changing the restart order of processes

on a system, or replacing a binary with different one with the same name, tH would

be able to identify this quickly. In this test, we changed the boot order by starting

the ssh daemon before all the other processes under test. This resulted in Parallax,

Sensor, Screen, drm-Intel, devb-umass, io-pkt, slog2info and io-hid having a different

process ID. This caused tH to generate a continuous storm of anomalies; every call

from everything was anomalous, and we had to terminate the test after a few seconds.
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5.4.4 Overheating

One of our test runs generated an exceptionally high amount of anomalies. Much

investigation was performed to determine the root cause. It turns out that we er-

roneously disabled the CPU fan in the BIOS settings and neglected to turn it back

on. This fortunate coincidence led to a discovery that thread behavior changes as

the hardware overheats. For this test, we disabled the CPU fan and wrapped the

BeeBox in a bit of clothing to cause overheating. We then ran one of the testing

datasets with a previously zero false positive rate across all threads. The test was

terminated after 38 minutes as an excessive amount of heat was generated and we

did not want to cause permanent damage to the hardware. The results are shown in

Table 5.4.4. Parallax thread 9 shows a 0.09% anomaly rate while Screen’s thread 2

had 0.02%. Intel-drm threads 16 to 21 show an average anomaly rate of 0.01% for 38

minutes of runtime. In addition, drm-Intel creates an extra thread (thread 22) to deal

with the slowing down GPU, which is regarded as an anomaly. The USB disk driver

had two anomalous threads (3 and 1) with 19 (0.12%) and 11 (0.0001%) anomalies

respectively.

Process-Thread ID Anomalies
Parallax-9 782/996802 (0.078450886%)
Sensor-* 0 (0%)
Screen-2 335/1910893 (0.017531071%)
Intel-drm-16 103/998486 (0.010315618%)
Intel-drm-17 65/951152 (0.006833818%)
Intel-drm-18 167/1341177 (0.012451749%)
Intel-drm-19 119/1190857 (0.009992804%)
Intel-drm-20 59/1243944 (0.004742979%)
Intel-drm-21 60/912983 (0.006571864%)
devb-umass-1 10/9328783 (0.000107195%)
devb-umass-3 29/25087 (0.11559772%)
io-pkt-v6-hc-* 0 (0%)
slog2info-* 0 (0%)
io-hid-* 0 (0%)

Table 5.10: Summary of the overheating testing results after 38 minutes



Chapter 6

Discussion

In this chapter we discuss the test results produced in Chapter 5. For the evaluation

of our implementation, we mainly focus on the false positives generated when testing

using clean data that is known to be normal and contains no anomalies. The true

positive anomaly tests we conducted were brief and simple and we plan to expand on

them as part of future work.

6.1 Results Analysis

6.1.1 Determinism

As the results in Section 5.3 show, Parallax, Sensor, Screen and the auxiliary processes

(io-pkt, slog2info and io-hid) show no anomalies. This goes to show that all of these

processes have deterministic behavior and that tH was able to reliably learn what

that is. We have conclusive evidence that shows that all these processes are highly

active in terms of CPU usage, as shown in Section 5.1 and the high number of issued

system calls and messages sent as shown in Table 5.7.

Normalization results in Section 5.2.3 show an average normalization time of 1.8

hours for Parallax, Sensor, Screen and Intel-drm. This is another indicator of behav-

ioral determinism in the threads under test. In comparison, when we attempted to

profile a QNX port of a web browser (based on Google Blink), the average normal-

ization time for the normalized threads was orders of magnitude larger. Clearly, a

web browser is a software not intended to perform a critical function and we did not

expect it to have the same level of behavioral determinism.

To gain further insight, we collected extra runtime data. If the distinct messages

communicated between processes had high variance, there was no hope that we could

have profiled its behavior and detected anomalies. Consider a thread that sends

thousands of different types of messages at random times. Profiling its behavior

89
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using short sequences of message headers would not yield great results; it would take

a very long time to build a profile of all possible sequences. Such a profile would then

be useless while testing for anomalies, since all possible sequences are permissible.

Table 6.1 shows the number of distinct kernel calls each process makes, followed by

the distinct message header types sent to processes other than the process manager

(non-kernel calls). The final column is the number of system processes each process

communicates with, apart from the process manager.

The average unique kernel call types is 2 and the average unique non-kernel call

message type is 1.78. This confirms that using the 16-bit message header for profiling

the message sequence could potentially be a valid choice since the variance in unique

message types is very low. Table D.1 has details of the collected data including the

list of the different messages sent, the process indexes, the channel ID, and the node

ID they are sent to, along with the count for each of them.

The data also shows that processes are highly connected. On average, the number

of system processes each process communicated with is 2.2 (maximum of 7), this is not

surprising in a non-monolithic system with a microkernel architecture. All drivers and

processes are highly communicating system processes that rely on sending messages

to perform their core functions. A perturbation in the communication between them

could be a powerful indicator of anomalies.

Process Distinct Distinct Communicating
Name Kernel Calls (%) Non-Kernel Calls (%) Processes
Parallax 2 (28.5%) 5 (71.5%) 4
Sensor 3 (42.8%) 4 (57.2%) 2
Screen 1 (25%) 3 (75%) 3
Intel-drm 7 (100%) 0 (0%) 0
devb-umass 3 (75%) 1 (25%) 7
io-pkt-v6-hc 1 (100%) 1 (100%) 2
devc-pty 1 (100%) 0 (0%) 0
slog2info 0 (0%) 1 (100%) 1
io-hid 0 (0%) 1 (100%) 1

Table 6.1: Process Connectivity Data
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6.1.2 The False Positives

As discussed in section 5.3, the GPU and USB drivers show one anomalous thread on

average in a few datasets. After further investigation, we concluded the three main

reasons for such anomalies are: thread pools, overheating, and using a low quality

USB flash drive.

Thread Pools

Most of the processes under test create two different types of threads. The first type is

single-tasked threads, or threads that only have one type of job to do. These threads

always show deterministic behavior and have 0% false-positives. The second type is

multi-tasked threads; much like thread pools, they process a queue of incoming re-

quests. These requests can vary in nature and cause the threads to behave differently

according to the task being handled. A simple display of the running threads from

the command prompt shows thread names that indicate they are part of a thread

pool to process requests. Listing 6.1 shows a snippet of such output. Given that

the work load per queued task varies and that the thread scheduling is up to the

operating system, the behavior of a thread that is part of a thread pool becomes less

deterministic. The thread’s workload or the types of tasks it performs will vary every

time the software is run. This can be easily observed from the total count of messages

each process emits. Table 5.7 shows the different total message counts seen by every

thread and how they radically differ. Parallax thread 6 was completely dormant in

the first three datasets and then became active while running the other three datasets.

Thread 9 in the Sensor process was very active in the first three datasets and had no

activity during testing of the last three datasets.

Due to the thread work load varying on every run, we hypothesized that this was

the main reason as to why the threads in drm-Intel and devb-umass show anomalies.

Devb-umass thread 21 clearly named regmgr thread pool, confirming our theory

that it is indeed part of a thread pool. This is not a problem, as tH can be easily

modified to handle threads pools in two different ways:

1. By training over more radically different datasets. As we have shown in Section

5.2.1, adding more training sets to the system enhances the profiling capability.
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Ideally, over-stressing the system in such a way that all threads that are part

of a thread pool are over loaded and experience all practically possible types

of requests in all possible orders. In practice, it is not unlikely to see safety-

critical systems exhaustively tested to their limits in such a way that all software

behavior is exhibited. As a matter of fact, we were able to obtain some of the

stress tests that QNX performs on USB disk driver (devb-umass) and use them

for training as described in Section 5.2.1. As a result, we have seen less anomalies

reported by any of the USB disk driver’s threads. The training datasets we

have obtained, even though they amount to a total of 7.5 gigabytes, are still

limited. Each test is roughly 15 seconds in length, hardly giving tH the chance

to experience the full system behavior. A future endeavour would be to deploy

tH on one of QNX’s self-driving vehicles and training would occur continuously

while driving around, for extended periods of time. We believe this would yield

a much better training experience and a more realistic training environment.

The training datasets we used are as close to reality as we could possibly get

but are not as close as we would have hoped.

2. By naming process threads accordingly and having tH use thread names as iden-

tifiers of thread types. Listing 6.1 shows the output of a shell command display

the thread names of all system processes. As can be seen from the thread

names, most of the processes under test have a thread pool or thread pool like

implementation: Sensor’s SensorRegMgr threads, Screen’s screen-msg threads

and drm-intel’s resmgr thread pool threads. A code inspection of Parallax

also shows that the unnamed threads are part of a thread pool. For a future

implementation, we propose that all single-tasked threads in the process are

uniquely named. Threads belonging to a thread pool or ones that are intended

to be used in parallel with other identical threads performing the same tasks

should either be named similarly or left unnamed. This would allow tH to rec-

ognize these threads and build a single profile for all the threads belonging

to a pool and a profile per thread for all other threads in the process. This

way, the behavior of these threads is regarded as one; similar to the original

pH’s single per-process profile but for a specific thread subset. Such a change

would be trivial to implement in tH and would reduce the need to try and learn
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Figure 6.1: Proposed per-thread pool profile.

all possible permutations of behavior that a thread can experience. Figure 6.1

depicts a representation of this concept.

# pid in threads

root : / $ p id in threads

pid t i d name thread name

8200 1 oc/boot/devb−umass xp t s i gna l h and l e r

8200 2 oc/boot/devb−umass USBdi event handler

8200 3 oc/boot/devb−umass f sy s r e smgr

8200 4 oc/boot/devb−umass umass dr ive r thread

8200 5 oc/boot/devb−umass a sync i o

8200 6 oc/boot/devb−umass f s n o t i f y t h r e a d

8200 7 oc/boot/devb−umass f sy s r e smgr

8200 8 oc/boot/devb−umass f sy s r e smgr

8200 9 oc/boot/devb−umass f sy s r e smgr

8200 10 oc/boot/devb−umass f sy s r e smgr

8200 12 oc/boot/devb−umass f sy s r e smgr

8200 13 oc/boot/devb−umass f sy s r e smgr

241689 1 sb in / sc r een screen−monitor

241689 2 sb in / sc r een drm−event−handler

241689 3 sb in / sc r een screen−dpy−3
241689 4 sb in / sc r een screen−msg

241689 5 sb in / sc r een screen−msg

241689 6 sb in / sc r een screen−msg

241689 7 sb in / sc r een screen−hid

241689 8 sb in / sc r een screen−msg

241689 9 sb in / sc r een screen−msg

241689 10 sb in / sc r een screen−msg

241689 12 sb in / sc r een screen−msg

241689 13 sb in / sc r een screen−msg

241689 14 sb in / sc r een screen−msg

241689 15 sb in / sc r een screen−msg

245786 1 sb in /drm−i n t e l drm−monitor

245786 2 sb in /drm−i n t e l k e rne l t imer

245786 3 sb in /drm−i n t e l system wq

245786 4 sb in /drm−i n t e l system unbound wq

245786 5 sb in /drm−i n t e l system long wq

245786 6 sb in /drm−i n t e l t a s k l e t wq

245786 7 sb in /drm−i n t e l i915

245786 8 sb in /drm−i n t e l i915−dp
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245786 9 sb in /drm−i n t e l i915−i s r

245786 10 sb in /drm−i n t e l i915 modeset

245786 11 sb in /drm−i n t e l i915−userptr−acqu i r e

245786 12 sb in /drm−i n t e l i915 / s i g n a l : 0

245786 13 sb in /drm−i n t e l i915 / s i g n a l : 1

245786 14 sb in /drm−i n t e l i915 / s i g n a l : 2

245786 15 sb in /drm−i n t e l i915 / s i g n a l : 4

245786 16 sb in /drm−i n t e l r e smgr thread poo l

245786 17 sb in /drm−i n t e l r e smgr thread poo l

245786 19 sb in /drm−i n t e l r e smgr thread poo l

245786 20 sb in /drm−i n t e l r e smgr thread poo l

245786 21 sb in /drm−i n t e l r e smgr thread poo l

245786 22 sb in /drm−i n t e l r e smgr thread poo l

274460 1 sensor Senso rSe rv i c e

274460 2 sensor SensorResMgr

274460 3 sensor SensorResMgr

274460 4 sensor SensorResMgr

274460 5 sensor 5

274460 6 sensor 6

274460 7 sensor 7

274460 8 sensor 8

274460 9 sensor 9

274460 10 sensor SensorResMgr

286749 1 Para l l ax Main

286749 2 Para l l ax 2

286749 3 Para l l ax 3

286749 4 Para l l ax 4

286749 5 Para l l ax 5

286749 6 Para l l ax 6

286749 7 Para l l ax Camera

286749 8 Para l l ax Ana lys i s

286749 9 Para l l ax Hud

286749 10 Para l l ax 10

286749 11 Para l l ax Algo

Listing 6.1: Output of process thread names.

Overheating and High Sensitivity

As the overheating test in section 5.4.4 show; tH is sensitive to fluctuations in the heat

produced by the hardware, in particular when the hardware (GPU, USB flash drive)

overheats. Given the high throughput of data continuously being processed for 12

hours, it is not surprising for the hardware to overheat. As well, the QNX threads, and

in particular the ones belonging to the flash drive and the GPU, react appropriately

when they experience slowdowns as a result of their respective hardware behaving

differently. One could argue that tH is overly-sensitive, predicting a problematically

high false positive rate in the field. To this we argue, i) embedded safety-critical

systems must be tested to their limit, including any behavior resulting from acceptable

levels of overheating. Such behavior would thus be learnt during the training phase.

Abnormal behavior resulting from the acceptable overheating thresholds being crossed

is perfectly acceptable. We claim that sensitivity to behavioral disturbances as a
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result of overheating is a desired feature when it comes to safety-critical systems,

ii) our plan to create thread-pools as mentioned in Section 6.1 might reduce this

sensitivity since all threads would be contributing to a single thread profile. This is a

reduction in sensitivity that we are not sure is desired. This needs to be investigated

and tested further after the single profile for all thread pools are implemented. Only

then could an appropriate decision be made. One potential solution is to provide the

single thread-pool profile as a configurable option. That way, drivers that deal with

hardware could have this feature disabled to remain highly sensitive to overheating or

other unpredictable hardware fluctuations and disabled for others where appropriate.

Low Quality USB Flash Drive

Similar to the behavior change seen as a result of overheating, the USB flash driver

we used for our experiments was a low quality USB 2.0 flash driver. As the USB

driver experiences slowdowns in the transfer rates of the flash driver, they reorganize

themselves and behave differently in order to deal with the slowdowns they’re expe-

riencing. Migrating the data to the onboard NVMe drive and rerunning one of the

datasets that showed anomalies in the USB flash drive eliminated the anomalies. For

future work, all of our testing data will be moved to the highly performing NVMe

drive.

6.2 True Positive Tests

Even though the true-positive tests we ran were non-exhaustive and incomplete, the

results of the few tests we ran were positive. All the tests show a perturbation in

the learnt normal behavior when an unknown and previously unseen event occurs.

A particularly interesting result is the activation of anomalies in io-hid, the human-

interface device driver responsible for handling the keyboard and mouse, when the

mouse and keyboard are plugged and unplugged then used. The anomalies could

be seen over almost the entire network including slog2info, the error and status

logging service. This supports our hypothesis that viewing the system as a network

of threads has more power in detecting anomalies over isolating specific components.

The network anomaly has a much lower threshold and provides a higher confidence

in true anomalies being classified. The Sensor and the network drivers generate no
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anomalies when moving the mouse, however. Even though this is not conclusive, it

provides some evidence that the system is not overly sensitive. This is because Sensor

and the network driver have nothing to do with the mouse movement and thus were

not disturbed. The overheating test results in Section 5.4.4 show an unprecedented

amount of anomalies. Without doubt, the behavior of the threads does change as the

hardware overheats as discussed in Section 6.1.2.

6.3 Limitations

6.3.1 Limitations of Our Testing Approach

One of the limitations we had during the learning phase was the short duration of

the learning datasets. Even though 15 seconds of driving produced 3.5 gigabytes of

data, we still believe that this was not enough to exercise all the processes’ threads in

order to test a real-life driving scenario. As shown from the testing results, this might

have been enough to produce zero false positives for the testing datasets for Parallax,

Sensor and Screen, but this does not provide solid proof that the same behavior

will be produced when driving for longer periods of time while detecting anomalies.

As mentioned in Section 5.2.1, multiple datasets were added to achieve these false

positive results. Given the high volume of data generated by the various sensors and

the high definition cameras, it was infeasible to record an extended length of driving

period. For future work, we intend to install tH on a system that reads the sensor

data in parallel to the original data collection methods on an actual self-driving car

and building the training profiles as the car navigates the streets.

6.3.2 The Dynamic Thread Creation

One of the issues that we will face in the future, are processes that dynamically create

threads at runtime. As a matter of fact, we have experienced threads being created as

a result of the overheating test in Section 5.4.4; drm-intel has created a new thread,

thread 22 to handle the slowing down GPU. Since we build profiles for every thread

in the system, we heavily rely on thread IDs to identify the correct thread learning

structure. During learning, threads created dynamically at runtime pose no issues;

the appropriate structure will be created and assigned to their thread ID. However, a
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dynamically created thread at testing time with an ID that has never been observed

during testing is regarded as an anomaly. We do not believe this behavior is incorrect.

The ability to create threads at runtime should be allowed, however, we argue that

the system should be tested to its full potential, with the maximum number of threads

created. Typically, more threads are dynamically added to a process to support a

heavier workload and potentially increase parallelism. A safety-critical system should

be subjected to extreme workloads in order to test all conditions and our training

dataset was deficient in this regard. Given this exhaustive testing, dynamic thread

creation would pose no problem to tH. Further to this, the use of per-thread look-

ahead pairs table versus one table per process, allows us to easily differentiate between

threads that we have profiles for, i.e. they normalized during training, and ones that

are dynamically created at runtime and have no training profiles. This prevents newly

created threads from generating false-positives, and allows us to isolate their emergent

behavior from other well-behaved threads with normalized profiles.

6.3.3 Detecting Internal Process Corruption

One of the limitations of our detection method is its inability to detect internal pro-

cess defects if they don’t result in a behavioral change. Monitoring a process at the

system call and message sending level does not detect or prevent corruptions within

the process itself if this does not cause any behavioral change from an outside ob-

server’s perspective, be it in the kernel or another service. An example would be a

buffer overflow attempting to change the result of a calculation within the process’

own address-space. However, if a vulnerability, or an error in the process were to

cause any kind of system-wide malicious activity, such as spawning a root shell, it

would certainly need to interface with the kernel by invoking system calls. Arguably,

the former can potentially have dire effects on a safety-critical system. One could also

argue that an internal process defect that does not result in a behavioral change, espe-

cially in a microservices-based architecture cannot possibly have much consequences.

Clearly, this requires further investigation. What if the defect was internal to a driver

that is the final layer in the message-chain and would then communicate incorrectly

with a device? Can an internal fault happen without any early warning signs and

behavioral changes in any other thread in the system leading to the fault? These are
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questions that we will be investigating in the future.

6.4 Conclusion and Future Work

In this thesis, we presented Thread Homeostasis (tH), a technique that profiles soft-

ware to establish a baseline of normal behaviour in order to identify behaviour that

falls outside the norm. tH works by efficiently modeling the behavior of process

threads through the way they interact with the underlying operating system and

other services. Such a profiling technique can be a unique identifier of how the

system naturally behaves during its operation and can be used to identify when it

misbehaves. Learning how to not behave in the field could prove to be a powerful

early warning system of an occurrence of a fault or an unintended consequence. Our

work is motivated by two reasons. Firstly, engineering practices are often not ade-

quate for developing safety critical software. This can, and has resulted, in faults and

errors going unnoticed in safety critical software. Secondly, there is a gap in anomaly

detection research for fault and error detection.

The autonomous vehicle demo software we tested had a high level of complexity

and yet our results showed that threads exhibit a fair level of behavioral determinism

suitable for profiling by tH. The results also show that profiling such behavior can be

done in a matter of hours by tH. Most of the threads under test showed zero false

positives indicating that tH was able to recognize that the threads behave similarly

to its learned expectation. tH’s minimal CPU usage and memory footprint along

with these results serve as concrete evidence that tH has great potential as an online

realtime anomaly detector for faults in safety-critical systems.

Our novel and efficient approach uses inter-process message headers and system

calls for building behavioral models for every running thread on the system. This

extends anomaly detection from being limited to one or a few processes running on the

system to monitoring all threads running in a realtime microkernel message-passing

operating system. The brief true positive detection tests we conducted show the power

of viewing the system as a set of interconnected threads. Leveraging the nature of a

message passing microkernel, it is much easier to see anomalies propagate and perturb

many of the system processes and threads. This provides a more confident indicator

of anomalies and reduces the threshold of the error tolerance of misclassifying a true
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anomaly. The per-thread profiles provide a more sensitive behavioral model than the

per-process profiles. Since all the threads in a process conjointly update one profile,

the model becomes highly dependent on the operating system scheduling algorithm

and workloads. The per-thread profiles provide freedom from such possible deviations

in behavior.

The exhaustive level of testing and verification that a safety-critical system should

be subjected to, serves as an ultimate training ground for tH. tH could prove to be

a useful tool for detecting the incompleteness of the software’s testing and verifica-

tion. Anomalies during this phase of the tests, before the product goes operational,

are a very strong indicator that there exists system behaviors that have never been

experienced before during testing and warrants an investigation.

This work has served its purpose of providing an efficient mechanism to extract

the required information out of the QNX kernel and building compact profiles for

modeling system threads’ behavior. This sets the stage and lays the ground work for

conducting further in-depth analysis and research into the suitability and applicability

of this method for fault tolerance in safety-critical systems.

6.4.1 Future Work

More Field Evaluations

We do not consider the results in this thesis to be conclusive, however we consider

them as evidence that tH has great potential. In order to provide concrete evidence,

more real-life in-field tests are required. We intend to have tH run on QNX’s self-

driving autonomous vehicle in order to learn and detect anomalies while driving, thus

experiencing more varied behaviors for an extended period of time.

Eliminating Process IDs From the Training Profiles

Currently, we use the process index/ID when building the behavioral profiles (see

chapter 4). This prevents the process restart order from changing as shown in section

5.4.3. While we argued that this is a desired behavior, having the configurable option

to be able to turn this feature on or off might be desired. In future tests, we intend

to evaluate tH on more dynamic systems, such as desktop environments running
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the QNX operating system. We have designed and implemented a process index

translation unit that uses process names to translate the process ID in the learnt

profile. As part of a future effort we plan to integrate this in tH. Even though the

intention of this anomaly detector is for tightly controlled, deterministic safety-critical

systems that do not expect a process restart order to change, it is nevertheless a good

idea to have this module implemented for greater flexibility and testing purposes.

Testing with Different Sequence Window Sizes

Currently, the window that slides over the sequence of calls during both training and

testing is of size 8 (see Chapter 4). The size of this window has a profound effect on

the training models. Imagine a hypothetical window size equal to the total number

of calls emitted by a thread. This would cause all possible permutations of all the

events to be included in the model and considered to be normal behavior, thus over

generalizing. In this case, no anomalies would be detected, be it true or false positives.

On the contrary, a window size of just one would be too restrictive. A thread must

emit this exact system call sequence, otherwise, its behavior would be anomalous. For

future work, we plan to experiment with different sliding window sizes and conduct

analysis on the results. The configurable window size currently implemented in tH

allows us to do this with ease.

Correlating Anomalies to Source Code

A current limitation of our system is the difficulty of tracking back to the root cause

of the anomalies observed. Indeed, if an anomaly occurred, we can determine the

destination and receiving threads and the type of message sent. However, we cannot

determine the location in the source code that caused such a message or system calls.

We plan to investigate the possibility of correlating anomalies with exact source code

locations.

Different Message Header Size

The current tH implementation only uses the 16-bit message header sent between

processes (see Section 4.9). We plan to investigate the effects of including more data
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from the message has on profiling. Our expectation is that there might be too much

variance in the message data, which might render profiling difficult, if not impossible.

Having a Profile Per Named Thread

As discussed in Section 6.1, besides having a profile per thread, we plan on creating

a profile for every thread pool in the process. This aims at reducing the effects of the

non-deterministic behavior shown by thread pools that share the same tasks. This

frees the profiles from dependence on environmental factors introduced by varying

workloads and thread scheduling differences.

Fault Injection

As part of evaluating tH’s efficiency, we plan on investigating whether tH will be able

to detect injected faults in critical software. Fault-injection testing is a research area

in its own right. Setting up and conducting the proper fault-injection tests is a topic

that we intend to investigate in the future.
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Appendix A

Normalization data per-thread

Process Name-Thread ID Time Taken to Normalize (seconds) Message Count

Parallax-0 19190 204402279

Parallax-6 3603 828673725

Parallax-7 3603 8659174

Parallax-8 3603 8659174

Parallax-9 17404 8659174

Parallax-10 4830 828673725

Parallax-11 4395 144215119

Parallax-12 7148 828673725

Sensor-4 3613 44098948

Sensor-5 3613 44072755

Sensor-6 46482 25819587

Sensor-7 3613 59425036

Sensor-8 3613 74189300

Sensor-9 3646 13631151

Sensor-10 3631 4511711

Screen-1 3602 422036776

Screen-2 4091 618783165

Screen-6 3602 2238679

Screen-7 3603 5105574

Intel-drm-6 3603 1266248

Intel-drm-7 3604 2132900

Intel-drm-14 4214 433653431

Intel-drm-15 218108 49858124

Intel-drm-16 4625 88396741

Intel-drm-17 5353 374491804
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Intel-drm-18 109963 307403101

Intel-drm-19 5195 565311523

Intel-drm-20 4267 533148727

Intel-drm-21 3876 81428142

devb-umass-1 3612 1483818683

devb-umass-2 4971 20339

devb-umass-3 3869 14093250

devb-umass-4 23007 1289

devb-umass-6 6164 20089

devb-umass-7 5906 19779

devb-umass-8 6169 19782

devb-umass-9 6278 19133

devb-umass-10 5139 18627

devb-umass-11 5879 17239

devb-umass-12 5973 14659

devb-umass-13 21658 1551

devb-umass-14 588180 132

io-pkt-v6-hc 70936 19133

slog2info 3708 762018

io-hid 3602 14688381

Table A.1: Process Normalization Statistics for the Pro-

cess’s Active Threads



Appendix B

Unused Kernel Trace Events by tH

Trace Event Purpose

NTO TRACE KERCALLENTER Kernel call enter trace data includes the ker-

nel call numbers that a thread running on a

core has generated, the core number and in

case of a MessageSend() kernel call, the data

would include the connection ID (coid). Us-

ing internal lists we built we could infer the

channel, node and process ID.

KER CONNECT ATTACH ConnectAttach() trace data, used to keep an

internal list of connection IDs (coids). This

allows us to know the channel, node and pro-

cess ID that is attached to this coid and build

our internal lists accordingly. This is used

when NTO TRACE KERCALLENTER is

received.Note that in case we receive a con-

nection ID that is not in the list we would

issue a kernel call to get the information we

need (because we might have started tH af-

ter starting the process and we might have

missed the ConnectAttach() kernel call.

KER CONNECT DETACH ConnectDetach() trace data, used to deini-

tialize the internal structures initialized upon

the receipt of KER CONNECT ATTACH.
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NTO TRACE THRUNNING Received when a thread becomes

running on a core. Used when

NTO TRACE KERCALLENTER is

received to infer which process is running of

the core.

NTO TRACE THDESTROY Used to track thread destruction. Since we

have a sequence list per-thread, it is impor-

tant to destroy and free the per-thread se-

quence in case a new thread was created with

the same thread ID.

NTO TRACE PROCCREATE Tracks newly created processes in the system.

This is important so that we can allocate and

initialize the appropriate per-process struc-

tures.

NTO TRACE PROCCREATE NAME Supplies names of the newly created pro-

cesses in the system. This is important since

the configuration file for tH can specify spe-

cific binaries to track by name. This is also

important to track the exec()s in the system.

NTO TRACE PROCDESTROY Tracks process destruction events. This is

important to deinitialize and free our internal

per-process structures.

Table B.1: Trace events required prior to the addition of

kernel exit trace event



Appendix C

Trace data for Google’s Blink Port on QNX

Rx Proc. Indx 16-bit Msg Head 32-bit Msg Head Count

1 (procnto)

0x0102 0x100100-00100102 1

0x0116 0x100100-00040116 232634

0x0100

0x100100-00020100 147428

0x100100-00010100 1325

0x100100-00000100 1223

0x100100-00030100 94255

0x100100-00050100 9

0x100100-00070100 48

0x0106
0x100100-00100106 588

0x100100-00100106 47069

0x0104 0x100100-00080104 47223

0x0041

0x100100-00010041 1039

0x10010000070041 22145

0x100100-00000041 175843

0x0115 0x100100-003c0115 184807

0x0110 0x100100-00180110 94140

0x0074 0x100100-00000074 97

0x0002 0x100100-00100002 1

0x0000 0x100100-00000000 6281788

0x0040 0x100100-00000040 175773

0x001a 0x100100-0001001a 6

2
0x0102 0x200100-00100102 8

0x0100 0x200100-00020100 1

3
0x0101 0x300100-00100101 8531344

0x0102 0x300100-00100102 8531507
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0x0105 0x300100-00400105 19837741

8

0x0102
0x800300-00180102 11283

0x800300-00100102 313

0x0101
0x800300-00180101 2178

0x800300-00100101 332

0x0116 0x800300-00040116 2712

0x0100

0x800300-00000100 97

0x800300-00010100 110

0x800300-00020100 2667

0x0106 0x800300-00100106 11113

0x010f 0x800300-000c010f 149

0x0100

0x800300-00010100 968

0x800300-00030100 74

0x800300-00000100 879

0x800300-00040100 18

0x800300-00050100 9

0x0104 0x800300-00080104 623

0x0110 0x800300-00180110 12171

0x0119 0x800300-00080119 88

0x010b 0x800300-000c010b 15

0x0108 0x800300-00080108 6

9 0x0101 0x900100-00100101 53429

15

0x0113
0xf00200-001c0113 476

0xf00200-00180113 290

0x0102
0xf00200-00140102 134

0xf00200-00100102 1719597

0x0101
0xf00200-00140101 6432

0xf00200-00100101 1745946

0x0105 0xf00200-00400105 1281981

0x0116 0xf00200-00040116 414

0x106
0xf00200-00100106 5154194
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0xf00200-00100106 859466

0x0100 0xf00200-00020100 382

0x0115 0xf00200-003c0115 10

0x010d 0xf00200-0044010d 10

20

0x0106 0x1400100-00100106 18

0x0102 0x1400100-00100102 3421622

0x101 0x1400100-00100101 22

0x0116 0x1400100-00040116 13

0x0100

0x1400100-00020100 3

0x1400100-00010100 11

0x1400100-00000100 11

21 0x0100 0x1500100-00020100 134

27 0x0113

0x1b00400-00600113 131

0x1b00400-00100113 12652

0x1b00400-004c0113 379416

0x1b00400-00280113 458

0x1b00400-01380113 13

0x1b00400-00a80113 13

0x1b00400-00200113 39

0x1b0040-000a00113 48

0x1b00400-00480113 13

28 0x0106 0x1c0050-000100106 25907766

29

0x0102 0x1d00100-00100102 1

0x0116 0x1d00100-00040116 2

0x100 0x1d00100 - 00020100 1

0x0100 0x1d00100 - 00000100 1

Table C.1: Trace data for Google’s Blink Port on QNX

after approx. 10 hours



Appendix D

Normalization Details Per-Process

./Parallax

Total calls 420329147

Total calls to normalize 243554806 (57.94%)

Num Non-MsgSend calls 0 (0.000000%)

Total MsgSends to procnto 239620764 (57.007885%)

Total MsgSends to non-procnto 180708383 (42.992111%)

Num processes msg receiving 4

Num distinct MsgSend types to procnto 2 (28.571430%)

Num distinct MsgSends types to non-procnto 5 (71.428574%)

MSG PID CHID ND COUNT

0x106 29 2 0 53092090 (12.63%)

0x100 1 1 0 227240164 (54.06%)

0x100 8 3 0 75693679 (18.00%)

0x106 27 5 0 41818368 (9.94%)

0x113 26 4 0 10087307 (2.39%)

0x0 1 1 0 12380600 (2.94%)

0x113 26 4 0 16939 (00.0040%)

./proc/boot/devb-umass

Num Non-MsgSend calls 0 (0.000000%)

Total MsgSends to procnto 31708 (0.011081%)

Total MsgSends to non-procnto 286113706 (99.988922%)

Num processes msg receiving 7

Num distinct MsgSend types to procnto 3 (75.000000%)

Num distinct MsgSends types to non-procnto 1 (25.000000%)

MSG PID CHID ND COUNT

0x113 7 1 0 286113706 (99.98%)
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0x41 1 1 0 15865 (0.0055%)

0x10e 1 1 0 12 (0.000000042%)

0x40 1 1 0 15831 (0.0055%)

./proc/boot/io-hid

Total calls 3091954

Total calls to normalize 7339 (0.23%)

Num Non-MsgSend calls 0 (0.000000%)

Total MsgSends to procnto 0 (0.000000%)

Total MsgSends to non-procnto 3091954 (100.000000%)

Num processes msg receiving 1

Num distinct MsgSend types to procnto 0 (0.000000%)

Num distinct MsgSends types to non-procnto 1 (100.000000%)

MSG PID CHID ND COUNT

0x113 7 1 0 3091954 (100.00%)

./proc/boot/slog2info

Total calls 158556

Total calls to normalize 398 (0.24%)

Num Non-MsgSend calls 0 (0.000000%)

Total MsgSends to procnto 0 (0.000000%)

Total MsgSends to non-procnto 158556 (100.000000%)

Num processes msg receiving 1

Num distinct MsgSend types to procnto 0 (0.000000%)

Num distinct MsgSends types to non-procnto 1 (100.000000%)

MSG PID CHID ND COUNT

0x101 2 1 0 158556 (100.00%)

./sbin/drm-intel

Total calls 579689879

Total calls to normalize 4035021 (0.69%)

Num Non-MsgSend calls 0 (0.000000%)

Total MsgSends to procnto 579689879 (100.000000%)
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Total MsgSends to non-procnto 0 (0.000000%)

Num processes msg receiving 0

Num distinct MsgSend types to procnto 7 (100.000000%)

Num distinct MsgSends types to non-procnto 0 (0.000000%)

MSG PID CHID ND COUNT

0x106 1 1 0 58160861 (10.03%)

0x116 1 1 0 58160417 (10.03%)

0x47 1 1 0 114405790 (19.73%)

0x100 1 1 0 116321534 (20.06%)

0x40 1 1 0 58160567 (10.03%)

0x43 1 1 0 116320663 (20.06%)

0x41 1 1 0 58160047 (10.03%)

./sbin/screen

Total calls 150581874

Total calls to normalize 579764 (0.38%)

Num Non-MsgSend calls 0 (0.000000%)

Total MsgSends to procnto 12842020 (8.528265%)

Total MsgSends to non-procnto 137739854 (91.471741%)

Num processes msg receiving 3

Num distinct MsgSend types to procnto 1 (25.000000%)

Num distinct MsgSends types to non-procnto 3 (75.000000%)

MSG PID CHID ND COUNT

0x106 27 5 0 131913569 (87.60%)

0x101 27 5 0 4280285 (2.84%)

0x113 10 3 0 1546000 (1.02%)

0x0 1 1 0 12842020 (8.52%)

./sensor

Total calls 74087213

Total calls to normalize 182439 (0.24%)

Num Non-MsgSend calls 0 (0.000000%)
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Total MsgSends to procnto 360645 (0.486784%)

Total MsgSends to non-procnto 73726568 (99.513206%)

Num processes msg receiving 2

Num distinct MsgSend types to procnto 3 (42.857143%)

Num distinct MsgSends types to non-procnto 4 (57.142860%)

MSG PID CHID ND COUNT

0x101 8 3 0 73546247 (99.26%)

0x116 8 3 0 72128 (0.09%)

0x100 1 1 0 72130 (0.09%)

0x100 8 3 0 72128 (0.09%)

0x109 8 3 0 36065 (0.04%)

0x41 1 1 0 144257 (0.19%)

0x40 1 1 0 144258 (0.19%)

./sbin/io-pkt-v6-hc

Total calls 216

Total calls to normalize 170 (78.7%)

Num Non-MsgSend calls 0 (0.000000%)

Total MsgSends to procnto 2 (0.925926%)

Total MsgSends to non-procnto 214 (99.074074%)

Num processes msg receiving 2

Num distinct MsgSend types to procnto 1 (50.000000%)

Num distinct MsgSends types to non-procnto 1 (50.000000%)

MSG PID CHID ND COUNT

0x101 9 1 0 214 (99.07%)

0x40 1 1 0 2 (0.92%)

./proc/boot/devc-pty

Total calls 43

Total calls to normalize 39 (90.69%)

Num Non-MsgSend calls 0 (0.000000%)

Total MsgSends to procnto 43 (100.000000%)
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Total MsgSends to non-procnto 0 (0.000000%)

Num processes msg receiving 0

Num distinct MsgSend types to procnto 1 (100.000000%)

Num distinct MsgSends types to non-procnto 0 (0.000000%)

MSG PID CHID ND COUNT

0x17 1 1 0 43 (100.00%)

./usr/sbin/sshd (Did not normalize)

Total calls 1067

Total calls to normalize (%)

Num Non-MsgSend calls 0 (0.000000%)

Total MsgSends to procnto 143 (13.402061%)

Total MsgSends to non-procnto 924 (86.597939%)

Num processes msg receiving

Num distinct MsgSend types to procnto 14 (29.787233%)

Num distinct MsgSends types to non-procnto 33 (70.212761%)

MSG PID CHID ND COUNT

0x102 15 2 0 134 (12.55%)

0x105 3 1 0 161 (15.08%)

0x105 15 2 0 178 (16.68%)

0x105 4 1 0 159 (14.90%)

0x101 4 1 0 96 (8.99%)

0x10d 15 2 0 2 (0.18%)

0x116 15 2 0 30 (2.81%)

0x116 3 1 0 24 (2.24%)

0x116 1 1 0 16 (1.49%)

0x100 1 1 0 24 (2.24%)

0x100 8 3 0 9 (0.84%)

0x109 8 3 0 4 (0.37%)

0x101 8 3 0 6 (0.56%)

0x116 8 3 0 4 (0.37%)
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0x72 1 1 0 2 (0.18%)

0x101 15 2 0 32 (2.99%)

0x102 3 1 0 4 (0.37%)

0x102 1 1 0 2 (0.18%)

0x115 1 1 0 6 (0.56%)

0x115 15 2 0 4 (0.37%)

0x115 3 1 0 10 (0.93%)

0x115 4 1 0 4 (0.37%)

0x116 4 1 0 6 (0.56%)

0x100 4 1 0 1 (0.09%)

0x10d 4 1 0 1 (0.09%)

0x106 15 2 0 3 (0.28%)

0x11 1 1 0 1 (0.09%)

0x102 4 1 0 1 (0.09%)

0x115 15 2 0 8 (0.74%)

0x106 15 2 0 6 (0.56%)

0x100 1 1 0 25 (2.34%)

0x100 3 1 0 2 (0.18%)

0x10d 3 1 0 2 (0.18%)

0x100 15 2 0 2 (0.18%)

0x10d 15 2 0 2 (0.18%)

0x12 1 1 0 2 (0.18%)

0x17 1 1 0 5 (0.46%)

0x0 1 1 0 24 (2.24%)

0x115 3 1 0 5 (0.46%)

0x41 1 1 0 6 (0.56%)

0x106 8 3 0 9 (0.84%)

0x100 8 3 0 11 (1.03%)

0x71 1 1 0 4 (0.37%)

0x13 1 1 0 22 (2.06%)

0x40 1 1 0 4 (0.37%)
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0x115 4 1 0 3 (0.28%)

0x106 4 1 0 1 (0.09%)

Table D.1: Normalization details per-process



Appendix E

Average False-Positive Graphs

Below are graphs of the average false-positive percentages over all datasets for each

process.

123



124



125


	Title Page
	Table of Contents
	Abstract
	Acknowledgements
	Introduction
	Contributions
	Thesis Organization

	Background
	Introduction to Safety-Critical Systems
	Notorious Failures
	Properties of Safety-Critical Systems
	The Software Engineering Process
	Emergent Behavior
	Fault Tolerance and Redundancy

	Anomaly Detection for Fault Tolerance and Error Detection
	Process Homeostasis
	Process Homeostasis and Immunological Basis
	Overview
	Training Phase
	Detection Phase
	Reaction Phase


	System-Wide Behavioural-based Anomaly Detection: Rationale and Design Principals
	The Need for Behavioral Anomaly Detection
	The Difficulty of Feature Selection

	Thread Homeostasis: The Design Principals
	Sequences of System Calls as a Behavioral Profile
	System-wide Profiling Using Sequences of Messages
	Thread-based Profiling
	The System As a Network of Message-Passing Threads
	A Lightweight Anomaly Detector
	tH as a User-level System Process
	Building Behavioral Profiles During Verification
	Low False-Positive Rate


	Thread Homeostasis on a Message-Passing Microkernel
	The Design approach
	The QNX™ Operating System
	Profiling Thread Behaviour
	A Thread Network Behavioral Model
	System call identification
	Interprocess Message Identification

	Modifying the Instrumented Kernel
	Runtime Structure and Organization
	Other Differences from pH
	Dual Runtime Modes
	Monitoring Critical Processes only
	Configurable window size
	System Call Delays

	Implementation Challenges
	Customizing Trace Logging for tH
	Kernel Call Restarts

	The 32-bit versus 16-bit Message Header Dilemma
	A Summary of the Technical Contributions

	Usage
	Starting up the anomaly detector
	Status Information


	Field Evaluation
	The Evaluation Data
	The Run

	The Learning Phase
	Using Multiple Datasets For Training
	tH Usage Statistics
	Process Normalization Results

	The Testing Phase
	Brief Fault Detection Tests
	Removing a Sensor
	Physically Interacting with the System
	Changing the restart order
	Overheating


	Discussion
	Results Analysis
	Determinism
	The False Positives

	True Positive Tests
	Limitations
	Limitations of Our Testing Approach
	The Dynamic Thread Creation
	Detecting Internal Process Corruption

	Conclusion and Future Work
	Future Work


	Bibliography
	Normalization data per-thread
	Unused Kernel Trace Events by tH
	Trace data for Google's Blink Port on QNX
	Normalization Details Per-Process
	Average False-Positive Graphs

